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Uniaxial, extensional flows in liquid bridges

By EBERHARD BANSCH !, CHRISTIAN P. BERG 2
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! Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D-10117
Berlin, and Freie Universitat Berlin, Arnimallee 2-6, D-14195 Berlin, Germany

ZCenter of Applied Space Technology and Microgravity (ZARM), University of Bremen,
Am Fallturm, Bremen, D-28359, Germany

(14 August 2002)

In this paper, we discuss the possibility to generate homogeneous flows with a nearly
constant strain rate. This is achieved by stretching an almost cylindrical liquid bridge
under microgravity. One key issue is the adaptation of the disk diameters in order to
have always ideal boundary conditions. We first study the stretching of two different
fluids both, by numerical and experimental means. The numerical results are compared
with these experimental data resulting in a very good agreement. The numerical method
is then used to study the behavior of liquid bridges for quite a large range of the flow
parameters Capillary number Ca and Weber number We and detect those regimes with
most suitable flow conditions.

Keywords: Uniaxial extensional flow, bridge stretching, microgravity, capillary forces, Navier-
Stokes equations, free surface flow, finite elements, flow simulation.

1. Introduction

Linear flow fields are commonly used for rheological studies, e.g. to measure the fluid
viscosity or the deformation behavior of the whole sample or components in it. The
fluid properties may vary considerably depending on the specific linear flow type and
the corresponding homogeneity of the flow field. In view of the experimental demands of
rheological tests, the ideal uniaxial extensional flow field is characterized by a constant
strain rate distribution both, in space and time.

The ideal uniaxial extensional flow field v with constant strain rate €y in space and
time would be of the form

1,
Upr = _560 T,
vg = 0, (1.1)
v, = €o2,

in a cylindrical coordinate system (r, 8, z). For an initially cylindrical fluid volume with
length Lo and radius Ry this specific form of v implies

L(t) = Lo exp(éot), (1.2)

R(t) = Ryexp(—0.5 ét), (1.3)
with L(t) the length of the fluid volume and R(t) its radius. In particular the liquid
bridge is of cylindrical shape for all times.

However, the experimental realization of such a flow field causes severe difficulties in
practice. Several attempts have been made towards this direction. For instance Chin
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& Han 1979 and Mighri, Ajji & Carreau 1997 used a conical section of a transparent
flow channel to investigate the deformation of emulsion droplets. Although this device
is capable of providing an extensional flow within the entrance length of the conical
channel, this extensional flow is predominantly non-constant and heterogeneous due to
the developing velocity profile in the entrance region of the conical channel.

Because of the difficulties to generate homogeneous shear-free uniaxial extensional
flows in convergent channels, mainly plane extensional flows were generated to perform
droplet deformation experiments, see Stone 1994. A guidance to generate ideal plane
extensional flow within a four-roll mill is given by Higdon 1993.

However, plane extensional flows are not optimal for the investigation of embedded
axially symmetric emulsion droplets or particles due to the breaking of the 2d character of
the flow, see also Berg 2002. For a comparison of e.g. droplet experiments with theoretical
results uniaxial extensional flows are more adequate.

But even for stretched liquid bridges care must be taken to achieve a flow field with
high quality, which depends on the actual inertia, capillary and viscous forces and appro-
priate boundary conditions. For instance Kroger et al. 1992 have shown that the contour
deformation of an initially cylindrical liquid bridge between two unchanging endplates
during stretching yields large variations of the local extension rates in space and time
caused by necking.

To circumvent this effect and to obtain a constant extension rate at least in the middle
of the bridge, Tirtaatmadja & Sridhar 1993 proposed to adjust the disk velocity profile.
But even this attempt leads to a flow field which remains far from being homogeneous.

In this paper, we discuss the possibility to generate nearly homogeneous flows with an
almost constant strain rate in a stretched fluid column by adapting the disk diameters
in order to have always ideal boundary conditions to hold a cylindrical fluid bridge.

Even under p—g conditions and with adjustment of the disk diameters the ideal ex-
tensional flow is not totally achievable due to the dynamic pressure gradient caused by
the acceleration and capillary forces deforming the bridge contour, see Berg, Dreyer &
Rath 1999. Instead, the real stretched fluid bridge is asymmetrically deformed in the
direction of the accelerated support by forces owing to inertia and surface tension and
will eventually pinch off.

The goal of our study is to investigate this behavior with respect to the flow parameters
Capillary number Ca and Weber number We, see Section 2 below, and detect those
regimes with most suitable flow conditions.

To this end we first study the stretching of two different fluids both, by numerical and
experimental means. The numerical results are compared with these experimental data
resulting in a very good agreement. The numerical method is then used to study the
behavior of liquid bridges for quite a large range of the flow parameters Ca and We.

For the numerical simulation of the problem we use a finite element method with the
following key ingredients: A variational formulation of the curvature of the free boundary,
yielding an accurate, dimensionally independent and simply to implement approximation
of the curvature; a stable time discretization, semi-implicit w.r.t. the treatment of the
curvature terms, which on one hand avoids a CFL-like restriction of the time step as in
common “explicit” treatments of the curvature terms and on the other hand decouples
the computation of the geometry from that of the flow field. This approach has proven
to be both efficient and robust with respect to the dimensionless parameters Ca, We, see
Béansch 2001 and also Section 3 below.

Let us mention some related work. Meissner 1969 developed the extensional rheometer,
also known as rheotens test, which was modified by Maia et al. 1999. Matta & Tytus 1988
and Sridhar et al. 1991 pointed out the relevance of constant strain rate distributions in



Uniazial, extensional flows in liquid bridges 3

.

Fs

FI1cURE 1. Setting and basic notation.

the full sample and developed the pioneering filament stretching device. Such stretching
devices in turn were used by several research groups, e.g. Tirtaatmadja & Sridhar 1993,
Berg, Kroger & Rath 1994, Spiegelberg, Ables & McKinley 1996 and Yao, Spiegelberg &
McKinley 2000, to measure the extensional viscosity in macromolecular fluids.

