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Abstract

We discuss some aspects of the excitability in a semiconductor laser with

short external cavity. It is demonstrated both theoretically and experimen-

tally how a two-section semiconductor laser consisting of a DFB section and

an integrated passive phase tuning section performs an excitable response to

optical injection. A mode analysis of the model equations allows to understand

and explain the origin of the excitability.

1 Introduction

The notion of excitability originally comes from biology [1, 2, 3] and chemistry [4].

By de�nition used in neurobiology [5, 6], an excitable system should exhibit the

following features: i) existence of a threshold perturbation, above which the large

response appears, ii) weak dependence of the response on the magnitude of the

perturbation above and below threshold.

Recently excitability has been discussed also in optical systems such as cavities

[7], lasers with a saturable absorber [8], semiconductor lasers subjected to delayed

optical feedback [9, 10], optical injection [11] or lasers with a short external cavity

[12, 13]. We focus on a more detailed theoretical analysis of the excitability reported

in [13].

Theoretical works discussing excitability in the laser models have been followed only

by few experimental works, where the observation of excitability of power dropouts

in the low-frequency �uctuation regime of a laser diode with external feedback is

still under debate [14, 15, 16, 17, 18]. Therefore, in the present study we pay similar

attention to the theoretical discussion as well as to the experimental veri�cation of

the predicted e�ects.

We consider a two-section semiconductor laser consisting of a DFB section and an

integrated passive phase tuning section having similar length with a cleaved facet as

end mirror. Such a laser is represented schematically in Fig. 1. The section with 1.3

micron gap wavelength does not couple to the laser radiation but carrier injection

enables to change its refractive index and so to tune the optical phase fed back into

the active region.

In contrast to the laser with distant external feedback, the considered laser design al-

lows to achieve an excellent mode control. A bifurcation analysis shows the ultimate

hop between two compound cavity modes within every phase cycle. This transition

of the modes is also associated with a two-mode homoclinic bifurcation close to
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Figure 1: Scheme of a DFB laser with integrated short external cavity.

which the system becomes excitable. Such excitability is clearly demonstrated in

the experimental response to optical injection comparing well with calculations.

The paper is organised as follows. We present the model equations in Section 2.

In Section 3 we de�ne the notion of carrier dependent optical modes and demon-

strate theoretically and experimentally switching between di�erent mode solutions

when tuning the �eld feedback phase parameter. In Section 4 we determine the

feedback phase conditions where excitability can be observed. Section 5 discusses

mode decomposition of optical �elds. Two modes governing the laser response to

the super-threshold perturbation are indicated. The phase portrait of the excitable

system is given in Section 6. The in�uence of nearby in the parameter space ex-

isting homoclinic bifurcation and possible multi-pulse response to perturbation is

discussed. Finally, some conclusions are given in Section 7.

2 Model of two section DFB laser

The DFB laser with integrated short external cavity consists of an highly pumped

active DFB section with the length L1 = 200 �m (interval z 2 [�L1; 0] in Fig. 1),

and passive integrated external cavity section with the length L2 = 200 �m (interval

z 2 [0; L2] in the same �gure).

To model the behaviour of optical �elds  (z; t) = ( +;  �)T , polarisation functions

p(z; t) = (p+; p�)T within all laser device z 2 [�L1; L2] and mean carrier density

n(t) within an active DFB section we use the Travelling Wave equation model (see

[19]):

�i
vgr

@

@t
 �(z; t) =

�
�i @
@z

�
�
�(z; n(t))� i�

2

��
 � � � � +

igP

2
( � � p�);

�i @
@t
p�(z; t) = �i
P ( � � p�) + !Pp

�;

d

dt
n(t) =

I1

eV1
� (An+Bn2 + Cn3)� vgr=m( ; 2� � igP ( � p))1;

b:c:  +(�L1; t) = r1 
�(�L1; t) + ainp(t)e

i!inpt;  �(L2; t) = r2 
+(L2; t): (1)

The laser parameters are similar to those discussed in [13]. The real coe�cients

� and � are given separately for each section and describe internal loses and �eld
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coupling due to the Bragg gratings. In our case we use �1 = 25 cm�1, �2 = 20

cm�1, �1 = 180 cm�1 and �2 = 0. Polarisation parameters gP , 
P and !P allow

to approximate gain dispersion with a Lorentzian function, indicating height, half

width at the half maximum and central frequency of this function respectively. We

assume gP;1 = 100 cm�1, 
P;1 � 30 nm, !P;1 � 3 nm and gP;2 = 0.

