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Abstract

We investigate a mathematical model for induction hardening of steel. It accounts for

electromagnetic e�ects that lead to the heating of the workpiece as well as thermome-

chanical e�ects that cause the hardening of the workpiece. The new contribution of this

paper is that we put a special emphasis on the thermomechanical e�ects caused by the

phase transitions. We take care of e�ects like transformation strain and transformation

plasticity induced by the phase transitions and allow for physical parameters depending

on the respective phase volume fractions.

The coupling between the electromagnetic and the thermomechanical part of the model

is given through the temperature-dependent electric conductivity on the one hand and

through the Joule heating term on the other hand, which appears in the energy balance and

leads to the rise in temperature. Owing to the quadratic Joule heat term and a quadratic

mechanical dissipation term in the energy balance, we obtain a parabolic equation with

L
1
data. We prove existence of a weak solution to the complete system using a truncation

argument.

1 Introduction

In most structural components in mechanical engineering, the surface is particularly stressed.

Therefore, the aim of surface hardening is to increase the hardness of the boundary layers of a

workpiece by rapid heating and subsequent quenching. This heat treatment leads to a change

in the microstructure, which produces the desired hardening e�ect.

Depending on the respective heat source one can distinguish between di�erent surface hardening

procedures. The most important ones are �ame hardening, laser hardening and induction

hardening.

In the latter case the mode of operation relies on the transformer principle. A given current

density in the induction coil induces eddy currents inside the workpiece. Because of the Joule

e�ect, these eddy currents lead to an increase in temperature in the boundary layers of the

workpiece. Then the current is switched o�, and the workpiece is quenched by spray-water

cooling.

Induction surface hardening has successfully been applied in industry for more than �fty years.

Up to now, the process control and the design of decent induction coils for speci�c hardening

purposes mostly depends on experience.

However, there is a growing demand in industry for a more precise process control, mainly for

two reasons. One is the general goal of weight reduction, especially in automotive industry,

leading to components made of thinner and thinner steel sheets. The surface hardening of these

sheets is a very delicate task, since one must be careful not to harden the complete sheet, which

would lead to undesirable fatigue e�ects. The second reason is the tendency to use high quality

steels with only a small carbon content. Since the hardenability of a steel is directly related to

its carbon content, already from a metallurgical point of view, the treatment of these steels is
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extremely di�cult. Hence, a precise process control is indispensable for the heat treatment of

this kind of steels.

In this paper we try to give a rather complete mathematical treatment of induction hardening.

In Section 2, we derive a mathematical model consisting of two components. We employ a

vector potential formulation of Maxwell's equations to describe the electromagnetic e�ects that

lead to the heating of the workpiece. The second component is a phenomenological model of

the thermomechanical behaviour of the workpiece including the phase transitions that lead to

the desired hardening e�ect.

The interplay between temperature evolution and phase volume fractions has been subject

to intensive research by the author during the last years, see e.g. [16], [20]�[22], [25], and is

now well understood. In a joint project with industrial partners and metallurgists from the

Bergakademie Freiberg related to laser and electron beam hardening, temperature-dependent

data functions for a number of important steels have been identi�ed (cf. [25]).

Therefore, we assume in this paper that the relationship between temperature evolution and

phase volume fractions is known a priori and concentrate on the thermomechanical e�ects

caused by the phase transitions.

During the last 15 years, the thermomechanical behaviour of steel has been an active research

topic of physical metallurgy (cf., e.g., [11], [14], [15] and the references therein). Although it

seems that so far there is no uni�ed thermomechanical model at hand that is well accepted

and that allows to reproduce all experiments, it is quite clear what the principal e�ects are

that a macroscopic model should account for. We pick up these components and use them to

formulate a consistent thermomechanical model. A special feature of this model is that the

physical parameters are allowed to depend on the volume fractions of the metallurgical phases

by a mixture ansatz.

The resulting system of state equations consists of an elliptic equation for the scalar potential, a

degenerate parabolic system for the vector potential, a quasistatic momentum balance coupled

with a nonlinear stress-strain relation, and a nonlinear energy balance equation. Owing to the

quadratic Joule heat term and a quadratic mechanical dissipation term in the energy balance,

we obtain a parabolic equation with L1 data.

In Sections 3 and 4, we prove existence of a weak solution to the complete system. We truncate

the quadratic terms, show existence of a weak solution to the truncated system by a �xed

point argument, and �nally pass to the limit. Similar arguments have been used, e.g., in [3] in

connection with a model for induction heating, and in [12] for a model of resistance welding.

2 The mathematical model

2.1 Process description

Electromagnetic induction provides a method of heating electrically conducting materials. The

basic components of an induction heating system are an induction coil (in the sequel called

inductor), an alternating current (a.c.) power supply, and the workpiece itself. The inductor,

which may take di�erent shapes depending on the required heating pattern, is connected to the

power supply. The �ow of alternating current through the inductor generates an alternating

magnetic �eld which in turn induces eddy currents in the workpiece that dissipate energy and
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Figure 1: Induction hardening of a gear wheel (by courtesy of Steremat Elektrowärme GmbH,

Berlin).

bring about heating.

Since the magnitude of the eddy currents decreases with growing distance from the workpiece

surface because of the frequency dependent skin-e�ect, induction heating is a suitable heat

source for surface heat treatments if the current frequency has been chosen big enough. On

the other hand, if su�cient time for heat conduction is allowed and the current frequency is

not too big, relatively uniform heating patterns can be obtained. Hence induction heating

can also be used in heat treatments like annealing. Figure 1 depicts the heating stage in the

surface hardening of a gear wheel. The power supply is not visible. After the current has

been switched o�, the workpiece is quenched by spray-water cooling which leads to the desired

hardening e�ect.

The reason why one can change the hardness of steel by thermal treatment lies in the occurring

phase transitions. At room temperature, a hypoeutectoid steel, i.e., a steel with less than 0.8 %

carbon content, is a mixture of ferrite, pearlite, bainite, and martensite. Upon heating, these

phases are transformed to austenite in the boundary layers of the workpiece. Then, during

cooling, austenite is transformed back to a mixture of ferrite, pearlite, bainite and martensite.

The actual phase distribution at the end of the heat treatment depends on the cooling strategy.

In the case of surface hardening, owing to high cooling rates, most of the austenite is transformed

to martensite by a di�usionless phase transition leading to the desired increase of hardness.

Hence a mathematical model for induction surface hardening has to account for the electro-

magnetic e�ects that lead to the surface heating as well as for the thermomechanical e�ects

and the phase transitions that are caused by the enormous changes in temperature during the

heat treatment.
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Figure 2: The setting.

2.2 Electromagnetic subproblem

2.2.1 The vector potential formulation of Maxwell's equations

Since we cannot model the hardening machine itself, we restrict ourselves to the following

idealized geometric setting (cf. Fig. 2). Let D � IR3 be a domain which contains the inductor


 and the workpiece �. We assume

(A1) �
 � D; �� � D; �
 \ �� = ;; and @
; @�; @D are of class C1;1.

We call G = 
 [ � the set of conductors and de�ne the space - time cylinder Q = �� (0; T ).

Since we do not consider the hardening machine in our model, we assume that the inductor 


is a closed tube. Inside we �x a section � and model the current density which is generated by

the hardening machine by an interface condition on �.

In eddy current problems we can neglect displacement currents, hence we consider the following

set of Maxwell's equations:

curl H = J; (2.1a)

curl E = �B
t
; (2.1b)

div B = 0: (2.1c)

Here, E is the electric �eld, B the magnetic induction, H the magnetic �eld and J the current

density. In addition, we introduce Ohm's law

J = �E; in D; (2.2)

where � is the electric conductivity, and assume a linear relation between magnetic induction

and magnetic �eld, i.e.,

B = �H; in D; (2.3)
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with the magnetic permeability �.

Outside the conductors, we assume zero current density, inside the conductors, the conductivity

is positive and may depend on the temperature, i.e.,

�(x; t) =

�
�0(�(x; t)) > 0; for x 2 �G;

0; for x 2 D n �G:
(2.4)

In reality, the temperature characteristic will be di�erent in the coil and the workpiece, but to

simplify the notation we assume the same temperature dependency in all the conductors (cf.

Section 6).