In addition to the experimental work mentioned above, numerical simulations have
been performed for instance in Gaudet, McKinley & Stone 1996, Spiegelberg, Ables &
McKinley 1996 and Yao, Spiegelberg & McKinley 2000.

The rest of the article is organized as follows: in Section 2 we give the mathematical
formulation of the problem. Section 3 briefly sketches the numerical method and Section
4 describes the experimental setup and experimental conditions. In Section 5 we first
compare the experiments with corresponding simulations and then discuss a numerical
parameter study for the dimensionless parameters Ca and We. Section 6 summarizes our
results.

2. Problem formulation
2.1. Mathematical formulation

Denote by © = Q(t) the region occupied by the liquid. 2 is determined on one hand by
the supporting devices I's,T';,;,, which in turn are given by the setup of the stretching
device and on the other hand by the a priori unknown free surface I'y (see figure 1).
We consider an isothermal, incompressible and Newtonian fluid with constant density p
and dynamical viscosity p. Therefore the system can be described by the incompressible
Navier-Stokes equations: Find a vector valued velocity field v = v(¢,x) and a pressure
field p = p(t,x) such that

p(Oyv+v-Vv)—V-0=pg inQ, (2.1a)
V-v=0 inQ. (2.1b)

Here, g = ge, denotes the vector of gravity and & = o(uv,p) denotes the stress
tensor
o =puD(v) —pl = u(Vv + VvT) — plL
Note that in order to avoid confusion, throughout the paper vector- as well as matrix-
valued functions will be denoted by bold characters, whereas plain characters indicate

scalars.
On the free surface I'y we have a balance of forces:

1 1
on = —vy (R_l + R_z) n+ Ggqsn,
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with + the coefficient of surface tension, 1/R;,1/R; the principle curvatures of I'¢, n the
(outward pointing) normal vector to 'y and 4.5 the stress tensor of the ambient gas
phase. Since the dynamic part of the latter one is negligible we get

1 1
on=—y |-+ — | n—pgn (2.2)
2
with the constant ambient pressure pgqs. Finally, the kinematic condition
v-n ="V},

with V} the normal velocity of the free surface I'f, holds.
On the remaining parts I'y, I';, of the boundary, the fixed and moving support device,
respectively, no-slip conditions for v hold.

2.2. Non-dimensional, azially symmetric equations
In view of the capillary driven flow in the bridge, the boundary dimension and the
velocity, we set the problem into non-dimensional form by defining

1 1 Ry

*=—x, t=¢t, v=—v, p=—(p— .
RO ) 0L, éORO , D 'Y(p pgas)

Introducing the Weber number We, the Capillary number Ca, the Bond number Bo, and
for convenience also the Reynolds number Re,

3.2 : 2
We = _pROGO’ Ca = HROEO, Bo = pRog, Re = %,
¥ ¥ Y Ca
equation (2.1) becomes
We(8;% + ¥ - V¥) — CaAv + Vp = —Boe, in ), 2.3a)
V=0 in 0, 2.3b)
On the free surface I' ¢ we have
—6(Cav,p)n =k n, (2.3¢)
V-n=";, (2.3d)

where £ is the sum of the principle curvatures of r #. In our case Bo = 0 (cp. Section 4.2),
thus the non-dimensional system is characterized by the ratio of inertia and capillary

forces We, the ratio of viscous and capillary forces Ca and the geometrical parameter
L
Ao = =2. Since in what follows we are only working in non-dimensional quantities, from

0
now on let us drop the “ ~ ” for the sake of brevity and relabel the scaled variables again
by v, p etc. unless otherwise stated. This abuse of notation will not lead to confusion.
Note that the fixed and moving boundaries are given in non-dimensional coordinates
by
I, ={x]|0<r<exp(-t/2),z =0}, (2.4)
I ={x]|0<r<exp(—t/2),z = Agexp(t)}. (2.5)
Since all data are axially symmetric and the flow is laminar we may assume an axially
symmetric 2-dimensional situation, i.e.

V(ta X) = U'r(ta T Z)er + v, (ta Ty Z)e27 p(ta X) = p(t, Ty Z)
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In cylindrical coordinates the non-dimensional problem now reads:

We(0yvr + v - Vu,) + C'a( - Arvp + :—;) + 8,p =0, (2.6a)
We(0iv, + v - Vu,) — Cal, v, + 0,p =0, (2.6b)

1
S0r(rvr) + 80, =0, (2.6¢)

1
where A, ;v = =0,(rd,v) + afv is the Laplacian in cylindrical coordinates. On the free

surface I'y we have

_C 20,v, Oyv, + 0,v,.| [N,
a O,v, + O0,v, 20,v, 7,

] + pn=kn. (2.6d)

The kinematic condition reads

Uply + U0, = V. (2.6¢)

The non-slip conditions can be expressed as
v, = Ngexp(t), v, :—%r on 'y, (2.6f)
v, =0, v, = —%r onT,. (2.69)

To close the system, initial conditions for v and for the initial fluid bridge 2(0) are
prescribed, see Section 4.2.

REMARK 1. The situation described above refers to an ideal geometry, where for in-
stance the radii of the two support devices and their time evolutions are equal. In practice,
however, due to experimental inconveniences the radii and their behavior in time may
differ slightly. Therefore, in order to get as close to the erperimental settings as possi-
ble, in comparing the numerical simulations with the experiments we prescribe functions
R,(t), Rm(t) with data taken from the exzperiments, see also Section 4.2.

3. Numerical method

Discretizing equations (2.6), the free boundary conditions (2.6d)—(2.6e) cause several
problems, in particular the treatment of the curvature terms and in finding a stable and
efficient time discretization.

To resolve these problems we use a variational formulation, where the free boundary
condition (2.6d) is transformed to a boundary integral part of the bilinear forms. In the
following we only sketch the basic ideas, for further reference see Bansch 2001.