The propagation constant �(z; t) in di�erent sections is given by

�(z; t) =

�
�1 = Æ1 + g0�(i+�H)(n(t)�ntr)=2; if z 2 [�L1; 0]

�2 = Æ2 = 2�'=(2L2); if z 2 [0; L2]
: (2)

Here �H = �5, g = 2 � 10�17 cm�1, � = 0:3, ntr = 10�18 cm�3 are linewidth

enhancement factor, di�erential gain, con�nement factor and transparency carrier

density in the active section respectively. The parameters Æ1 � 2:2 nm and Æ2
indicate the detuning from the reference frequency. Parameter ' de�ned in the

formula above indicate a phase change of the forward propagating �eld and re�ected

back from the facet z = L1 �eld at the junction z = 0.

The constants I1 = 50 mA and I2 represent current injection into DFB section

and are the control parameters available in experiments. In modelling, we �x the

�rst current and model impact of the second current by tuning parameter ' (see

corresponding discussion in [20]).

The constants V1 = L1 � 0:15 �m �3 �m, A = 3 � 108 s, B = 1 � 10�16 s�m3, C =

1 �10�40 s�m6 give volume of the active zone of DFB section and three recombination

coe�cients respectively. An expression (�; �)1 shows an average of the complex

function ��T (z)�(z) over the active DFB section:

(�; �)1 =
1

L1

Z 0

�L1

�+��+ + �����dz:

Thus, after a proper normalisation of the �elds  (z; t), ( ;  )1 gives the mean photon

density within DFB section.

We have also used �eld re�ectivity coe�cients r1 = 0 and r2 =
p
0:3. A positive

function ainp(t) entering boundary conditions in 1 allow to model an injection of a

short optical pulse at the frequency !inp. Finally, the parameters e and vgr = c0=3:4

are electron charge and group velocity respectively.

3 Dynamics of the laser for di�erent phase of optical

feedback

Let us assume at the beginning, that we have no external signal, i.e., the function

a(t) entering the boundary conditions of 1 is equal to zero. Di�erent solutions of

TWE model 1 after some transient time are attracted by some solution located on

the invariant manifold of the state space. In the sequel we shall refer to stable (or

unstable) solution supposing that it is located exactly on such stable (or unstable)

invariant manifold.
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Figure 2: Left: theoretical predictions. Right: experimental results. Solid and dashed thick

lines show stable und unstable stationary solutions. Upper diagrams: lasing wavelengths

of the stationary states. Lower diagrams: threshold carrier density (theory) and applied

voltage (experiments). Bistability is observed in the interval [B;F ].

Tuning the phase parameter ' in our model or the current injection into the phase

tuning section for similar lasers in experiments we can observe transitions between

such solutions (see [21]). Stable solutions can be observed when integrating model

equations 1 or making experiments. Fig. 2 shows such transitions between stationary

states caused by the changes of parameters. Solid lines in the left and right parts

of this �gure represent results of integration of model equations and measurements

respectively. Here upper �gures show computed or measured wavelength of the

stationary lasing state, while lower �gures represent computed carrier density in

theory or applied voltage in experiments.

In both cases one can see hysteresis of the solution, that is, the dependence of the

lasing state on the direction of parameter variation. As we have seen after more

detailed study of the model equations 1, transition from the state 1 to the state 2

at ' = B is due to saddle node bifurcation of the stationary state 1, while at ' = E

the stable stationary state 2 loses its stability in the Hopf bifurcation, the resulting

high frequency stable limit cycle (�rst discussed theoretically for similar lasers in

[22]) short afterwards at ' = F loses its stability in the torus bifurcation and the

system approaches the only remaining stable stationary state 1.

The dashed lines in the left part of Fig. 2 show unstable stationary states. The

detection of unstable solutions, in general, is not possible in experiments and requires

more advanced technique in modelling. In order to �nd all stationary (possibly

unstable) solutions we can exploit the notion of carrier dependent modes (see [23]).

For this reason we write the optical �eld and polarisation equations in 1 in operator

form:

�i @
@t

�
 

p

�
= H(n)

�
 

p

�
: (3)
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Figure 3: Solid thick lines show stable stationary solutions or maximal value of stable self

pulsating solution. Thin solid and dashed lines show strength of threshold injection and

response of the system just before and after threshold perturbation. Intensively and light

shadowed areas indicate regions where stable self pulsations and excitability can be observed,

respectively.

