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Abstract

The paper is devoted to the dissipative Schédinger-Poisson system. We prove that
the system always admits a solution and that all solutions of a given Schrédinger-
Poisson system are included in a uniform ball whose radius depends only on the
data of the system.
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1 Introduction

Schrédinger-Poisson systems are of great interest in semiconductor physics. In the
following we consider a Schrédinger-Poisson system on a subinterval = (a,b) of
the real axis R. A system of this type was considered in [2], [5], [12]. By ¢ we denote
the electrostatic potential on 2 which is determined by Poisson’s equation

—%e(x)%go(x) — ¢(C(z) +u*(z) — v (z)), @€ lab] (1.1)

where u* and u~ are the densities of holes and electrons, g is the magnitude of
the elementary charge, C(-) is the doping profile of the semiconductor devices and
¢ = ¢(z) > 0 denotes the dielectric permittivity. We regard the following mixed
boundary conditions for the Poisson equation (1.1)

o(r) = or(z) ifzel,
(1.2)
—e(z) () = k(z)(p(z) — pr(z)) ifz € d\T,

where I' C 9Q = {a, b}. The function @r, defined on the closure of 2, represents the
boundary values given on I' and the inhomogeneous boundary conditions of third
kind on 922 \ I'. The function £ > 0 is defined on 9. Such kind of boundary
condition occurs in semiconducter device modeling, see [3].

The densities u* in (1.1) are determined by Schrédinger-type operators
HE(V) = —5 o 2 4 V(o) (13)

which act on the Hilbert space L?[a, b] (m.. is the position dependent effective mass
of holes and electrons and A& = 1) and density matrices o+ which describe the
collective behaviour of holes and electrons. In the following we investigate stationary
Schrédinger-Poisson systems. This case happens if o, are steady states.

Since the formalism of quantum mechanics is well developed only for self-adjoint
Schrédinger-type operators, usually self-adjoint boundary conditions are chosen, cf.
[5]. Self-adjoint boundary conditions imply that the system under consideration is
closed. In particular, this means that no carrier exchange with the environment is
possible. However, from the semiconductor physics point of view this consequence
is unacceptable since a net current flow through the boundary is natural. Thus one
has to devise boundary conditions which allow those flows.

A simple proposal to replace the self-adjoint boundary conditions by non-self-
adjoint ones was made in [5]. The treatment of the resulting non-selfadjoint oper-
ators H*(V) leads to several complications. In particular, the important notion of
carrier density has to be redefined.

The situation can be improved if we choose dissipative boundary conditions,
cf. [7]. This enables us to use the dilation theory for dissipative operators as the
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technical tool to overcome difficulties arising from the non-selfadjointness. From
the physical point of view the minimal self-adjoint dilations K=(V) play the role
of the Hamiltonians of a larger, closed systems which contains the original system
described by H*(V). Using this fact one defines steady states, carrier and current
densities, cf. [9]. On the basis of these notions a so-called dissipative Schréodinger-
Poisson system is set up, see [9]. Our goal is to show that this dissipative system
has a solution. We note that dissipative Schrédinger-Poisson systems were also
considered in [4] and [11] in a non-stationary setup which is quite different from the
present stationary one.

The paper is organized as follows. In Section 2 we rigorously define Schrodinger-
type operators, cf. [7], briefly introduce their dilations and generalized eigenfunc-
tion expansions, cf. [8], and recall the definition of the carrier density given in [9].
Following [5] we introduce the (nonlinear) carrier density operator assigning to a
Schrédinger potential the corresponding carrier density. In Section 3 we investigate
the convergence properties of Schrodinger-type operators, their dilations and eigen-
function expansions as well as of the carrier density operators with respect to the
potentials in L>([a,b]). In Section 4 we rigorously define dissipative Schrédinger-
Poisson systems and show that such systems always have a solution.

2 Notions and definitions

2.1 Notations and general assumptions

In this paper we use the following notations: the Schrédinger Poisson system will be
regarded on a one dimensional interval which will always be denoted by (a,b) := Q.
By L' we denote the space of (equivalence classes of) real-valued Lebesgue integrable
functions on the interval [a, b]. The space of real Lebesgue measurable and essentially
bounded functions on [a, b] will be denoted by L* in the sequel.

In order to avoid confusion we denote the space of complex valued, square inte-
grable functions on the interval [a,b] by $). Furthermore, we denote by W12 the
usual complex Sobolev space W'?[a, b] and by Cla, b] the space of complex valued,
continuous functions on [a, b].

If H is any Hilbert space then £,(?) denotes the space of nuclear operators on
H and £2(H) denotes the space of Hilbert Schmidt operators, each with its canonic
norm. For Banach spaces X and Y, we denote by B(X;Y') the space of all linear,
continous operators from X into Y. If X =Y we write B(X). Finally, N is used as
the symbol for the set of natural numbers.

In order to avoid reiterations of the same conditions the following conventions
are made throughout section 2 and 3:

Assumptions 2.1
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(A1) The functions m., which are called the ’effective masses’, are positive and
obey my, mii € L. We set ||my]| := ||m+]|p~-

(Ay) The boundary coefficients x*, ki are from the upper half plane C, = {z € C :

Sm(z) > 0}.

The distinction between '+’ and '—’ is not relevant for the investigations in the
sections 2 and 3, therefore we will abbreviate the notations to m, k., and .

2.2 Schrodinger-type operators

Following the proposal of [5] we consider the non-selfadjoint Schrédinger-type oper-
ator H(V) on the Hilbert space $ defined by

m ,(.’L') Wl 2
a9'(a) = —Fuag( ), (2.1)
(

dom(H(V)) =4 ge Wh?*:

190) = rg(t)

and
(H()9)(@) = (@)@, g€ dom(H(V)), g€ dom(F(V)), (22

where
((0))(0) i= 5 g s 2oa(a) + V(@)a(a). (2.3

cf. [7, 8]. Furthermore, it is always assumed that the occuring Schrédinger potentials
are from L*°. The operator H is maximal dissipative and completely non-selfadjoint,
see [7]. The spectrum of H (V') consists of isolated eigenvalues in the lower half-plane
with the only accumulation point at infinity. Since the operator H (V) is completely
non-selfadjoint there do not exist real eigenvalues.

