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Abstract

We consider the problem of active feedback control of Rayleigh-Bénard convection via

shadowgraphic measurement. Our theoretical studies show, that when the feedback con-

trol is positive, i.e. is tuned to advance the onset of convection, there is a critical threshold

beyond which the system becomes linearly ill-posed so that short-scale disturbances are

greatly ampli�ed. Experimental observation suggests that �nite size e�ects become im-

portant and we develop a theory to explain these contributions.

As an e�cient modelling tool for studying the dynamics of such a controlled pattern

forming system, we use a Galerkin approximation to derive a dimension reduced model.

1 Introduction

Few problems have received as much attention from scientists and mathematicians studying

nonlinear pattern-forming phenomena as the canonical Rayleigh-Bénard problem ([1, 2, 18]). In

this problem, a horizontal �uid layer is heated uniformly on the underside and cooled uniformly

on the upper side. The primary interest in the behavior of the Rayleigh-Bénard problem stems

from the rich variety of bifurcations and chaotic dynamics that are possible ([5, 7]. Part of

the appeal of the Rayleigh-Bénard system is the relative ease with which precision laboratory

experiments may be conducted. This provides easy comparison of theoretical predictions with

quality data. Since the pioneering work of Busse ([3, 4]) on wave pattern selection, the Rayleigh-

Bénard system has evolved into an area of research in its own right.

Recent interest in controlling or suppressing �uid �ow is motivated by practical applications

such as Czochralski crystal growth ([15]) which is used to manufacture silicon wafers for the

electronics industry. During the Czochralski crystal growth process, convection in the melt

causes inhomogeneity of dopant that limit performance of integrated circuits made from the

silicon wafers. Thus, the general problem of how one controls body force driven convection is an

area of practical as well as scienti�c interest. In this paper, we consider the problem controlling

convection in the Rayleigh-Bénard system.

The �rst work, by [19] on actively controlled convection in the Rayleigh-Bénard system, con-

sidered control through perturbation of the lower boundary temperature in proportion to the

temperature at the mid-height of the �uid layer. In this con�guration, the mid-height temper-

ature pro�le departs from a known constant value only when convective currents are present

in the layer. Using the pattern created by the �ow, the convective currents can be canceled by

imposing a temperature pro�le or heating rate pro�le on the lower boundary. The controller

e�ectively boosts the natural dissipative mechanisms of heat di�usion and molecular di�usion.

[19] also considered control actuation by generating a velocity pro�le at the lower boundary.

Near the onset of convection in the Rayleigh-Bénard problem, the �ow velocities are small when

1



compared to another characteristic velocity - the thermal di�usion velocity, �=d where � is the

thermal di�usivity and d is the length scale of the problem - in this case the layer height. As

a result, small velocities are su�cient to move the eigenvalues of the linearized perturbation

system. Due to the ease of experimental realization, the thermal control method that [20]

suggested is a more interesting actuation method. Also applicable to the present work is the

[21] study of convection control with Joule heating at the lower boundary. Imposing a given

�ux at a boundary is far easier that imposing a given temperature. In the work considered in

this paper, we use Joule heating at the lower boundary since this matches our experimental

investigations ([9, 10, 13]).

The active control method used in Howle's experiments requires measurement of the state of the

system. In the experiments, he used shadowgraphic visualization to measure the wave pattern.

A controller then used this wave pattern information as an input to the control law. In order

to include the wave pattern measurement in the linear analysis [11] used the expression for

shadowgraphic wave pattern derived by [16]. By including the measurement and actuation in

the stability analysis he could study the in�uence of the controller on the stability of convection.

In the work of [11], Howle studied the linear stability of a horizontally in�nite �uid layer

subject to control actuation. He chose no-slip �ow boundary conditions at the upper and lower

boundaries and an isothermal upper temperature boundary condition. The lower boundary

condition used a control law simulating his experiments. The control law speci�es the spatial

distribution of the lower boundary heat �ux while holding the spatial mean heat �ux constant.

This allows the controller to place heating so as to aid the natural dissipation in the system.

In [11] he could show that negative feedback control delays the onset of convection in a hori-

zontally unbounded �uid layer. he also found that the delay in the onset of convection remains

bounded for g ! 1, where g denotes the negative feedback control parameter. In this limit

the reduced Rayleigh number approaches the value Ra
1
=Ra0 ! 3:180, see also [17], where

even higher values of Ra
1
=Ra0 could be determined. Furthermore, Howle found that the

wavenumber is bounded for negative feedback control.

Although the emphasis of experimental and theoretical studies has so far been on the delay

of the onset of the instability, for many applications it is desirable to advance the onset, for

example to enhance mixing in biological and chemical reactions. The focus of this study is the

response of a pattern forming system, here Rayleigh-Bénard convection, to positive feedback

control.

We �nd, that unless we include details of the controlling boundary, such as thickness of the

boundary or size of the heaters, the controlled Rayleigh-Bénard problem is linearly ill-posed for

su�ciently strong positive control. This property has no counterpart in the regime of negative

feedback control when the onset is being delayed. The ill-posedness is removed by additional

cuto� length scales in the system provided by either thin di�usive boundaries and a �nite heater

size which is small compared to the dominant wavelength of the instability for the uncontrolled

system.

The models for our experiments that take all these e�ects into account show a considerable

amount of complexity. This means that in order to understand the stability behavior of the

system we need to make several numerical and asymptotic parameter studies. For this purpose
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we �nd it useful to use reduced dimension models that enable us to e�ciently determine and

understand the key properties of the system.

