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Abstract

In this paper we consider families of time Markov �elds (or reciprocal

classes) which have the same bridges as a Brownian di�usion. We characterize

each class as the set of solutions of an integration by parts formula on the

space of continuous paths C([0; 1];Rd ). Our techniques provide a characteri-

zation of gradient di�usions by a duality formula and, in case of reversibility,

a generalization of a result of Kolmogorov.

1 Introduction

In this paper we characterize the bridges of a Brownian di�usion as solutions of

a simple integration by parts formula (IBPF for short) on the space of continuous

paths C([0; 1];Rd). More precisely, our object of study is the class of all probabilities

on the path space which have the same bridges as a reference Brownian di�usion; this

class is called the reciprocal class of the reference di�usion. This is the continuation

of the work we have undertaken in our former publication [20]; the setting of [20]

was one-dimensional, in the sense that d = 1. We now turn to vectorial case, d > 1,
which requires new techniques and provides broader applications.

Let us brie�y describe our framework. The terminology of reciprocal class comes

from reciprocal processes; these are Markovian �elds with respect to the time pa-

rameter and therefore a generalization of Markov processes. The interest in these

processes was motivated at �rst by a Conference of Schrödinger [24] about the most

probable dynamics for a Brownian particle whose laws at initial and �nal times are

given. Actually, Schrödinger was only concerned with Markovian reciprocal pro-

cesses which have been called since then Schrödinger processes. His interpretation

in terms of (large) deviations from an expected behavior was further developed by

Föllmer, Cattiaux and Léonard, Gantert among others (cf. references [9], [3] and

[10]). Schrödinger processes were also analysed by Zambrini [28] and Nagasawa [18]

for their possible connections to quantum mechanics. One year after Schrödinger,

Bernstein noticed the importance of non-Markovian processes with given conditional

dynamics, where the conditioning is made at two �xed times. This was the begin-

ning of the study of general reciprocal processes. Jamison [11] proved that the set

of reciprocal processes is partitioned into classes called reciprocal classes. All the

elements of a same class share the same Markovian bridges (or two times condi-

tional probability distributions). Each class is characterized by two functions (F;G)
(de�ned explicitely in Theorem 2.6 below) which take values respectively in Rd and

R
d
d called its Reciprocal Characteristics ([5], [14]) and can be de�ned starting from
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a reference Markovian Brownian di�usion. Krener (cf. [14]) raised the question

of characterizing a reciprocal class by an equation involving (F;G). For Gaussian

reciprocal processes an answer was given in [16]: the equation was a p.d.e. for the

covariance function. The non Gaussian case was addressed in [25] by one of us: using

the tools of Stochastic Mechanics, it was proved that the elements of a reciprocal

class satisfy a stochastic Newton equation. In this equation by analogy with the

Lorentz law of electromagnetism G can be interpreted as a magnetic force and F as

an electric force (see also [13]).

Our main result in the present paper states that, under the assumption of �nite

entropy, the set of probability measures in the reciprocal class of a Brownian di�u-

sion, coincides with the set of solutions of a functional equation the coe�cients of

which are F and G. Our equation is a perturbation of the duality equation satis�ed

by Brownian bridges, duality between the Malliavin derivation operator and the

stochastic integral. The perturbation term in the equation is to be compared with

the vector of Malliavin derivatives of the Hamiltonian function associated to Gibbs

measures ([22]). The main di�erence from the one dimensional situation comes from

an additional term in the IBPF. This term, which is the stochastic integral of the

reciprocal characteristic G w.r.t. the coordinate process, vanishes if and only if

the drift of the reference Brownian di�usion is a gradient. In [20] this term was

identically zero since the gradient condition is always ful�lled in dimension d = 1.

The tools developed to reach the above result enable us on the one hand to charac-

terize the laws of Brownian di�usions which are of gradient type among the set of

reciprocal processes satisfying some IBPF. On the other hand we prove a general-

ization of Kolmogorov's theorem: the existence of a reversible law in the reciprocal

class of a Brownian di�usion with drift b can only occur if b is a gradient.

The paper is divided into the following sections.

1. Introduction.

2. Brownian bridges. Reciprocal classes.

3. Integration by parts formula for a Brownian di�usion and its bridges.

4. Characterization of a reciprocal class by an IBPF.

5. Application to gradient di�usions.

2 Brownian bridges. Reciprocal classes.

2.1 Derivation operator

Let 
 = C([0; 1];Rd) be the canonical - polish - path space of continuous Rd -valued

functions on [0; 1], endowed with F , the canonical �-�eld.
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Let (Xt)t2[0;1] denote the family of canonical projections from 
 into Rd .

P(
) is the set of probability measures on 
. We use the notation :

Q(f) =

Z



f(!)Q(d!):

Let P 2 P(
) denote a �xed Wiener measure on 
 with initial measure any prob-

ability measure on R
d . We denote by P x the Wiener measure on 
 with initial

condition x 2 R
d . More generally, for any Q in P(
), Qx is the conditional measure

Q(:=X0 = x), and Qx;y is the conditional measure Q(:=X0 = x;X1 = y) (bridge

between x and y).

We will denote by j�j the euclidian norm in Rd and x:y will denote the scalar product

between x and y, two vectors in Rd .

We now de�ne the space of smooth cylindrical functionals on 
 :

S = f�;�(!) = '(!i
tj
; 1 � i � d; 1 � j � n);

' 2 C1
b (Rnd ;R); 0 � t1 � : : : � tn � 1g:

where C1
b (Rnd ;R) denotes the set of C1-functions which are bounded as well as all

their derivatives.

Clearly S � L2(
;P ). For 0 � � � 1, we denote by S� the subset of S composed

by the functionals which are F� -measurable.

On S we denote by Dg the derivation operator in the direction g = (gi)1�i�d 2
L2([0; 1];Rd) de�ned as follows : Dg� = (Dgi�)1�i�d where

Dgi�(!) =
nX

j=1

@'

@xij
(!1

t1
; : : : ; !d

t1
; : : : ; !1

tn
; : : : ; !d

tn
)

Z tj

0

gi(t)dt

=

Z 1

0

gi(t)Di
t�(!)dt

where

Di
t�(!) =

nX
j=1

@'

@xij
(!1

t1
; : : : ; !d

tn
)1t�tj :

It is clear that Dg� is also equal to the Gâteaux-derivative of � in the directionR :

0
g(t)dt, which is a typical element of the Cameron-Martin space. One also de�nes

the space D1;2 as the closure of S for the following norm :

k�k21;2 = P (�2) + P
�Z 1

0

jDt�j
2dt
�
:

Let us introduce the notation we will use for stochastic integrals all through the rest

of the paper. For g = (gi)1�i�d 2 L2([0; 1];Rd), the vectorial stochastic integral of g
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under X is denoted by

Æ(g) = (Æ(gi))1�i�d :=
� Z 1

0

gi(t)dX i
t

�
1�i�d

:

For a process (ui;j)i;j2f1;:::;dg with values in Rd
d , we de�ne whenever it exists

Z t

0

uisdXs :=
dX

j=1

Z t

0

ui;js dX
j
s

Then it is well known (see for example [2]) that the operator D (also called Malliavin

derivative) is the dual operator on D1;2 of the stochastic integration operator Æ as

stated in the following vectorial IBPF satis�ed under the Wiener measure P on 
 :

8g 2 L2([0; 1];Rd), 8� 2 S,

P (Dg�) = P
�
� Æ(g)

�

or equivalently,

8i 2 f1; : : : ; dg; P (Dgi�) = P
�
� Æ(gi)

�
: (1)

2.2 IBPF for Brownian bridges.

In the same way as Brownian motion is the reference process in the study of Markov

di�usions, it seems natural to consider Brownian bridges as reference processes in the

study of Markovian bridges. For this reason we review IBPF satis�ed by Brownian

bridges. We �rst introduce the subset of the Cameron-Martin space which will

contain the test functions. It is the following set :

E = fg;Rd -valued step functions on [0; 1] such that

Z 1

0

g(t)dt = 0g:

We also denote by E� , for � 2 [0; 1], the subset of E composed by step functions with

support included in [0; � ].
Let us notice that the condition on the integral is of loop type: indeed if we denote

by h the function h :=
R �
0
g(t)dt, we are requiring that h(0) = h(1) = 0.

For step functions the stochastic integral Æ(g) is trivially de�ned for all ! 2 
,
independently of the underlying probability.