Moreover, H (V') can be entirely characterized by its characteristic function © z(v)(z),
with z € o(H(V))Ne(H(V)*), cf. [1]. In our case the definition of the characteristic
function relies on the boundary operators T(V)(z) : § — C?, z € o(H(V)),
and T,(V)(2) : § — C?, z € o(H(V)*). Let us introduce the unclosed operator
a:H — C?,

apf(b
af = ( _O’;f;(zl) > : f € dom(a) = C|a, b), (2.4)
where we have set
=qq, + 2013 and Ky = qp + %az, Ga, @ € R, g, ap > 0. (2.5)

The boundary operators are then defined by

T(V)(2)f =a(H(V) —2) 'f (2.6)
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and
T.(V)(2)f = a(H(V)" = 2)7'f, (2.7)

f € $. The characteristic function ©g()(-) of the maximal dissipative operator
H(V) is a two-by-two matrix-valued function which satisfies the relation

Ouw)(2)T(V)(2)f = T.(V)(2)f, z € o(H(V))Ne(H(V)), (2.8)

f € $. It is a holomorphic function on o(H(V)) N o(H(V)*) and contractive on
C_ UR, i.e. it satisfies

1O (2)| <1 for ze C_ UR (2.9)
The characteristic function is given by
On(z) = Iz —iaT(V)(2)", (2.10)

cf. [8].

The operator H (V') admits a description in terms of quadratic forms. To this end
we introduce the sesquilinear form byl-, -],

wlg, 1= [ do {1 @I + @)@ .11

f,g € dom(hy) = Wh2 see [7]. The form b, is symmetric and non-negative. Since
ho is closed there is a self-adjoint operator H, such that the representation

hU[ga f] = (H(]ga f)a g € dOHl(Ho), f € dom(hﬂ)a (212)

holds. This operator Hy can be explicitly described as follows:

1 ! 1,2
g(z) e W
dom(Hp) :=< g € Wh?. ?m@) , 2.13
(Fh) {g 9 (b) = miyd'(@) =0 (2:13)
and
(H )()———d L_d (z) + g(z) € dom(Hy) (2.14)
0INE) = dx2m(x)dxg$ A o) '

Obviously, the operator Hy is non-negative. In order to obtain further properties of
the operators H(V') we introduce certain quadratic forms in terms of which H (V)
can be understood as a (form) perturbation of Hy. We start with the boundary
form tsq[-, ] defined by

toalg, 1 := —rag(a)f(a) — rg(b)F(b), (2.15)

f,g € dom(tsq) = W2 Next we define the potential form ty[-, -],

tlg, f] = / dz V (2)g(2)F(@), (2.16)
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f,g € dom(ty) = W'? and the form sum
to,v = tan + tv. (2.17)

As usual, we will denote the corresponding quadratic forms by the same symbols, but
only one argument occuring. In the following we will supply relative form estimates
for tsn, ty and tpn,y with respect to hy. Let

19| £ 1%l c1a
g1 := sup = sup : (2.18)
orvewt [llya 19llg”  orwews2 9]t 4]l
be the Gagliardo-Nirenberg constant and
m := max {1, [|[m]|}. (2.19)

Applying the Gagliardo-Nirenberg inequality we can estimate the form tyq as follows:
ltoalg, f1I < (|kal + [Ke) - | llctas - [19/lcran (2.20)

. 1/2 . 1/2
<((Ikal + ka2 fllwsz [ Flls) * ((mal + Lo}l g w2 lgls
1/2
<( (sl + D)2 200 [ 1721 f1ls ) ((al + g3 201912 gl )

2 4.~ 1/2 2 4~ 1/2
< (] + (ool LU0 g} (g 7 (el Ry o)

1/2

Setting

2 4~
a +
oo Ul |:”|) §im (2.21)

and summing up with the obvious inequality

tv(g, fIl < [[Vlz= - (I flls - llglls

one gets the following estimate for the form tsq v

ton 1./ (2.22)
1/2 1/2
< (0bolg] + $l1gliz) " (80ols1+ S I712) "+ IV IlI£ 1l

< (80olg] + (G + IVl lgls) " (89001 + (G + IVl 113)

1/2

f,g € dom(tsq,/). By the last inequality it turns out that the quadratic form tgq v
is infinitesimally small with respect to hy. Hence, the quadratic form corresponding
to the sesquilinear form by g, f] is given by

bvlg, f1:= holg, f] + toa,vlg, f1 — (9, f) = bolg, f] + teav1lg, fl, (2.23)

f,g € dom(hy) = W2 is closed and sectorial. Consequently, there is a (unique)
maximal sectorial operator H (V') such that the representation by g, f] = (H(V)g, f)
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is valid for ¢ € dom(H(V)) and f € dom(hy). The so defined operator H(V)
coincides with that one given by (2.1), (2.2) and (2.3).

Next we intend for g > 0 and V' € L* to define an operator B, (V') which will
allow us a certain factorization of the resolvent of H(V'). For this, let us introduce
the sesquilinear form

b(V)[f, 9] := toav 1[(Ho + p) Y2 f, (Hy +u) *%g], >0, (2.24)

f,g9 € dom(b,(V)) = $. The form b,(V) defines a bounded operator B,(V') on $.
For all what follows the norm of the operator B, (V) is of fundamental interest:

Lemma 2.2 Assume V € L*> and 6 €]0,1]. If u > 0, then

c 1
B,.(V <O+ (=+1+||V]ge) —. 2.25
1Bu(V)llsey < 8+ (5 +1+[Vlz=) T (2.25)
In particular, if
p>de+ 2+ 2|V g, (2.26)

then ||B,(V)||) < 1 and

. 2(p+1)
1+ B,(V))? < .
11+ Bu(V)) " lss) < 1+p—4dc—2—2||V]~

(2.27)

Proof. (2.25) follows from (2.22). Setting 6 = 1/2 we get from (2.25) and (2.26)
that ||B,(V)||s») < 1. The last assertion follows from (2.25), (2.26) and the repre-
sentation of the resolvent by Neumann’s series. O

Lemma 2.3 Assume V € L. If 4 > 4c+ 2 + 2||V||p~, then the representation
(H(V)+p) ' = (Ho+p) (1 + Bu(V)) H(Ho + p) 12 (2.28)

holds.