The magnetic permeability may take di�erent values in the workpiece and in the surrounding

air, however it is assumed to be independent of temperature. The inductor is usually made of

copper which has approximately the same permeability as the air. Hence we assume

�(x) = �2��
+ �1(1 � �

�
); (2.5)

where �1; �2 are positive constants with �1 < �2 and �
C
= 1 if x 2 C, and �

C
= 0 is the

characteristic function of the set C � IRn. In view of (2.1c) we introduce the magnetic vector

potential A such that

B = curl A; in D: (2.6)

Since A is not uniquely de�ned by (2.6), we impose the Coulomb gauge

div A = 0; in D: (2.7)

Using (2.1b) and (2.6), we de�ne the scalar potential � by

E +A
t
= � grad � in D: (2.8)

Combining this with Ohm's law (2.2), we obtain the following expression for the total current

density J :

J = ��A
t
� � grad �: (2.9)

Inserting (2.6) and (2.9) into (2.1a), we obtain

curl
�1
�
curl A

�
= ��A

t
� � grad �: (2.10)

Equation (2.10) is a general model to describe eddy currents. Now we will explain how it

looks like precisely in the di�erent domains (cf. [13]). Since the inductor is connected to the

hardening machine, the current density in it can be thought of as consisting of two components:

an impressed part J
source

and an induced part J
eddy

. The impressed part is due to an external

source and is de�ned by the gradient of the scalar potential. The induced part is due to the

time-varying �eld B in the coil itself. Therefore, in the inductor,

curl
� 1
�
curl A

�
+ �A

t
= J

source
; in 
; (2.11)

where

J
source

= �� grad �: (2.12)
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In the workpiece, there is an induced current density J
eddy

, but there is no source term, hence

we obtain

curl
�1
�
curl A

�
+ �A

t
= 0; in �; (2.13)

with

J
eddy

= ��A
t
: (2.14)

There is no electric current in the air (� = 0), and so (2.10) can be simpli�ed to

curl
�1
�
curl A

�
= 0; in D nG: (2.15)

We assume that the boundary @D is a perfect conductor, this means that the tangential compo-

nent of A vanishes on @D. Thus the magnetic vector potential is characterized by the following

boundary value problem:

�A
t
+ curl

� 1
�
curl A

�
+ �0�


grad � = 0; in D; (2.16a)

n�A = 0; on @D: (2.16b)

Demanding that the continuity equation holds for the source current J
source

(cf.(2.12)), we

determine the scalar potential � by the elliptic equation

� div
�
�0 grad �

�
= 0; in 
: (2.17a)

On the boundary we assume a homogenous Neumann condition, i.e.,

��0
@�

@�
= 0; in @
: (2.17b)

In the section � we supply current via an interface condition, i.e.,h
� �0

@�

@~�

i
= j

s
; on �: (2.17c)

Here, j
s
is the external source current density, [f(x)] denotes the jump of a function f(x) across

the interface �, and ~� is a unit normal vector on �.

Remark 2.1 In view of (2.1a), the continuity equation should hold for the total current density

given in (2.9). In the next section we will show (Corollary 3.1) that this is indeed the case, at

least in a distributional sense.

2.2.2 Assumptions and weak formulation

To solve the interface problem (2.17a) � (2.17c) in the coil 
, we introduce the quotient space

H1(
)=IR with norm

k �'k
H
1(
)=IR = inf

'2 �'
k'k

H
1(
):

According to [19, Theorem 1.9], the functional

�' 7!
�Z




jr'j2 dx
�1=2

for ' 2 �'
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is an equivalent norm on H1(
)=IR. Hence, there are constants o�; o
� such that

o�k �'kH1(
)=IR �

�Z



jr'j2 dx
�1=2

� o�k �'k
H
1(
)=IR: (2.18)

To ensure the solvability of the interface problem we assume

(A2) j
s
2 L2(0; T ;H�1=2(�)), such thatZ

�

j
s
(t) dx = 0; a.e. in (0; T );

(A3) �0 2 C(IR); 0 < �� � �0(x) � �� <1 for all x 2 IR.

Remark 2.2 (1) The integral in (A2) has to be understood in the sense of duality between

H1=2(�) and H�1=2(�).

(2) Note that for �u 2 H1(
)=IR and arbitrary u1;2 2 �u we have r(u1 � u2) = 0 a.e. in 
 and

(owing to (A2))
R
�
j
s
u1 dx =

R
�
j
s
u2 dx a.e. in (0; T ).

(3) In the sequel we will no longer distinguish between � and ��.

Now we dissect 
 once more, producing another interface e� with � \ e� = ;, and two subsets


1;2 satisfying 
1[
2 = 
, and 
1\
2 = �[e�. Assuming that the �ux of the scalar potential

is continuous through the interface e�, we multiply (2.17a) with a test function, integrate by

parts in 
1 and 
2 using the boundary and interface conditions and obtain the following weak

formulation of the interface problem in 
:

Find � 2 L2(0; T ;H1(
)=IR), such thatZ



�0r�(t) � r'dx+

Z
�

j
s
(t)'dx = 0 for all ' 2 H1(
)=IR a.e. in (0; T ): (2.19)

Here and in the sequel, 0 � 0 denotes the scalar product in IR3. The intergral on � again has to

be understood in the sense of duality between H1=2(�) and H�1=2(�).

Now we turn to the the vector potential A. Denoting L = [L]3 the vector-valued counterpart

of any real-valued Sobolev space L, we introduce the Hilbert space

X = fv 2 H( curl ;D) ; div v = 0 and n� v

���
@D

= 0g;

where H( curl ;D) = fv 2 L2(D) ; curl v 2 L2(D)g. Since @D is of class C1;1 (cf. (A1)), X

equipped with the norm

kvkX = k curl vkL2(D)

is a closed subspace of H1(D) (cf. [19, Lemma 3.4]). We recall the Green's formulaZ
@D

(n� f) � g dx =

Z
D

curl f � g dx�

Z
D

f � curl g dx; (2.20)
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Figure 3: Phase transitions in hypoeutectoid steel during surface hardening (time t0 : start of

heating, t1 : end of heating, t2 : end of cooling).

for all f 2 H( curl ;D) and g 2 H1(D), where the integral on @D has to be understood in

the sense of duality between H�1=2(@D) and H1=2(@D). With the help of (2.20), we obtain the

following weak formulation of (2.16a), (2.16b):

Find A 2 L2(0; T ;X), such that A(0) = A0,Z
G

�0At
� v dx+

Z
D

1

�
curl A � curl v dx+

Z



�0r� � v dx = 0; (2.21)

for all v 2 X and a.e. in (0; T ). For A0 and �, we assume

(A4) A0 2 X,

(A5) �(x) = �2��
+ �1(1� �

�
); with constants 0 < �1 < �2.

2.3 Phase transitions and thermomechanics

2.3.1 Phase transitions

We do not intend to explain the phenomenology of phase transitions that occur during heat

treatments. For this we refer to [16], [20] � [22] and [25]. Instead we con�ne ourselves to
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explaining the time evolution of phases during a surface heat treatment, according to Figure 3,

for a hypoeutectoid carbon steel.

We distinguish between three characteristic times: the beginning of the heating process t0, the

end of the heating process t1, and the end of the cooling process t2. At time t0 the workpiece

which is to be exposed to the heat treatment is assumed to consist of a mixture of ferrite,

pearlite, bainite, and possibly already some martensite. Of course, the real phase distribution

prior to the heat treatment is unknown. We call the initial phase mixture z0. Thus we have

z0(t0) = 1 everywhere in the workpiece. At the end of the heating process at time t1 the outer

layers of the workpiece have been transformed to austenite (volume fraction z1(t1)). Then,

upon cooling, this volume fraction is transformed back to a mixture of ferrite (z2), pearlite

(z3), bainite (z4) and martensite (z5). Note that, during the cooling process, the remaining

fraction of the initial phase con�guration remains unchanged and equal to z0(t1). Thus, we can

conclude

_z0(t)

�
� 0 ; for t 2 [t0; t1]

= 0 ; for t 2 [t1; t2]
; _z1(t)

�
� 0 ; for t 2 [t0; t1]

� 0 ; for t 2 [t1; t2]
;

and

z1(t1) = z1(t2) + z2(t2) + z3(t2) + z4(t2) + z5(t2):

In [16], [24], and [25] we show di�erent approaches to obtain these volume fractions as the

solution to a system of ordinary di�erential equations. Here, we assume the existence of an

operator P that assigns to a given temperature evolution � in the workpiece (recall Q =

� � (0; T )) the vector of volume fractions z = (z0; : : : ; z5). More precisely, we assume

(A6) There exists a mapping

P : L1(Q) �! [W 1;1(0; T ;L1(�))]6; � 7! z;

satisfying:

(i) z
i
(x; t) 2 [0; 1]; i = 0; : : : 5;

5P
i=0

z
i
(x; t) = 1 a.e. in Q;

(ii) kzk[W 1;1(0;T ;L1(�))]6 � z�, with a constant z� independent of �.

(iii) Let f�
k
g � L1(Q) with �

k
! � strongly in L1(Q), then

z
k
�! z strongly in W 1;p(0; T ;Lp(�)) for all p 2 [1;1);

where z = P[�].

Remark 2.3 Assumption (A6) is satis�ed by most of the phase transition models used in

practice. However, a recent result (cf. [25]) seems to indicate that taking into account the time

derivative of the temperature evolution can be necessary in order to reproduce nonisothermal

measurements. This case is not covered by our analysis and will require further research.

2.3.2 Thermomechanical modeling

We only consider a weak coupling of thermomechanical and electromagnetic e�ects. We admit

a temperature dependency of the electric conductivity (cf. (A3)) and assume that Joule heating
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is the only electromechanical e�ect responsible for the rise in temperature. Doing so, we neglect

the Lorentz force in the momentum balance and do not account for the Thomson and Peltier

e�ects1. While the latter are of particular importance in semiconductors, the Lorentz force can

play a role in induction hardening, especially in the case of a moving inductor. This case is not

covered by our model. For details about a more involved coupling of thermomechanical and

electromagnetic e�ects, we refer to the monograph [30]. Since phase transitions only occur in

the workpiece � made of steel, we will consider the complete thermomechanical model only in �

and neglect mechanical e�ects in the inductor. Figure 4 shows the complex interdependence of

the relevant physical quantities. The interplay between temperature � and volume fraction z is

well understood and has been subject to intensive research by the author during the last years,

see e.g. [16], [20]�[22], [25]. While the volume fractions z can be computed from the temperature

evolution (cf. (A6)), the phase transitions lead to a release or a consumption of latent heat and

thus in�uence the temperature. The new feature is that we account also for mechanical e�ects.