To proceed we write the momentum part of the Stokes equations (analogously for the
Navier-Stokes equations) in the strong form, multiply by a solenoidal test function ¢
vanishing on the no-slip parts I';, I, of the boundary and integrate by parts. We get

/{—C’aAv+Vp}"P=%/D(V)iD(‘P)—/PV“P_/n""Pv
Q Q

Q Ty

where
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Taking into account the boundary condition (2.6d) gives
—/n-a’cpz/nn-go.
Ty Ty

A basic identity from differential geometry now yields

/nn-cp=/2x-2¢, (3.1)

where V is the tangential gradient on I'y and x the position vector.
Summarizing we get

[{-canvevpto=S [D0):iD@) - [59 0+ [vx-Te. G2

Q r;

Note that since the situation is axially symmetric the above boundary integral can
be expressed in parametric form as follows. Let I's be given in parametric form by
Ty := {r(s)e, + 2(s)e,|s € S} with some parameter domain S C IR. Then for vector
fields f,h

vr-vh= ({9955 o ") 5 o, +0,7.0.h,) Vds
F[ S/{ r(s) Q(s) }

with Q(s) := 1/8,7(s)? + 9,2(s)2.
Although in our case a graph representation of the free surface I'y would be convenient,
the above parametric form allows for a treatment of much more general I'y.

Time discretization

To discretize in time a semi-implicit coupling of the unknowns for the geometry {2 and
the flow variables v, p is used. More precisely, giving the values QF 1, vk~1 p*~1 at the
discrete time instant tx_; we compute

Step 1: v*, p* by solving (2.6a)—(2.6¢) with boundary conditions (2.6d), (2.6f)—
(2.6g) in QF 1

Step 2: I"’}E by a discretized form of (2.6¢): 1"? = F’;fl + (tk — tp—1) V¥

Step 3: T* by (2.5) and also the update of the domain by an extension of I'* into
the interior, resulting in Q*

In Step 1 the boundary condition (2.6d) is incorporated via the variational formulation
according to (3.2). The curvature terms are treated in a semi-implicit way using the
identity x* = x*1 4 (t; — tx_1)v* of Step 2 with x*~! x* the position vectors of
I"’;_l, I"’}, respectively:

/ Vxk - Ve = / VxFt - Ve + (t _tkfl)/ Vvk . Ve,
k—1 k—1 k—1

Ty Ty Ty

thus decoupling the flow computation from the determination of the geometry. The above
algorithm leads to an unconditionally stable and efficient treatment of the free boundary
conditions, see Bansch 2001.
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FIGURE 2. Typical (fine) triangular mesh used in the simulation.

For the extension of I'* into the interior in Step 3 a smoothing of the triangulation
by a discrete Poisson equation is used.

The computation of v*, p* is based on the axially symmetric version Tenhaeff 1997 of
the method and implementation described in Bansch 1991, Biansch 1998. This code uses
the fractional step f—scheme in a variant as an operator splitting, which decouples two
major numerical difficulties, the solenoidal condition and the nonlinearity, see Bristeau,
Glowinski & Periaux 1986. The axially symmetric code solves for the unknowns (vs,v,)
and p, where v, := “=. This scaling resolves the singularities of the operators at r = 0,
and may be interpreted as a proper variational formulation of the axially symmetric
Navier-Stokes equation in appropriately r—weighted Sobolev spaces, see also Lailly 1976.

Spatial discretization

To discretize in space the Taylor-Hood element, i.e. piecewise quadratic, globally con-
tinuous elements for v and piecewise linear, globally continuous elements for p, are used
on triangular grids.

Some care must be taken to deal with the rather large aspect ratios encountered during
stretching. To this end we use meshes that are condensed in the z—direction initially.
Moreover, while moving the mesh from one time-step to another, a smoothing operator
maintains mesh regularity, see above.

Code validation

The code was validated with examples for Newtonian fluids from Zhang, Padgett &
Basaran 1996 and Yao & McKinley 1998. Furthermore, the examples in Section 5 were
computed using several different meshes and time step sizes to make sure that the dis-
cretization error was sufficiently small.

It may be noteworthy that due to the higher spatial approximation order of the Taylor-
Hood element and the accurate approximation of the curvature terms only rather coarse
meshes were needed.

Figure 2 shows a typical mesh used in the simulations.

4. Experimental approach
4.1. Setup and procedure

An experimental setup was used to generate extensional flow fields by stretching a large
cylindrical liquid bridge. The bridge had sufficiently large dimensions to measure its
extensional viscosity by the forces at the endplates, as done by Berg, Kroger & Rath
1994, or to carry macroscopic particles such as fibers or emulsion droplets for orientation
and deformation experiments, performed by Berg 2002. The goal of the setup was to
generate a maximum homogeneous flow field and constant extension rates in space and
time during stretching. For this reason, some technical effort was necessary to provide
optimal flow conditions.

The stretching of the liquid bridge was performed under microgravity at the drop tower
of Bremen. The microgravity environment during stretching was necessary to eliminate
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Membrane Liquid bridge

FIGURE 3. Supporting device to adapt the membrane radius to the actual bridge length;
apparatus (left) and sketch of the device (right).

body forces owing to hydrostatic pressure. The liquid bridge was held exclusively be-
tween two almost circular concentric support membranes, which stretched the liquid by
temporally controlled acceleration.

The core of the apparatus were two membrane reduction devices consisting of eight
segments each, see figure 3, to adapt the membrane radius R(t) to the actual length L(t)
of the liquid bridge according to (1.2), (1.3). One device was fitted to a linear slider on
the right hand side whereas the left one had a fixed position. The initial size of the liquid
bridge was 30 mm in length and 15 mm in radius. Adaptation of the radius was possible
to a minimum of 5mm and a fluid length of 270 mm. The stretching rate was éy = 0.6/s
in our experiments.

A typical experimental run, using castor oil (see table 1) in this example, is presented
in figure 4. Picture (a) shows the liquid bridge before the onset of stretching, where
the bridge is held between the membranes under microgravity conditions. The bridge is
almost cylindrical before stretching and two immiscible emulsion droplets were placed
inside the bridge to investigate their deformations in extensional flow in this particular
experimental run.