Proof. One has for any f,g € W2

bvlg, ]+ ulg, f) = (\/Ho + pg, VHo + uf) + tov 1lg, f] (2:29)

which yields

bvlg, f1+ ulg, ) = ((I + Bu(V)VHs + g, VH + Af)  (230)

for 4 > 0. From the previous lemma we get ||B,(V)|| < 1. Hence, the inverse
operator of I + B, (V') exists and is bounded. Therefore, the definition

Ru(V) = (Hy + ) 2(1 + Bu(V)) " (Ho + ) (2.31)
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makes sense. Since R,(V)g € W'?([a,b]) we find

bv[R.(V)g, f1+ AR ( )g f) (2.32)
=< Hy+ pR,(V)g, v Ho + f>+fam/1 «(V)g, fl,

g € 9 and f € W2, Consequently, we obtain

bv[Ru(V)g, fl1+ u(Ru(V)g, f) (2.33)
= (I + Bu(V)) ™ (Ho + 1)~ g, (Hy + p)"f)
+ (Bu(V)(I + Bu(V)) " (Ho + p) g, (Ho + p)**f)

which shows that
g € 9, f € WhH2 However, the relation (2.34) implies that R,(V)g € dom(H(V)
)

and (H(V)+p)R,(V)g = g for any g € $. Similarly, one proves that R, (V)(H ( +
p)g = g for any g € dom(H (V')). Both relations imply that (H(V)+u) ! = R,(V).
U

~—  —

2.3 Dilations

Since H(V') is a maximal dissipative operator there is a larger Hilbert space K D )
and a self-adjoint operator K (V') on R such that

PE(V) - 279 = (H(V) —2)"", Sm(z) >0, (2.35)

see [1]. The operator K (V) is called a self-adjoint dilation of the maximal dissipative
operator H (V). Obviously, from the condition (2.35) one gets

Pg(K(V) —2)7H9 = (HV)* —2)"', Sm(z) <0. (2.36)
If the condition
V (K(V)-2)'n=18 (2.37)
zeC\R

is satisfied, then K (V) is called a minimal self-adjoint dilation of H(V'). Minimal
self-adjoint dilations of maximal dissipative operators are determined up to a certain
isomorphism, in particular, all minimal self-adjoint dilations are unitarily equivalent.

In the present case the minimal self-adjoint dilation of the maximal dissipative
operator H(V') can be constructed in an explicit manner, cf. [8]. The dilation space
R is given by

RA=D_oHdD,4, (2.38)

where D := L*(R:,C?). Introducing the domain Q :=R_ x [a,b] X R,, we may
write & = L?(12, dz). In accordance with (2.38) one writes

f=f®f®f ch (2.39)
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The resolvent of K is given by

(K(V) =2 (f~efef) (2.40)
= 2/ dy ei(z_y)zf_(y) ® (HWV) -2 f+iT.(V)(Z) / dy e”* f_(y)

T 0
) i/o dy eV, (y) + i T (V) (2) f + iOu(2) / dy == f_ (1)

— 00

for Sm(z) > 0 and

(KWV)-2)'(f-afef) (2.41)
_ —i/ dy ei(a:fy)zfi (y) o ieizq:T*(V) (Z)f . Z@H(V)(z)/o dy ei(a:fy)szr(y)

& (H(V) -2\ f —iT(V)(2) / Tdy ey & —i / Ty g, (y)

for Sm(z) < 0. The self-adjoint operator K is absolutely continuous and its spec-
trum coincides with the real axis, i.e. o(K) = R. The multiplicity of its spectrum
is two. For more details the reader is referred to [8].

2.4 Eigenfunction expansions

The generalized eigenfunctions ¥~ (V)(-, A, 7), A € R, 7 = a, b, of K(V) are given by

(V)@ A7) = 9-(V)(, A7) @y (V)(@, A\ 1) @ (V)(z, A, 7) (2.42)
— \/%_ﬂ_eiz)\eT D \/%_W((T*(V)()\))*GT)(.’L‘) @ \/12—7T€izA®H(V)(>\)*er

where

e,,;:<(1)> and ea::<(1)>. (2.43)

The eigenfunctions are orthogonal, i.e.
s 2 I o Y ’
(w WG A= (VN T ))m(m = 6(A = N)brr, (2.44)

MA € R 7,7 = a,b in the sense of distributions, cf. [8], and their linear span
(modulo the scalar, continuous, compactly supported functions) is dense in 8. We
note that the generalized eigenfunctions 4~ (V)(-, A, 7) are usually called the incom-
ing eigenfunctions. Using the incoming eigenfunctions one defines a transformation

d_(V): R — R=L*R,C?)

@ B =i = ( 45) ), (2.45)
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where

i\ = / dz (§(a), 6" (V)& A7), T=ab, (2.46)

Q

®_(V) is unitary and called the incoming Fourier transformation. The inverse in-
coming Fourier transformation ®_(V)~! is given by

(@-(V)"'g)(z) Z/RdA Yo (V)@ANGN), §eLPRC). (2.47)

T=a,b

We note that
d_(VK(V)e_ (V)™ =M, (2.48)

where M is the multiplication operator by the independent variable A on fi, ie.

dom(M) = {ge€ L2(R,C?):\g()) € L*(R,C?)},

. A . (2.49)
(Mg)(A) = Ag(A), ¢ € dom(M).
The representation (2.49) induced by ® (V') is called the incoming spectral repre-
sentation of K.

Finally, we note that each bounded self-adjoint operator G on K, which commutes
with K, corresponds to a measurable family {G(\)}scr of two-by-two matrices which
is uniformly bounded, i.e. G(-) € L*°(R, B(C?)), such that the multiplication oper-
ator G on L2(R, C?) defined by

dom(G) := {ge€ L*(R,C?):GN)g(\) € L*(R,C*)}, (2.50)
(G = G\, g€ dom(G) '
is unitarily equivalent to G, i.e.
d_(V)GP_(V) ! =0a. (2.51)

The representation (2.50) is called in incoming spectral representation of G.

2.5 Carrier densities

In the following we call an operator o : 8 — K a density matrix if p is a bounded,
non-negative, self-adjoint operator. The operator p is called a steady state, if o
commutes with K (V'), see [9]. Thus any steady state p is unitarily equivalent to a
multiplication operator ¢ on the Hilbert space L?(R,C?) induced by a measurable
function o(+) € L*®(R, B(C?)). In the following we assume that the function o(-) is
fixed, i.e. the function o(-) does not depend on the potential V. This leads to a
steady state of the form

oV) = &_ (V)0 (V), (2.52)

which depends on V.
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In order to define the carrier density uz(V)(:) one has (in accordance with [9]) to
introduce the carrier density observable

D(V)(z, )) := (2.53)
( Y= (V)(z, A 0)[? P~ (V)(z, A a)p— (V) (z, A, b) ) _
P (V)(z, A, b)yp~ (V)(x,A,a) v (V )(x A, a)f?