During the last 15 years, the thermomechanical modeling of phase transitions in steel has

been an active research topic of physical metallurgy (cf., eg., [11], [14], [15] and the references

therein). Although it seems that so far there is no uni�ed thermomechanical model at hand

that is well accepted and that allows to reproduce all experiments, it is quite clear what the

principle e�ects are that a macroscopic model should account for (cf. Figure 4):

� The metallurgical phases z
i
have material parameters with di�erent thermal characteristics,

hence their e�ective values have to be computed by a mixture ansatz.

� The di�erent densities of the metallurgical phases result in a di�erent thermal expansion.

This thermal and transformation strain is the major contribution to the evolution of

internal stresses during heat treatments.

� Experiments with phase transformations under applied loading show an additional irre-

versible deformation even when the equivalent stress corresponding to the load is far

below the normal yield stress. This e�ect is called transformation-induced plasticity.

� The irreversible deformation leads to a mechanical dissipation that acts as a source term in

the energy balance.

� The internal stresses in�uence the transformation kinetics. This e�ect will be neglected in

our model. In line with (A6) we assume that the transformation kinetics only depend on

the time evolution.

In the following, we combine these ingredients to form a consistent model and work out the

inherent mathematical features. Assuming right from the beginning small deformations, we

formulate the balance laws in the undeformed domain.

To determine the displacement u (or the velocity v = u
t
, respectively), the stress tensor �, and

the temperature �, we evaluate the quasistatic balance law of momentum and the balance law

1Roughly speaking, the Thomson e�ect means that a temperature gradient can produce an electric current

in the absence of an electric �eld. The fact that heat can be generated by an elastic �eld in a spatially uniform

temperature �eld is called Peltier e�ect (cf. [30]).
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Figure 4: Phase transitions with thermomechanics - interdependence of physical quantities.

of internal energy:

� div � = f; (2.22a)

�e
t
+ div q = � : "(v) + h: (2.22b)

Here � is the mass density, f an external force, q is the heat �ux, e the speci�c internal energy

and

"(v) =
1

2
(Dv +DT v) (2.23)

the symmetric part of the strain rate tensor. The scalar product in IR3�3 is denoted by 0 : 0

and the corresponding norm by j : j. The external heat source h in our case only consists of the

contribution of the Joule heat, i.e.,

h =
1

�0
jJ j2; (2.24)

where the current density J is de�ned in (2.9).

We employ the laws of Fourier and Hooke, respectively,

q = �k grad �; (2.25)

� = K"el: (2.26)

Here, k is the thermal conductivity, "el the elastic strain, and K = fK
ijkl
g the isotropic sti�ness

tensor. Moreover, we assume that the total strain "(u) can be additively decomposed in an

elastic part, a thermal part "th, and a nonelastic part induced by the phase transitions, which

we refer to as "trip, where trip is short for transformation-induced plasticity, i.e.,

"(u) = "el + "th + "trip: (2.27)
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In linearized thermoelasticity one usually assumes a linear relation between temperature dif-

ference and thermal strain, i.e., "th = e�(�; z)I with
e�(�; z) = e�(� � �0);

where e� is the thermal expansion coe�cient, I the identity matrix, and �0 a reference temper-

ature. This approach has at least two disadvantages for our purpose. Firstly, strictly speaking,

the above relation only holds for small temperature variations around �0, which is de�nitely

not the case in surface hardening, where the temperature usually varies between room tem-

perature and some 1000 degrees centigrade. Moreover, dealing with phase transitions, we have

to take into account also volume changes due to a change in the volume fraction of the con-

stituting phases. Hence, sometimes (cf., e.g., [11], [35]), an additional transformation strain is

introduced.

However, it seems to be more natural to describe the thermal and transformation strain in a

uni�ed manner through changes in the density, as it has been done in [31]. To this end we

make a mixture ansatz for the density,

�(�; z) =

5X
i=0

z
i
�
i
(�): (2.28)

Here, �
i
(�) is the measured homogenous temperature-dependent density of the phase z

i
. Then

we describe the thermal strain by

"th =

 �
�̂

�

�1

3

� 1

!
I; (2.29)

where �̂ is the homogenous, measured density of the initial phase con�guration z0(t0) at the

initial temperature �(t0).

Di�usonal and di�usionless phase transformations under applied loading exhibit an irreversible

deformation even when the equivalent stress corresponding to the load is far below the normal

yield stress.

For i � 2, let "trip
i

be this transformation-induced plasticity (trip) strain contribution of the

formation of the phase z
i
from austenite during cooling (cf. Figure 3). The notation has

been chosen to be compatible with the engineering literature. However, note that "trip is not

rate independent and therefore a viscoelastic rather than a plastic strain. A general model to

describe the trip strain rate is

"trip
i;t

= �i

1(�)
@�i

2(zi)

@z
i

z
i;t
S; (2.30)

where the deviator (i.e., the trace-free part of the stress tensor) is de�ned by

S = � �
1

3
tr �I: (2.31)

In the engineering literature, various formulas of this structure can be found to describe the

trip strain. In most cases, they only di�er in the choice of the functions �i

1;2. For a review of
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these models and micromechanical considerations to derive (2.30), we refer the reader to [14].

However, a rigorous derivation of this kind of models is not yet available. A promising new

approach is described in [15]. The basic idea is to describe the usual plastic strain and the trip

strain in a uni�ed manner.

In the sequel, we will use the following ansatz to describe the trip strain increment:

"
trip

t
=
�
grad

z
�(�; z)

�
� z

t
S: (2.32)

If we put

�(�; z) =

5X
i=0

�i

1(�)�
i

2(zi);

we recover (2.30). Since we only account for contributions to the trip strain of phases that

grow from the austenite, which itself has been formed during the heating process, we should

have �1
2 = �2

2 = 0. From the mathematical point of view, this is irrelevant, and we will only

prescribe a certain regularity for � in the next subsection.

Remark 2.4 To simplify the derivation of constitutive relations for the internal energy, we as-

sume that the temperature dependency of the density �, the sti�ness matrix K, and the function

� in (2.32) can be neglected, i.e.,

�
;�
= 0; K

;�
= 0; �

;�
= 0; (2.33)

where f
;�

is short for @f

@�

. In this way we avoid dissipation terms in the energy balance that

are usually neglected in engineering literature. Moreover, they would cause severe di�culties in

the mathematical treatment. In Section 6 we will come back to this assumption and review the

mathematical di�culties that would arise without making assumption (2.33).

According to (2.26) and (2.27), Hooke's law is given by

� = K("(u)� "th � "trip); (2.34)

thus an immediate consequence of (2.33) is

�
;�
= 0: (2.35)

Moreover, we can conclude

"th
t
= �

1

3

�̂1=3

��4=3
( grad �) � z

t
I (2.36)

and we can write (2.32) in the compact form

"trip
t

= �(z)
t
S: (2.37)

To derive a constitutive relation for the internal energy e, we proceed as in [29, Section 2.4.2].

To this end we introduce the Helmholtz free energy  and the entropy s, which are related by

the thermodynamic identity

e =  + �s: (2.38)

We assume that there exists a twice continuously di�erentiable material function  ̂ such that

 =  ̂("el; �; z1): (2.39)
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The dependency on "el and � is standard. Moreover, we have chosen the austenite volume

fraction z1 as an internal variable since, during the heating, austenite is formed, and then,

during the cooling process, the other phases form at the expense of austenite. From (2.39), we

obtain immediately

 
t
=

@ ̂

@"el
: "el

t
+
@ ̂

@�
�
t
+
@ ̂

@z1
z1;t: (2.40)

To obtain a thermodynamically consistent model, we demand that the Clausius-Duhem in-

equality is satis�ed for all solutions to the �eld equations. For small deformations, it reads

� : "(v)� �( 
t
+ s�

t
)�

1

�
q � grad � � 0: (2.41)

Inserting (2.25), (2.27), and (2.40), we obtain�
� � �

@ ̂

@"el

�
: "el

t
+ � : ("(v)� "el

t
)� �

�
s+

@ ̂

@�

�
�
t
� �

@ ̂

@z1
z1;t +

1

�

�� grad ����2 � 0: (2.42)

Since this inequality holds for all solutions to the �eld equations, we �rst consider an elastic

deformation at constant and uniform temperature (i.e., �
t
= 0 and grad � = 0), moreover,

we assume that neither the inelastic strain nor the internal variable z1 are altered. Since the

Clausius-Duhem inequality has to be satis�ed for all elastic strain rates "el
t
, we can infer

� = �
@ ̂

@"el
: (2.43a)

Now we consider a purely thermal deformation, again uniformly in space without change in

inelastic strain and internal variable. Since (2.42) has to be satis�ed for every �
t
, we can

conclude that

s = �
@ ̂

@�
: (2.43b)

We de�ne the thermodynamic force associated with the internal variable z1 by

L =
@ ̂

@z1
: (2.43c)

To be compatible with the terminology in papers dealing with phase transition models without

mechanics, we call L the latent heat. Owing to Fourier's law of heat conduction, the last term

in (2.41) is always nonnegative. Thus, we end up with the inequality

� : ("th
t
+ "

trip

t
)� �Lz1;t � 0: (2.44)

It re�ects the fact that the intrinsic dissipation is necessarily positive. In principle, it could be

used to derive further constitutive relations for the latent heat L, the function � in (2.32), as

well as for an evolution equation for the volume fractions z.