The primary instability in Rayleigh-Bénard convection, as well as in many other pattern forming

systems such as the �ngering instability in thin �lm �ows, have �ne scale structures in some

of the space dimensions with larger scale coherent in the other dimension, here the vertical

direction. The idea of the Galerkin approximation method is to represent the �ow variables by

a linear combination of basis function, using only a small number of low degree polynomials for

the vertical direction. As a consequence of the resulting reduction in dimension, analytical as

well as numerical treatment of the nonlinear problem simplify and computation times are cut

signi�cantly. The idea for such an approximation has been suggested by Manneville ([14] ch. 4.

sec. 2.4) for Rayleigh-Bénard with homogeneous boundary conditions, and analytical study of

this problem by [6]. We extend this approach for our problem with control boundaries. Here,

we need to be able to resolve also the small horizontal length scale introduced by the heaters

without increasing the resolution in the vertical direction. A more detailed treatment of the

mathematical theory, together with convergence results of the Galerkin approximation, is given

in a companion paper [22].

In section 2, we introduce the experimental apparatus, which includes the convection layer and

the network of heaters on the lower boundary. We then describe the shadowgraphic visualization

procedure used to gather data and �nally the control activation. In section 3, we introduce

the governing equations for the basic controlled system, and explain how the control boundary

condition arises naturally for the experimental setup. In section 4, we discuss why and where

this model becomes ill-posed through a linear stability analysis which shows a blow up of the

growth rate for short wave perturbations. In section 5, we model the e�ects of �nite heater size

and �nite boundary thickness. For the resulting system we derive and investigate, in section 6,

a dimension reduced model based on a Galerkin approximation.

2 Experimental Method

2.1 Convection Layer

In �gure 1, we show a drawing of the convection layer used in these experiments. The d =

0:794cm high �uid layer has horizontal aspect ratios of � = 1:6; 8:0. The �uid layer uses glass

microscope slides as the lower and upper boundaries. The lower boundary is coated with a 300

layer of Cr on the upper side (side toward the �uid). This produces a re�ective surface for use

with shadowgraphic visualization. On the lower side of the lower boundary, a 1200 layer of Au

is deposited upon a 300 layer of Cr. We then etch the heater network shown in �gure 2. The

width of each 252� 2
 heater wire is 100�m. This heater array provides twenty individually

controlled heaters each of which is capable of depositing 8W of heating (orders of magnitude

more than needed) into the glass substrate. Under normal operating conditions, the 100 hour

resistance change of the heaters is < 0:1%.

An uncoated microscope slide serves as the upper boundary. A Neslab RTE-221 computer

controlled bath circulator holds the temperature of the upper boundary constant.
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Figure 1: Drawing of the convection control apparatus

Figure 2: Heater pattern etched into the convection layer lower boundary.
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2.2 Visualization System

Wave pattern information for convection amplitude measurement and for feedback control in-

put is measured by a shadowgraph (see Figure 1). Consider in �gure 1 a laser beam that enters

the �uid layer vertically. The re�ected beam will also leave the layer vertically, unless there is

a horizontal gradient in the depth averaged temperature. In the latter case the re�ected beam

is tilted at an angle proportional to the local gradient. For a constant temperature gradient ev-

erywhere in the �uid layer, the tilt angle is constant for all x-positions. Consequently we would

obtain a shadowgraphic image of uniform brightness, virtually identical to the situation without

any gradient in the depth averaged temperature. Only when the tilt angle varies spatially does

the CCD camera record nonuniformities in the brightness of the shadowgraphic images which

are used to adjust the heat �ux at the lower boundary using linear proportional gain. Therefore

only deviations of the temperature gradient enter the control boundary condition (3.16).

As a measure of convection amplitude, we use the standard deviation of the shadowgraph. We

choose this rather than the more commonly used Nusselt number for experimental convenience.

In order to measure the Nusselt number, we would need to take many point temperature

measurements along the lower boundary. This would not only be di�cult but would also

introduce additional thermal capacitance at the lower boundary as thermistors are not negligibly

small compared to the apparatus. In a steady-state experiment this would not present a

problem. In a control experiment, however, the temperature of the lower boundary must be

continually perturbed. Additional capacitance introduced by thermistors will lower the gain at

which the primary bifurcation changes from stationary convection to time-dependent convection

([11]).

2.3 Control Activation

The convection image read by camera-frame grabber is digitized by the P5 computer. The com-

puter bins the image into twenty regions, each corresponding to a heater. Since the image has

a nonuniform intensity caused by the Gaussian intensity distribution of the laser, we normalize

each bin by subtracting the pre-convection intensity and then dividing the di�erence by the

pre-convection intensity. The control law is then applied to a weighted sum of local intensities

using the weight function

I
0

i =
Ii�1 + 2Ii + Ii+1

4
(2.1)

with the end heaters using a non-centered weight function. For example, the weight function

for the �rst heater is

I
0

1 =
2Ii + Ii+1 + Ii+2

4
: (2.2)

Our choice of these weight functions is arbitrary and seems to produce slightly better results

than a unit weight function at region i.

For the results given in this paper, we use a linear proportional control law. We have also

used linear proportional-di�erential control, nonlinear control, are presently using fuzzy logic

control, but will focus in this paper on linear control. Our control law is

qi = �q (1 + gI
0

i) ; (2.3)
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where g is the proportional gain, qi is the heat �ux supplied to region i, and �q is the mean

heat �ux. This is the same control law we studied by linear stability analysis for controlled

Rayleigh-Bénard convection ([10]), for controlled Rayleigh-Bénard convection with horizontal

boundaries ([11]), for controlled convection in porous media with horizontal boundaries ([8]).

Once the shadowgraph is acquired and processed and the control law (2.3) applied, the heaters

are set to the power qi by a power ampli�er system.