With respect to the carrier density observable D(V)(z, A) one defines the carrier
density uy(V)(z, ) at = € [a,b] and at energy A € R by

us(V)(z, A) == tr(o(A)D(V)(z, X)) > 0. (2.54)

The carrier density “g(“v)(‘) is given by
uy(V)(z) = / A uy(V)(2, A). (2.55)
R

If the function p(-) satisfies the condition

= sup\/)\2 Lllo(M) |2y < o0, (2.56)

then the definition (2.55) makes sense for a.e. z € [a,b]. Moreover, in this case
us(V)(+) is a positive and integrable function. Furthermore, P(K(V)—i) ' € £,(R)
and the estimate

lusg(V)llzr = tr(e(V)Pg) < Coll(K(V) — )" Pilleys) (2.57)
is valid, cf. [9]. Let us introduce the operator
(MR)f)(z) :=0@ h(z)f(z) ®0, fedom(M(h)) =5, (2.58)

for functions h € L. If the condition (2.56) is satisfied, then

/ dz uy(V)(2)h(z) = tr(e(V)M(h)) (2.59)

for any h € L*, cf. [9].

2.6 Carrier density operator

By the previous considerations it seems to be useful to introduce the so-called carrier
density operator Nj(+) : L — L' which is defined by

N(V) :=wuy(V), V €dom(N;) = L™, (2.60)

where uy(V) is the carrier density defined by (2.55). The operator is, of course,
nonlinear.
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Proposition 2.4 Suppose V € L. If the density matrix o satisfies the condition
(2.56), then

NGV < Cy - [8 +4V2 (b—a)\/[|m[ - /8¢ + 5 + 4[|V || 1= (2.61)

+8g1 (a2 + a2) || Hy | iy (Be 5+ 4[|V [ 00) 4]

where c is defined by (2.21).

Proof. In view of (2.57) it suffices to estimate ||(K (V) — i) ™" P$||¢,(x). Using (2.40),
we obtain the equation

-1 —

(K(V)—i) "P3f=(0,(H(V) =) f,e " iT(V)(i)[)

where f: f-® f® f.. Thus, one can estimate

I(E(V) =) " Plllewn < HHV) =) Mews) + llie > TV)@)lerops)-  (2:62)

We estimate the first addend on the right hand side. Let p be a sufficiently large
positive number (to be specified later). We write

(HV) =) ' = (HV)+p) (14 () (HV) =) ). (2.63)

Since H (V') is a maximal dissipative operator one has ||(H(V)—%)~"||gs) < 1. Thus,
(2.63) implies

IHV) =) ey < @+ WIHEHT) + 1) lews): (2.64)
Applying the factorization formula (2.28) one gets
IHV) + 1) Hlews) < N(Ho+ 1) 23611+ Bu(V)) " lses)

The first factor of the right hand side is calculated to Y ;°, m, where the numbers

(; are, of course, the eigenvalues of the operator Hy — 1. Let H, be the self-adjoint
operator defined by (2.13) and (2.14) where m is specified to m(z) = 1. Obv1ously,
one has W(HO 1) < Hy — 1. The e1genvalues of HO — 1 are given by 5

b a)2’
[=0,1,.... Thus the minimax principle implies Hmll 2(b ) s < (,l=0,1,.... Hence
we obtain
- 1
100+ Py <32

57:2(1)2 24+1+ ,U.

=0 m ‘

For any [ > 1 we have

1 < ! ds
2 1 _4n® 2 '
l + 1 + 1% -1 Iml| (bfa)2 s$° + 1 + 2

Hmll b a)
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Thus, we get

1 2. ds
Hy+ 1) 2|y 0) < 70— + / !
||( 0 ) ||£2(5’J) 1+ m lz; -1 H;H ﬁSQ + 1+ L

which yields

1 b—a 1
Hy+p) Y22 o < —— ++/||m : :

This altogether gives

W) =)l < [T+ Vmll 22 2]+ B(V) e

and, consequently
IV =) ey < [24+ V2Vl (5= a) - /T4 2] - 11+ BV ) o
Setting p = 2(4c + 2 4 2||V||1~) and taking into account (2.27) one gets
11+ B (V) llses) < 4,

what finally implies

I(HV) =4) Heysy < 8+4vV2(b—a)\/[|m| - v/8c+5+4|V[z~.  (2.65)

Now we are going to estimate the second term of the right hand side of (2.62). Since
le * ® Ic2|| gy (c2p,) = V2, we get using equation (2.6)

lie™* TOV) (D)l ipy < V202 + ) PI(HWV) i) Hswown.  (266)

It remains to estimate |[(H(V) — i) !|s@;clap)- Taking into account (2.63) one
obtains (analogous to (2.64))

1(H(V) = 1) Hs@can) < @+ m)|(HWV) + 1) Hswca)- (2.67)

As in the previous part of the proof we put u = 2(4c+ 2+ 2||V||~) and afterwards
substitute (H(V) + u)~! via the factorization formula (2.28). This leads to the
following estimate:
I(H (V) = 8) st < (b +2): (2.68)
NI(Ho + )2 lsicramp I (1 + Bu(V)) ™ s [|(Ho + 1) ™2l (sy-

By [I(1+ Bu(V))™ls(s) <4 and ||(Ho + 1) ~""?||5(5) < 75 one gets

Jitn
N 2+p _
I(H (V) =) lssictas) < 4 Tl I(Ho + 1) ™% || 8($:Clas) - (2.69)
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We estimate the last factor in this last inequality by the Gagliardo-Nirenberg in-
equality. For any ¢ € § one has

[(Ho + 1) 2®|cag) < 61 - ||(Ho + 1) 20|15 - |(Ho + )20/

1Hy 5,
ClH 1/2| 1/2 iy (Ho + 1) 1/2”1/2 Alle < g1 L L1yl
Clearly, this yields
I —1/2| 1/2 2
Hy + 1)~ 1/? ap)) < S
I(Ho + 1)~ llss.clapy < 61 (1+u)1/4

Together with (2.69) this gives

1/2,,1/2
ICH (V) = i) Hlass.cra < 80l Ho 2 gy (1 + )™,

Inserting the chosen p = 2(4c + 2 + 2||V||z~), we obtain for the second addend in
the right hand side of (2.62):

lie™* T(V)(8)l<y(5.0.)
< 8v2g1(a2 + of) || Hy V15 oy (Be + 5 + 4[|V ]| ) 4.