In the following pictures (b)—(d), the supporting device on the right hand side stretches
the bridge for 3.5s with exponentially increasing velocity according to (1.2). Simulta-
neously, the support membranes decrease their radii exponentially to adapt the fluid
boundaries to the actual bridge length.

During stretching, an asymmetrical deformation in the direction to the accelerated
support device can be seen, which, as we will show in Section 5, is typical and caused by
forces owing mainly to inertia in this parameter range (Ca = 0.179, We = 0.0325).

4.2. Ezxperimental conditions

In the microgravity environment residual accelerations caused by experimental distur-
bances occurred in the range between 1076 g to 1072 g. According to the microgravity
experiments in Berg 2002, disturbances greater than 10~6 g were irregular and damped
out within less than 10~%s. These short disturbances initiated waves from the membranes
into the liquid bridge. However, caused by viscous dissipation, the waves spatially faded
away within less than 0.1 mm and did not disturb the full bridge. Thus, only residual ac-
celerations at about 106 g loaded the bridge with small hydrostatic pressure differences,
characterized by Bond numbers less than Bo = 10~%. These small hydrostatic pressure
differences were irrelevant in all experiments compared to capillary, viscous or inertia
effects and were therefore neglected in the simulations.
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(d)

FIGURE 4. Initial and stretched bridge of castor oil Fluid 1 at ¢ = 0.0 (a), t = 0.444 (b),
t = 0.888 (c), t = 1.344 (d), respectively; time in dimensionless units.

i [

‘ m 04 ‘ P € |Ao| T H Ca We
[Pa-s]| [107°N/m] | [kg/m?] || [1/s] | [-1] [=] | [=] | [-]
Fluid1| 071 | 357 | 954 | 0.6 | 2 |0.115]0.179]0.0325
Fluid 2| 9.7 | 21.3 | 975 | 0.6 | 2 |0.151 4.099|0.0556

TABLE 1. Characteristics of the fluids (at 25°C): p the dynamical viscosity, + the coefficient of
surface tension, p the density; geometrical quantities: €y the stretching rate, A the initial aspect
ratio, 7 the (dimensionless) relaxation time , see (4.1); dimensionless parameters: Ca, We the
Capillary and Weber numbers, respectively.

Two different liquids with medium and high viscosity, respectively, were used in the
experiments. The following fluids were used:

o Fluid 1: castor oil, Lechner & Crebert GmbH, Mannheim, Germany,

o Fluid 2: a highly viscous silicon fluid, Dow Corning 200, Dow Chemical Comp., USA,
see also tabular 1 for the properties of both fluids.

Both fluids allowed to perform experiments maintaining almost cylindrical contours
with small deformations during stretching, cp. figure 4. The resulting differences in de-
formations between the two fluids were mainly caused by the different Capillary numbers
for Fluid 1 and Fluid 2.

For a precise comparison between experiment and numerical simulation, the real, op-
posed to completely ideal, experimental boundary conditions were taken into account.
Since the liquid bridges were hold exclusively by the membranes, the shape of the mem-
branes determined the liquid boundaries I';,T',,. The areas of the membranes and a
small part at the sides of the membranes were wetted by the liquid without a sharp edge.
Moreover, remnants of sealing compound, which was used to insulate the device (which
had to be closed under 1g conditions before the experimental run), were attached to the
moving membrane resulting in an increased effective radius. Therefore, the actual liquid
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0.9

0.85r
0.8¢
0.751
0.7F
=
0.65
0.67
0.55[

0.5f

0'450 2 4 6 8

Ficure 5. Fluid 1: Bridge shape at time instants ¢ = 0.000, ¢ = 0.144, t = 0.288, t = 0.396
(left) and ¢t = 0.444,t = 0.600,¢t = 0.744,¢t = 0.888,¢ = 1.04,t = 1.34 (right), from
top to bottom,respectively; time in non-dimensional units; experiment (solid) and simulation
(dash—dotted).

radii Rs(t) of I’y and R, (t) of I, at the membrane positions during stretching were
measured and imposed as boundary conditions in the numerical simulations instead of
(2.5).

Moreover, the experimental procedure to provide the initial liquid bridges lead to
concave-convex shaped contours, cp. figures 5 and 6. Also small losses of liquid for the
initial bridges could not be totally avoided. This is why the initial liquid bridges con-
tained always about only 96% fluid volume of the ideal cylindrical bridge. The numerical
simulations were thus started with the corresponding initial shapes, which were measured
and then interpolated by a polynomial fit of the order 7 and 8 for Fluid 1 and Fluid 2,
respectively.

Furthermore, in order to avoid infinite forces at initial we defined a start-up phase by
imposing v(0,-) = 0 and defining the time dependent boundary condition

v (t,) = AO% exp(t(1 — exp(—t/7))) on Ty, (4.1)

which asymptotically approaches the “ideal” function v, = Ag exp(t) on the time scale
7. The (dimensionless) relaxation time 7 was fitted to measurements from the experi-
ments, see Berg 2002. The fitted values for 7 for Fluid 1 and Fluid 2 are listed in tabular
1.

5. Results
5.1. Comparison of experimental and numerical results

As a first step in our investigation we compared the experimental results for Fluid 1 and
Fluid 2 with corresponding simulations. The experiments with Fluid 1 and Fluid 2 were
performed for 0 < ¢ < 1.344 and 0 <t < 2.1, respectively, in non-dimensional units.
During the time evolution, the stretched bridges were recorded by a video camera
with wide angle lens, which allowed total views of the bridge to a maximum length of
115mm (Fluid 1) and 245 mm (Fluid 2), see figures 8 and 9. Moreover, a second camera
provided a closer view of the accelerated bridges up to time ¢ = 0.444. The contours of
the bridge surface were evaluated reliably by digital image processing, which identified
the bridge shape by a strong gradient in the pixel brightness. Because of the different
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1.05 T T T T T T T 0.75

0.7 '

20

Ficure 6. Fluid 2: Bridge shape at time instants ¢ = 0.000, ¢ = 0.144, t = 0.288, t = 0.576
(left) and t = 0.888,t = 1.200,t = 1.488,¢t = 1.800,¢t = 2.064 (right), from top
to bottom,respectively; time in non-dimensional units; experiment (solid) and simulation
(dash—dotted).