3 Mathematical Formulation

The governing equations for the convection layer are the Boussinesq approximation together

with continuity and energy equation. In dimensionless form,

T
+ = T + �u � (z � 1

2
) ; (3.4)

p
+ = p+R(�u + 1=2)z � Rz

2
=2 (3.5)

denote the temperature and the pressure, both written as the sum of the convective and the

conductive part, where �u is the temperature on the upper boundary. Since the conductive

contribution to the velocity is zero we denote the velocity by u = (v; w). We obtain for the

governing equations

Pr
�1 [@tu+ (u � r)u] = �rp

+ +R T
+ (0; 1)t +r2

u ; (3.6)

r � u = 0 ; (3.7)

@tT + u � rT = r2
T + w ; (3.8)

where the scalings

(x; z) = (
x
�

d
;
z
�

d
); t =

�

d2
t
�

; (v; w) =
d

�
(v�; w�);

T
+ =

k

�qd
T
�

; p =
d
2

��2
p
�

;

9>=
>; (3.9)

have been used. We denote by d, �, � and �q the height of the �uid layer, thermal di�usivity,

�uid density and spatially averaged heat �ux, respectively.

R =
g��qd4

��kth
and Pr =

�

�
(3.10)

denote the Rayleigh and the Prandtl number, with kth, �, g and � the thermal conductivity,

thermal expansion coe�cient, gravity and viscosity, respectively. In our experiments Pr � 200

and we therefore neglect the left hand side of (3.6) in our subsequent analysis.

For the boundary conditions we assume no-slip and impermeability for the velocity at the upper

and lower boundaries

v = w = 0 at z = �1

2
: (3.11)
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Since the temperature is kept �xed at the upper boundary we have

T = 0 at z = +
1

2
: (3.12)

In order to control the heat �ux

q = �kth @z�T � (3.13)

at the lower boundary we set q proportional to the shadowgraphic signal. In the article by [16]

an expression for the intensity distribution of the shadowgraphic �eld in terms of the average

temperature
R d=2
�d=2

T
�
dz

�, under the condition that

d

H
� 1 and

js0j
js1j

� 1 ;

(see �gure 1), could be derived as

ÆI(x�)

I0
= �2H d�

dT �

@
2
x�

Z d=2

�d=2

T
�

dz
�

: (3.15)

Upon substitution of the expression for q = �q(1 + gÆI(x�)=I0) into (3.13) we obtain for the

remaining boundary condition

@zT = �" @2x
Z 1=2

�1=2

T dz at z = �1

2
; (3.16)

where

" =
2gH

d

�
� d�

dT

�
is the control parameter. Note that for most �uids the refractive index � decreases with tem-

perature. Note, also, that the mean heat �ux per unit length is not altered by the control,

since

1

L

Z L

0

 
@
2
x

Z 1=2

�1=2

T dz

!
dx = 0 (3.18)

if we impose for example homogeneous Neumann boundary conditions at the side walls of the

container. This remains also true in the limit L!1, i.e. for su�ciently long (in x-direction)

containers, with bounded heat �ux at the side walls. Naturally, equation 3.18 is satis�ed for

any periodic temperature distribution. As a consequence, the global Rayleigh number remains

unchanged.

4 Ill-posedness for positive feedback

The above formulation adds the control boundary condition (3.16) to the standard model

for Rayleigh-Bénard convection . This control mechanism is quite e�ective. Linear stability
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analysis of the model ([11]) predicts a signi�cant increase in the critical Rayleigh number for

positive ". This delay of the onset of the instability agrees well with experimental results.

In this paper we concentrate on the case of using the controller to introduce positive feedback.

For negative ", the convective instability is enhanced. Moreover beyond a critical value of the

control parameter, the model becomes ill-posed; short wave disturbances experience arbitrarily

large growth rates. This is a direct consequence of the presence of the second derivatives in

(3.16).

4.1 Ill-posedness of the heat equation with positive control

First consider the heat equation alone,

@tT = r2
T; (4.19)

coupled to the control boundary condition (3.16). This is a linear equation and we can easily

determine its well-posedness for di�erent values of the control " using separation of variables

methods.

As a preliminary calculation, we consider �rst, instead of the constant boundary condition

(3.12), the no-�ux temperature condition on the top boundary,

Tz = 0 at z =
1

2
: (4.20)

Integrating (4.19) from z = �1=2 to z = 1=2 and taking the Fourier transform in x gives

@ ~T (k) = �("+ 1)k2 ~T (k); ~T =

Z 1=2

�1=2

Z
e
�ikx

T (x; z)dxdz: (4.21)

We see that the resulting one-dimensional spectrum decays like a di�usion process with coe�-

cient �(" + 1) provided " > �1. For " < �1 we obtain a backward-time di�usion process and

the the problem is ill-posed: perturbations at high wave number k are ampli�ed at rate that

scales as k2 and classical solutions to the forward-time problem do not exist.

We now show that this same ill-posedness results when the no-�ux boundary condition (4.20)

is replaced with a constant temperature condition (3.12). The above trick no longer works so

we solve the full problem using separation of variables. To �rst simplify, we Fourier transform

(4.19) in x to obtain a one-dimension heat equation in the variable z:

T̂t = T̂zz � k
2
T̂ ; (4.22)

with boundary conditions (3.12) and (3.16). We look for a solution of the form T̂ (z; t; k) =

f(z; k)e�(k)t. Plugging this into (4.22) gives a transcendental equation for �,

"k
2

� + k2("+ 1)
=

(
cosh(

p
k2 + �); k

2 + � � 0

cos(
p
k2 + �); k

2 + � < 0:
(4.23)
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With the change of variables � = 1 + �=k
2, (4.23) simpli�es to

"

� + "
=

(
cosh(k

p
�); � � 0

cos(k
p
�); � < 0:

(4.24)

We are interested in when (4.24) has roots � > 1, which imply instability and possible ill-

posedness. First we consider the case " > 0. For this case one can check that the largest root is

� = 0 which corresponds to the null eigenfunction and thus must be discarded. Smaller roots

�n exist are increasingly more negative, scaling like �(2n + 1)2�2=4k2 n!1.