Here an operator H is dependent on the slowly varying carrier density n. The

normalized carrier dependent modes

(�j(z; n);
j(n)); where �j =

�
�j

�j

�
; �j =

�
�+
j

��j

�
; �j =

�
�+
j

��j

�
;

solve the eigenvalue equation


j(n)�j(z; n) = H(n)�j(z; n); ��j (�L1; n) = 1;

�+
j (�L1; n) = r1�

�

j (�L1; n); ��j (L2; n) = r2�
+
j (L2; n): (4)

Let us assume that the positive constants �n and �fj satisfy the relations

=m(
j(�n)) = 0; �f 2j =
I1=(eV1)� (A�n+B�n2 + C�n3)

vgr(�j(�n);�j(�n))1
�
2=m�1(�n)� gP

(!P�
j(�n))2

(!P�
j(�n))2+

2

P

� :

Then these constants de�ne the stationary (rotational wave) solution of 1

n(t) = �n;

�
 

p

�
= �fje

i�j�j(z; �n)e
i
j(�nj)t; �j 2 [0; 2�];

with optical frequency and output power at the left facet determined by <e(
j(�n))

and �f 2j respectively. In such a manner we can continue the observed branches of

the stable stationary solutions (solid lines in Fig. 2) and draw the corresponding

branches of unstable stationary solutions (dashed lines in the left part of Fig. 2).

Besides stable and unstable stationary lasing states our lasers have also other so-

lutions. Integration of model equations for our laser at certain phase conditions

have allowed to detect stable self pulsations, i.e., stable solutions with periodically

oscillating carrier density and optical �eld power. The maximal value of the output
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Figure 4: Left: theoretical predictions. Right: experimental results. Upper and lower

diagrams show response of the laser due to super- and sub-threshold perturbation. Thin

and thick lines in the upper left diagram are due to perturbation of stationary state at

di�erent phase conditions. Sampling technique was used drawing experimental diagrams.

The inserts show nonlinear response function of laser due to perturbations of di�erent

strength.

�eld power at the left facet of these self pulsating solutions are indicated by the

thick solid lines giving the border of intensively shadowed areas in the Fig. 3 at the

phase intervals ' 2 [A;C] and ' 2 [E; F ]. Other thick solid lines indicate output

power �f 2 of stable stationary states, which can be found by integration of model

equations and where discussed and shown already in the left part of Fig. 2.

More advanced research of the model equations (see [24]) allows to detect also a

large variety of unstable non-stationary solutions, which, nevertheless, can not be

accessed by direct integration of equations and are not represented in the Fig. 3.

4 Response of the laser due to injection of a short

pulse

Let us consider now nonzero optical injection via the left facet of the laser. We apply

a model of an injected optical pulse de�ned by the function a(t), where a(t) = A > 0

if t 2 [0; 30] ps and a(t) = 0 otherwise. The wavelength of the injected signal is � 8

nm longer than the wavelength of lasing state. In a such manner the injected pulse

gives a perturbation of the stable lasing state. We register the maximal power of the

responding output signal at the same facet starting to measure this response after

the input signal is fully injected into the laser.

When adjusting phase parameter at ' = 0:7 and initial conditions at the stable

stationary state with higher output power (small black circle in the left part of

Fig. 3) we have observed typical to excitable systems nonlinear response function

6



(see insert at the left part of Fig. 4). Until the injected signal gives a sub-threshold

perturbation, i.e., maximal power of injection do not exceed threshold level (de-

picted as small triangles in Fig. 3), the response of the system is a series of decaying

relaxation oscillations as depicted in the lower left diagram of Fig. 4. If the injected

pulse gives a super-threshold perturbation, i.e., injected pulse power exceeds thresh-

old level, the system is responding with a large short pulse followed by relaxation

oscillations (thick line in the upper left diagram of Fig. 4). As it is indicated in the

insert at the left part of Fig. 4, the maximal response of the system in both sub-

and super-threshold perturbation cases grows only slightly with increased strength

of injection.

We have tried to �nd such nonlinear response perturbing stable stationary states

with maximal output power at di�erent phase conditions and have found similar

nonlinear response function only in the phase interval ' 2 [B;D] (see Fig. 3).

Moreover, when ' 2 [B;C], the super-threshold perturbation of stationary state

causes the transition to the stable self pulsating state (thin solid line in the upper

left part of Fig. 4), what contradicts to the de�nition of the excitable systems.