Let us consider an isothermal, slow transformation from austenite to some other phase, then

we may assume that the mecahnical dissipation terms in (2.44) can be neglected. Moreover,

the new phase grows at the expense of austenite (i.e., z1;t < 0), Thus we can conclude

L > 0
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and we say that latent heat is released. During the heating process, austenite is formed (i.e.,

z1;t > 0). Thus we have ��Lz1;t < 0, i.e., latent heat is consumed. This has to be compensated

by a positive contribution of the mechanical dissipation.

We will not go further into this. We come back to our goal of deriving a constitutive relation

for the internal energy instead. Invoking (2.38) and (2.40), we obtain

�e
t
= � : "el

t
+ ��s

t
+ �Lz1;t: (2.45)

Moreover, recall that

s = �
@ ̂("el; �; z1)

@�
:

Since  ̂ is assumed to be twice continuously di�erentiable, in view of (2.33), (2.43a), (2.43b),

and (2.45), we can infer

s
t

= �
@2 ̂

@"el@�
: "el

t
�

@2 ̂

(@�)2
�
t
�

@2 ̂

@z1@�
z1;t

= �
@

@�

�
1

�
�

�
: "el

t
+
@s

@�
�
t
�
@L

@�
z1;t

=
@s

@�
�
t
�
@L

@�
z1;t:

As in [29], we de�ne the speci�c heat capacity at constant strain

c
"
= �

@s

@�
: (2.46)

Moreover, we assume
@L

@�
= 0 (2.47)

and obtain �nally for the internal energy

�e
t
= �c

"
�
t
+ � : "el

t
+ �Lz1;t:

Inserting the above expression in the balance of internal energy (2.22b) using (2.25), we obtain

�c
"
�
t
� div

�
k grad �

�
= ��Lz1;t + � : ("th

t
+ "trip

t
) + h: (2.48)

The mechanical dissipation is given by (cf. (2.36), (2.37))

� : ("th
t
+ "

trip

t
) = �

1

3

�̂1=3

��4=3
( grad �) � z

t
tr � + �(z)

t
jSj2: (2.49)

For later use, we de�ne the abbreviation

F (z; z
t
; �) = ��Lz1;t �

1

3

�̂1=3

��4=3
( grad �) � z

t
tr � (2.50)
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physical �eld domain of de�nition

A magnetic vector potential D the big domain

� the scalar potential � 
 the inductor

� temperature G = 
 [ � the set of conductors

� stress tensor � the workpiece

u displacement � the workpiece

z the phase fractions � the workpiece

Table 1: Domain of de�nition of the di�erent physical �elds.

So far in this section we did not care about the domain of de�nition of the di�erent unknowns (cf.

Table 1). Since we want to emphasize the interplay between phase transitions and mechanics,

we restrict the domain of de�nition for stress and displacement to the workpiece � made of

steel. Since the electric conductivity �0 is assumed to depend on temperature, and the inductor


 is also heated up during the process, we have to consider the temperature � in the workpiece

and in the inductor.

We allow for di�erent values of density and speci�c heat in the di�erent steel phases, hence we

de�ne:

(�c
"
)(x; t) =

�
��(z(x; t)) �c

"
(z(x; t)); for x 2 �;

�
c

"
; for x 2 
:

(2.51)

The e�ective material parameters �� and �c
"
can be computed from a mixture rule like (2.28),

however, we will not specify a special mixture rule and only assume a certain regularity of the

e�ective parameters with respect to the volume fractions.

To conclude this section we have to specify boundary conditions for u; �, and �. For the

temperature we neglect a possible radiative heat transfer between inductor and workpiece and

assume

�k
@�

@�
= �(� � �

e
); (2.52)

where � is the unit normal vector on @
 as well as on @� and �
e
is the temperature of the

spray water. The initial temperature is given by

�(0) = �0

and the heat transfer coe�cient by

�(x; t) =

�
0; on @
� (0; T );

�0(t); on @�� (0; T ):
(2.53)

Hence, there is no heat �ux across the inductor. For the workpiece, the heat transfer coe�cient

�0(t) is zero during the heating time. After the current has been switched o�, the workpiece is

quenched by spray-water cooling and �0(t) is positive.

The workpiece boundary @� = @�
g
[ @�

u
is dissected into a part @�

g
where a pressure g is

applied, and a part @�
u
where the workpiece is �xed and for which we assume meas @�

u
> 0.

Using Einstein's summation convention (which will also be applied in the sequel without re-

marking it explicitely), we have

�
ij
�
j

= g; on @�
g
� (0; T ); (2.54a)

u = 0; on @�
u
� (0; T ): (2.54b)
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2.3.3 Assumptions and weak formulation

First, we introduce the solution spaces for the stress tensor and the displacement �eld,

M = f(�
ij
)
��� �ij = �

ji
; and �

ij
2 L2(�) for 1 � i; j � 3g; (2.55)

U = fv 2 H1(�)
��� v = 0 on @�

u
g: (2.56)

Moreover, we de�ne

M( div ) = f� 2 M
��� div � 2 L2(�)g: (2.57)

with the usual notation div � = f
@�ij

@xj
g. According to [18, Proposition 5], the trace map

� 7! �
ij
�
j
is a linear and continuous operator fromM( div ) to [H�1=2(@�)]3 and we have the

Green's formula Z
�

�
ij
"
ij
(v) dx+

Z
�

�
ij;j
v
i
dx =

Z
@�

�
ij
�
j
v
i
dx; (2.58)

for all � 2 M( div ) and v 2 H1(�), where "(v) is de�ned in (2.23). Moreover, �
ij;j

is short for
@

@xj
�
ij
. For later use, we also introduce

fM = f� 2 M
��� div � = 0 in � and �

ij
�
j
= 0 on @�

g
g: (2.59)

Remark 2.5 The last integral in (2.58) and the boundary condition in (2.59) have to be un-

derstood in the sense of duality between H1=2(@�) and H�1=2(@�).

In the next section, we will make use of the following result (cf. [18, Corollary 2]):

Lemma 2.1 Let ~e 2 M. Then the following statements are equivalent:

(1)

~e = "(u) for some u 2 U:

(2) Z
�

� : ~e dx = 0 for all � 2 fM:

Using (2.58), we introduce the weak formulation of the quasi-static mechanical subproblem:

Find �(t) 2 M and u(t) 2 U such thatZ
�

�(t) : "(w) dx =

Z
�

f(t) � wdx +

Z
@�

g(t) � w dx;

for all w 2 U and a.e. t 2 (0; T ); (2.60a)

"(u) = C(z)� + "th +

tZ
0

�(z)
�
S(�) d�; a.e. in Q; (2.60b)

where the thermal and transformation strain "th is de�ned in (2.29) and C = K�1 is allowed

to depend on the phase volume fractions z.
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A close inspection of the dissipative terms in the energy balance (2.48) shows that we can only

expect L1 - regularity for them. To deal with this di�culty, we introduce the space of test

functions

Y
q
0 = fy 2 Lq

0

(0; T ;W 1;q0(G)) \ C([0; T ];L1(G))
���

y
t
2 Lq

0

(0; t;Lq
0

(�)); y(T ) = 0g (2.61)

with 1
q

+ 1
q
0
= 1 and q to be �xed later. Invoking (2.49), (2.50) and (2.52), we consider the

following weak formulation for (2.48):

�

Z
T

0

Z
G

�(�c
"
y)

t
dx dt+

Z
T

0

Z
G

k(�)r�ry dx dt+

Z
@�

�0(� � �
e
)y dx

=

Z
T

0

Z
�

F (z; z
t
; �)y dx dt+

Z
T

0

Z
�

�(z)
t
jSj2 dx dt

+

Z
T

0

Z
G

�0(�)j�

re�+A

t
j
2y dx dt+

Z
G

�c
"
�0y(0) dx; (2.62)

for all y 2 Y
q
0. 2

Remark 2.6 The domain of de�nition for the scalar potential � is restricted to the inductor


. Since @
 is of class C1;1, there exists a well-de�ned extension e� onto G. In the sequel we

will not distinguish between � and e� as long as this will not lead to any confusion.