Proposition 2.1 Let (x; y) 2 R
d � R

d
and P x;y 2 P(
) be the law of the d-

dimensional Brownian bridge on [0; 1] from x to y. Then, for all g 2 E , for any

� 2 S,

P x;y(Dg�) = P x;y
�
� Æ(g)

�
: (2)
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Proof : The duality formula (2) has been proved by Driver in [6] even for the

Brownian bridge on a Riemannian manifold. His proof relies on the absolute con-

tinuity of P x;y with respect to P x on F� , with 0 < � < 1. However for the sake

of completeness, let us sketch an alternative proof of this duality. Let us take

�(!) = �0(!0)�1(!1)~�(!) for �0; �1 2 C1(Rd), and ~� 2 S in the IBPF satis�ed

under P :

P
�
�0 �1

~� Æ(g)
�
= P (Dg(�0 �1

~�)) (3)

which holds for any g 2 L2([0; 1];Rd) and any � 2 S. One obtains from (3), for

each i 2 f1; : : : ; dg,

P
�
�0(X0)�1(X1)P (~�Æ(gi)=X0; X1)

�
=

P
�
�0(X0)�1(X1)P (Dgi

~�=X0; X1)
�
+ P

�
�0(X0)@i�1(X1)~�

�Z 1

0

gi(r) dr

so that when
R 1

0
g(t)dt = 0, the last term vanishes and what remains is

P x;y
�
~�Æ(gi)

�
= P

�
~�Æ(gi)=X0 = x;X1 = y

�
= P x;y

�
Dgi

~�
�

for �-a.e. (x; y) where � denotes the law of (X0; X1) under P . By continuity of the

map (x; y) 7! P x;y the duality formula (2) holds for all (x; y) 2 R
d � R

d . �

Remark 2.2 In the preceding proof we deduced an IBPF for the bridge P x;y from

an IBPF for P by choosing appropriate test functionals �. We will encounter this

argument several times in the sequel.

2.3 Reciprocal class and reciprocal characteristics of a Brow-

nian di�usion.

We now introduce the main object we deal with in this paper: the reciprocal class

of some �xed reference di�usion Pb.

The data is then a d-dimensional Markovian di�usion solution of the stochastic

di�erential equation:

dXt = dBt + b(t; Xt) dt; X0 = x; (4)

where B is a d-dimensional Brownian motion, b is the drift function, assumed to be

in C1;2([0; 1]� R
d ;Rd) and x 2 R

d .

The law of this Brownian di�usion will be denoted in all the paper by Pb. It is not

a restriction to �x a deterministic value for X0 since in the present paper one only

deals with the bridges of Pb.
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We assume on the drift that there exists a constant k > 0 and an integer N 2 N
�

such that for all t; x 2 [0; 1]� R
d , for all i; j 2 f1; : : : ; dg,

x:b(t; x) � k(1 + jxj2) (5)

jbi(t; x)j+ j@tb
i(t; x)j � k(1 + jxjN) (6)

and j@jb
i(t; x)j+ j@i@jb

i(t; x)j � k(1 + jxjN�1): (7)

Since b is locally lipschitz continuous uniformly on time, condition (5) ensures exis-

tence and uniqueness of a strong solution to equation (4) (see for example p.234 in

[4]).

Example : A typical class of functions b which satisfy (5) and (6) and (7) is given by

the so called gradient di�usion, i.e. b is the gradient of a potential with polynomial

growth :

8i 2 f1; : : : ; dg; bi(x1; : : : ; xd) = �P0
i(x

i) +
dX

j=1

aijx
j

where the Pi are polynomial functions of the form : Pi(x
i) =

PN+1
k=0 �i;k(x

i)k with

�i;N+1 > 0.

Lemma 2.3 Under assumptions (5), the Brownian di�usion solution of (4) admits

�nite moments of any order. In particular,

Pb( sup
t2[0;1]

jXtj
2N ) < +1: (8)

Proof of Lemma 2.3 : It is enough to show that, for anyM � 1, supt2[0;1] jXtj
4M 2

L1(Pb). But, by Ito formula,

jXtj
2M =

�
jxj2 + 2

dX
i=1

Z t

0

X i
s

�
dBi

s + bi(s;Xs) ds
�
+ d t

�M

= jxj2M + 2M

Z t

0

jXsj
2(M�1)XsdBs

+

Z t

0

M jXsj
2(M�1)

�
2Xs:b(s;Xs) + d+ 2(M � 1)

�
ds:

Then using assumption (5) and denoting by f(t) = Pb(supr2[0;t] jXrj
4M) = Pb

�
(supr2[0;t] jXrj

2M)2
�
,

one obtains

f(t) � 3jxj4M + 12M2Pb

�
sup
r2[0;t]

�Z r

0

jXsj
2(M�1)XsdBs

�2�
+ C1

Z t

0

f(s) ds;

where C1 > 0.

6



By Doob inequality,

Pb

�
sup
r2[0;t]

�Z r

0

jXsj
2(M�1)XsdBs

�2�
� Pb

�Z t

0

jXsj
4M�2 ds

�

� C2

Z t

0

f(s) ds

for some C2 > 0. Then, for all t 2 [0; 1],

f(t) � 3jxj4M +
�
12M2C2 + C1

� Z t

0

f(s) ds

which implies by Gronwall inequality that f(1) < +1. �

Let us notice that Lemma 2.3 and assumption (6) imply that the usual entropy h

of Pb w.r.t. the Wiener measure P x is �nite since

h(Pb;P
x) = Pb

�
log(

dPb

dP x
)
�
=

1

2
Pb

�Z 1

0

jb(t; Xt)j
2
dt
�
< +1: (9)

In this paper, we adopt the following de�nition of entropy on P(
) (cf. [7]) and

denote it by H :

H(Q;P ) = Q
�
h(QX0 ;PX0)

�
:

Let us notice that here H(Pb;P ) = h(Pb;P
x) < +1.

Finite entropy will be a leading assumption through the entire paper, so that we

now de�ne the following set of probability measures :

PH(
) = fQ 2 P(
) : H(Q;P ) < +1g:

It is indeed natural in our framework since, as already mentioned in the introduction,

the Markov di�usion that Schrödinger was looking for in his paper (that he called

�the most probable path�), is the unique minimizer of the entropy w.r.t. Wiener

measure among a set of reciprocal processes. Finiteness of the entropy has been also

crucial in subsequent papers of Föllmer [9], Wakolbinger[27], Cattiaux and Léonard

[3] for instance. In the present paper two consequences of the �niteness of the

entropy will play an important role. We state these two results in the following

proposition and we refer the reader to [8].

Proposition 2.4 Let Q be a probability measure in PH(
). Then
(i) There exists an adapted process (�t)t2[0;1] such that the process

(Xt�X0�
R t

0
�sds)t2[0;1] is a Q-Brownian motion and Q

� R 1

0
j�tj

2 dt
�
< +1 (ii) Let

�0 (resp. �) denote the law of X0 (resp. (X0; X1)) under Q. Then, for �0 (resp. �)

a.e. x (resp. (x; y)), the entropy H(Qx;P x) (resp. H(Qx;y;P x;y
)) is �nite.

Furthermore, let us assume that p(s; x; t; y), the probability transition density of Pb,

satis�es the following regularity property :

(s; x) 7! p(s; x; t; y) 2 C1;3([0; 1[�Rd ;R): (10)

7



It is clear that for each 0 � s < t � 1 and x; y 2 R
d , p(s; x; t; y) > 0 and also that

the law of Xt is absolutely continuous w.r.t. Lebesgue measure on R
d with strictly

positive density. We will also assume that for each 0 � s < t � 1; the map

(x; y) 7! Pb( :=Xs = x;Xt = y)

is continuous on Rd � R
d .

De�nition 2.5 The reciprocal class of Pb is the subset R(Pb) of P(
) de�ned by :

R(Pb) = fQ 2 P(
); 80 � s < t � 1; Q( :=Fs _ F̂t) = Pb( :=Xs; Xt)g (11)

where the forward (resp. backward) �ltration (Ft)t2[0;1] (resp. (F̂t)t2[0;1]) is given by

Ft = �(Xs; 0 � s � t); (resp. F̂t = �(Xs; t � s � 1)):

Let us also mention the alternative de�nition of R(Pb) (see [11]) :

R(Pb) = fQ 2 P(
) : 9� 2 P(Rd 
 R
d);

Q =

Z
Rd�Rd

Pb( =X0 = x;X1 = y)�(dx; dy)g: (12)

which stresses the fact that any Q in R(Pb) is a mixture of the bridges of Pb or

equivalently, that the bridges of Q coincide with the ones of Pb.