Therefore, only the light shadowed phase interval ' 2 [C;D] in the left part of

Fig. 3 is indicated as an excitable region.

Thin lines within this region indicate, that such a nonlinear response is more pro-

nounced when operating at phases ' � C. Here threshold perturbation (thin dashed

line in Fig. 3) has smallest power, sub- and super-threshold response of the laser

(thin solid line in Fig. 3) have maximal di�erence. Therefore, in order to observe

predicted excitability in experiments, one needs to adjust initial conditions at the

longer wavelength stationary solution (upper diagrams of Fig. 2) and close to the

phase condition C. Since it is di�cult to distinguish in experiment phases C and

B, we have adjusted the phase section current close to the condition B indicated in

the right part of Fig. 2.

After adjusting these conditions, we have injected into our experimental laser a

35 ps length optical pulse sequence with 15 MHz repetition frequency which have

determined a sampling period (for details see [13]). The resulting sampled measured

super- and sub-threshold responses of the laser and nonlinear response function

are depicted in the right part of Fig. 4 showing nice agreement with theoretical

predictions shown in the left part of the same �gure.

5 Mode analysis of the responding signal

From now we shall analyse the contribution of di�erent modes in the non-stationary

solution ( (z; t); p(z; t); n(t)) of model equations (1). For this reason we decompose

optical �eld and polarisation:

�
 (t)

p(t)

�
=

1X
j=1

fj(t)e
i<e(
j(�n))t�j(z; n(t)): (5)
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Figure 5: Left: theoretical results. Evolution of the mode decomposition coe�cients jfj(t)j
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impact in the super-threshold perturbation case. Right: experimental results. A sequence of

measured optical spectra for di�erent power of injected pulse. An in�uence of two modes

are visible in the super-threshold perturbation case.

Here at each time moment t we use the actual value of carrier density n(t) to solve

the spectral equation 4 and decompose computed �eld and polarisation into modal

components. Due to normalisation of eigenfunctions �j(z; n) and due to the zero

re�ectivity r1 = 0, complex �eld output at the left facet of the laser is given by

expression

 �(�L1; t) =
1X
j=1

fj(t)e
i<e(
j(�n))t:

Here fj(t) are slowly varying complex amplitudes indicating contribution of corre-

sponding mode. Fast rotation of the mode with the optical frequency � <e(
j(�n))

is represented by the multiplier ei<e(
j(�n))t. �n denotes mean value of dynamically

varying n(t).

Large values of jfj(t)j, j = 1; : : : ; N indicate N most important modes contributing

to the dynamics of optical �elds and polarisation. It is worth to notice, that when

N > 1 modes contribute, the output power at the left facet is determined not only

by the squared amplitude terms jfj(t)j2, but also by the nonzero mode coupling

terms <e(f �j (t)fk(t)ei<e(
k(�n)�
j(�n))t).

We have checked, that for our laser con�guration few (one or two) terms of the mode

decomposition (5) give su�ciently good approximation of the �eld and polarisation.

The approximation error mainly depends not on the number of modes, but on the

numerical precision which was used to integrate the model equations (1).

Let us investigate now in more details observed excitability depicted in the left part

of Fig. 4. The injection of the short (Æt = 30 ps) optical pulse starting at the time

tinj causes the perturbation of the operating state ( (z; tinj); p(z; tinj); n(tinj)) of the

8



laser. After the optical signal is fully injected into the laser (at the time moment

t0 = tinj + Æt), we have again an autonomous system (1) with a(t) = 0; t > t0 and

some initial conditions ( (z; t0); p(z; t0); n(t0)). The behaviour of the solution before

approaching again stable stationary state strongly depends on the conditions at the

moment t0.

Starting from the moment t0 we integrate the model equations (1) at the same time

decomposing computed optical �eld and polarisation into modal components as in

(5). The values of jfj(t)j obtained in the super- and sub-threshold perturbation

cases are depicted in the left part of the Fig. 4. Note the logarithmic scale of the

ordinate axis in these diagrams.

Upper diagram represent super-threshold case and clearly shows the large contri-

bution of two modes (thick lines) at certain time intervals. One can see, that the

maximum of the response due to super-threshold perturbation (upper thin solid line

in the Fig. 3) is due to the peak of jf2(t)j. Outside the short time interval where

jf2(t)j has a large peak, the second mode is suppressed and only the �rst mode has

su�cient power.