To complete the mathematical setting, we introduce the following assumptions on the data of

the thermomechanical subproblem:

(A7) �0 2 L
1(G),

(A8) k 2 C(IR); 0 < k� � k(x) � k� <1 for all x 2 IR,

(A9) �0 2 C([0; T ]); �0(�) � 0 for all � 2 [0; T ],

(A10) �c
"
2 C1([0; 1]6); c

"� � �c
"
(z) � c�

"
for all z 2 [0; 1]6,

(A11) �̂; �
; c

"
; L; �

e
are positive constants, and �� � �
 � �� , c

"� � c

"
� c�

"
,

(A12) �� 2 C1([0; 1]6); �� � ��(z) � �� for all z 2 [0; 1]6,

(A13) � 2 C1([0; 1]6); j grad �(z)j � �� <1 for all z 2 [0; 1]6,

(A14) C
ijkl

2 C([0; 1]6); C
ijkl

= C
jikl

= C
klij
; C

ijkl
(z) � C�; C

ijkl
�
ij
�
kl
� C�j�j

2 for all

z 2 [0; 1]6 and � 2 IR3�3,

2To simplify the exposition, we assume that the thermal conductivity k only depends on temperature.

However, for the mathematical analysis we could also allow for an additional dependency on z (cf. Section 6).
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(A15) f 2 L1(0; T ;L2(�)), g 2 L1(0; T ;H�1=2(�)) and there exists a tensor �0 2 L
1(0; T ;M),

satisfying

� div �0 = f; a.e. in Q;Z
@�

�
(�0)ij�j � g

i

�
�
i
dx = 0; for all � 2 H1=2(@�):

The assumptions are quite standard. (A10) and (A12) re�ect the fact that we will have to

integrate by parts in the energy balance with respect to time. (A14) is the usual assumption

for linear elastic materials. For the case of an isotropic material, we would have

C
ijkl

(z) =
1

2�(z)
Æ
ik
Æ
jl
�

1

2�(z)

�(z)

3�(z) + 2�(z)
Æ
ij
Æ
kl
;

with Lamé-coe�cients �; � allowed to depend on the phase volume fractions z.

The tensor �0 in (A15) can for instance be thought of as the solution to the quasistatic linear

elastic problem corresponding to the constitutive law C�0 = "(u).

3 Main result

Let us recall the complete electro-magneto-thermomechanical model of induction hardening we

have derived in the previous section.

(P1) Find A 2 L
2(0; T ;X); � 2 L2(0; T ;H1(
)=IR); � 2 L2(0; T ;M); u 2 L2(0; T ;U)

and � 2 Lq(0; T ;W 1;q(G)) such that

A(0) = A0; in D; (3.1a)

Z
G

�0(�)At
� v dx+

Z
D

1

�
curl A � curl v dx+

Z



�0(�)r� � v dx = 0; (3.1b)

for all v 2 X a.e. in (0; T ),Z



�0(�)r�(t) � r'dx+

Z
�

j
s
(t)'dx = 0;

for all ' 2 H1(
)=IR a.e. in (0; T ); (3.1c)Z
�

�(t) : "(w) dx =

Z
�

f(t) � w dx+

Z
@�

g(t) � wdx; (3.1d)

for all w 2 U a.e. in (0; T ),

"(u) = C(z)� + "th +

tZ
0

�(z)
�
S(�) d�; a.e. in Q; 3 (3.1e)

3Recall that �(z)� is short for
@�(z(�))

@�
.
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�

Z
T

0

Z
G

�(�c
"
y)

t
dx dt+

Z
T

0

Z
G

k(�)r�ry dx dt +

Z
T

0

Z
@�

�0(� � �
e
)y dx dt

=

Z
T

0

Z
�

F (z; z
t
; �)y dx dt+

Z
T

0

Z
�

�(z)
t
jSj2y dx dt

+

Z
T

0

Z
G

�0(�)j�

r�+A

t
j
2y dx dt+

Z
G

�c
"
�0y(0) dx; (3.1f)

for all y 2 Y
q
0 .

Note that F has been de�ned in (2.50).

The coupling between the equations is given through the Joule heating and the mechanical

dissipation in the energy balance on the one hand. On the other hand it is given through

the temperature dependent electric conductivity, which appears in (3.1b) and (3.1c), and the

temperature dependent volume fractions (cf. (A6)), which appear in (3.1e) and (3.1f).

Remark 3.1 Owing to (2.51), � and c
"
depend on the volume fractions z = P[�] in �. In view

of (A6) and (A10)�(A12) we can infer that there exists a constant ~M > 0 independent of �

such that

k(�c
"
)k

W
1;1(0;T ;L1(G)) �

~M:

Our main result is

Theorem 3.1 Assume (A1) � (A15) and let q 2 (1; 5
4
), then (P1) has a solution. Moreover,

there exists a constant M > 0 depending on the physical constants and on j
s
, such that

kAk
L
1(0;T ;X) + kAkH1(0;T ;L2(G)) + k�kL2(0;T ;H1(
)=IR)

+k�k
L
q(0;T ;W 1;q(G)) + k�kL1(0;T ;M) + kukL1(0;T ;U) �M:

A particular consequence of Theorem 3.1 is that the current density J as de�ned in (2.9) satis�es

the continuity equation, at least in a distributional sense, i.e.,

Corollary 3.1 div J = 0 in [C10 (G)]0:

Proof. Let w 2 C10 (G). Using (2.9), (2.10), and (2.20), we obtain

< div J;w > = �

Z
G

J � r w dx

= �

Z
D

curl
� 1
�
curl A

�
� rw dx

= �

Z
D

1

�
curl A � curl (rw)dx = 0:

2

The main di�culty in proving Theorem 3.1 lies in the quadratic terms on the right-hand side

of (3.1f). To prove the existence of a weak solution to (P1), we �rst truncate these terms with a

cut-o� function and show that this auxiliary problem has a weak solution. Then we investigate

the original problem. The delicate task is to obtain an a priori estimate for � which is uniform

in the truncation parameter. To this end we use an estimate developed in [2] for parabolic

equations with L1- data.
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Remark 3.2 Note that similar arguments have been used, e.g., in [3], where a simpli�ed induc-

tion heating problem has been considered, and in [12], for a mathematical model of resistance

welding.

To pass to the limit in the state equations, we utilize the following compactness result due to

Simon [34, Theorem 5]:

Lemma 3.1 Let X; B; Y be Banach spaces satisfying X � B � Y , such that the embedding

X � B is compact, and let r 2 [1;1).

If K � Lr(0; T ;X) satis�es

(i) K is bounded in Lr(0; T ;X) and

(ii) kf(t+ h)� f(t)k
L
r(0;T�h;Y ) �! 0 as h! 0 uniformly for f 2 K,

then K is relatively compact in Lr(0; T ;B).

4 An auxiliary problem

For Æ > 0 we de�ne a truncation function by

T
Æ
(x) =

8<:
1=Æ ; x > 1=Æ;

x ; jxj � 1=Æ;

�1=Æ ; x < �1=Æ;

and consider the following approximate problem:

(PÆ

1) Find A
Æ 2 L2(0; T ;X); ��Æ 2 L2(0; T ;H1(
)=IR); �Æ 2 L2(0; T ;M); uÆ 2 L2(0; T ;U);

and �Æ 2 L2(0; T ;H1(G)) such that

AÆ(0) = A0; in D; (4.1a)Z
G

�0(�
Æ)AÆ

t
� v dx+

Z
D

1

�
curl AÆ

� curl v dx+

Z



�0(�
Æ)r�Æ � v dx = 0; (4.1b)

for all v 2 X a.e. in (0; T ),Z



�0(�
Æ)r�Æ(t) � r'dx+

Z
�

j
s
(t)'dx = 0; (4.1c)

for all ' 2 H1(
)=IR a.e. in (0; T ),Z
�

�Æ(t) : "(w) dx =

Z
�

f(t) � wdx+

Z
@�

g(t) � w dx; (4.1d)

for all w 2 U a.e. in (0; T ),

"(uÆ) = C(zÆ)�Æ + ("th)Æ +

tZ
0

�(zÆ)
�
SÆ(�) d�; a.e. in Q; (4.1e)
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�
Æ
(0) = T

Æ
(�0); (4.1f)

Z
G

�ÆcÆ
"
�Æ
t
y dx+

Z
G

k(�Æ)r�Æ � ry dx+

Z
@�

�0(� � �
e
)y dx

=

Z
�

F (zÆ; zÆ
t
; �Æ)y dx+

Z
�

�(zÆ)
t
T
Æ

�
jSÆj2

�
y dx

+

Z
G

�0(�
Æ)T

Æ

�
j�



r�Æ +AÆ

t
j2
�
y dx; (4.1g)

for all y 2 H1(�) a.e. in (0; T ).

Here, zÆ = P[�Æ] (cf. (A6)) and �Æ and cÆ
"
depend on Æ according to their de�nition in (2.51).

Theorem 4.1 Assume (A1)�(A15), then (PÆ

1) has a solution.

In the sequel we will drop the Æ-dependency, whenever this does not lead to confusion.

For the proof, we apply the Schauder �xed-point theorem. We begin with four preparatory

lemmas.

Lemma 4.1 Assume (A1) � (A3) and let �̂ 2 L2(0; T ;L2(
)): Then there exists a unique

solution � to Z



�0(�̂)r� � r' dx+

Z
�

j
s
'dx = 0; for all ' 2 H1(
)=IR (4.2)

satisfying

kr�k
L
2(0;T ;L2
)) �M1; (4.3)

with a constant M1 depending on j
s
but independent of �̂.