As a consequence of (11), for any Q 2 R(Pb) and any 0 � s � t � 1, the �ltrations
Fs

W
F̂t and �(Xr; s � r � t) are independent under Q conditionnally to �(Xs; Xt).

Therefore the coordinate process under any element of R(Pb) is a Markovian �eld

w.r.t. the time index; it is also called a reciprocal process.

It is easy to see that any Markov process is reciprocal. Nevertheless, a reciprocal

process is not necessarily a Markov process; the Markov property may fail to hold

unless the law of (X0; X1) enjoys some product decomposition. More precisely,

Jamison gave in [11] the following description of the subset RM(Pb) containing all

the Markovian processes of R(Pb) ( see [23] for related results):

RM(Pb) = fQ 2 R(Pb) : 9�0; �1 �-�nite measures on Rd ;

Q Æ (X0; X1)
�1(dx; dy) = p(0; x; 1; y)�0(dx)�1(dy)g: (13)

Due to historical reasons recalled in the introduction, the elements of RM(Pb) are
called in the litterature Schrödinger processes.

The following theorem gives a necessary and su�cient condition for a Brownian

di�usion to be in the reciprocal class of Pb. It was �rst proved by Clark following a

conjecture of Krener.
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Theorem 2.6 For any ~b 2 C1;2([0; 1]� R
d ;Rd), let us de�ne the Rd

-valued (respec-

tively R
d
d

-valued) function F~b(t; x) = (F i
~b
(t; x))i (resp. G~b(t; x) = (Gi;j

~b
(t; x))i;j), as

follows

F i
~b
(t; x) =

�
@t~b

i +
1

2
@i(j~bj

2
+ div ~b)

�
(t; x) (14)

Gi;j
~b
(t; x) =

�
@j~b

i � @i~b
j
�
(t; x) (15)

A Brownian di�usion with drift ~b is in the reciprocal class of Pb if and only if

(Fb; Gb) � (F~b; G~b):

Proof of Theorem 2.6: We refer the reader to [5]. Let us simply mention that

the identity (Fb; Gb) � (F~b; G~b) is equivalent to the existence of a function h > 0

such that @th+
Pd

i=1 b
i@ih+

1
2
�h = 0 and ~bi� bi = @i logh; for all 1 � i � d. �

De�nition 2.7 The pair of functions (Fb; Gb) is called the Reciprocal Charac-

teristics of Pb.

In the sequel of the paper, b is a �xed data, and for simplicity we denote by (F;G)
the reciprocal characteristics of Pb :

F := Fb; G := Gb:

Let us now state a useful result. We omit the proof.

Proposition 2.8 Under the growth conditions (6) and (7) on the drift function b,

the reciprocal characteristics F and G satisfy the following inequality :

9K > 0; 8(t; x) 2 [0; 1]� R
d ; 8i; j 2 f1; : : : ; dg;

jF i(t; x)j � K(1 + jxj2N�1)

jGi;j(t; x)j+ jdiv Gi(t; x)j � K(1 + jxjN):

Remark 2.9 The reciprocal characteristics associated to the Brownian motion, i.e.

corresponding to the drift b = 0, are obviously F0 � 0 and G0 � 0. Let us mention

the paper [1] where a subclass of R(P0) has been explicitely computed.

3 Integration by parts formula for a Brownian dif-

fusion and its bridges.

In the �rst part of this section we establish two integration by parts formulae (IBPF)

satis�ed by the d-dimensional Brownian di�usion Pb. The coe�cients of the �rst one

(identity (16)) are the reciprocal characteristics associated to this di�usion except

9



for a term involving the value at the terminal time. The form of this IBPF di�ers

from the one dimensional case by the presence of additional terms, especially a

stochastic integral which admits for integrand the reciprocal characteristic G. It is

easy to see from Theorem 2.6 that G = 0 if and only if b is a gradient, which is

always the case in dimension 1. The second IBPF (identity (20)) is a consequence

of Girsanov theorem. The second part of this section contains an IBPF satis�ed by

the reciprocal class of Pb.

3.1 IBPF satis�ed by a Brownian di�usion.

The following statement will be a key tool both for Theorem 3.4, where we exhibit

an IBPF satis�ed by the reciprocal class R(Pb), and in the proof of Theorem 4.1.

Theorem 3.1 Let Pb be the d-dimensional Brownian di�usion solution of (4), where

b satis�es assumptions (5), (6) and (7). Then the following integration by parts

formula is sati�ed under Pb : for any � 2 [0; 1], for any Rd
-valued step function g

on [0; � ], for any � 2 S and i 2 f1; : : : ; dg,

Pb(Dgi�) = Pb

�
� Æ(gi)

�
�

Z �

0

gi(r)dr Pb

�
� bi(�;X�)

�

+Pb

�
�

Z �

0

gi(r)

Z �

r

(F i +
1

2
div Gi)(t; Xt) dt dr

�

+Pb

�
�

Z �

0

gi(r)

Z �

r

Gi(t; Xt)dXt dr
�

(16)

Proof of Theorem 3.1: The fact that each term of the RHS of (16) is �nite is due

to Proposition 2.8 and Lemma 2.3.

Since the proof of this theorem is almost the same as in dimension 1, we will not

give all the details but rather we refer the reader to [20], Lemma 4.2. However let

us recall the procedure used in dimension 1 in order to be able to point out the

di�erences with the one dimensional case. We denote by Mb the Girsanov density

of Pb w.r.t. P where P = P0 is the Wiener measure whose initial law is the law of

X(0) under Pb:

Mb = exp
� dX

i=1

Z �

0

bi(t; Xt)dX
i
t �

1

2

Z �

0

jb(t; Xt)j
2
dt
�
:

Given a smooth truncation function �n with bounded derivatives on R satisfying

�
�n1[�n�1;n+1]c = �(n+ 1)1]�1;�n�1[ + (n+ 1)1]n+1;+1[

�n1[�n;n] = Id:1[�n;n]:
(17)

we set Mn
b = exp

�
�n(logMb)

�
. Then 0 � Mn

b � Mn
b + 1 and if P n

b denotes the

positive measure on C([0;T ]� R
d) with Radon Nikodym density Mn

b w.r.t. P , the

10



integration by parts formula (1) for P yields

P
�
Mn

b Dgi�
�

= P
�
�Mn

b Æ(g
i)
�
� P

�
�DgiM

n
b

�

= P
�
�Mn

b Æ(g
i)
�
� P

�
�Mn

b Dgi(logM
n
b )
�
: (18)

The di�erence from dimension 1 comes from the expression forDgi(logMb) which we
now compute in our d-dimensional setting. By de�nition of the Malliavin derivative,

Dgi(logMb) =

Z �

0

gi(r)
�
bi(r;Xr) +

dX
j=1

Z �

r

@ib
j(t; Xt)dX

j
t

�

dX
j=1

Z �

r

bj(t; Xt)@ib
j(t; Xt)dt

�
dr: (19)

Let us express the r.h.s. using (F;G). Let us write

Z �

r

@ib
j(t; Xt)dX

j
t =

Z �

r

(@ib
j � @jb

i)(t; Xt)dX
j
t

+

Z �

r

@jb
i(t; Xt)dX

j
t

This last stochastic integral is part of the following Ito formula:

bi(�;X� )� bi(r;Xr) =
dX

j=1

Z �

r

@jb
i(t; Xt)dX

j
t

+

Z �

r

�
@tb

i +
1

2
�bi

�
(t; Xt)dt

Using the de�nition Gi;j = @jb
i � @ib

j and the de�nition of F , we obtain

@tb
i +

1

2
�bi = @tb

i +
1

2

dX
j=1

@j@jb
i

= @tb
i +

1

2
@idiv b +

1

2
div Gi

= (F i +
1

2
div Gi)�

dX
j=1

@ib
jbj:

We therefore obtain the following expression for Dgi(logMb):

Dgi(logMb) =

Z �

0

gi(r)dr bi(�;X�)�

Z �

0

gi(r)
� dX

j=1

Z �

r

Gi;j(t; Xt)dX
j
t

�
dr

�

Z �

0

gi(r)

Z �

r

�
F i +

1

2
div Gi

�
(t; Xt) dt dr:

11



It remains to prove the convergence of each term of identity (18) to its respective

limit. This is done by applying the dominated convergence theorem. �

In the sequel we would like to use the IBPF (16) for Brownian di�usion with a drift

which is not necessarily with polynomial growth. For example, in the next subsection

we are interested by the bridges of Pb. If one takes b(t; z) = ��z, which satis�es

conditions (6) and (7) with N = 1, Pb is then the Ornstein-Uhlenbeck process. The

drift ~b of its bridge between x and y can be explicitely computed :

~b(t; z) = ��z +
�

sinh(�(1� t))
(y � e��(1�t)z):

It is clear that ~b does not satisfy condition (6). So let us now give a set of su�cient

conditions (weaker than (6)) under which a Brownian di�usion satis�es the IBPF

(16).