0.4¢

0.3f

0.2
0

15 2

0.2 0.4 O.Gt 0.8 1 12 14 o 0.5 1t

FIGURE 7. Minimum radius of the bridge versus time; experiment (diamonds), simulation

(solid) and exp(—0.5t) (dashed—dotted); Fluid 1 (left) and Fluid 2 (right).
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Ficure 8. Initial and stretched bridge of castor oil (Fluid 1) at ¢ = 0.0 (left) and t = 1.344
(right), respectively; time in dimensionless units.

image resolutions of the two cameras (small and wide angle lenses), stronger pixel steps
occur in the contour images for ¢t > 0.444, cp. figure 5 and figure 6.

The transient bridge deformation during stretching can be subdivided into two parts.
In the first time period the capillary pressure tries to stabilize the bridge contour to a
cylindrical shape of constant mean curvature. A first rough estimate of this time interval
is determined by the stability limit of a stationary liquid bridge, i.e. the aspect ratio
A(t) = L(t)/R(t) < 2w, which was already studied by Plateau 1863 and Rayleigh 1878.

During this period, the initial deformation re-orientates and relaxes, delayed by viscous
forces. In the case of Fluid 1, the deformation changes from a concave-convex shape to
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FIGURE 9. Initial and stretched bridge of silicon fluid (Fluid 2) at t = 0.0 (left) and t = 1.344
(right), respectively; time in dimensionless units.

a purely concave shape. Moreover, capillary forces stabilize the bridge contour, counter-
acting the dynamic pressure difference caused by the acceleration of the flow.

Beyond the stability limit, in the remaining stretching period, the capillary and the
dynamic pressures deform the bridge contour. A significantly convex-concave shape in
direction to the accelerated membrane on the right hand side arises. This typical bridge
contour appears during stretching because of the negative pressure gradient in direction
to the accelerated membrane. This typical convex-concave shape is clearly visible in figure
5. Eventually, the instability leads to a breakup of the bridge.

These two deformation processes, firstly reorientation by capillary pressure and then
deformation by capillary and dynamic pressure differences, are clearly visible for Fluid 1.
Both processes also appear for Fluid 2. However, due to the higher viscosity of this liquid,
the reorientation and convex-concave deformation are more delayed and the transition
between the two phases is less pronounced.

The numerical simulations are capable to reliably describe the transient deformation
during the bridge stretching of Fluid 1 and 2. Figures 5 and 6 show that, in view of the real
initial fluid volume and the measured membrane radii R,(t) and R,,(t), the numerical
results are in quite a good agreement to the experimental contours. More precisely, the
experimental uncertainty of the recording device is 2 pixels and the agreement of the
numerical results is of the same order of magnitude over most parts of the bridge and at
almost all times.

From the good numerical reproduction of the transient bridge deformations in figures
5.1 and 5.2 we deduce that also the capillary, inertia and viscous forces during reorien-
tation and deformation are accurately captured.

Since the bridge stretches with exponentially increasing velocity and the deformations
are also growing in time, differences between simulated and experimental data are ex-
pected to be amplified in time. The small differences between numerical and experimental
data at nearly all times is again an indication of the quality of the numerical method.

A commonly used parameter to characterize the bridge deformation is the minimum
radius of the deformed bridge versus time, shown for our examples in figure 7. There,
the actual radii, experimental as well as numerical, are compared to the ideal case of
R(t) = exp(—0.5t). The deviation from this exponential is an expression for the bridge
deformation. Figure 7 again confirms the reliability of the numerical results, expressed
by the good agreement of the minimum radius to the experimental data.

In the next section, we discuss a parameter variation, to identify the forces acting in a
stretched fluid bridge and the corresponding bridge shapes.

5.2. Parameter variations and bridge shapes

We investigated bridge stretching and the corresponding flow quality for a field of various
Capillary and Weber numbers, shown in figure 10 together with a nomenclature ‘1’ —
‘30°. The parameters were chosen to characterize the bridge stretching at realistic fluid
properties and bridge dimensions.
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Ficure 10. Parameter field, numbering of the numerical experiments; the dash-dotted lines
mark the respective transition regions between capillary dominated (CD), viscosity dominated
(VD) and inertia dominated (ID) flows. Marked examples 8, 13, 16, and 23 are discussed in
detail below.

no. liquid N vy p éo
[Pa-s] | [107°N/m] | [kg/m?] | [1/s]

1 water 0.0001 72 998 10
13 |85 % glycerol-water | 0.1129 66 1123 0.1
18 silicon fluid 10 21 975 10
30 silicon fluid 1025 21 976 0.1

TABLE 2. Some physical fluids in the parameter field.

The initial aspect ratio Ag was chosen Ag = 2 and the relaxation time 7 from (4.1)
was set to 7 = 0.012 for all examples. The initial bridge shape was chosen to be of ideal
cylindrical form.

Physically, the parameter field can be interpreted for example in the following way: fix-
ing the initial bridge radius to Ry = 15 mm, the stretching rates are varied between 0.1/s
and 10/s. The surface tension and viscosity are varied in the range of 20 - - - 70 mN/m and
0.001 - - - 1000 Pa-s, respectively, while keeping the density constant at about 1000 kg/m3.
Compare also table 2, where some possible physical fluids are identified within the pa-
rameter field.

Anticipating the result of our study, the parameter field can be subdivided into three
major regimes:

e capillary dominated flow, characterized by Ca < 1,We <« 1,

o viscosity dominated flow, Ca > 0(0.1), Re < 0(0.1) ,

e inertia dominated flow, We > 0(0.1), Re > 0(0.1).

The field could be considerably extended to other bridge dimensions and strain rates,
but systematic changes of the flow quality and the deformation behavior are expected
only at the transition between the capillary, viscosity or inertia dominated flow regimes,
respectively.
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FIGURE 11. Minimum radii of the bridges versus time.