Fitting together (2.57), (2.62), (2.65) and this last estimate we prove (2.61). O

Remark 2.5 One can even prove that the carrier density operator takes its values
not only in L' but in (real) L?2. Additionally, one can prove estimates similar to
(2.61) but more involved. We do not need these things in this paper, however,
this fact becomes essential in the moment when one wants to include recombination
effects of electrons and holes in the model.

3 Convergence

3.1 Schrodinger-type operators

First we want to prove the continuity properties of the Schrédinger operator H(V),
boundary operator T'(V') and characteristic function © gy):

Proposition 3.1 AssumeV € L*°, V, € L*°, ne N. Let V, IV asn — 0.

(i) If C C o(H(V)) is a compact subset, then for sufficiently large n € N, one has

C C o(H(Vy),
Jim sup [(H(Va) = 2) = (H(V) = 2) ¢, =0 (3.1)
and
lim sup || T'(Vya)(2) — T(V)(2)l ¢, (s0,c2) = O. (3.2)

n— 00 zeC



16 M. BArO, H.-CH. KAISER, H. NEIDHARDT, J. REHBERG

(11) If C C o(H(V)*) is a compact subset, then for sufficiently large n € N one has
C C o(H(Va)"),

* -1 * -1 _
Jim sup [[(H(Va)* = 2)* = (H(V)" = 2) |, = O (33)
and
Jim sup |IT,(Va)(2) = Te(V)(2)lleroc2) = 0. (34)

(i4) If C C C_ is a compact set, then

lim sup (|©p(v,)(2) — On)(2)l|e, () = 0. (3.5)

n— 00 zeC
Similarly, if C C C, is a compact set, then

lim sup Oy, (2) — Oy (2) sy = 0. (3.6)

n— 00 zeC

Proof. (i) By Theorem IV 1.16 in [10] we get that H(V},) — z is boundedly invertible
if
_ 1
IV = Valleee < ([(H(V) = 2) 7 5(5)) (3.7)

(what is true for n € N large enough). Furthermore, we get in this case

) ICH (V) = 2) s
I(H(Va) = 2) “llsee) < 17— 1V = V= [(H(V) — 2) |55

(3.8)

We write for positive, sufficiently large
(H(Va) —2) ' = (H(V) —2) ' = (HV) = 2) (V= Va)(H(Va) —2) "
=(HV)+ w7 L+ (p+2)(HV) = 2) |V = Va)(H(Va) — 2)7
=(Ho + ) V2 (1+ Bu(V)) " (Ho + )~/
L+ (u+2)(HV) = 2)7 UV = Vo) (H(Va) —2) 7"
This gives
IH(V2) = 2)7" = (HV) = 2)Mlews) < 1Hy 1)l 1+ Bu(V) s (39)
(Ut 2 IHV) = 2) Hlse) IV = Vallu= I(H(Va) = 2)llses)
Hence we get by (3.8) and (3.9)

lim [|(H(Va) = 2)7" = (H(V) = 2) 7 lzas) = 0,

n—oo
for every z € o(H(V)). Since C is compact, this implies (3.1).
As in the proof of Proposition 2.4 (cf. (2.66)) one sees that

IT(Va)(2)=T(V)(2)ll s (2 < 2(ea+ad)' || (H (Va)—2) ' =(H(V)~2) *|ssicia)-



DISSIPATIVE SCHRODINGER-POISSON SYSTEMS 17

The latter factor is estimated, completely analogous to the preceding considerations,
by
~1/2 ~1/2 _
1Hy 2 lstsrctasy - [ Ho 2 lsslI(1+ Bu(V)) lss)
(Ll 2l - (I(H (V) = 2) Hlse) IV = Valle=I(H(Va) = 2) )
This proves (3.4).

(ii) We note that (3.3) is a consequence of (3.1). The assertion (3.4) can be proven
similarly to (3.2).

(iii) Clearly, it suffices to prove the convergence properties only with respect to
the strong operator topology of B(C?). Secondly, for every z € C_ N o(H(V)) the
mapping $ > f — T(V)(2)f € C? is a surjection. If U,V € L* then one gets from
(2.8)
Orw)(2) — Onw)(2)]T(V)(2)f
= (Tu(U)(2) = T.(V)(2))f + Orw)(2) [T(V)(2)f — T(U)(2)f].

Taking into account the contractivity of © ) (2) in case of z € C_ (see (2.9)), this
leads to the estimate

1[©#w)(2) = Oy (2)]T(V)(2)fllcz
< (T (U)(2) = T.(V)(2) flle +TU)(2)f = T(V)(2) Sl

Thus, V,, = V together with (3.2) and (3.4) implies
Jim [|©x(v,)(2) = On()(2)ls(cz) = 0 (3.10)

for each single z € C_No(H(V)). Since O (2) and Og(v;,)(z) admit holomorphic
extensions to whole C_ equation (3.10) extents to all z € C_. Uniformity over a
compact subset of 2's is derived by the continuity of the map C 3 z — Og(v)(2)
and a simple compactness argument. Since O (1)(2)* = Oy (2) for z € o(H(V))
we obtain (3.6) from (3.5). O

3.2 Dilations

Proposition 3.2 AssumeV € L*°,V, € L, n=1,2,.... IfV, 5N Voasn— 00,
then
im sup |(K(V) = 2) * = (K(V) = 2) *aygn = 0 (3.11)
n—0 z¢

for any compact set C C C\ R.

Proof. To prove (3.11) it is enough to verify it for a single point z € C,. By (2.40)
we get that

—

(K(Va) = 2) ' f = (K(V) = 2)7'f = (3.12)
0@ ((H(Va)—2) "= (HV)=2) ") f+i(T.(Va) (@) = (T.(V)(2)) ¢

1 )
®ie™ (T(Va)(z) ~ T(V)(2)) f +ie™ (Onw)(2)* ~ Oy (7)) €
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where

0
€= / dy e”* f_(y) € C?ee (3.13)

o0

Since

1
[Elle < m”ﬁ“m(ﬂxﬂ@) (3.14)

we obtain

I(E(Va) = 2) 7 = (K(V) = 2) 7 Hlews) (3.15)
< NHVR) —2) F = (HV) = 2) Hlews)

ﬂ/zg;mﬁllﬂ(‘/n)(?)* ~ (W)@ e
1
/25m(z)
1

* 28m(z) 10700 &) =~ O w) () leucer)

IT(Va)(2) = T(V)(2)l|e: (1)

Applying (3.1), (3.2), (3.4) and (3.6) we obtain (3.11). O

3.3 Eigenfunction expansions

Lemma 3.3 AssumeV € L>°, V, € L, n=1,2,.... IfV, NV oasn — 00, then
im sup [9(V2) (A7) = 92 (V) A Dl ) = 0 (3.16)
n oo e
and
lim sup ||¢7(Vn)(, )‘a T) - ¢7(V)(, )‘a T)“S’J = 0) (317)
n—o0 aec

T =a,b, for any compact set C C R.