Proposition 3.2 Let ~b 2 C1;2([0; 1]� R
d ;Rd) and � 2 [0; 1] such that

H(P~bjF�
;P jF�

) < +1. Let F~b and G~b be the reciprocal characteristics associated to

the Brownian di�usion P~b. If the following conditions are satis�ed :

(A1) ~b(�;X� ) 2 L1(P~b)

(A2)
R �

0
jF~b +

1
2
div G~bj(t; Xt)dt 2 L1(P~b)

(A3)
R �

0
jGi;j

~b
(t; Xt)j

2dt 2 L1(P~b); 8i; j 2 f1; : : : ; dg

then the integration by parts formula (16) still holds true under P~b .

Let us now establish another integration by parts formula satis�ed under P~b where

the drift ~b appears instead of the reciprocal characteristics (F~b; G~b).

Theorem 3.3 Let P~b 2 PH(
) be, as before, the Brownian di�usion whose drift ~b
is assumed to belong to C0;1([0; 1] � R

d ;Rd). Let � 2 [0; 1]. If for i 2 f1; : : : ; dg;R �

0
j@i~b(t; Xt)j

2
dt belong to L1(P~b), then for any R

d
-valued step function g on [0; � ],

for all � 2 S,

P~b(Dgi�) = P~b

�
� Æ(gi)

�
� P~b

�
�

Z �

0

gi(s)~bi(s;Xs)ds
�

(20)

�P~b

�
�

Z �

0

gi(s)

Z �

s

X
j

@i~b
j(p;Xp)(dX

j
p �

~bj(p;Xp)dp)ds

�

Proof The argument runs as in the proof of Theorem 3.1 except that we do not

need to develop identity (19) by Ito formula. It is su�cient to verify that each term

of this identity converges by dominated convergence theorem. �

A duality formula such as (20) has been proved under stronger integrability assump-

tions on the drift ~b in [21], formula (1.8).
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3.2 IBPF satis�ed by the bridges of a Brownian di�usion.

We now come to an IBPF satis�ed by all the elements of R(Pb), the reciprocal class
of Pb, in which all the probabilities admit the reciprocal characteristics (F;G).

Theorem 3.4 Let Q be a probability measure in PH(
). Let us moreover assume

that

(A0) supt2[0;1] jXtj 2 L2N (Q)

If Q is in the reciprocal class of Pb, then for any function g 2 E , 8� 2 S, for all

i 2 f1; : : : ; dg , the following integration by parts formula is satis�ed :

Q(Dgi�) = Q
�
� Æ(gi)

�

+ Q
�
�

Z 1

0

gi(r)

Z 1

r

(F i +
1

2
div Gi)(t; Xt) dt dr

�

+ Q
�
�

Z 1

0

gi(r)

Z 1

r

Gi(t; Xt)dXt dr
�
: (21)

Remark 3.5 1. As mentioned in Proposition 2.4 the fact that the entropyH(Q;P )
is �nite ensures that X is a Q- semi-martingale; it is therefore meaningful to

consider the stochastic integral
R 1

r
Gi(t; Xt)dXt under Q. As mentioned above

this was not necessary in dimension 1 since this integral did not appear.

2. Formula (21) reads like a perturbation of formula (2) for Brownian bridges.

The perturbation term can also be written as

Q
�
�

Z 1

0

gi(r)

Z 1

r

F i(t; Xt) dt dr
�
+Q

�
�

Z 1

0

gi(r)

Z 1

r

Gi(t; Xt) Æ dXt dr
�

where in the second term, the stochastic integration is of Stratonovich type;

this expression re�ects the symmetry of the reciprocal property under time

reversal.

Proof of Theorem 3.4 : Let us denote by � the law of (X0; X1) under Q. We �rst

prove the IBPF for �-a.e.(x; y) and the probability Qx;y := Q(�=X0 = x;X1 = y).
In order to do so we �rst prove that we can apply Proposition 3.2.

For �-a.e. (x; y) the integrability condition (A0) still holds true under Qx;y as well

as H(Qx;y;P x;y) < +1 (cf. Proposition 2.4) which implies

H(Qx;yjF�
;P x;yjF�

) < +1 for any � � 1. Let us �x such an (x; y). Since Q belongs

to the reciprocal class of Pb, for any � 2 [0; 1[ the restriction of Qx;y to C([0; � ];Rd)
is the law of the Brownian di�usion ~P starting from x with drift

~b(t; z) = b(t; z) + @z log p(t; z; 1; y)

and in particular

F~b = F; G~b = G on [0; � ]� R
d :

13



By assumption (10), ~b 2 C1;2([0; 1[�Rd ;R). We also have to check assumptions (A1)-

(A3) of Proposition 3.2 on ~b, F and G : assumption (A1) has not to be considered

here since we test on functions g 2 E� . Assumptions (A2) and (A3) are satis�ed

since (A0) is assumed and F and G satisfy Proposition 2.8. Therefore IBPF (21)

holds on [0,� ] under Qx;y for �-a.e. (x; y).
The second part of the proof consists in passing to � = 1. Let us simply sketch the

argument. Let � 2 S be F1-measurable, and g 2 E . Since � 2 S, there exists a

function ' and a real number � < 1 such that

�(X) = '(x;Xt1 ; � � � ; X� ; y); Qx;y-a:s::

Let n be large enough so that � < 1� 1
n
and g is constant on [1� 2

n
; 1[. Let us set

gn = g1[0;1� 2

n
[ + n

� Z 1

1� 2

n

g(r)dr
�
1[1� 2

n
;1� 1

n
]:

By construction gn is a step function on [0; 1� 1
n
] and its integral is equal to zero. We

apply the IBPF (21) forQx;y to the pair (�; gn) on [0; 1� 1
n
]. It is now straightforward

to verify that each term converges when n tends to in�nity. By integrating in (x; y)
over �, we conclude that the desired IBPF also holds true for Q. �

4 Characterization of a reciprocal class by an IBPF

Our aim is now to establish the converse statement of Theorem 3.4. More pre-

cisely, we want to show that the integration by parts formula (21) characterizes

the regular reciprocal processes belonging to R(Pb). Actually, since we previously

had to introduce the regularity condition (10) to obtain enough smoothness for the

semi-martingale characteristics of bridges, we also have now to consider probabilities

which a priori satisfy some regularity conditions to be able to write down the IBPF.

These conditions are listed below :

(H1) Conditional density : regularity, domination.

(H1.1) 80 � t < u < 1; 8(x; y) 2 R
d � R

d , there exists a function q s.t.

Q(Xu 2 dwjXt = z;X1 = y) = q(t; z; u; w; 1; y)dw

(H1.2) 80 < u < 1; 8(x; y) 2 R
d � R

d ; q(0; x; u; w; 1; y) > 0

(H1.3) 80 < u < 1; 8(w; y) 2 R
d � R

d , the map (t; z) 7! q(t; z; u; w; 1; y) is in
C1;2([0; 1[�Rd ;R)

(H1.4) for all 0 < � < 1; 8(t; z) 2 [0; � ] � R
d , there exists a neighborhood V of

(t; z) and a function �V(u; w; 1; y) such that whenever @� denotes @s; @�k or @�k�l for

k; l 2 f1; : : : ; dg it holds:

sup(s;�)2V j@�q(s; �; u; w; 1; y)j � �V(u; w; 1; y),
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and
R �

0

R
Rd
(1 + jwj2N)�V(u; w; 1; y)

�
1 + �V(u;w;1;y)

q(0;x;u;w;1;y)

�
dwdu < +1:

(H2) Integrability condition on the derivatives of the conditional density.

Let 0 � s � � < 1.