A first overview of the situation is given by figure 11, which presents the minimum
radii of the stretched bridges for the various Weber and Capillary numbers as well as the
“ideal” exponential curve (e) for comparison. The pictures clearly confirm the transitions
between the different flow regimes.

The upper pictures in figure 11 show the transition from almost capillary dominated
flow to more viscosity (upper left picture) or inertia (upper right picture) dominated flow
regimes.

At low Capillary and Weber numbers (no. 13, 14, 19, 20, 23), the minimum bridge
radii coincide with the ideal exp-function up to a limit of capillary stability. Beyond this
limit, capillary instability leads to distortion of the bridge and the final breakup. The life
time of a bridge is the longer the larger the Capillary number and the smaller the Weber
number are. At the minimum of Capillary and Weber numbers (no. 13), the bridge breaks
up just after ¢ = 1.0. For higher Capillary numbers the breakup is delayed.

A totally different behavior can be seen for the transition from low Capillary and
Weber numbers (no. 13, 14) to increased Weber numbers (no. 1, 2, 5, 6). While at small
Weber numbers (no. 13, 14) the minimum bridge radii stay relatively close to the ideal
exp-function during their whole life span, the radius functions at higher Weber numbers
(no. 1, 2, 5, 6) deviate from the exp-function from the start. The life time of a bridge
decreases and the deviation to the ideal case increases with increasing Weber number.
The extreme examples (no. 1, 2) are strongly deformed and shortly living bridges.

REMARK 2. Some of the bridges are strongly deformed from the start, yielding rather
distorted meshes in the numerical simulations despite the mesh smoothing in Step 3 of
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Ficure 12. Bridge shapes for some representative examples: 13, 8 representing capillary and in-
ertia dominated flow, respectively; 16, 23 representing the transitions from capillary to viscosity
dominated and inertia to viscosity dominated flow, respectively.

the algorithm, see Section 2. This gives rise to a shorter “numerical” than physical life
span of the corresponding bridges.

Figure 11 (lower pictures) shows the influence of decreasing Weber number and in-
creasing Capillary number. It can be seen that for higher Re = We/Ca (no. 3,4, 7, 8, 11,
12, 16, 17, 18, 21) the minimum bridge radii are nowhere close to the ideal exp-function.
The deviation from the ideal case increases at increasing Reynolds number. On the other
hand, at lower Reynolds numbers, the minimum bridge radius is close to the ideal case
and breakup is the more delayed the lower the Reynolds number.

Moreover, it is remarkable that the curves of minimum bridge radii are nearly identical
for identical Reynolds numbers (no. 11/12, 17/18, 25/26, 29/30). This shows that capil-
lary forces do not have a strong influence on the deformation behavior at higher Capillary
or Weber numbers, Ca > 0.75 or We > 0.17, i.e. outside the capillary dominated regime.

In the rest of this section we discuss four representative examples, bridges no. 13, 8, 16
and 23, from the parameter field in more detail. The respective contour shapes of these
bridges for several time instants are plotted in figure 12.

Bridge no. 13 at Ca = 2.14-1073 and We = 4.82-10* represents capillary dominated
flows. After the start, cp. ¢ = 0.205, and during the main part of the stretching period,
represented by e.g. the instant ¢ = 0.53, a nearly ideal cylindrical shape exists. After this
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the capillary instability induces a convex-concave shape leading to the final breakup of the
bridge. The almost symmetric shape of the convex-concave distribution is an indication
of the predominantly capillary driven instability, which by linear stability analysis is
predicted to take on sinusoidal form.

Bridge no. 8 at Ca = 7.50 - 10! and We = 1.69 - 10! represents inertia dominated
flows. Already at the beginning of the stretching strong contour deformations develop
close to the accelerated side. These disturbances are caused by the inertia of the fluid
and are not significantly damped by viscous nor capillary forces during stretching. This
contour deformation remains until the breakup of the bridge.

Bridge no. 16 at Ca = 7.50 - 107! and We = 1.69 - 10! represents the situation of
balanced viscous and capillary forces and smaller inertia forces. The bridge develops only
small deformations during stretching compared to, for instance, bridge no. 8. As can be
seen from figure 12 at ¢ = 0.205 a tiny convex-concave deformation is visible, which grows
slowly during stretching. The deformation is caused by the dynamic pressure difference
and is compensated by the capillary pressure. The stronger viscous forces in comparison
to inertia forces prevent strong local deformations and flow variations, as seen for instance
in example no. 8.

Bridge no. 23 at Ca = 2.14-10~! and We = 4.82-10~* shows an example for viscous
dominated flows. The higher viscous forces in comparison to example no. 16 prevent
strong local pressure variations inside the bridge and the bridge has a cylindrical shape
during the main part of the stretching period. Just before the breakup a convex-concave
deformation appears.

5.3. Strain and Shear

The evaluation of the strain and shear distribution inside the bridges provides a more
refined view of the quality of the uniaxial extensional flows. In cylindrical coordinates,
the strain rate € and the shear rate 4 are given by

= %(32112 — 8rvr), ¥ = 0pv, + 0,v,..

We are interested in the regions of 2 that are homogeneous with respect to the strain
rate and shear rate. To this end we define the homogeneous part Qj,,, of 2, where the
deviation from the desired strain and shear rate distribution of the ideal bridge is less

than 5 %:

Qhom(t) := {z € Qt) | max{|é(t,z) — 1.0|, |¥(¢,z)|} < 0.05}, (5.1)
as well as the fraction of the homogeneous part
|Qhom (2)]
hom(t) := ——~—. 5.2
(t) )] (5.2)

The latter expression is a direct measure for the quality of a stretched bridge. Figure
13 presents the values of hom as functions of time for the examples in the parameter
field. For the sake of clarity some curves are omitted. The omitted curves are either close
to those corresponding to neighbors in the parameter field or their values of hom are
negligibly small for the whole stretching period (bridges no. 1, 2, 3, 4, 7, 8, 11, 12).