Proof. By (2.42) one gets that v~ (V) (z, A\, 7) = ¢¥~-(V,.)(z,\,7) forz € R_, A € R,

n=1,2,...and 7 = a,b. So the assertion (3.16) is obvious for the sign “-”. Further,
we find
Vi (Va)(z, A7) =L (V)(2, A, 7) (3.18)
1 .
= ——e"" (O A)F— 0 AN e,
N (Orm)(N)* = Ory(A))
for z € [a,b], A€ R, n=1,2,... and 7 = a,b which yields
le(vn)(a )‘a T) - ’lﬁjr (V)(a )‘a T) HL°°(R+,(C2) (319)

<

1 * *
< \/—2—7T||@H(Vn)(>\) — Ouw)(A)lae)
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for A e R, n=1,2,... and 7 = a,b. Applying (3.6) we prove (3.16). Furthermore,
by (2.42) we get

v (Vo)(z, A, 1) — = (V)(z, A\, 7) (3.20)

for z € [a,b], A€ R, n=1,2,... and 7 = a,b. Hence

[P~ (Va) (5 A7) =9~ (V)5 A 7)lls (3.21)
< \/—IIT(Vn)( )" = T.(V)A) a9

for A\ e R, n=1,2,... and 7 = a,b. Applying (3.4) we obtain (3.17). d
Proposition 3.4 Let V € L*, V, € L*°, n=1,2,.... IfV, NV oasn — 00,
then
s— lim ®_(V,)=®_(V). (3.22)
n—ro00

Proof. Because the operators ®_(V,,) (n € N) and ®_(V') are unitary, it is enough
to verify w — lim, ;oo ® (V,,) = ®_ (V). Let § € & and h € L*(R, C?) with compact
supports. By (2.46) we find

(0 ), 029
:Z/d)\/dx@ x)\T>C2hT
+ Z/dA / dz (g(z), 4 (V)(@, A7) i (V)
+ Z/d)\/d:z:<9+ T (V) (@A, 7)) BT(N)
Using this formula one gets
(@2 -2 (v)g ;;) . (3.24)
- 3 [ar [ e (0@, 6 @A 7) v A0

+ Z /dA/R dz (g:(2), (W7 (Va) (@, X, 7) = 95 (V) (@, 1, 7)) o A7 (N):

T=a,b
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From (3.24) we get the estimate

~

\ ((@-(vi) = o_(V))gi h (3.25)

)LZ(R,CZ)
< lglls Y /RdA = (V) A7) = = (V) (-, A, 7))l A7 (V)|

T=a,b

gz Y /RdA 1% (Va) (o A7) = 9 (V) A 7)) ey ey [AT (V-

T=a,b

Applying Lemma 3.3 we prove

~

lim ((cp,(vn) —3_(V))d,h

n—oo

)Lz(ﬂw) ~0 (3.26)

for g € K and he L*(R, C?) with compact supports. Since both sets are dense in
A and L?(R, C?), respectively, and ® (V},), n = 1,2, ..., are isometric operators the
convergence (3.26) implies the weak convergence. O

3.4 Carrier densities

Proposition 3.5 Let V € L>*,V, € L*, n=1,2,.... If o(-) satisfies the condition
(2.56) and V, L%V asn — oo, then us(Va) -, us(V) as n — oo, i.e.

lim [ dz|us(Va)(z) —us(V)(z)| = 0. (3.27)

n—oo
- a

In particular, the carrier density operator Ny() : L™ — L' is continuous.
Proof. By (2.59) we have the representation
b
/ dz (up(Va)(2) — us(V)(2))h(z) = tr ((o(Va) — o(V)) M (h)) (3.28)
for each h € L>* and n =1, 2,.... Since
tr (o(V)M(h)) = tr (o(V)(K (V) + i) (K(V) +14) 'M(h)) . (3.29)

one gets

(3.30)

le(Va) (K (Va) +0)ll 5y < Ca (3.31)
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we obtain
ltr (o(Va) (K (Vo) +4) {(K(Va) +4) ' = (K(V) + i)'} M(R))| (3.32)
< C|(B (Vi) + i)™ = (K(V) +8) ™ g g Il
forn=1,2,.... Setting
k(A) :=oN)(A+1), AeER, (3.33)

and denoting by k the multiplication operator induced by k(-) on L*(R, C?) we find
that
o(Va) (K (V) +3) = @ (Vo) "k (V2), (3.34)

n=1,2,..., and

~

o(VYK (V) +i)=&_(V) Tkd_(V). (3.35)
Hence the representation
oVa)(K (Vi) +3) — o(V)(K(V) + 1) A (3.36)
= (2-(Va)™' — @ (V) k2 (Vo) + 2_(V)k(—(V2) — (V)
is valid. From (3.36) we deduce the estimate
[tr ((e(Va) (K (Vi) +14) — o(V )(K(V) iD)(E(V) +1i) " M(R))| (3.37)
)

< Coll(@-(Va) = - (V)P (K(V) = i) |2y Il
+Cl[(2-(Va) = - (V) (K (V) + 1) Pylleysp Il 2.

Taking into account (3.30), (3.32) and (3.37) we finally get the estimate
ltr ((e(V) — o(V)) M (h))| (3.38)
)= (K(V) + i)_lHﬂl(ﬁ)

~(V)PSEV) = i) leys)
~(VNEV) +49) " Palless) } IRl

A\
£
E
=
+

Since h is arbitrary we obtain from (3.28) the estimate

/ dz [(us(Va)(@) — us(V)(2))] (3.39)
< G [[(K(VR) +4) 7" = (K(V) +14) _lel(ﬁ)

HI(@- (Vo) — (V)P (K(V) — ) | euo)
+ [[(@-(Va) = @ (V))(K (V) +8) 7 Pglleys }

The first addend of the r.h.s goes to zero by (3.11) as n — oo. Since P§(K (V) —i)™
is a trace class operator one gets by (3.22) that the second addend of the r.h.s tends
to zero too. Similarly one proves that the third attend tends to zero. This proves
(3.27). O
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4 Dissipative Schrodinger-Poisson systems

In this section we intend to regard the dissipative Schrédinger Poisson system as a
whole. Let us introduce some further notations:

Definition 4.1 We denote the real part of W2 by Wg? and that of Cla,b] by
Crla,b]. Let I' C 0Q be the (possibly empty) set of Dirichlet points. We define

Wi =W n{y : y(T) C {0}}.