In the case �1 � " < 0, the roots are all less than one, indicating stability. However there is a

single root �0 that lies between zero and one when k is su�ciently large, k > �2=". For large
k, � � �" which means � � (�"� 1)k2, i.e. for large k the largest eigenvalue aligns with the

largest eigenvalue for the problem with a no-�ux boundary condition (4.20).

For " < �1 there is a positive root whenever k > �2=". That root also yields � � (�"�1)k2 for

large k, as in the no-�ux case. In particular, the problem with constant temperature boundary

condition (3.12) is ill-posed for " < �1. Furthermore, we �nd that for complex eigenvalues �

the real and imaginary parts of the corresponding transcendental equation have no solution for

" < 0, while all solutions that do exist for " > 0 decay.

4.2 Ill-posedness for the full Rayleigh-Bénard system with positive

control

We now consider the full system and linearize (3.6)�(3.8), (3.11)�(3.12) and (3.16) about their

conductive state and using the normal mode ansatz

T (x; z; t) = �(z)e�t+ikx ;

w(x; z; t) = W (z)e�t+ikx ;

with growth rate � and wavenumber k we obtain the following linear eigenvalue problem for

the amplitude of the temperature �(z) (see [11]) :

(@2z � k
2)2(@2z � k

2 � �)� = �k2R� ; (4.25)

(@2z � k
2 � �)�

�
�1

2

�
= 0 ; (4.26)

@z(@
2
z � k

2 � �)�

�
�1

2

�
= 0 ; (4.27)

�

�
1

2

�
= 0 and @z�

�
�1

2

�
= "k

2

Z 1=2

�1=2

� dz : (4.28)

We then discretize these equations using a pseudo-spectral method, then solve for the leading

eigenvalue by inverse vector iteration. We observe that the critical wavenumber kc !1 when
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10



−2 −1 0 1 2 3 4 5 6 7 8 9 10
ε

0

1000

2000

3000

4000

Rc(ε)

Figure 4: Critical Rayleigh numbers Rc(")

11



" ! �1, while at the same time the critical Rayleigh number Rc ! 0. This can be seen in

�gures (3) and (4). For " < �1 we �nd that � ! 1 for k ! 1, i.e. the problem becomes

ill-posed.

In fact, we can observe this transition straightforwardly by solving the problem (4.25)�(4.28)

asymptotically for small R. To leading order the solution of (4.25)�(4.28) can be represented

as

�0(z) = (A1 + A2z) cosh(kz) + A3 cosh
�p

k2 + �z

�
+(B1 +B2z) sinh(kz) +B3 sinh

�p
k2 + �z

�
(4.29)

where A1�A3 and B1�B3 are constants to be determined. If we substitute this into the boundary

conditions (4.26)�(4.28), we obtain the solvability condition for the linear stability, Det(A) = 0,

where A = [v1;v2;v3;v4;v5;v6] with the column vectors

v1 = cosh(k=2) [��;��;�k� tanh(k=2); k� tanh(k=2); 1;�k(1 + 2") tanh(k=2)] ;

v2 = cosh(k=2)
�
2k tanh(k=2)� �=2;�2k tanh(k=2) + �=2; (2k2 � �)� k=2� tanh(k=2) ;

(2k2 � �)� k=2� tanh(k=2); 1=2; 1 + k=2 tanh(k=2)
�
;

v3 =
h
0; 0; 0; 0; cosh(1=2

p
k2 + �);�(

p
k2 + � + 2k2"=(

p
k2 + �)) sinh(1=2

p
k2 + �)

i
;

v4 = cosh(k=2) [�� tanh(k=2); � tanh(k=2);�k�;�k�; tanh(k=2); k] ;
v5 = cosh(k=2)

�
2k � �=2 tanh(k=2); 2k � �=2 tanh(k=2); (2k2 � �) tanh(k=2)� k=2� ;

�(2k2 � �) tanh(k=2) + k=2�; 1=2 tanh(k=2);�(1 + ")k + (2"� 1) tanh(k=2)
�
;

v6 =
h
0; 0; 0; 0; sinh(1=2

p
k2 + �);

p
k2 + � cosh(1=2

p
k2 + �)

i
:

For large k, the dominant contributions in Det(A) = 0 are

cosh

�
k

2

�4

cosh

 p
k2 + �

2

!2 �
"k

2 + k
2 + �

�
= 0

which implies

� � �(1 + ") k2 ; (4.30)

the asymptotic behavior of the controlled heat equation, which is ill-posed when " < "
? = �1.

In fact, the experiments do not directly exhibit ill-posedness, i.e. fast ampli�cation of small

wave number perturbations. As long as " > "
? we qualitatively have the same stability diagram

for �(k) with a �nite critical Rc(") and kc("), so that for R > Rc(") a range of wavenumbers

around kc(") have positive growth rates. In this range of " the instability is still buoyancy

driven. For large negative " the control itself drives the instability and the preferred wavelength

approaches the limit set by the details of the control boundary such as the heater size and/or

�nite boundary thickness. The above model completely neglects these boundary e�ects. We

will investigate this aspect in the following section.
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5 Inclusion of boundary e�ects

5.1 Inclusion of �nite boundary thickness

Suppose that on the boundary z = �1=2 there is a plate of thickness Æ attached. Further,

suppose the plate is thin enough so that the time-scale of heat di�usion within the plate is

small compared to the time-scale of heat di�usion within the �uid layer. Hence, the temperature

distribution in the plate is governed by Laplace's equation.

We consider the following problem for the temperature (3.8) with (3.16) replaced by

@zT (x;�1=2; t) = �z(x;�1=2; t) ; (5.31)

T (x;�1=2; t) = �(x;�1=2; t) ; (5.32)

@
2
x� + @

2
z� = 0 for � 1=2� Æ < z < �1=2 ; (5.33)

@z�(x;�1=2� Æ; t) = �" @2x
Z 1=2

�1=2

T dz : (5.34)

If we insert the normal mode ansatz for T and accordingly for �, then solve (5.33) together

with (5.32) and (5.34) and substitute into (5.31) we obtain the new boundary condition

@z�(�1=2) = k tanh(kÆ=2)�(�1=2) + "
k
2

cosh(kÆ=2)

Z 1=2

�1=2

� dz : (5.35)

We now observe that for any �xed " the second term on the right hand side of 5.35, which was

responsible for the ill-posedness becomes negligible as k ! 1 . The �rst term, which only

grows like O(k), turns out to be innocuous.