Proof. In view of (2.18), the existence and uniqueness proof is a standard application of the

Lax-Milgram lemma. To obtain the a priori estimate, we insert ' = � into (4.2) and use (A2),

(A3), (2.18), and Young's inequality to obtain

o2
�
��k�k

2
H
1(
)=IR � ��

Z



jr�j2 dx �
1

4
kj

s
k
2
H
�1=2(�)

+ k�k2
H
1=2(�)

a.e. in (0; T ):

Invoking the embedding H1(
) � H1=2(�) and again (2.18), we obtain (for  small enough)

TZ
0

k�k2
H
1(
)=IR � c1

TZ
0

kj
s
k
2
H
�1=2(�)

with a constant c1 independent of �̂. 2

Lemma 4.2 Assume (A1)�(A4), let �̂ 2 L2(0; T ;L2(G)), and let � be the solution to (4.2).

Then the solution to

A(0) = A0; in D;
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Z
G

�0(�̂)At
� vdx+

Z
D

1

�
curl A � curl v dx+

Z



�0(�̂) � r�v dx = 0 for all v 2 X (4.4)

is uniquely de�ned and satis�es the estimate

kAk
L
1(0;T ;X) + kAkH1(0;T ;L2(G)) < M2; (4.5)

with a constant M2, depending on j
s
; T , and A0, but independent of �̂:

Proof. The a priori estimate (4.5) can be obtained formally by inserting v = A
t
into (4.4).

To prove that this linear degenerate system has a unique solution, one can use, e.g., Rothe's

method as described in the monograph [26]. 2

Lemma 4.3 Assume (A12)�(A15), let �̂ 2 L2(0; T ;L2(�)), and z = P[�̂] (cf. (A6)). Then,

there exists a unique solution (�; u) toZ
�

�(t) : "(w) dx =

Z
�

f(t) � w dx+

Z
@�

g(t) � wdx;

for all w 2 U a.e. in (0; T ) (4.6)

"(u) = C(z)� + "th(z) +

tZ
0

�(z)
�
S(�) d�; a.e. in Q; (4.7)

such that

k�k
L
1(0;T ;M) + kukL1(0;T ;U) �M3; (4.8)

where M3 is independent of �̂.

Proof. Let us �rst recall that the deviator S, i.e., the trace-free part of � is de�ned by

S = � �
1

3
tr(�)I;

where I is the identity matrix and tr(�) is the trace of �. Moreover, we have

jSj2 = (� �
1

3
tr(�)I) : (� �

1

3
tr(�)I) = j�j2 �

1

3
(tr(�))2 � j�j2:

We proceed in 3 steps.

Step 1:

First we introduce

N = �C�0�

tZ
0

�(z)
�
S0(�) d� � "th(z); (4.9)

where S0 is the deviator of �0, de�ned in (A15). Owing to (A13)�(A15), there exist constants

c1 and c2 such that

kNk
L
1(0;T ;M) � c1 + c2k�0kL1(0;T ;M): (4.10)
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Now, we consider the variational equation

Z
�

C(z)�̂ : � dx+

Z
�

0@ tZ
0

�(z)
�
Ŝ(�) d�

1A : � dx =

Z
�

N : � dx; (4.11)

for all � 2 fM and a.e. t 2 (0; T ). Using a straightforward �xed-point argument (which will be

omitted for reasons of space) one can prove that (4.11) has a unique solution

�̂ 2 L1(0; T ; fM):

To obtain an a priori estimate we insert � = �̂ in (4.11). Applying the inequalities of Cauchy-

Schwarz and Young, as well as (A6), (A13), and (A14),we obtain

C�

2

Z
�

j�̂(t)j2 dx �
1

C�

Z
�

jN(t)j2 dx+
1

C�

Z
�

������
tZ

0

�(z)
�
Ŝ(�) d�

������
2

dx

�
1

C�

Z
�

jN(t)j2 dx+
�� z� t

C�

tZ
0

Z
�

j�̂(�)j2 dx dt: (4.12)

Using Gronwall's lemma, we inferZ
�

j�̂(t)j2 dx �
2

C2
�

exp
�2�� z� T 2

C2
�

�
kNk2

L
1(0;T ;M): (4.13)

Step 2:

We de�ne

e(t) = C(z)�̂ +

tZ
0

�
grad �

�
� z

�
Ŝ(�) d� �N(t): (4.14)

Since �̂ is the solution to (4.11), we haveZ
�

e(t) : � dx = 0; for all � 2 fM; and a.e. t 2 (0; T ):

Thus we can apply Lemma 2.1 to conclude that there exists u(t) 2 U, such that e(t) = "(u(t)),

for a.e. t 2 (0; T ). Owing to Korn's inequality (cf., e.g., [4]), there exists a positive constant c3
such that

c3ku(t)kU � k"(u(t))kM; for a.e. t 2 (0; T ):

Moreover, in view of (4.10), (4.13), and (4.14), there exists a constant c4, depending on the

constants de�ned in (A12)�(A14) and on �0, such that

k"(u(t))kM � c4; for a.e. t 2 (0; T ):
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Step 3:

We de�ne � = �̂ + �0. Then (�; u) is a solution to (4.6), (4.7), and satis�es (4.8). To show

that the solution is unique, we assume that there exist two solutions (�i; ui), i=1,2. We take

the di�erence of (4.6) for �1 and �2, and test it with �u = u1 � u2. Then we take the di�erence

of (4.7) for (�1; u1) and (�2; u2), and test it with �� = �1 � �2. Altogether, we obtain

Z
�

C(z)��(t) : �� dx �

Z
�

� tZ
0

�(z)
�

�S(�) d�
�

: �� dx:

Proceeding as in the proof of (4.13), we obtain �� = 0 a.e. in Q. Using again Korn's inequality,

we also obtain �u = 0 a.e. in Q. 2

Lemma 4.4 Assume (A1)�(A15), let �̂ 2 L2(0; T ;L2(G)), z = P[�̂], and let (�;A; �; u) be the

solution to (4.2), (4.4), (4.6), and (4.7), respectively. Then the solution to

�
Æ
(0) = T

Æ
(�0); (4.15)

Z
G

�c
"
�
t
y dx+

Z
G

k(�̂)r� � ry dx +

Z
@�

�0(� � �
e
)y dx

=

Z
�

F (z; z
t
; �)y dx+

Z
�

�(z)
t
T
Æ

�
jSj2

�
y dx

+

Z
G

�0(�)TÆ

�
j�



r�+A

t
j2
�
y dx dt; (4.16)

for all y 2 H1(G) a.e. in (0; T ), is

uniquely de�ned and satis�es the estimates

k�k
L
1(0;T ;L2(G))\L2(0;T ;H1(G)) � M4; (4.17)

k�(t+ h)� �(t)k
L
2(0;T�h;(H1(G))�) � hM5; (4.18)

for h � 0, where the constants M4;5 depend on Æ but are independent of �̂:

Proof. We can apply standard results of the theory of parabolic equations (cf., e.g., [27]) to

infer the existence of a unique solution to (4.15), (4.16) satisfying the a priori estimate

k�k
L
1(0;T ;L2(G))\L2(0;T ;H1(G)) � c1

with a positive constant c1 independent of �̂, but dependent on Æ. By comparison in (4.16), we

obtain the estimate

k(�c
"
�)

t
k
L
2(0;T ;(H1(G))�) � c2

with a constant c2 again independent of �̂, but dependent on Æ. Taking into account Remark

3.1, we can apply [34, Lemma 4] to obtain �c
"
� 2 C([0; T ]; (H1(G))�) and��c"��(t+ h) �

�
�c

"
�
�
(t)

L
2(0;T ;(H1(G))�)

� hk(�c
"
�)

t
k
L
2(0;T�h;(H1(G))�) � h c2: (4.19)
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Since �c
"
� ��c"� > 0 a.e. in G � (0; T ), we have the identity

�(t+ h)� �(t) =
1�

�c
"

�
(t+ h)

��
�c

"
�
�
(t+ h)�

�
�c

"
�
�
(t)
�

�h
�(t)�

�c
"

�
(t+ h)

0@
�
�c

"

�
(t+ h)�

�
�c

"

�
(t)

h

1A : (4.20)

Hence � 2 C([0; T ]; (H1(G))�), and the initial condition (4.15) is satis�ed. Using (4.17), (4.19),

and Remark 3.1, we obtain (4.18). 2

Now we can prove Theorem 4.1 using the Schauder �xed-point theorem. We take a function

�̂ 2 L2(0; T ;L2(G)) and de�ne z = P[�̂], the vector of phase volume fractions, in line with (A6).

Then, we obtain consecutively �; A; �; u as solutions to (4.2), (4.4), (4.6), and (4.7). Finally

we obtain a new function � 2 L2(0; T ;H1(G)) as the solution to (4.15) and (4.16).

Thus we have de�ned a mapping

F : L2(0; T ;L2(G))! L2(0; T ;L2(G)); �̂ 7! �: (4.21)

Owing to Lemmas 4.1�4.4, the operator is well de�ned. Thanks to the a priori estimate (4.17),

which is uniform in �̂, F is a self-mapping on

K = fy 2 L2(0; T ;L2(G))
��� kykL2(0;T ;H1(G)) �Mg;

provided the constant M has been chosen large enough.