(H2.1)
R �

s

R
Rd
j@�q(s;Xs; u; w; 1; X1)j(1 + jwj2N) dwdu 2 L1(Q) where @� denotes

@s or @�k�l for k; l 2 f1; : : : ; dg

(H2.2)
R �

s

R
Rd
j@�kq(s;Xs; u; w; 1; X1)j(1 + jwj2N) dwdu 2 L2(Q)

(H2.3)
R �

s

R
Rd
(1 + jwj2N)@�q(s;Xs;u;w;1;X1)

2

q(0;x;u;w;1;X1)
dwdu 2 L1(Q) where @� denotes @s; @�k

or @�k�l

Theorem 4.1 Let Q be a probability measure in PH(
). Let us assume that Q

satis�es assumptions (H1), (H2) and (A0). If the IBPF (21) is satis�ed under Q

then Q is in the reciprocal class of Pb.

The proof of this theorem is decomposed into the following four di�erent steps.

Step 1 : Each bridge Qx;y of Q is a Brownian di�usion with drift bxy given by an

expression of the form (22).

Step 2 : Each drift bxy is regular enough to compute the reciprocal characteristics

F x;y and Gx;y of Qx;y.

Step 3 : Qx;y satis�es an IBPF of the type (16) with its own reciprocal characteristics

F x;y and Gx;y as parameters.

Step 4 : Qx;y also satis�es an IBPF of the type (21) but with reciprocal characteristics

F and G as parameters. Therefore F x;y � F and Gx;y � G, which implies that all

the bridges of Q and Pb are equal.

Proof of Theorem 4.1

Step 1: Let � be the law of (X0; X1) under Q. By Proposition 2.4, for � a.e. (x; y),
X under Qx;y (resp. under both probabilities Qx;y(�=Fs) and Q

x;y(�=Xs) ) is a Brow-
nian semi-martingale, whose drift, denoted by bxy, will be now computed.

First, let us prove that Qx;y is Markovian. Notice that, for s �xed in [0; 1], applying

IBPF (21) to the following functions : � Fs-measurable, g = ~g� 1
1�s

R 1

s
~g(r)dr1[s;1],

one obtains easily that the drift of X at time r 2 [s; 1] is under Qx;y(�=Fs) (resp.
Qx;y(�=Xs)) given by Qx;y

Fs
(Ur=Fr) (resp. Qx;y

Xs
(Ur=Fr)) where Q

x;y

Fs
(resp. Qx;y

Xs
) de-

notes Qx;y(�=Fs) (resp. Q
x;y(�=Xs)) and

U i
r =

X i
1 �X i

r

1� r
�
� Z 1

r

uipdp+

Z 1

r

vipdXp

�

+
1

1� r

Z 1

r

�Z 1

p

uiqdq +

Z 1

p

viqdXq

�
dp

with uip := (F i + 1
2
div Gi)(p;Xp) and vi;jp = Gi;j(p;Xp).

But it is straightforward to check that for any r � s

Qx;y

Fs
(�=Fr) = Qx;y

Xs
(�=Fr) = Qx(�=Fr)
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Thus (Xr; r 2 [s; 1]) has the same drift underQ
x;y

Fs
etQ

x;y

Xs
. It is therefore a Markovian

Brownian di�usion under Qx;y, whose drift at time t is equal to :

bxy;i(t; Xt) =
yi �X i

t

1� t

�Qx;y
�Z 1

t

ui(p;Xp)dp+

Z 1

t

vi(p;Xp)dXp=Xt

�
(22)

+
1

1� t
Qx;y

�Z 1

t

�Z 1

p

ui(q;Xq)dq +

Z 1

p

vi(q;Xq)dXq

�
dp=Xt

�

with ui(p;Xp) = (F i + 1
2
div Gi)(p;Xp) and vi;j(p;Xp) = Gi;j(p;Xp).

The other steps amount to show that each bridge Qx;y is equal to (Pb)
x;y so that,

once we mix them up under � to get Q =
R
Rd�Rd

Qx;y �(dxdy) the probability that

we obtain is indeed the law of a reciprocal process.

Step 2: We now come to an important point : to establish the regularity of bxy, in

such a way that we can compute F xy and Gxy, the reciprocal characteristics of Qx;y.

More precisely, we will show that under the assumptions (H1), for � a.e. (x; y), the
map (t; z) 7! bxy(t; z) 2 C1;2([0; 1[�Rd ;R). For this purpose the relevant expression
for bxy is the following (it can be proved by the same argument as in Step 1 : for

any (t; z) 2 [0; 1[�Rd and � 2]t; 1[,

bxy;i(t; z) =
Qx;y(X i

� � zi=Xt = z)

� � t

�Qx;y
�Z �

t

ui(p;Xp)dp+

Z �

t

vi(p;Xp)dXp=Xt

�
(23)

+
1

� � t
Qx;y

�Z �

t

�Z �

p

ui(q;Xq)dq +

Z �

p

vi(q;Xq)dXq

�
dp=Xt

�

Let us �rst notice this implies the following identity

bxy;i(t; z) =
1

� � t

�Z
Rd

wiq(t; z; �; w; 1; y)dw� zi
�

�

Z �

t

Z
Rd

�i(u; w)q(t; z; u; w; 1; y)dwdu (24)

+
1

� � t

Z �

t

Z �

s

Z
Rd

�i(u; w)q(t; z; u; w; 1; y)dwduds

where �i(u; w) := (F i + 1
2
div Gi + Gi:bxy)(u; w). Indeed, by the same argument

as in Step 1, X is also Markovian under Q:;y := Q(�=X1 = y). Therefore, for any

0 < t < u < 1 and any regular function h,

Qx;y(h(u;Xu)=Xt = z) = Q:;y(h(u;Xu)=Xt = z)

=

Z
Rd

h(u; w)q(t; z; u; w; 1; y)dw:
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We want to di�erentiate under the integral signs of (24). Using assumptions (H1.3)

and (H1.4), it is su�cient to check that

Z �

0

Z
Rd

j�i(u; w)j�V(u; w; 1; y)dwdu < +1

which under (H1.4) reduces to the condition

Z �

0

Z
Rd

jGi;j(u; w)jjbxy;j(u; w)j�V(u; w; 1; y)dwdu < +1:

Let us divide and multiply the above integrand by q(0; x; u; w; 1; y); by Cauchy-

Schwarz inequality w.r.t. the �nite measure q(0; x; u; w; 1; y)dwdu we obtain the

following upper bound :

dX
j=1

� Z �

0

Z
Rd

jGi;j(u; w)j2
�V(u; w; 1; y)

2

q(0; x; u; w; 1; y)
dwdu

�1

2

I(j)

where

I(j) =
�Z �

0

Z
Rd

jbxy;j(u; w)j
2
q(0; x; u; w; 1; y)dwdu

�1

2

=
�
Qx;y

Z �

0

jbxy;j(u;Xu)j
2
du
� 1

2

which is �nite since H(Qx;yjF�
;P x;yjF�

) < +1. For any j the coe�cient of I(j) is
also �nite by assumption (H1.4) and Proposition 2.8.

Step 3: We now assume that Q satis�es the set of assumptions (H1)-(H2) and (A0).

Then 8� < 1, for � a.e. (x; y), Qx;y restricted to the interval [0; � ] satis�es the

assumptions of Proposition 3.2. The proof of this assertion makes no di�culty

using the same arguments as in Step 2. Details are left to the reader. Therefore the

following IBPF holds true with (F xy; Gxy) denoting the reciprocal characteristics of
Qx;y: for all g 2 E� , 8� 2 S� , 81 � i � d,

Qx;y(Dgi�) = Qx;y
�
� Æ(gi)

�

+Qx;y
�
�

Z �

0

gi(r)

Z �

r

(F xy;i +
1

2
div Gxy;i)(t; Xt) dtdr

�

+Qx;y
�
�

Z �

0

gi(r)
dX

j=1

Z �

r

Gxy;i(t; Xt)dXtdr
�
: (25)

Step 4: At this stage we have proved that Qx;y satis�es two IBPF. The �rst one has

been obtained in Step 3; the other one is the conditioned version of the IBPF (21)
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for Q:

Qx;y(Dgi�) = Qx;y
�
� Æ(gi)

�

+Qx;y
�
�

Z 1

0

gi(r)

Z 1

r

(F i +
1

2
div Gi)(t; Xt) dtdr

�

+Qx;y
�
�

Z 1

0

gi(r)

Z 1

r

Gi(t; Xt)dXtdr
�
: (26)

Both IBPF hold true for �-a.e. (x; y), any � < 1,g 2 E� , 8� 2 S� , 81 � i � d.