5.2 Inclusion of �nite heater size

Another e�ect that limits the ampli�cation of short wave disturbances is the �nite size of the

heaters. Suppose, at z = �1=2 there are heaters distributed along the x-axes of equal, �nite

size �. Let us recall how the heat �ux is controlled according to the shadowgraphic signal,

ampli�ed by the proportional gain "

f(x; t) = �" @2x
Z 1=2

�1=2

T dz : (5.36)

Here we have assumed that the resolution of the shadowgraphic image can be neglected com-

pared to the heater size, so that f models a continuous signal. Since we cannot control the heat

�ux at every continuously varying x, we uniquely assign each x-position to one of the heaters

and require the jth heater to emit the total heat �ux of all points that have been assigned to it:
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fj =

Z (j+1)�

j�

f(x; t) dx : (5.37)

In the experiment this expression was modi�ed by averaging fj over neighboring heaters. We

take this feature into account by setting

fj =
1p
2�

Z
1

�1

f(x; t)K(x� xj) dx ; (5.38)

where K(y) = exp(�y2=2�2), and xj = (j + 1=2)� is the center of the jth heater.

If we now assume that each heater produces a Gaussian heat �ux distribution, we obtain the

new boundary condition

@zT =

1X
j=�1

fj
K(x� xj)p

2��
: (5.39)

We approximate the sum in (5.39) by an in integral expression, to obtain the boundary condition

@zT (x;�1=2; t) =
1

2��2

Z
1

�1

�Z
1

�1

f(�; t)K(� � �) d�

�
K(x� �) d�

=
1

2��2
(f ? K) ? K ; (5.40)

where ? denotes convolution. Note, that (5.39) is simply the trapezoidal sum for the outer

convolution, so that the error we make becomes negligible for small �.

Hence, instead of (4.28) we have

@z�(�1=2) = " k
2
e
�k2�2

Z 1=2

�1=2

� dz : (5.41)

Clearly, from (5.41) we see that the e�ect of �nite heater size introduces an exponentially

decaying factor for k !1, and thereby removes the ill-posedness for any given ".

Finally, we combine the boundary e�ects, arising from �nite boundary thickness and �nite

heater size to obtain a new boundary condition for the temperature at z = �1=2 for the linear
stability problem:

@z�(�1=2) = k tanh(kÆ=2)�(�1=2) + "
k
2
e
�k2�2

cosh(kÆ=2)

Z 1=2

�1=2

� dz : (5.42)

In �gure 5 we compare the critical wavenumbers kc(") for Æ = 0:1 and � = 0:1 to the situation

where Æ = 0 and � = 0 (dotted curve), using inverse vector iteration where applicable, i.e. as

14
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Figure 5: Critical wavenumbers kc(") for Æ = 0, � = 0 (dotted) and Æ = 0:1, � = 0:1 (solid).

Most unstable wavenumbers kmu(") (dashed)

long as Rc("; Æ; �) > 0. We observe that the e�ects of the small heater size and plate thickness

are negligible (comparing solid and dotted curves) as long as " is large. Furthermore, the critical

value "? = �1 below which the problem is ill-posed, when boundary e�ects are not taken into

account, i.e. for Æ = 0, � = 0, is now replaced by another critical value when boundary e�ect

are accounted for, e.g. by " = �1:1,for Æ = 0:1, � = 0:1 (see �gure 6, dashed curve), below

which the problem will always be unstable with dominant wavenumber kmu(") (dashed curve).

Beyond that point, as " ! �1 the most unstable wavenumber is eventually determined by

boundary e�ects such as heater size and/or boundary thickness.

In the following section we will explain this and show how to determine these wavenumbers

kmu("). We will also show that this can be done most conveniently by employing a reduced

dimension Galerkin method.

6 Galerkin approximation method for controlled Rayleigh-

Bénard convection

The idea of this approximation method is to represent the �ow variables by a linear combination

of basis function, using only a small number of low degree polynomials for the z-direction. By

testing with the basis functions (i.e. multiplying by the basis functions and integrating over
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Figure 6: Critical Rayleigh numbers Rc(") for Æ = 0, � = 0 (solid) and Æ = 0:1, � = 0:1

(dashed)
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the domain) each equation of the governing system is replaced by a small number of lower

dimension equations.

One modelling aspect of this method is to determine the minimal number of polynomials

necessary to capture the dominant nonlinearity. The usefulness of this method is due to the

fact that in many cases the patterns that arise in many hydrodynamic instabilities can be

approximated by one or two polynomials.

6.1 Galerkin approximation

For our problem the �rst bifurcation state are stationary rolls. For this pattern we want to

determine the minimal Galerkin basis that captures well the features of this �ow.

The minimal polynomial representation for the velocity components (v; w) that satisfy the

no-slip boundary and non-permeability conditions at z = �1=2 and the continuity equation is

v(x; z; t) = u(x; t)�z(z) ; (6.43)

w(x; z; t) = �ux(x; t)�(z) ; (6.44)

where

�(z) =
1

4

�
z
2 � 1

4

�2

: (6.45)

Figure 7 shows streamlines of a roll pattern produced by (6.43)�(6.45) for periodic u(x; t).

The temperature satis�es a nonhomogeneous boundary condition with feedback control. We

take this into account by making the following ansatz for the Galerkin approximation of the

temperature �eld:

T (x; z; t) = h(x; t)H0(z) + s(x; t) `(z) ; (6.46)

where we have split the temperature into a contribution for the problem with homogenous

boundary conditions plus a term that models the control boundary conditions.