By W{l’z we denote the dual space of WI%’Z and by < -, > the dual pairing between
W?* and Wi "%, The embedding constants from Wy into Cg[a, b] and into L are
denoted by €. and e, respectively. The embedding constant from L' into W 1.2
will be denoted by &;.

Following [9] the important ingredients of dissipative Schrédinger-Poisson systems
are two dissipative Schrédinger-type operators H*(V..), cf. (1.3), for electrons (sign
“”) and holes (sign “+”) and Poisson’s equation (1.1). The dissipative Schrédinger-
type operators are determined by the ‘effective’ masses m.., the boundary coefficients

KT, sz and the potentials V* which are of the form

Vi= Vbi + ©, (41)

where V;* are external potentials representing the band-edge offsets and ¢ is a po-
tential which is determined by Poisson’s equation. To formulate Poisson’s equation
one needs the dielectric permittivity €, the doping profile C', the function k£ and the
function ¢r, which represents the boundary values given on I' and the inhomoge-
neous boundary conditions of third kind in 9Q \ T, cf. (1.2).

Assumptions 4.2 Throughout section 4 we always assume that the following as-
sumptions are fulfilled:

(A7) The ’effective’ masses m,. are positive and obey my, —— € L*®. As above, we
+
use the convention ||my|| := ||m4 |-

A7) The boundary coefficients x, Kibi are from the upper half plane C, .
AF) The external potentials V" belong to L™.

+

4

(
(
(A7) The matrix valued-functions g1 (-) € L (R, C?) satisfy (2.56).
(As) The doping profile C' belongs to Wy >

(

Ag) The dielectric permittivity € is positive and obeys e, % € L*. We set € :=
max{1, ||%||Lm}

(A7) The set T is not empty, or at least one of the numbers k(z), z € {a,b} \ T, is
strictly positive.



DISSIPATIVE SCHRODINGER-POISSON SYSTEMS 23

(Ag) The function op is from the set Wy™.

Each Schrédinger-type operator H*(V..) corresponds a minimal self-adjoint dilation
K*(Vy). In accordance with section 2.5 the functions p.(-) define steady states
0+(V.), i.e. no-negative self-adjoint operators which commute with K*(V.). By
section 2.6 one can introduce carrier densities u;i (V) for electrons and holes. Notice
that the electron carrier density u, (V_) is determined by the electron quantities
m_, k,,k, and V, while the hole carrier density u;;(VJr) by the hole quantities
my, 5,k and V;". The corresponding carrier density operators are denoted by

NG ().

4.1 Rigorous definition

At first we will give a rigorous definition of Poisson’s equation and afterwards define
what we will call a solution of the dissipative Schréodinger Poisson system.

Definition 4.3 We define the Poisson operator P : Wa” — W '? as usual by

b
dv dg
< Pvu,¢ >1= /a dz € Tods + Z k(z)v(z)s(z), veWg? ¢e Wyl
z€{a,b}\T
(4.2)
The restriction of P to the subspace Wll’z will be denoted by Py.

We have

| <Po,e>1 | < [ lelli=+ Y k(@)el | [vllyrells]yre.
z€{a,b}\T

Hence P is continuous. Furthermore we get

b
||g0||$/VF12 < (14 ) / o' (z)|? dz + Z k(z)|o(z)?], forallpec WI},z’
a ze{a,b}\I'
(4.3)
with .
[’ y*de
Ve = sup — 5 < . (4.4)
0;'éq»l’EVVII‘,2 a (%) dz + Zze{a,b}\l" k($)|¢($)|2
Because the case of purely homogeneous Neumann conditions is excluded by (A7),
the constant 7 is indeed finite. Thus we get by (4.3)

lelle < &1+ %)l < Pog, ¢ >1 |-

Therefore we get by the Lax-Milgram lemma that the inverse of P, exists and its
norm does not exeed €(1 + ;).
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We denote by ¢r the form

b
v / dz e(z)op(z)v'(z), v e W2,

Definition 4.4 Assume u®™ € L'. We say ¢ € Wﬂég satisfies Poisson’s equation
(1.1) iff ¢ — op € Wp? satisfies

Po(¢ —¢r) =D +qu” —qu”, (4.5)

where D := qC — ¢r.

Of course, the right hand side of (4.5) is to be understood in W' by embedding
ut, u € LY Wit

Definition 4.5 We say a triple (p,ut,u") € Wg® x L' x L' satisfies the dis-
sipative Schrédinger Poisson system if ¢ satisfies Poisson’s equation as well as

ut =ug (V" +¢) and u™ =u; (Vj —¢).

4.2 Existence of solutions and a priori estimates

The aim of this section is to prove that the dissipative Schrédinger Poisson system
always admits a solution and to investigate these solutions. At first in accordance
with [5] we define a mapping whose fixed points exactly determine the solutions of
the dissipative Schrodinger Poisson system.

By J : L' x L' — Wy we denote the map which assigns to (u*,u”) € L' x L'
the solution of Poisson’s equation. Obviously, the map J is continuous. Further,
we define ¥ : L® — Wy by

UV — WL+ V)N, (Ve = V) — TN (% + V)N, (Ve = V).
Since the map J : L*x L' — Wﬂé’Q is continuous and by Proposition 3.5 the maps
N=(-) : L® — L' are also continuous, the map ¥ : L*® — Wﬂé’z is continuous,

too. Let Fy : Wﬂé’z — L™ denote the embedding operator of W&’Z into L*°. With
¥ we associate the map ¥, : L™ — L™,

U, = E,U,

which is also continuous. Moreover, since F., is compact the map W, is also com-
pact.

Lemma 4.6 An element ¢ € L™ is a fized point of V. if and only if the triple
(Qoa U’+a U’_) = (QD, ug_+(‘/()+ + QO), Ug_ (‘/0_ - QD))

satisfies the dissipative Schrodinger Poisson system.
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The proof is obvious. To prove the central results of this chapter, we also need the
following technical

Lemma 4.7 Let 01, 05,03 be three strictly positive numbers and let zy be the small-
est positive root of the polynomial p : x — z* — 012? — 09z — 03. Then for all x > x
one has p(z) > 0. In particular, p does not admit other positive roots.