In order to get an even more condensed measure for the bridge qualities, we define the
scalar quantity qual,

thbreakup

qual := / hom(t) dt. (5.3)
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FicURE 13. Homogeneous fraction hom(t) := % of the domain for the

examples in the
parameter field.
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Ficure 14. Contour plot of the quality measure qual, defined by (5.3).

From figures 11 and 13 a clear correspondence can be seen between the flow quality,
characterized by hom and the bridge deformation, expressed by the function of minimum
radius.

Comparing the curves in the upper left pictures of figures 11 and 13 (experiments
no. 13, 20, 23, 27) shows that as long as the minimum radius follows the ideal exp-
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function, i.e. there is no large deformation of the bridge, the flow inside the bridge enjoys
a maximum homogeneity hom, which also means that the shear is minimum.

In the range of capillary dominated flows (e.g. bridges no. 13, 20) the homogeneous
fraction vanishes just at the onset of the breakup of the bridge.

For higher Weber numbers (no. 5, 6, 9, 10), the bridge contours behave similar to
example 16 in figure 12, exhibiting a convex-concave shape during stretching. These
asymmetrical deformations result in rather small homogeneous fractions than for lower
Weber numbers.

For viscosity dominated flows (no. 22, 29, 30), the homogeneous fraction is maximum
and the shear rates remain minimum. This is caused by the strongly viscous transport of
momentum, which inhibits strong deformations and variations of flow, hence the defor-
mations are small and the bridge follows the ideal exponential case. On the other hand,
for inertia dominated flows (no. 7, 8, 12, 18), the strong dynamic pressure gradients cause
strong deformations and flow variations, resulting in large shear rates. The homogeneous
fractions for these examples are extremely small. In the case of experiments no. 7, 8, 12,
the homogeneous flow fraction remains close to zero and is therefore not drawn in figure
13.

To summarize, viscosity and inertia dominated flows exhibit very strong differences in
the flow quality, expressed by the homogeneous fraction hom. Hence, the best regimes
in terms of quality of the underlying extensional flow field is viscosity dominated flow at
small Reynolds numbers.

But also in the case of small Capillary as well as small Reynolds numbers, where
capillary forces dominate, the extensional flow is remarkably homogeneous up to the
point of capillary driven breakup.

Let us also mention without explicitly showing corresponding curves that the shear
rate is related to hom, i.e. the shear rate is high where hom is small and vice versa.

The scalar quantity gqual confirms the increasing flow quality at decreasing Weber
numbers and increasing Capillary numbers, cp. fig. 14. Large values of qual indicate the
desirable situation of a large homogeneous flow fraction during a long time period.

Interestingly, qual remains almost constant at constant Reynolds numbers in the We—Ca
parameter field. This behavior is most clearly visible for higher Capillary, where capillary
forces are negligible. In this range, qual is a decreasing function of the Reynolds number
only.

5.4. Flow regimes and application

In this section we discuss the strain and shear distributions for the four examples, bridges
no. 13, 8, 16 and 23, in more detail and give further details for applications.

I Capillary dominated flow, bridge no. 13. As already seen above, even at small Cap-
illary numbers and small Reynolds numbers homogeneous flow can be realized during
almost the whole period of stretching. For instance bridge no. 13, includes a homoge-
neous strain flow immediately after the start. Figures 15 and 16 show the strain and
shear rate distribution inside this bridge at different time instants.

Just after the start, cp. ¢ = 0.08 in figure 15, viscous momentum transport from the
membranes into the bridge causes a weak strain variation and a weak shear flow fraction,
which are damped down quickly by the capillary forces that are strong compared to
inertia and viscous forces.

During the main part of the stretching period, represented by e.g. the instant £ = 0.58,
an ideal extensional flow exists, until capillary forces initiate strong variations in strain
and shear rates, cp. t = 0.98, which lead to the final capillary dominated breakup.
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As long as the bridge maintains an ideal cylindrical shape, the extensional flow is
perfectly homogeneous inside the bridge. After this the capillary instability induces a
deformed shape, see figure 12. In the concave part of the bridge the strain rate increases,
while in the convex part the strain rate decreases, see figures 15, 16.

Eventually, at the end of the stretching period, strong variations in strain rate and
high values of the shear rate lead to a quickly vanishing hom, see figure 13.

We conclude that homogeneous strain experiments in the range of small Reynolds
numbers and small Capillary numbers are possible up to capillary breakup.

II Inertia dominated flow at high Weber and Capillary numbers, bridge no. 8. Bridge
no. 8 represents a less suited regime for homogeneous extensional flow. Figures 17 and 18
show the strain and shear rate distribution inside the bridge at different time instants.

Already at t = 0.05 strong flow variations have developed close to the accelerated side.
Since viscous (diffusive) momentum transport inside the bridge is weak, the forces lead
to a strong contour necking.

In the left, convex part of the bridge the strain rate is much below the desired strain rate
of unity. This example shows that inertia dominated flow at high Weber and Capillary
numbers is prohibitive for homogeneous strain flow.

III Balanced viscous and capillary forces at smaller inertia forces, bridge no. 16. Study-
ing bridge no. 16, we see that this range of parameters provide more suitable conditions
for homogeneous extensional flow.

Figures 19 and 20 show the strain and shear rate distribution inside the bridge at
different time instants. The bridge develops only small flow variations during stretching.

Despite of the better flow quality in comparison to example no. 8, figure 13 confirms
that almost no homogeneous flow exists inside the bridge for the main part of the stretch-
ing period. However, since the flow variations are weak in the convex part, a local shear
free strain flow exists for some time, which may be used for strain experiments.

IV Low Weber numbers, medium Capillary numbers, bridge no. 23. As pointed out
above, the most suitable parameters for homogeneous extensional flow are in the range
of viscous flows at small capillary forces. Such parameters at high Capillary numbers and
small Reynolds numbers are only realizable at very high fluid viscosity, which may not
be available in experiment.