Moreover, in view of (4.18), we can employ Lemma 3.1 with X = H1(G); B = L2(G), Y =

(H1(G))�, and r = 2 to conclude that

K = F [K] is relatively compact in L2(0; T ;L2(G)): (4.22)

Hence, if the operator F is also continuous, we can apply the Schauder theorem to conclude

that F has a �xed point, which then is a solution to (P Æ

1 ).

So, it remains to show:

Lemma 4.5 The operator F as de�ned in (4.21) is continuous.

Proof. Let �̂k ! �̂ strongly in L2(G) and �k = F [�̂k]: Invoking (A6), we obtain immediately

zk = P[�̂k]! z = P[�̂]; strongly in [W 1;p(0; T ;Lp(�)]6; for p 2 [1;1): (4.23)

Owing to the assumptions on the data and using Lebesgue's lemma and (4.23), we have

�0(�̂
k) ! �0(�̂); strongly in Lp(0; T ;Lp(
))); for p 2 [1;1); (4.24)

k(�̂k) ! k(�̂); �k ! �; ck
"
! c

"
; (4.25)

strongly in Lp(0; T ;Lp(G)), for p 2 [1;1), and

C(zk) ! C(z); �(zk) ! �(z) �(zk)
t
! �(z)

t
: (4.26)
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strongly in Lp(0; T ;Lp(�)), for p 2 [1;1). Note that �k and � are the extensions of ��(�̂k) and

��(�̂) onto G according to (2.51) and that mutatis mutandis the same holds true for ck
"
and c

"
.

We begin with the equation for the scalar potential (4.2). Owing to (4.3) and (4.24), there

exists a subsequence (still indexed with k), such that

r�k !r�; weakly in L1(0; T ;L2(
)): (4.27)

Since we can pass to the limit in (4.2), and r� is uniquely determined, (4.27) holds for the

whole sequence.

Now consider �̂k := �k � �; then �̂k solvesZ
T

0

Z
�




�0(�̂
k)r�̂kru dx dt = �

Z
T

0

Z
�

j
s
u dx dt�

Z
T

0

Z



�0(�̂
k)r�ru dx dt

for all u 2 H1(
)=IR. Inserting u = �̂k we obtain

��

Z
T

0

Z



jr�̂kj2 � �

Z
T

0

Z



�0(�̂
k)r�r�̂kdx dt�

Z
T

0

Z
�

j
s
�̂kdx dt ���!

k!1
0;

hence, we have

r�k ���!
k!1

r�; strongly in L2(0; T ;L2(
)): (4.28)

Next we consider (4.4). Owing to (4.5) we have

Ak

! A; weakly� in L1(0; T ;X);

weakly in H1(0; T ;L2(G)):
(4.29)

Using (4.27) and (4.24), we can pass to the limit in (4.4) and again conclude that (4.29) is valid

for the whole sequence.

Now, we consider �Ak := Ak �A, which satis�es

�Ak(0) = 0 a.e. in D;Z
G

�0(�̂
k) �Ak

t
� v dx+

Z
D

1

�
curl �Ak � curl v dx = �

Z



�0(�̂
k)r�k � v dx

+

Z



�0(�̂)r� � v dx+

Z
G

(�0(�̂)� �0(�̂
k))A

t
� v dx:

Inserting v = �A
k;t
, and integrating in time, we obtain

��

Z
T

0

Z
G

j �Ak

t
j
2dx dt �

Z
T

0

Z
G

�0(�̂
k)j �Ak

t
j
2dx dt+

Z
D

1

�
j curl �Ak(t)j2dx

= �

Z
T

0

Z



�0(�̂
k)r�k � �Ak

t
dx dt+

Z
T

0

Z



�0(�̂)r� � �A
k

t
dx dt

+

Z
T

0

Z
G

(�0(�̂)� �0(�̂
k))A

t
� �Ak

t
dx dt

���!
k!1

0: (4.30)
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Thus, we have

Ak

t
! A

t
; strongly in L2(0; T ;L2(G)): (4.31)

Note that the derivation of (4.30) is only formal. Since v = �A
k;t
62 X, one should use v =

1
h

( �Ak(t)� �Ak(t� h)). Passing to the limit with h! 0 would yield the same result.

Now we turn to the mechanical subproblem. Invoking (4.8), there exists a subsequence (�k; uk)

satisfying

�k
ij
; Sk

ij
! �

ij
; S

ij
; weakly in L2(0; T ;L2(�));

uk ! u; weakly in L2(0; T ;U):
(4.32)

Hence, applying Lebesgue's lemma, (A6), and (A12) � (A14), we can pass to the limit inZ
�

�k(t) : "(w) dx =

Z
�

f(t) � w dx+

Z
@�

g(t) � wdx;

for all w 2 U a.e. in (0; T ); (4.33)

"(uk) = C(zk)�k + "th(zk) +

tZ
0

�(zk)
�
Sk(�) d�; a.e. in Q: (4.34)

Owing to the unique solvability of (4.6), (4.7), we can again conclude that the convergence

holds for the whole sequence.

Now we de�ne ��k = �k � �; �Sk = Sk � S, and �uk = uk � u. We test the di�erence of (4.33)

and (4.6) with �uk, and the di�erence of (4.34) and (4.7) with ��k, leading toZ
�

C(zk)��k : ��k dx =

Z
�

(C(z)� C(zk)� : ��k dx

�

Z
�

h tZ
0

�(zk)
�

�Sk d�
i
: ��k dx

+

Z
�

h tZ
0

�
�(z)

�
� �(zk)

�

�
S d�

i
: ��k dx:

Integrating in time, applying Young's inequality, Lebesgue's lemma and Gronwall's inequality,

we can infer

�k
ij
! �

ij
; strongly in L2(Q));

jSk

j
2
! jSj2; strongly in L1(Q));

T
Æ
(jSk

j
2)! T

Æ
(jSj2); strongly in Lp(Q)) for p 2 (1;1):

(4.35)

Finally we consider (4.16). Thanks to (4.17) and (4.22) we obtain

�k ! �; weakly� in L1(0; T ;L2(G))

weakly in L2(0; T ;H1(G)) (4.36)

strongly in L2(0; T ;L2(G)):
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Using Lebesgue's lemma and (4.28), (4.31), possibly extracting a further subsequence, we have

T
Æ
(j�



r�k +Ak

t
j
2) k!1

���! T
Æ
(j�



r�+A

t
j
2) (4.37)

strongly in Lp(0; T ;Lp(G)), for p 2 [1;1): Similarly, we obtain for F de�ned in (2.49)

F (zk; zk
t
; �k) k!1

���! F (z; z
t
; �) (4.38)

strongly in L2(Q).

As usual, now we can multiply (4.16) with a testfunction  2 H1(0; T ), such that  (T ) = 0

and integrate in time. Integrating the �rst term by parts, we can pass to the limit in (4.16),

and thanks to the unique solvability of (4.16), we conclude that the convergences (4.36) hold

for the whole sequence f�kg.

Thus we have proved the continuity of the operator

F : K � L2(0; T ;L2(G))! L2(0; T ;L2(G)):

2

5 Proof of Theorem 3.1

The bounds M1 �M3 for r�
Æ; AÆ; �Æ; and uÆ in (4.3) (4.5), and (4.8), respectively are inde-

pendent of �̂ and hence uniform in Æ. So the main issue of the proof is to obtain uniform a

priori estimates for �Æ.

For the last two terms on the right-hand side of (4.1g) we have (for y � 1)Z
T

0

Z
�

�(zÆ)
t
T
Æ

�
jSÆj2

�
dx dt+

Z
T

0

Z
G

�0(�
Æ)T

Æ
(j�



r�Æ +AÆ

t
j2) dx dt

� ��z�
Z

T

0

Z
�

jSÆ

j
2 dx dt + 2��

Z
T

0

Z



jr�Æj2dx dt+ 2��
Z

T

0

Z
G

jA
t
j
2dx ds

� ��z�TM2
3 + 2��(M2

1 +M2
2 ): (5.1)

Thus, the right-hand side of (4.1g) is bounded in L1(Q). Now, we de�ne a function

 (s) =

8<:
1; for s > 1;

�1; for s < �1;

s; for � 1 � s � 1;

(5.2)

and a set

B(�) = f(x; t) 2 G � (0; T )
��� j�(x; t)j � 1g:

Note that  (�) is constant on G� (0; T ) nB(�). Moreover, de�ning an antiderivative of  by

	(s) =

sZ
0

 (�) d� =

(
1
2
s2; for jsj < 1;

jsj � 1
2
; for jsj � 1;
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we have

j	(s)j � s; for all s 2 IR; and 	(s) �
1

2
jsj; for all jsj � 1: (5.3)

With these preparations, assuming without restriction �
e
� 0, we test (4.1g) with  (�Æ), and

integrate by parts with respect to time to obtainZ
G

�ÆcÆ
"
	(�Æ(t)) dx+

tZ
0

Z
B(�Æ)

k(�Æ)jr�Æj2 dx dt +

tZ
0

Z
@�

�0(�)�
Æ (�Æ) dx ds

�

Z
G

�ÆcÆ
"
	(�Æ(0)) dx+ c1

tZ
0

Z
G

j�Æj dx ds+ c2: (5.4)

Here, we have also used (5.1), (5.3), and (A10)�(A13). Since the last two terms on the left-hand

side of (5.4) are positive (cf. (A8) and (A9)), we can use Gronwall's lemma and (A7) to infer

that there is a constant M6, independent of Æ, such that

k�Æk
L
1(0;T ;L1(G)) �M6: (5.5)

Unfortunately this estimate is not enough to pass to the limit in the state equations. Therefore,

we apply a result by Boccardo and Galluët (cf. [2, Theorem 4]). It says that the solution �Æ of

(4.1g) satis�es the additional a priori estimate

k�Æk
L
q(0;T ;W 1;q(G)) �M7; for q 2 [1; 5=4]; (5.6)

where the constant M7 is independent of Æ.