This means that

H0(1=2) = 0 and H
0

0(�1=2) = 0 ; (6.47)

while `(1=2) = 0 and `
0(�1=2) = 1 : (6.48)

The lowest order polynomial H0(z) that satis�es the conditions (6.47) is

H0(z) =

�
z � 1

2

��
z +

3

2

�
; (6.49)

see the dashed curve in �gure 8. This representation of the temperature is capable of producing

temperature �elds which are not symmetric with respect to zero.

Rayleigh-Bénard convection rolls diminish the temperature di�erence between z = �1=2 in

that they carry hot �uid from the lower side to the top (�lled arrows in �gure (7)), while cold
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Figure 7: Streamlines for (6.43)�(6.45).

�uid will be transported from the upper side to the bottom (empty arrows). This is necessary

to achieve nonlinear saturation of the rolls.

This is not so, if for example we had chosen Neumann boundary conditions on both sides, see

[6]. In this case we would have needed a third order polynomial as well in order to break the

symmetry of the temperature pro�le.

In [22] we show that the polynomial `(z) not only needs to satisfy conditions (6.48) but in order

to prevent arti�cial singularities that arise through this approximation, for positive feedback

control, we need to require

�1 =

Z 1=2

�1=2

`(z) dz = h`;H0i
Z 1=2

�1=2

H0(z) dz with h`;H0i =
Z 1=2

�1=2

`(z)H0(z) dz : (6.50)

In order to simplify calculations we choose `(z) to be orthogonal to H0(z), i.e. the scalar

product h`;H0i = 0, and therefore also �1 = 0. This leads us to the following polynomial:

`(z) =

�
z � 1

2

��
z
2 +

1

8
z � 1

16

�
: (6.51)

Finally, we obtain the Galerkin approximation by testing the full problem with the test functions

�0 = Æ(x)�z(z) ; �1 = �Æ0(x)�z(z) ; �0 = Æ(x)H0(z) ; (6.52)

to obtain

@
4
xu� 24 @2xu+ 504 u = �R @x

�
60 h� 3

2
s

�
; (6.53)

@th� @
2
xh+

5

2
h+

9

448

�
u@xh+

1

2
h@xu

�
=

15

8
s+

5

448
@xu+

u@xs� 3=2 s @xu

448 � 24 ; (6.54)

with s = "
2

3
@
2
xh (6.55)

representing the control boundary condition.
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Figure 8: Polynomials for the temperature H0(z) (dashed) and H1(z) (solid)

We �rst observe, that for this Galerkin approximation, linearization about the conductive state

h(x; t) = 0, u(x; t) = 0, reduces the linear stability problem to solving

@tĥ = �(k; ")ĥ (6.56)

with growth rate

�(k; ") = �
�
k
2 +

5

2

�
+

75

112
MR + "k

2

�
5

448
MR � 5

4

�
: (6.57)

ĥ(k; t) denotes the Fourier transform of h(x; t) and

M =
k
2

k4 + 24 k2 + 504
: (6.58)

The simplicity of the formula for the growth rate enables us to write down the expression for

the critical Rayleigh number as a function of the feedback control parameter,

Rc(") =
28

15

(4 + 5") (k4c + 24k2c + 504)
2

(2"� 5) k4c + 84"k2c + 2520
: (6.59)

where kc(") is the solution of the polynomial

(4 + 5")
�
"k

8 + 120k6
�
+
�
6360 + 4944"� 2520"2

�
k
4 � 10080"k2 � 302400 = 0 : (6.60)

For example when " = 0 (uncontrolled Rayleigh-Bénard convection ) we have Rc = 1446 and

kc = 2:39 compared to Rc = 1296 and kc = 2:55 for the full problem, which a di�erence of

about 12% and 6%, respectively. If we add just one more polynomial, we obtain Rc = 1350 and

kc = 2:52, which is just a di�erence of 4% and 1%, respectively. In �gures 9 and 10 we compare

both Galerkin approximations to the full model for a range a " values. The model with two

basis functions is included in the appendix.

In the following two �gures we illustrate that our approximation indeed captures the nonlinear

behavior of the full problem. In both �gures we use the model with two basis function. In

�gure 11 we show the temperature and velocity �elds for various ". For the computations

we used a �nite di�erence scheme with a fully implicit Euler, on an x-domain of length L =

40�=kc("). where we use zero Dirichlet boundary conditions on both ends. When we compare

19



−2 −1 0 1 2 3 4 5 6 7 8 9 10
 ε

2

2.5

3

3.5

4

kc(ε)

Figure 9: Comparison of the critical wavenumbers numbers kc("), resulting from the Galerkin

approximation with one polynomial (dotted), two polynomials (dashed), and the full model

(solid)
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Figure 10: Comparison of the critical Rayleigh numbers Rc(") resulting from the Galerkin

approximation with one polynomial (dotted), two polynomials (dashed), and the full model

(solid)
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the portions in the middle, we note, that for " = �0:9 the temperature has a more localized

concentration, and the velocity �eld shows a higher number of rolls for " = �0:9, while for

" > 0 the temperature �eld evens out and the number of rolls saturate.

When we take a look at the streamlines of the temperature �eld for the Galerkin model with

periodic boundary conditions, for " = �0:9 " = 0, " = 0:9 and compare them to the corre-

sponding results of the 2D computation of the full problem, using a pseudo-spectral code with

periodic boundary conditions, we observe very good agreements. We see that the Galerkin ap-

proximation captures the translations and distortions of the temperature �eld as " is increased.

We note that the patterns are a bit shifted in the vertical direction. The reason for this that

the translation occurs slightly earlier for the full problem than for the Galerkin approximation.