In this last step of the proof we will conclude that Q belongs to the reciprocal

class of Pb. In order to do so it is su�cient to prove that for �-a.e.(x; y) the pair

of functions (F xy; Gxy) coincides with (F;G). This will be a consequence of the

following identi�cation Proposition.

Proposition 4.2 Let ~Q be a probability measure on C([0; � ];Rd) and B be a d-

dimensional ~Q-Brownian motion. Let u = (ui)i (resp. v = (vij)ij) be a continuous

process on [0; � ] with values in R
d
(resp. R

d
d
). Let us assume that for all i 2

f1; : : : ; dg,
R �

0
juisjds+ supt2[0;� ] j

R t

0
visdBsj

2
2 L1( ~Q) and

8g 2 E� , 8� 2 S� , for all i 2 f1; : : : ; dg,

~Q

�
�

Z �

0

gi(r)
�Z �

r

uisds+

Z �

r

dX
j=1

vijs dB
j
s

�
ds

�
= 0:

Then the two processes u and v are equal ~Q-a.s. to the constant 0 on [0; � ] .

Proof of Proposition 4.2 Let us denote by D the set of step functions on [0; � ]
with values in the set of rational numbers whose jump points are all rationals. D is

a countable set. Let g 2 D and t � � be a rational. Let us de�ne

~g(r) =
�
g(r)�

1

t

Z t

0

g(s)ds
�
1[0;t](r)

By construction ~g is a step function on [0; t] and satis�es
R t

0
~gsds = 0. Therefore

~Q� a:s:

Z t

0

~gi(r)(

Z t

r

uisds+

Z t

r

dX
j=1

vijs dB
j
s)dr = 0

By Fubini's theorem this implies

~Q� a:s:

Z t

0

uis(

Z s

0

~gi(r)dr)ds+

Z t

0

dX
j=1

vijs (

Z s

0

~gi(r)dr)dBj
s = 0:

Ito formula implies that ~Q a.s. for any g 2 D and any t rational,
R t
0

1
s
(g(s) �

1
s

R s

0
g(r)dr)

R s
0
ruirdrds is equal to

R t

0
1
s
(g(s) � 1

s

R s

0
g(r)dr)

R s
0
rvirdBrds. These are
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two processes continuous w.r.t. t. Thus the identity holds for any t 2]0; � [. Di�er-
entiating w.r.t. t we obtain:

8g 2 D; 8t 2]0; � [;

(gt �
1

t

Z t

0

grdr)(

Z t

0

ruirdr �

dX
j=1

Z t

0

rvi;jr dBj
r) = 0: (27)

Let us now take for 0 < a < t < � , g := 1[0;a[ + 21[a;� [. For such a choice (g(t) �
1
t

R t

0
g(r)dr) = a

t
> 0. Therefore the process (

R t

0
ruirdr �

R t

0
rvi;jr dBj

r)t2[0;� ] is a.s.

equal to 0 which proves that u � v � 0 a:s:: �

We must therefore check that Qx;y satis�es the assumptions of this theorem. Let us

set

u(1);is � (F xy;i +
1

2
div Gxy;i +Gxy;i:bxy)(s;Xs); v(1);i;js � Gxy;i;j(s;Xs)

and

u(2);is � (F i +
1

2
div Gi +Gi;jbxy;j)(s;Xs); v(2);i;js � Gi;j(s;Xs):

In accordance with the notations of Proposition 4.2 we also de�ne

uis � u(1);is � u(2);is and vi;js � v(1);i;js � v(2);i;js :

As a result of the work already done in Steps 2 and 3, it is easy to see that Theorem

4.2 applies to (u; v) which are therefore Qx;y-a.s. equal to the constant 0. This is

equivalent to the identity

Qxy a.s. 8s 2 [0; 1[ (F xy; Gxy)(s;Xs) � (F;G)(s;Xs): (28)

Since any Xt has a strictly positive density w.r.t Lebesgue measure on R
d , the

functions F xy(s; x) (resp. Gxy(s; x)) and F (s; x) (resp. G(s; x)) which are continuous
in (s; x) coincide on [0; 1[�Rd . This ends the proof of Theorem 4.1. �

5 Application to gradient di�usions

In the previous sections our data has been a reference drift function b(t; x). In the

present section we characterize the fact that b is a gradient w.r.t. the space variable

using the tools of IBPF satis�ed by reciprocal processes which we have developed

in the preceding sections. Let us notice that when b is a gradient then the drifts of

all Brownian di�usions in the reciprocal class R(Pb) are gradients (cf. the proof of
Theorem 2.6).

Our �rst application provides a characterization of the laws of gradient Brownian

di�usions among a large class of probabilities Q which satisfy a �nite entropy con-

dition. Being solution of the speci�c IBPF (29), it will be proved that Q is not

only a Brownian semi-martingale, but a Markovian one, and moreover the absence
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of the term containing the Reciprocal Characteristic G will imply that its drift is

the gradient of some function. Our second result generalizes a famous statement of

Kolmogorov. In [17], Kolmogorov proved that a Markov di�usion can be reversible

only if its drift is a gradient. Our extension of this result states that it is possible

to �nd a reversible reciprocal process in the class R(Pb) only if b is a gradient.

As before the reference drift b belongs to C1;2([0; 1]� R
d ;Rd) and satis�es assump-

tions (5)-(7) and we consider probability measures on the path space satifying some

a priori regularity to make sense to the IBPF. For Q a probability measure on the

path space, we denote by �0 its projection at time 0 .

(H1) Conditional density; regularity, domination:

(H 1:1) for �0 a.e .x, 80 < t < u � 1; 8(x; z) 2 R
d�Rd there exists a strictly positive

function qx such that

Q(Xu 2 dwjX0 = x;Xt = z) = qx(t; z; u; w)dw

and the map (t; z) 7! qx(t; z; u; w) is in C1;2([0; u]� R
d ;R)

(H 1:2) 80 < � < 1; 8(t; z) 2 [0; � ]�Rd , there exists a neighborhood V of (t; z) and
a function �V(u; w) such that whenever @� denotes @t; @zk or @zkzl for k; l 2 f1; : : : ; dg
it holds :

sup
(s;�)2V

j@�q
x(s; �; u; w)j � �V(u; w)

Z 1

0

Z
Rd

�V(u; w)(1 + jwj2N)dwdu < +1

(H2) Integrability conditions on the derivatives of the conditional density:

(H 2:1)
R 1

0

R
Rd
j@�q

x(t; Xt; u; w)j(1 + jwj2N)dwdu 2 L1(Qx)

where @� denotes @t; @zkzl for k; l 2 f1; : : : ; dg

(H 2:2)
R 1

0

R
Rd
j@zkq

x(t; Xt; u; w)j(1 + jwj2N)dwdu 2 L2(Qx).

Theorem 5.1 Let Q be a probability measure in PH(
) which satis�es the condi-

tions (H1) and (H2) and (A0).

If the following IBPF holds under Q :

for all g step function on [0; 1], 8� 2 S, for all i 2 f1; : : : ; dg,

Q(Dgi�) = Q
�
�Æ(gi)

�
�Q

�
�b(1; X1)

�Z 1

0

gi(r)dr

+ Q
�
�

Z 1

0

gi(r)

Z 1

r

F i(t; Xt)dtdr
�
; (29)

then b is a gradient and Q is in fact equal to the law of a gradient Brownian di�usion

with drift b.
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Remark 5.2 1. The conclusion of the above theorem is, in other words, that

the canonical process under Q satis�es equation (4)

dXt = dBt + b(t; Xt) dt;

but its initial condition is not necessarily deterministic.

2. It will be proved below that, due to the �terminal term� or second term in

the RHS of (29), the coordinate process under Q is not only reciprocal but

Markovian. Moreover the fact that there is no term containing the stochastic

integral of some function G as in the general formula (21) will imply the

gradient property of the drift.

Proof of Theorem 5.1 The proof is divided in two steps.

In Step 1, we prove that, for �0-a.e. x, Qx is a Brownian di�usion, whose drift is

denoted by bx. We also prove that its reciprocal characteristics (F x; Gx) coincide
with (F; 0).
In Step 2 we prove that b is a gradient and conclude that X under Q is a Markov

Brownian di�usion solution of dXt = b(t; Xt)dt + dWt where W is a Brownian

motion.