Lower diagram indicates sub-threshold perturbation. It is clearly seen in this �gure,

that for all time moments only the �rst mode contributes and all other modes are

suppressed. The second mode has no peak any more. Therefore, the maximum

of the response due to the sub-threshold perturbation (lower thin solid line in the

Fig. 3) is determined by the maximum of jf1(t)j.
In a such manner we have demonstrated, that only two modes (if perturbation

is larger) or single mode (if perturbation is smaller) determine the evolution and

stabilisation of �eld in our laser. Indeed, the in�uence of two modes in the response

to injected optical pulse is also clearly seen in the experiments (see right part of

Fig. 5). Optical spectra of the output signal shows dominant single mode until

perturbation is small and impact of two modes when perturbation exceeds threshold.

The �rst longer wavelength mode determines stable stationary lasing state which we

are trying to excite (see also upper right diagram of Fig. 2). When the perturbation

is big enough, the second shorter wavelength mode also comes up and courses peaks

of the responding signal (see upper right diagram of Fig. 4).

In the following section we shall consider the mechanisms of presented excitability

in more details.

6 Phase portrait of the excitable system

In general the phase space of our model (1) is in�nite dimensional. Nevertheless,

as it was discussed in the previous section, dynamics of optical �elds, polarisation

functions and carrier density can be properly described by the function n(t) and one

or two complex amplitude functions jf1(t)j and jf2(t)j (see left part of Fig. 4).
Now the mechanism of excitability can be easily explained by the Fig. 6, where

9
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Figure 6: Projections of the phase space of the excitable system at ' = 0:7 onto three- or

two-dimensional subspace.

suitable projections of two stable and saddle type stationary states (solid and empty

big points), unstable limit cycle (thin dashed curve), already broken homoclinic loop

(thin solid trajectories incomming and outgoing from the saddle) and a trajectory

of responding signal (thick solid curve) are presented. In these �gures intensively

and light shaded areas indicate carrier densities supporting growth of the �rst or

the second mode, respectively.

The system is operating at the stable stationary state s1. The perturbation caused

by injected pulse is acting along the thick arrow. If the perturbation is small,

the �eld-density conditions remain close to the stationary state s1 and after some

decaying oscillations return back to this state.

In the case, when perturbation is strong enough, the �eld-density conditions can

be kicked to the left side from the trajectory incomming into the saddle (solid line

of medium thickness) which indicates part of the stable manifold of the saddle and

de�nes threshold perturbation. The response trajectory makes a large excursion in

the phase space bypassing the saddle stationary state s10 from the left and entering

the intensively shaded region where the second mode becomes dominant. After

returning to the plane where the �rst mode dominates (light shaded part and below

in the right part of Fig. 6), the trajectory is attracted by the state s1.

Such topology of the phase space is typical to the parameter region where excitability

can be observed (lightly shadowed interval in the Fig. 3). When operating close to

the phase parameter ' = D, the incomming into the saddle trajectory is more

distant from the state s1, thus, a threshold perturbation should be much stronger.

Moreover, the excursion of the super-threshold response trajectory towards larger

values of jf2j, which determines a maximal super-threshold response of the system

(upper thin solid line in the Fig. 3) is less pronounced in this case. The maximum

of jf2(t)j becomes comparable with the maximal value of jf1(t)j, which, in general,

determines the maximal sub-threshold response of the system, indicated by the lower

thin solid line in the Fig. 3. Therefore, when using smaller phase parameter value

' < D, for any perturbation the maximal response of the system is determined by

10



the peak value of jf1(t)j and nonlinear response function as in the inserts of the right
part of Fig. 4 will not be observed.

In the case, when we are approaching the phase parameter ' ! C, the incoming

into the saddle and outgoing from the saddle trajectories come closer to each other

and coincide at ' = C forming a homoclinic connection. When further increasing

parameter ', the homoclinic connection breaks and a stable limit cycle is formed.

The stable stationary state s1 can be excited in this case as well, but instead of

returning to the stationary state s1 the trajectory of the response is attracted by

this stable limit cycle. In this case the switching to the stable self pulsating solution

can be observed (see thin line in the upper left diagram of Fig. 4).

7 Conclusion

We have demonstrated theoretically and experimentally how DFB laser with in-

tegrated passive phase tuning section can perform an excitable behaviour. The

integration of Travelling Wave model and its mode analysis have allowed to predict

excitable behaviour, to explain its origin and to select suitable operation conditions

in order to demonstrate excitability in the experimental device.
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