In all plots we let levels of the streamlines vary from �0:5 to 0:5 in increments of 0:02. The

length of the x interval was scaled to 2�=kc(").
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Figure 11: Temperature and Velocity �elds for " = �0:9 (top), " = 0 (middle), " = 0:9 (bottom)
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6.2 Adding boundary e�ects

As can be seen from �gure 9, the Galerkin approximations also capture the blow-up of the

critical wavenumber for positive feedback control, while at the same time the critical Rayleigh

number approaches zero. If we now also include boundary e�ects at the control boundary, the

Fourier transformed problem (6.53)�(6.55) now has

ŝ = �2

3

ĥ (6.61)

with


 =

3
2
k sinh

�
kÆ
2

�
+ "k

2
e
�k2�2

1 + k
8
tanh

�
kÆ
2

�
cosh

�
kÆ
2

� (6.62)

instead of (6.55). The growth rate for the corresponding linear stability problem is

�(k; ") = �
�
k
2 +

5

2

�
+

75

112
MR + 


�
5

448
MR � 5

4

�
: (6.63)

For our reduced model, the task of �nding the most unstable wave numbers in the limit "! �1
reduces to determining the extrema of �(k; "). In this limit, the dependence of the dominant

wavenumber kmu on Æ, � and R can implicitly be given by the formula

k tanh

�
kÆ

2

���
�
2
k
2

2
+ Æ

��
R

7M
� 16

M2

�
k
2

4
+

k
2

M2
+
�
k
4 � 24k2 � 1512

� R

112

�

+

�
�
2 +

Æ

32

��
R

7M
� 16

M2

�
k
4 +

16k2

M2
�
�
k
2

42
+ 1

�
144R = 0 : (6.64)

Typically our positive feedback controlled problem with boundary e�ects is always unstable

beyond a certain "
�
< �1, determined by the Æ and �. The most unstable wavenumber

increases as Æ and/or � decrease. For �xed Æ and � the wavenumber asymptotes towards an

upper bound as " ! �1. The size of the band of unstable wavenumbers also asymptotes

towards a value about twice the value of the most unstable wavenumber kmu.

As an example we compare in the �gure 13 the numerical results for the full model, again by

using a pseudo-spectral method for (4.25)�(4.28) with (5.42) for the control boundary condition,

to those of the Galerkin approximations, by using (6.63) and the corresponding formula for the

problem with two polynomials. We let here Æ = 0 and � = 0:1. We choose R = 1000 as well as

R = 0, and note a relatively weak dependence on R for large negative ". Thus for moderate R

all curves can be seen to asymptote towards kmu = 1=�, a limit which can be easily obtained

by inspection of equation (6.64) for R! 0.

Thus, for containers typically used in those experiments, where e.g. d = 0:794cm with aspect

ratios 1:6 and 8 for the x and y direction, we would expect for Æ� = Æ=d = 0:027 and �� =

�=d = 0:4 (i.e. 20 heaters) to observe rolls of size of about 1:26cm for large negative gain. The

size of these rolls would typically increase as " increases towards "�. Preliminary numerical

computations, where boundary e�ects are implemented into our pseudo-spectral code, indicate

that our model (3.6)-(3.8) does not determine a saturation temperature/velocity distribution.

We expect that in practice, the maximal temperature and velocity is limited, for example, by

the capacity of the heaters.
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Figure 13: Most unstable wavenumbers kmu(") for Æ = 0 and � = 0:1. Galerkin approximation

with one polynomial for R = 1000 (dash-dot) and R = 0 (dotted), with two polynomials for

R = 1000 (solid) and R = 0 (dashed), full problem for R = 1000 (circles) and R = 0 (crosses)

7 Discussion and further questions

In this paper we showed that Rayleigh-Bénard convection with positive feedback control via

shadowgraphic measurement becomes ill-posed below a critical value "? of the control parame-

ter, unless the details of the control boundaries such as heater size and boundary thickness are

taken into account. For the resulting problem we developed a simpler model using a Galerkin

approximation, which in e�ect reduced the dimension of our problem by one.

This model enabled us to reduce the task to determine the critical wavenumbers and Rayleigh

numbers to solving polynomial equations, yielding good agreement with the full problem. Fur-

thermore, we found, that by including boundary e�ects the problem will always be unstable

below "
? and the dominant wavenumbers in this regime are eventually determined by them.

Furthermore, we could derive an asymptotic expression in the limit "! �1 for the dominant

wavenumber as a function of the heater size, boundary thickness and Rayleigh number.

The good agreement of the Galerkin approximation and the full model even for a very small

number of basis functions demonstrates the usefulness of such a method as a modeling tool. We

can exploit this to investigate further aspects of controlled Rayleigh-Bénard convection. For

example, we observe from �gure 10 that Rc approaches a �nite value as " ! 1. This means

that the onset of the instability cannot be delayed to arbitrarily large Rayleigh numbers simply

by increasing ". This was already observed in [9]. The main reason for this limitation seems to

be that we control the heat �ux only at the lower boundary. Our Galerkin approximation (with

one temperature polynomial H0) shows that this control mechanism introduces a destabilizing

term

"k
2 5

448
MR
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(in equation 6.57) into the problem. A natural question that arises in this context is the

question of the possibility to achieve perfect control. Ideally, such a control mechanism should

equilibrate the heat �ux at each point in the �uid layer. This can be achieved for our Galerkin

approximation (one polynomial) by introducing heat sources into the bulk according to the

distribution

s(x; t)H0(z) :

In this case, the destabilizing term will be removed.

We also observed that applying this heat source distribution to the full model, as part of an

alternative control mechanism, signi�cantly increases the limiting Rc.

It would be interesting to know if for a Galerkin approximation with two polynomials a similar

control mechanism could be constructed, resulting in a further increase of Rc. The question of

existence of a perfect (bulk) control mechanism for the full problem would then reduce to the

question of the convergence to a limiting heat source distribution as the number of polynomials

goes to in�nity.