Therefore, a more practicable example (bridge no. 23) at medium viscosity, or in non-
dimensional terms, medium Capillary number is presented in figures 21 and 22.

The figures show the strain and shear rate distribution inside this bridge at different
time instants. The higher viscous forces in comparison to the previous example prevent
strong local pressure variations inside the bridge. Therefore, the bridge remains cylindri-
cal and the flow homogeneous during the main part of the stretching period. Just before
the breakup variations in the strain and shear rates appear.

The very weak flow variations demonstrate the excellent flow quality, which makes a
bridge at low Reynolds number and even medium Capillary number suitable for strain
experiments.

Examples I — IV reveal that small inertia forces in comparison to viscous and capillary
forces are necessary for the realization of homogeneous uniaxial extensional flow.

As outlined above, the parameter regime providing most suitable conditions for contin-
uous homogeneous extensional flow at negligible gravity forces is found at low Reynolds
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Ficure 15. Bridge no. 13: Strain rate distribution at ¢ = 0.08, t = 0.58 and ¢t = 0.98, from top
to bottom respectively; distance of levels for the plotted isolines: 0.2.
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FIcure 16. Bridge no. 13: Shear rate distribution at ¢ = 0.08, t = 0.58 and t = 0.98, from top
to bottom respectively; distance of levels for the plotted isolines: 0.1.

numbers and high Capillary numbers. Unfortunately, these parameters cause certain
difficulties in practice. High Capillary numbers and small Reynolds numbers are only
realizable at very small bridge dimensions and very high fluid viscosity. High viscosity
causes severe difficulties in handling the fluid or those fluids may not even be avail-
able. Therefore, extensional flow experiments are mainly performed at medium or low
Capillary numbers, where the duration of homogeneous flow is limited in space and time.

Moreover, in the range of small Reynolds as well as small Capillary numbers, where
inertia forces are smaller than viscous and capillary forces, the experimental realization
of homogeneous extensional flows is indeed restricted by further difficulties.

For instance the duration of the ideal homogeneous flow varies with the characteris-
tic numbers, cp. figure 13. The examples reveal that at decreasing Capillary numbers
stronger capillary forces (compared to viscous forces) lead to a shorter life time of the
homogeneous flow. This is also confirmed by the plot of minimum radii in figure 11,
where the breakup time decreases at decreasing Capillary numbers.



Uniazial, extensional flows in liquid bridges 21

FIicURrE 17. Bridge no. 8: Strain rate distribution at ¢ = 0.05 and ¢ = 0.455, from top to
bottom respectively; distance of levels for the plotted isolines: 0.5.

Ficure 18. Bridge no. 8: Shear rate distribution at ¢ = 0.05 and ¢t = 0.455, from top to
bottom respectively; distance of levels for the plotted isolines: 1.0.
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Ficure 19. Bridge no. 16: Strain rate distribution at ¢ = 0.205, ¢ = 1.205 and ¢t = 1.705, from
top to bottom respectively; distance of levels for the plotted isolines: 0.1.
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Ficure 20. Bridge no. 16: Shear rate distribution at ¢ = 0.205, t = 1.205 and ¢t = 1.705, from
top to bottom respectively; distance of levels for the plotted isolines: 0.1.
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Ficure 21. Bridge no. 23: Strain rate distribution at ¢t = 0.58, t = 1.58 and ¢t = 2.205, from
top to bottom respectively; distance of levels for the plotted isolines: 0.05.
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Ficure 22. Bridge no. 23: Shear rate distribution at t = 0.58, ¢ = 1.58 and t = 2.205, from top
to bottom respectively; distance of levels for the plotted isolines: 0.01.

6. Conclusion

We have investigated the possibility to generate nearly homogeneous uniaxial exten-
sional flows with an almost constant strain rate in a stretched liquid bridge under p-g
conditions. The key ingredient of the method is the adaptation of the disk diameters in
order to have always ideal boundary conditions to hold a cylindrical fluid bridge. This
method causes much weaker end-effects at the bridge than the commonly used method
with unchangeable disks.

But even under these optimal conditions, the liquid bridges are deformed by forces
owing to fluid inertia and surface tension. The balances between inertia and surface
tension forces, expressed by the Weber number, and between viscous and surface tension
forces, expressed by the Capillary number, determine the deformation and flow behavior.

Our investigations present systematically different deformations and flow qualities in
dependence on Ca, We and Re = We/Ca. Regions of capillary dominated flow, Ca < 1,
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We < 1, viscosity dominated flow, Ca > O(0.1), Re < 0(0.1), and inertia dominated
flow, We > 0(0.1), Re > O(0.1) were detected, which exhibit totally different bridge
deformations during stretching.

In the range of capillary dominated flow, ideal extensional flows exist during the main
part of the stretching period, until capillary forces initiate strong variations in strain and
shear rates to the final capillary dominated breakup. As long as the bridge maintains an
(almost) ideal cylindrical shape, the extensional flow is (nearly) perfectly homogeneous
inside the bridge. In the range of small Capillary numbers and small Reynolds numbers,
homogeneous strain experiments are possible up to capillary breakup. However, weak vis-
cous forces (compared to capillary ones) do not essentially delay the capillary dominated
breakup. Therefore the period of ideal flow is limited in this case.

In the range of inertia dominated flow, strong flow variations and contour deformations
occur, which are caused by the fluid inertia and are not damped by viscous nor capillary
forces during stretching. This is the most unsuitable regime for homogeneous extensional
flow.

Most suitable parameters for homogeneous extensional flow are in the range of viscosity
dominated flow. The high viscous forces in comparison to inertia and capillary forces
prevent strong local pressure variations inside the bridge. Therefore, the bridge remains
cylindrical and the flow homogeneous and constant during a long stretching period.

In experiment, such parameters of high Capillary numbers and small Reynolds numbers
may not always be realizable, because of the fluid properties or bridge geometry. In this
case, our discussion of the flow quality allows for an estimation of the expected flow
quality, expressed by the quantity qual in dependence on the parameters Ca and We, see
for instance figure 14.
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