Step 1. We can adapt Step 1 in the proof of Theorem 4.1 in this simpler situation

(G = 0) and obtain that for �0-a.e. x, Q
x is a Brownian di�usion, whose drift bx is

given by, for any r < 1, by

bx;i(r;Xr) =
Qx(X i

1 �X i
r=Xr)

1� r
�Qx

�Z 1

r

F i(p;Xp)dp=Xr

�

+
1

1� r

Z 1

r

Qx
� Z 1

p

F i(q;Xq)dq=Xr

�
dp (30)

Now, the key tool in order to identify (F x; Gx) with (F; 0) will be to apply Proposi-

tion 4.2 to Qx. In order to do so, we must �rst prove that Qx satis�es at the same

time two IBPF. The �rst formula is an immediate consequence of identity (29) for

Q. Indeed, if in (29) we take � = '(X0)~� and g step function on [0; 1], we obtain
for �0-a.e. x:

Qx(Dgi�) = Qx
�
� Æ(gi)

�
�Qx

�
� b(1; X1)

�Z 1

0

gi(r)dr

+Qx
�
�

Z 1

0

gi(r)

Z 1

r

F i(t; Xt) dtdr
�
: (31)

The second formula will be obtained when we have shown that Qx satis�es the

assumptions of Proposition 3.2 on each interval [0; � ], � < 1. Let � < 1 be �xed and

1 � i � d. Let us recall that

bx;i(�;X�) =
Qx(X i

1 �X i
�=X�)

1� �
�Qx

�Z 1

�

F i(p;Xp)dp=X�

�

+
1

1� �

Z 1

�

Qx
� Z 1

p

F i(q;Xq)dq=X�

�
dp:
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From assumption (A0), which is still true under Qx, we deduce that

for �0 � a.e.x; Qx(jbx;i(�;X� )j) < +1:

From now on we restrict ourselves to the set of x such that this holds. In order to

satisfy the assumptions of Proposition 3.2 it is su�cient that for all i; j 2 f1; : : : ; dg :

(i) bx 2 C1;2([0; � ]� R
d ;Rd)

(ii) the two integrals
R �

0
jF x;i + 1

2
div Gx;ij(t; Xt)dt and

R �

0
jGx;ij(t; Xt)j

2
dt belong to

L1(Qx)

All the necessary arguments have already been developped in detail in the proof of

Theorem 4.1, Steps 2 to 4. Here the situation is even simpler since there are no

terms in G in the expression of bx. For this reason we do not write down the details

but refer the reader to the proof of Theorem 4.1. We conclude that for �0-a.e. x,

any F� -measurable � in S, and any step function g on [0; � ],

Qx(Dgi�) = Qx
�
� Æ(gi)

�
�Qx

�
� bx;i(�;X�)

�Z �

0

gi(r)dr

+Qx
�
�

Z �

0

gi(r)

Z �

r

(F x;i +
1

2
div Gx;i)(t; Xt) dtdr

�

+Qx
�
�

Z �

0

gi(r)
dX

j=1

Z �

r

Gx;ij(t; Xt)dX
j
t dr
�
: (32)

Let us now restrict to step functions g 2 E� . Then comparing identities (31) and

(32) one obtains :

Qx
�
�

Z �

0

gi(r)

Z �

r

F i(t; Xt) dtdr
�

= Qx
�
�

Z �

0

gi(r)

Z �

r

(F x;i +
1

2
div Gx;i)(t; Xt) dtdr

�

+Qx
�
�

Z �

0

gi(r)
dX

j=1

Z �

r

Gx;ij(t; Xt)dX
j
t dr
�
:

Since the processes uit(X) = (F x;i + 1
2
div Gx;i + Gx;i:bx � F i)(t; Xt) and vijt (X) =

Gx;ij(t; Xt) satisfy the assumptions of Proposition 4.2, we conclude that they are

equal to zero dt dQx-a.s. These assumptions are indeed satis�ed as a consequence of

conditions (i) and (ii) above and Proposition 2.8 for F . This yields for �0-a.e. x:

Qxa.s.; 8t 2]0; 1[;
�
F x(t; Xt); G

x(t; Xt)
�
=
�
F (t; Xt); 0

�
: (33)

We conclude as in the proof of Theorem 4.1 Step 4 that Gx � 0 and F x � F . This

implies that Qx is a gradient di�usion, but this is not su�cient to conclude the same

for Q, since we do not yet know that Q is a di�usion.
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Step 2: In the present step we prove that b is a gradient, that is there exists a

function ' de�ned on [0; 1]� R
d , di�erentiable in the space variable, such that for

all i 2 f1; : : : ; dg; (t; y) 2]0; 1[�Rd ; bi(t; y) = @i'(t; y). The key tool will again be

the identi�cation of two IBPF for Qx. Let us �x � 2 [0; 1[. The assumption of �nite

entropy for Q and assumption (H 2:2) imply that Proposition 3.3 applies to QxjF�

and provides the �rst of the two IBPF we will consider: for any � 2 S� and any

step function g on [0; � ],

Qx(Dgi�) = Qx
�
� Æ(gi)

�
(34)

�Qx

�
�

Z �

0

gi(s)
�
bx;i(s;Xs) +

dX
j=1

Z �

s

@ib
x;j(p;Xp)dB

j
p

�
ds

�
;

where B is the Qx-Brownian motion equal to the martingale part of X under Qx.

The second IBPF for Qx is (31). Ito formula for bi under Qx yields for any s < �

bi(1; X1) = bi(s;Xs) +
dX

j=1

Z 1

s

@jb
i(p;Xp)dB

j
p (35)

+

Z 1

s

�
F i +

1

2
div Gi +Gi:bx +

dX
j=1

@ib
j(bx;j � bj)

�
(p;Xp)dp

Indeed,

@tb
i +

dX
j=1

@jb
ibx;j +

1

2
�bi

= @tb
i +

dX
j=1

(@jb
i � @ib

j)bx;j +
dX

j=1

@ib
jbx;j +

1

2
(div Gi + @idiv b)

= F i +
1

2
div Gi +Gi:bx +

dX
j=1

@ib
j(bx;j � bj)

We now plug (35) into (31) and look at the di�erence of the obtained IBPF with

(34): for any � 2 S� and g with support in [0; � ],

Qx

�
�

Z �

0

gi(s)
�
(bi � bx;i)(s;Xs)

+

Z 1

s

uipdp+
dX

j=1

Z �

s

(@jb
i � @ib

x;j)dBj
p

�
ds

�
= 0 (36)

where uip(X) =
�

1
2
div Gi +Gi:bx +

Pd

j=1 @ib
j(bx;j � bj)

�
(p;Xp).This implies

(bi � bx;i)(s;Xs) +

Z 1

s

Qx(uipjF� )dp+
dX

j=1

Z �

s

(@jb
i � @ib

x;j)dBj
p = 0 (37)
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for any s 2]0; 1[, Qx-a.s. Taking the expectation w.r.t. Qx and the �ltration Fs,

yields

8i 2 f1; : : : ; dg; (bi � bx;i)(s;Xs) = �

Z 1

s

Qx
�
uip=Fs

�
dp:

We thus conclude that (bi� bx;i) is a bounded variation process. Its martingale part

is therefore equal to zero which is equivalent, using Ito formula, to

8i; j 2 f1; : : : ; dg; @jb
i(s;Xs) = @jb

x;i(s;Xs): (38)

Let us �x (i; j). Since bx is a gradient @jb
x;i = @ib

x;j and therefore, for all s 2]0; 1[,

@jb
i(s;Xs) = @ib

j(s;Xs)

which implies that b is also a gradient. Moreover identity (38) also implies that the

function (bi � bx;i)(t; y) is independent of y. Let us denote it by ai(t; x). Since b

is a gradient, G � 0 and uip(X) �
Pd

j=1 @ib
j(bx;j � bj)(p;Xp). From (37) we then

conclude that ai(t; x) solves the following integral equation :

8s 2]0; 1[; Qxa:s:; ai(s; x) = �

Z 1

s

Qx(

dX
j=1

@ib
j(p;Xp)jFs)a

j(p; x)dp: (39)

Equivalently we have obtained that for �0- a.e. x and Qx-a.e.!, the vector valued

function a(t; x) solves the linear system

d

dt
a(t; x) = M(t; !)a(t; x); (t; x) 2]0; 1[�Rd ;

where we have denoted by M(t; !) the matrix with entries
�
@ib

j(t; Xt(!))
�
.