Moreover, this method proves of even greater advantage when we investigate nonlinear stabil-

ity. For example, in Wagner (2001) we derive amplitude equations for the velocity and the

temperature from the governing Galerkin reduced equations. Because of the simplicity of the

model this can be easily achieved by a formal asymptotic two-timing argument. Furthermore,

we have extended our problem to the three-dimensional case, see Wagner (2001). The numer-

ical simulations then reduce to a two-dimensional system of equations and prove to be useful

for the study the e�ects of the lateral boundaries on the shape of the convection cells.

Acknowledgment

We would like to thank Andreas Münch for many stimulating discussions and A. Hosoi for

introducing us to the Galerkin method. LEH would like to thank Michael Gustafson and Matt

Brown for making the ampli�er circuits used for these experiments. Acknowledgment is made to

the Donors of The Petroleum Research Fund, administered by the American Chemical Society,

for support of this work through grant ACS-PRF# 31645-G9. This work is supported by ONR

grant N000140110290 and NSF grants DMS-9983320 and DMS-0074049.

Appendix

Galerkin approximation with two temperature functions

We let

T (x; z; t) = h(x; t)H0(z) + f(x; t)H1(z) + s(x; t) `2(z) ; (7.65)
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where H0(z) and H1(z) are chosen such that H0(1=2) = 0 and H
0

0(�1=2) = 0 as before, while

the same conditions for H1(z) together with

hH0; H1i = 0 (7.66)

yields a third order polynomial. We arrive at

H0(z) =

�
z � 1

2

��
z +

3

2

�
; (7.67)

H1(z) =

�
z � 1

2

��
z
2 +

29

32
z +

7

64

�
: (7.68)

The polynomial `2(z) naturally must satify `2(1=2) = 0. The order will be further increased

by requiring the boundary condition at z = �1=2 to be satis�ed. However, in order to avoid

arti�cial singularities, not present in the full problem, requires

�2 =

Z 1=2

�1=2

`2(z) dz = h`2; H0i
Z 1=2

�1=2

H0(z) dz + h`2; H1i
Z 1=2

�1=2

H1(z) dz (7.69)

to be satis�ed. Calculations can be further simpli�ed, if we choose `2(z) to also be orthogonal

to H0 and H1. As a consequence, we obtain a polynomial of fourth order such that �2 = 0 and

normalize it such that `0
2
(�1=2) = 1. This yields

`2(z) = �7

4

�
z � 1

2

��
z
3 +

1

10
z
2 � 17

140
z � 1

280

�
: (7.70)

We can now derive the new model equations by testing the full problem with the test functions

�0 = Æ(x)�z(z) ; �1 = �Æ0(x)�z(z) ; (7.71)

�0 = Æ(x)H0(z) ; �1 = Æ(x)H1(z) ; (7.72)
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to obtain

uxxxx � 24 uxx + 504 u = �R
�
60 h+

27

8
f � 1

5
s

�
x

; (7.73)

ht � hxx +
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2
h+
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448

�
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f +
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�
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fux

�
(7.74)

+
1

448 � 20

�
3 sxu+

37

12
sux

�
;

ft � fxx +
3059
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f � 173

390 � 32
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�
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�
(7.75)

+
1

429 � 200

�
31 sxu+

3 � 329
4

sux

�
;

with s = "

�
2

3
hxx +

1

48
fxx

�
: (7.76)

Linear stability

We linearize about the conductive state to get

uxxxx � 24 uxx + 504 u = �R
�
60 h+

27

8
f � 1

5
s

�
x

; (7.77)

ht � hxx +
5

2
h = � 5

64
f +

15

8
s+

5

448
ux ; (7.78)

ft � fxx +
3059

130
f = �112

13
h� 6132

325
s+

9

130
ux ; (7.79)

with s = "

�
2

3
hxx +

1

48
fxx

�
: (7.80)

The Fourier transform of above equations yields
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ĥt = �
�
k
2 +

5

2

�
ĥ� 5

64
f̂ +

15

8
ŝ+

5

448
i k û ; (7.81)

f̂t = �
�
k
2 +

3059

130

�
f̂ � 112

13
ĥ� 6132

325
ŝ+

9

130
i k û ; (7.82)

where ŝ = �" k2
�
2

3
ĥ+

1

48
f̂

�
and i k û = M R

�
60 ĥ+

27

8
f̂ � 1

5
ŝ

�
: (7.83)

The solution of (7.81)�(7.82) is

ĥ(k; t) = K1 a1 exp(�1 t) +K2 a2 exp(�2 t) ; (7.84)

f̂(k; t) = K1 exp(�1 t) +K2 exp(�2 t) ; (7.85)

where K1 and K2 are constants and

a1 =
1

2D

�
A� C +

q
(A� C)

2
+ 4DB

�
; a2 =

1

2D

�
A� C �

q
(A� C)

2
+ 4DB

�
;(7.86)

�1 =
1

2

�
A + C +

q
(A� C)

2
+ 4DB

�
; �2 =

1

2

�
A+ C �

q
(A� C)

2
+ 4DB

�
; (7.87)

with

A(k2; ") = �k2 � 5

2
+ R

5

448

�
60 +

2

15
"k

2

�
M � 5

4
"k

2
; (7.88)

B(k2; ") = R
5

448

�
27

8
+

1

240
"k

2

�
M � 5

64
� 5

128
"k

2
; (7.89)

C(k2; ") = �k2 � 3059

130
+ R

9

130

�
27

8
+

1

240
"k

2

�
M +

511

1300
"k

2
; (7.90)

D(k2; ") = R
9

130

�
60 +

2

15
"k

2

�
M � 112

13
+

4088

325
"k

2
: (7.91)

From this we calculate the critical Rayleigh numbers Rc(") and critical wavenumbers kc("), by

solving for the dominant growth rate �1

�1 = 0 and
@�1

@R
= 0 : (7.92)
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