Remark 5.1

(1) The bound on q depends of course on the space dimension.

(2) In the original paper by Boccardo and Galluët, the result has been proved for homogeneous

Dirichlet data and a constant coe�cient in front of the time derivative. Later, it has been

shown by Clain [5] that the result also holds in the case of homogeneous Neumann data,

which we are considering on @
. To derive estimate (5.6), test functions ~ (�) are used,

where ~ is a cut-o� function similar to  in (5.2). Hence, as in (5.4), the additional term

which stems from the Newton cooling law assumed on @� is positive. Moreover, thanks to

(A6), the additional term �c
"
in front of the time derivative poses no additional di�culty

and can be treated as in (5.4).

Now, we insert y 2 Y
q
0 in (4.1g) integrate in time and the �rst term by parts to obtain

�

Z
T

0

Z
G

�ÆcÆ
"
�Æy

t
dx dt+

Z
T

0

Z
G

k(�Æ)r�Æry dx dt+

Z
T

0

Z
@�

�0(�
Æ

� �
e
)y dx dt

=

Z
T

0

Z
�

F (zÆ; zÆ
t
; �)y dx dt +

Z
T

0

Z
�

�(zÆ)
t
T
Æ

�
jSÆ

j
2
�
y dx dt

+

Z
T

0

Z
G

�0(�
Æ)T

Æ

�
j�



r�Æ +AÆ

t
j
2
�
y dx dt+

Z
G

�ÆcÆ
"
T
Æ
(�0)y(0) dx

+

Z
T

0

Z
G

�Æ(�ÆcÆ
"
)
t
y dx dt: (5.7)
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Using (5.1) and (5.6), as well as (A7) and Remark 3.1, by comparison in (5.7) we obtain

k(�ÆcÆ
"
�Æ)

t
k
L
q(0;T ;[W 1;q(G)]�)+L1(0;T ;L1(G)) �M7;

where M7 is independent of Æ. Since q 2 [1; 5=4) and L1(G) � (W 1;p(G))�, for p > 3, we have

the continuous embedding

Lq(0; T ; [W 1;q(G)]�) + L1(0; T ;L1(G)) � L1(0; T ; (W 1;p(G))�); for p > 3:

Thus we can infer

k(�ÆcÆ
"
�Æ)

t
k
L
1(0;T ;(W 1;p(G))�) �M8; for p > 3; (5.8)

where M8 again is independent of Æ. Now we can proceed as in the proof of Lemma 4.4. We

apply [34, Lemma 4] to obtain �c
"
� 2 C([0; T ]; (W 1;p(G))�) and��ÆcÆ

"
�Æ
�
(t+ h)�

�
�ÆcÆ

"
�Æ
�
(t)

L
1(0;T ;(W 1;p(G))�)

� hk(�ÆcÆ
"
�Æ)

t
k
L
1(0;T�h;(W 1;p(G))�) � hM9:

Invoking the identity (4.20) and Remark 3.1 we see that �Æ is in C([0; T ]; (W 1;p(G))�), and with

the additional help of (5.6), we obtain

k�Æ(t+ h)� �Æ(t)k
L
1(0;T ;(W 1;p(G))�) � hM10;

with some constantM10, independent of Æ. Then we can employ Lemma 3.1 with X = W 1;q(G),

B = L1(G), Y = (W 1;p(G))�, and r = 1 to conclude that f�Æg is relatively compact in

L1(0; T ;L1(G)).

Hence, we have the following convergences for a subsequence still denoted by Æ:

�Æ ! � weakly in Lq(0; T ;W 1;q(G); q <
5

4
;

strongly in L1((0; T );L1(G)) and a.e. in G� (0; T ):
(5.9)

Invoking Lebesgue's lemma, we obtain as in (4.23) � (4.26)

zÆ = P[�Æ]! z = P[�]; strongly in [W 1;p(0; T ;Lp(�)]6; for p 2 [1;1); (5.10)

�0(�
Æ) ! �0(�); strongly in Lp(0; T ;Lp(
))); for p 2 [1;1); (5.11)

k(�Æ) ! k(�); �Æ ! �; cÆ
"
! c

"
; (5.12)

strongly in Lp(0; T ;Lp(G)), for p 2 [1;1) and

C(zÆ) ! C(z); �(zÆ) ! �(z); �(zÆ)
t
! �(z)

t
; (5.13)

strongly in Lp(0; T ;Lp(�)), for p 2 [1;1).

Moreover, as in the proof of Lemma 4.5 we can conclude

r�Æ ! r�; strongly in L2(0; T ;L2(
)); (5.14)

AÆ

! A; weakly� in L1(0; T ;X); (5.15)

AÆ

t
! A

t
; strongly in L2(0; T ;L2(G)); (5.16)

uÆ ! u; weakly� in L1(0; T ;U) (5.17)

�Æ
ij

! �
ij
; strongly in L2(Q)): (5.18)
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Using these convergences, we can pass to the limit in (4.1b) � (4.1e).

In view of (5.14), (5.16), and (5.18), using again Lebesgue's lemma, we obtain

�0(�
Æ)T

Æ
(j�



r�Æ +AÆ

t
j
2)! �0(�)j�


r�+A
t
j
2; (5.19)

strongly in L1(0; T ;L1(G)),

�(zÆ)
t
T
Æ

�
jSÆ

j
2
�
! �(z)

t
jSj2; (5.20)

strongly in L1(Q), and

T
Æ
(�0)! �0; (5.21)

strongly in L1(G).

Similarly, we have

k(�Æ)r�Æ ! k(�)r� weakly in Lq(Q); q <
5

4
: (5.22)

Using (5.19)�(5.22), we can also pass to the limit in (5.7) and obtain (3.1f).

Thus we have proved that (A;�; �; �; u) is a solution to (P1).

6 Extensions and open problems

Let us �rst consider the model as it has been developed in Section 2. Since the inductor


 is usually made of copper while the workpiece is made of steel, it is natural to expect

that the electric and the thermal conductivities, �0 and k, respectively, have di�erent thermal

characteristics in 
 and �, i.e.,

�0 =

8<:
�
(�); in 
;

5P
i=0

z
i
��
i
(�); in �;

and k =

8<:
k
(�); in 
;

5P
i=0

z
i
k�
i
(�); in �:

It is easy to see that Theorem 3.1 still holds in this case, under suitable assumptions on

�
; k
; �

i
, and k


i
, similar to (A3) and (A8).

In the same way the result can be extended to the case of a volume fraction and temperature-

dependent sti�ness matrix C�1.

However, the case of temperature- and phase-fraction-dependent density and heat capacity is

not covered by Theorem 3.1. If these coe�cients only depended on temperature, we could use

the Kirchho� transformation

u =

�Z
�0

(�c
"
)(x) dx

to get rid of the coe�cient in front �
t
. In turn we would obtain a parabolic equation with

a nonlinear but monotone boundary condition. Since it has been shown that the Boccardo-

Galluët estimate also holds for this case (cf. [7]), we can again proceed as in the proof of

Theorem 3.1.

The case of a mere phase fraction dependency has been treated in the Theorem 3.1. In the case

of temperature- and phase-fraction-dependent density and heat capacity we cannot apply the
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Kirchho� transform. Since our proof strongly relies on the di�erentiability of �c
"
with respect

to time, our result does not cover this case, since we cannot control �
t
.

In the vector potential equation, we could easily assume a mixture ansatz for the permeability.

This would be covered by our analysis as long as the permeabilities of the constituent phases

do not depend on temperature. However, we should remark that especially in the case of ferro-

magnetic steels, the permeability � strongly depends on temperature. Since we have to control

also A
t
, this situation is not covered by our analysis and remains an open problem.

Now let us come back to the model restrictions that we have imposed in Remark 2.4. If we

admitted a temperature-dependent density �, we would obtain terms that either contain the

velocity v = u
t
or the stress rate �

t
. However, they are coupled through Hooke's law (2.34)

with the thermal strain rate "th
t
, from which we would get a factor �

t
in that case. Hence, to

control v or �
t
we have to control �

t
. But owing to the quadratic dissipation terms in the energy

balance, we do not get an estimate for �
t
.

Note that this is a structural problem which already appears in nonlinear thermoviscoelasticity

(cf. [12], [23]).
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