This set of conditions is obviously satis�ed when each function ai is constant equal

to zero. We now prove that this is the only possible case. This will be a consequence

of the following lemma.

Lemma 5.3 With the above notations, for any � < 1 and all i 2 f1; :::; dg,

Qx
�
bi(1; X1)�

Z 1

�

F i(t; Xt)dt=F�

�
= bx;i(�;X� )

Proof of Lemma 5.3: Let g be a step function on [0; � ]. We do not assume

that
R �

0
g(r)dr = 0. Let � 2 S� . Taking into account that (F x; Gx) = (F; 0) and

comparing (31) and (32), for (�; g), we obtain the following identity:

Qx

�
�
�
bx;i(�;X� )� (bi(1; X1)�

Z 1

�

F i(t; Xt)dt)
��Z �

0

gi(r)dr = 0

We immediately conclude since this identity holds for any �; g. �
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Lemma 5.3 implies that lim�%1 b
x;i(�;X� ) = bi(1; X1) in L1(Qx). Since ai(t; x) =

(bi�bx;i)(t; Xt) and t 7! b(t; Xt) is continuous at t = 1, we conclude that lim�%1 a(�; x) =
0 and the only solution is a(t; x) � 0. We have now proved that

for �0-a.e. x; 8t 2]0; 1[; y 2 R
d ; b(t; y) = bx(t; y):

This enables us to conclude that X under Q is a Markov Brownian di�usion solution

of dXt = b(t; Xt)dt+ dWt where W is a Q-Brownian motion. �

Our second application deals with a generalization of a result of Kolmogorov [17];

this famous result states that a Brownian di�usion with drift b, supposed time-

homogeneous, is reversible if and only if b is a gradient. Here we require weaker

assumptions on the reversible law : we only require that there exists one reversible

law in the reciprocal class of Pb. Furthermore, the drift b is not supposed to be

time-homogeneous and may depend on time.

Theorem 5.4 Suppose that there exists a probability measure Q in PH(
) in the re-

ciprocal class of Pb which satis�es the integrability condition (A0). If Q is reversible,

then there exists a function ' such that

8t 2]0; 1[; x 2 R
d ; i 2 f1; : : : ; dg; bi(t; x) = �@i'(t; x):

Furthermore, if Q is a Brownian di�usion with drift b, then b is time-homogeneous

and Q is equal - up to a renormalizing factor - toR
Rd
Pb(:=X0 = x) exp(�2'(x)) dx.

Example : Let us consider the particular case where the drift function

b�(x) = ��x is the gradient of the potential '(x) = �1
2
�jxj2.

In [20] section 5 (cf. also [12] and [19]), we considered the law Q 2 P(
) of the

solution of the following s.d.e.

dXt = dBt � �Xt dt; X0 = X1:

The process Q, called periodic Ornstein-Uhlenbeck process, is reciprocal and we

proved in [20] that it belongs to the reciprocal class of the (Markov) Ornstein-

Uhlenbeck process Pb�. Q is a particular Gaussian mixture of periodical bridges

of Pb�. The probability Q is reversible since it is a zero mean Gaussian process

with stationary covariance function. So it provides an example of a non Markovian

reversible law in the class of the di�usion Pb�. The above example proves therefore

that if b is a gradient there can exist more than one reversible process in the reciprocal

class Pb, one beeing a Markovian di�usion with drift b and others which are reciprocal

but not Markovian.

Furthermore, the (Markovian) stationary Ornstein-Uhlenbeck process P b� , which

satis�es the same s.d.e. as above but with initial law on R
d the centered Gaussian

one with variance 1
4�
, is the unique reversible process inside of the set RM(Pb�)
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of Markovian reciprocal processes in the class of Pb�. Indeed, by the de�nition of

RM(Pb�) given in (13), a Markovian reciprocal process in this set is determined by

two measures �0 and �1. But if it is reversible �0 = �1, and then its distribution

at time 0 determines it uniquely. Since we have already exhibited one reversible

element of RM(Pb�), i.e. P b� ; it is the unique one in RM (Pb�).

Proof of Theorem 5.4 :

By assumption, Q 2 R(Pb) and Theorem 3.4 applies. So IBPF (21) is satis�ed

under Q. Since Q has a �nite entropy, it is a Brownian semi-martingale and, as

indicated in Remark 3.5, IBPF (21) can be rewritten as follows

8� 2 S, for all i 2 f1; : : : ; dg and g 2 E ,

Q(Dgi�) = Q
�
� Æ(gi)

�
+ Q

�
�

Z 1

0

gi(r)

Z 1

r

F i(t; Xt) dt dr
�

+ Q
�
�

Z 1

0

gi(r)

Z 1

r

Gi(t; Xt) Æ dXt dr
�
: (40)

Let us denote by R the time reversal map on 
:

R(X)t = X1�t; t 2 [0; 1];

and by Q̂ the image of Q by R :

Q̂ = Q ÆR�1:

Remarking that, for all � 2 S and g 2 E , (Dg�) ÆR � �Dĝ(� ÆR) where ĝ = g ÆR,

one obtains from (40):

Q̂(Dgi�) = �Q
�
Dĝi(� ÆR)

�
= �Q

�
(� ÆR) Æ(ĝi)

�

� Q
�
(� ÆR)

Z 1

0

ĝi(r)

Z 1

r

F i(t; Xt) dt dr
�

� Q
�
(� ÆR)

Z 1

0

ĝi(r)

Z 1

r

Gi(t; Xt) Æ dXt dr
�

= Q̂
�
� Æ(gi)

�
+ Q̂

�
�

Z 1

0

gi(r)

Z 1

r

F i(1� t; Xt) dt dr
�

� Q̂
�
�

Z 1

0

gi(r)

Z 1

r

Gi(1� t; Xt) Æ dXt dr
�
: (41)

Now recall that Q is supposed to be reversible, that is Q̂ = Q, which implies that Q

also satis�es equation (41). So, under Q, both equalities (40) and (41) hold, which

implies : 8� 2 S, for all i 2 f1; : : : ; dg and g 2 E ,

Q

�
�

Z 1

0

gi(r)
�Z 1

r

F i(t; Xt)dt+

Z 1

r

Gi(t; Xt) Æ dXt

�
dr

�
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= Q̂

�
�

Z 1

0

gi(r)
�Z 1

r

F i(1� t; Xt)dt�

Z 1

r

Gi(1� t; Xt) Æ dXt

�
dr

�

By Proposition 4.2, this implies that :

8t 2]0; 1[; F (t; :) = F (1� t; :) and G(t; :) = �G(1� t; :): (42)

In fact, the same identities remain true for any � 2 [0; 1] instead of 1, since we could

do the same proof as above reversing the time at the time � instead of 1. We thus

obtain :

8� 2]0; 1]; 8t 2]0; � [; F (t; :) = F (� � t; :) and G(t; :) = �G(� � t; :):

This means that the characteristics F is independent of time and that the charac-

teristics G is equal to 0. This last sentence is equivalent to the fact that the function

b is a gradient (not necessarily independent of time) : b(t; x) = �r'(t; x).

Moreover, if Q is a Brownian di�usion with drift b (with �nite entropy), its time

reversal is a Brownian di�usion with drift b̂ (cf. [8]). The reversibility assumption

thus implies that b = b̂ and does not depend on time. Now, it is well known that

the measure with density exp(�2'(x)) with respect to Lebesgue measure, taken

as initial law, makes the Brownian di�usion with drift b = �r' reversible. It is

furthermore the unique one, up to a multiplicative constant. The conclusion follows.

�

Remark 5.5 1. The identities

8t 2]0; 1[; F̂ (t; :) = F (1� t; :) and Ĝ(t; :) = �G(1� t; :): (43)

were proved by one of us in [25], Proposition 4.5, using the explicit expression

of F̂ and Ĝ as functionals of the reversed drift. They re�ect the symmetry of

the reciprocal characteristics under time reversal. In the Markovian case the

drift does not feature such symmetry (cf. [9]).

2. In the general case, if Q is a probability measure in R(Pb)
T
PH(
), not neces-

sarily reversible, whose time reversal Q̂ is regular enough to de�ne the �reversed

reciprocal characteristics� F̂ and Ĝ, we could also derive identities (43). As

in the proof of Theorem 5.4, the argument would rely on the identi�cation of

two IBPF satis�ed by Q̂.
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