Proof. It is clear that at least one positive root must exist. Then one has for
x = txy with ¢ > 1:

p(z) = t*zy — oy t’zl — ogtzy — 03
= t4(0'1117§ + 092y + 0'3) - Ultzfﬂg - 0'2t£170 — 03
= o t*(t* — D + oot (t* — 1)z + o3(t* — 1) > 0.
This shows that a positive root larger than z, does not exists. O

Let ¢y be the constants defined by (2.21). We specify o1, 02, 03 to

o1 = 82— a)erewi(l+7) - (Cop VIl + Co VI ), (46)

oy = 16 qgie1600€(1+ i) - (Cé+p+ + Cé—p—) g (4.7)
03 = € ||§0F||Wn§’2 + €oo€(1 + V&) - ||D||W;1’2 + (4.8)
+ge1600€(1 + &) - (Cory + Cp 1)
where
_1/2,1/2
ps = ((0F)” + (&))" (HF) ™o wrieyy (4.9)

re = 84 4V2 (b a)y/flmal] - \/8es + 5+ 4V [z + (4.10)

+8v201((07)? + (ai)2) 2 (I(HEF) /2l sy (Bes + 5 + 4[| V5F [ 1) 2.
Theorem 4.8 The following statements are true:

(i) The mapping ¥, : L — L*™ always admits a fized point.

(ii) If zy is the (unique) positive root of the polynomial p : x — x* — 0y2% — 09z —
o3, then for any fized point V' of V., the inequality

|V]|ze < x5 (4.11)
holds.
Proof. One has

17 (" w7l < llerllwre + 11P5 " (D + qut = qu7) [y
< lerllype + &L+ 7)) - 1D+ qu” — quT [l

< erllwze +&0+3) - [1Dlhyre + gen (o + ulzs) ],
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which implies

1B (007 1 (1.12)
< cullorlupe + o1+ 7) - [IDlwere +aer (o + - 122)].

Since u* = Né (V) one gets from (2.61) the estimate

[l < Coy - {8+ 4v2 (b~ a)/[lmol - v/8cx + 5+ 4[|Vl
b 83 () + (0 2 CHE) 2% oy (B + 5 + 4Vl )],
By V. = V¥ £V we obtain
o < (113)
Caa - [8+4v2 (b — a)y/mal] - y/8es +5 + 4Vt + 4]V 1

+8v/291 ()2 + (o)) 2 (H) 211,y (Bes + 5 + 4Vl + 4]V][=) -

Using the estimates

Ve 45+ 4V lom + 4V ][zw < yf8es + 5+ 4V 1+ 2¢/[V]i=

and

(8es + 5+ 4l|Vi 1o + 4V [[1)* < (8cx +5 + 4] ViF[lu) V* + V2| V||

we get

lut]|zr < oEIVIEE + o5 |VIIEe + o3, (4.14)
where

of = 8v2C4 - (b—a)y/[Im4]],

UQi = 16\/591 Csy D+,

03i = Oy - T4,

where py and r. are defined by (4.9) and (4.10), respectively. Inserting (4.14) into
(4.12) we obtain

BT (ut,u )|z < o1||[VIE2 + ool [V |2 + 03

where o1,0,,03 are the constants defined under (4.6) - (4.8). Hence we get the
estimate
[Woo(V)llze < a1[[VIIZ2 + 0o [VII2 + 0. (4.15)

If x, is the (unique) positive root of the polynomial z — z* — 012? — 097 — 03 and
|V||z~ < xj, then by (4.15) one obtains

[ (V) [z < o1 (IV][12)" + 02|V |72 + 05 < 0122 + 0120 + 05 = .
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This means, that ¥, maps the ball {V : ||V||z~ < z§} continuously into itself. Since
U, is compact the image of this ball under ¥, is precompact in L*°. Thus, by
Schauder’s fixed point theorem V¥, must have a fixed point. This proves the first
assertion.

Assume that the second assertion is false and a fixed point V satisfying ||V||p~ >
z3 exists. Then (4.15) would give

1/4\4 1/4\2 1/4
(IVIZ=)" = IVilew = [¥oo(V) = < o1 (IVIIZ=)" + oallVZ2 + 0.
Because ||V||2/£ > z, this contradicts Lemma 4.7. O
Now we can state the main result of the paper:

Theorem 4.9 Under the assumption (A )-(Ag) the following statements are true:

(i) the dissipative Schriodinger Poisson system always admits a solution and

(i1) any solution (¢, ut,u™) of the dissipative Schrédinger Poisson system satisfies
the a priori estimates

lollze < a5 and |luF[|ze < Cgurs, (4.16)

where z, is the unique positive Toot of the polynomial x — z* — o122 — 09z — 03
with coefficients given by (4.6)-(4.10) and

o = [844v2 (b= a)y/Tmal] - \/8cx + 5+ 4][Vi] o + 2
1/2 _
+ 8V2 gi((af) + (o)) )1(H5) V2| oy (8es + 5+ 4[| ViF || + z5) 4.

Proof. The first assertion follows from Lemma 4.6 and Theorem 4.8. The first
inequality of (4.16) is implied by (4.11) while the second estimates are obtained
from (4.13) and the first inequality. O

5 Remarks

Let us comment the results.

(i) Theorem 4.9 shows that the dissipative Schrédinger-Poisson system always
admits a solution, if the assumptions (A})-(Asg) are satisfied.

(ii) Solutions (¢, u™,u™) of dissipative Schrédinger-Poisson systems admit bounds
which only depend on the inputs m.., kI, K;(:)t, Voi, C, ¢, pr, k, and the steady
state gm. In particular, the occuring number xzy may be directly calculated
from the data by Cardano’s formula.



28

(iii)

(iv)

(vi)

M. BArO, H.-CH. KAISER, H. NEIDHARDT, J. REHBERG

In contrast to self-adjoint Schrédinger-Poisson systems dissipative ones allow
in general non-trivial currents j@i which are independent from z € [a, b] pro-
vided the steady states g1 (-) obey

/RdA tr(01 (N)) < oo, (5.1)

cf. [9].

The last fact gives the possibility to couple dissipative Schrédinger-Poisson
systems to drift diffusion models which acts outside the interval [a,b] via a
current continuity condition. In a forthcoming paper we show that this is
really possible and, moreover, the coupled system admits a solution.

The problem remains open under which conditions the solution, guaranteed
by Theorem 4.9, is unique.

The present paper solves the dissipative Schrodinger-Poisson system in one
dimension. The 2D- and 3D-problems remain open.
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