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Abstract

In this paper we describe a DSMC algorithm for the Uehling-Uhlenbeck-Boltz-

mann equation in terms of Markov processes. This provides a unifying framework

for both the classical Boltzmann case as well as the Fermi-Dirac and Bose-Einstein

cases. We establish the foundation of the algorithm by demonstrating its link to the

kinetic equation. By numerical experiments we study its sensitivity to the number

of simulation particles and to the discretization of the velocity space, when approx-

imating the steady state distribution.
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1. Introduction

The recent landmark experiments of Bose-Einstein condensation have generated signi�-

cant interest in quantum ideal gases (see [8] and references therein). Kinetic theory is

useful in the study of a quantum gas, especially when the particle dynamics can be de-

composed into two-body collisions and a mean �eld potential. For this regime, Uehling

and Uhlenbeck [16] extended the Boltzmann equation to quantum systems by including

the Pauli factor. In the spatially homogeneous case, this equation takes the form

@

@t
f(t; v) =

Z
R3

dw

Z
S2
deB(v;w; e)

h
(1+�f(t; v)) (1+�f(t; w)) f(t; v�) f(t; w�)�

(1+�f(t; v�)) (1+�f(t; w�)) f(t; v) f(t; w)
i
; (1.1)

with initial condition f(0; v) = f0(v).

The postcollision velocities corresponding to v;w2R3 are

v�(v;w; e) = v + e (e;w � v) ; w�(v;w; e) = w � e (e;w� v) ; e 2 S2 ; (1.2)

where S2
�R

3 is the unit sphere, and (:; :) denotes the scalar product in the Euclidean

space R3 : The function B is the collision kernel, which, in case of hard sphere molecules,

takes the form B(v;w; e) = const j(e;w � v)j. Note that n =
R
R3 f0(v) dv is the average

number of physical particles per unit volume in position space. Equation (1.1) includes

(namely for � = 0) the Boltzmann equation of classical statistics as a special case. It

di�ers from the latter in the case of Bose-Einstein statistics (� = +1) and in the case

of Fermi-Dirac statistics (� = �1). The case � = +1 has been studied recently in [14].

Direct simulation Monte Carlo (DSMC) has been the most widely used numerical

algorithm for the classical Boltzmann equation [4]. Stochastic particle algorithms for

the Uehling-Uhlenbeck-Boltzmann (UUB) equation were �rst developed to simulate the

Fermi-Dirac dynamics of nucleons during heavy ion collisions [3], [2], [5]. These numerical

methods were later reformulated into a DSMC-based framework by Lang, et al. [12].

Similar Monte Carlo algorithms have been used to study the dynamics of cooling [17] and

trapping [6] in Bose-Einstein condensation. Dense gas corrections to the UUB equation

have been modelled using the Consistent Boltzmann Algorithm [1], a dense gas variant

of DSMC. This algorithm has been used to include virial corrections to UUB simulations

[11], [15]. Its asymptotic properties in the Boltzmann case have been studied in [9].

In this paper we describe a DSMC algorithm for the Uehling-Uhlenbeck-Boltzmann

equation in terms of Markov processes. This provides a unifying framework for both

the classical Boltzmann case as well as the Fermi-Dirac and Bose-Einstein cases. We

establish the foundation of the algorithm by demonstrating its link to equation (1.1).

Using numerical experiments we study its sensitivity to the number of simulation particles

and to the discretization of the velocity space, when approximating the steady state

distribution.

The paper is organized as follows. In Section 2 we give a detailed description of the

DSMC algorithm starting from a corresponding Markov jump process. Section 3 provides

a heuristic derivation of the limiting equation when the number of simulation particles

tends to in�nity. In Section 4 we study the equilibrium behaviour of the solution to the
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UUB equation. Finally, Section 5 contains results of numerical experiments. We calculate

approximations to the equilibrium solution using the particle algorithm. We study the

error depending on the numerical parameters like particle number or number of cells in

the velocity space.

2. Description of the algorithm

We introduce a Markov process

Z(t) =
�
V1(t); : : : ; VN (t)

�
; t � 0 ; (2.1)

de�ned by the in�nitesimal generator

A(�)(z) =
n

2N

X
1�i6=j�N

Z
S2
Q(z; i; j; e)

h
�(J(z; i; j; e))��(z)

i
de ; (2.2)

where

z = (v1; : : : ; vN) 2
�
R

3
�N

= Z (2.3)

and N is the number of simulation particles. The jump transformation is (cf. (1.2))

[J(z; i; j; e)]k =

8<
:

vk ; if k 6= i; j ;

v�(vi; vj; e) ; if k = i ;
w�(vi; vj; e) ; if k = j :

(2.4)

The intensity function has the form

Q(z; i; j; e) = Y

 
n

N

NX
k=1

g(v�(vi; vj; e); vk);
n

N

NX
k=1

g(w�(vi; vj; e); vk)

!
B(vi; vj; e) ; (2.5)

where g is some mollifying kernel,

g(v;w) = g(w; v) � 0 ;

Z
R3

g(v;w) dw = 1 ; (2.6)

intended for approximating Dirac's delta-function. The concrete form of g as well as of

the non-negative function Y will be speci�ed later.

For numerical purposes, we rewrite the generator (2.2) in the form

A(�)(z) =

Z
Z

h
�(�z)� �(z)

i
Q̂(z; d�z) ;

where

Q̂(z; d�z) = (2.7)

n

2N

X
1�i6=j�N

Z
S2

n
ÆJ(z;i;j;e)(d�z)Q(z; i; j; e) + Æz(d�z)

h
Ŷ (z) B̂(z)�Q(z; i; j; e)

io
de
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and Æ denotes the Dirac measure. The functions B̂ and Ŷ are such that (cf. (2.5))

Y

 
n

N

NX
k=1

g(v�(vi; vj; e); vk);
n

N

NX
k=1

g(w�(vi; vj; e); vk)

!
� Ŷ (z) ; 8 z 2 Z ; (2.8)

and

B(vi; vj; e) � B̂(z) ; 8 1 � i 6= j � N ; e 2 S2 ; z 2 Z : (2.9)

Thus, the pathwise behaviour of the process is as follows. Coming to a state (2.3), the

process stays there for a random waiting time, which has an exponential distribution

with the parameter (cf. (2.7))

�̂(z) = Q̂(z;Z) = 2� n Ŷ (z) B̂(z) (N � 1) : (2.10)

Then the process jumps into a state �z ; which is distributed according to the jump distri-

bution

�̂(z)�1 Q̂(z; d�z) =

1

N (N � 1)

X
1�i6=j�N

1

4�

Z
S2

(
ÆJ(z;i;j;e)(d�z)

Q(z; i; j; e)

Ŷ (z) B̂(z)
+ Æz(d�z)

"
1�

Q(z; i; j; e)

Ŷ (z) B̂(z)

#)
:

Consequently, �rst the parameters i ; j and e are generated uniformly. Given i ; j and e ;
the jump is �ctitious, i.e. the new state is �z = z ; with probability

1�
Q(z; i; j; e)

Ŷ (z) B̂(z)
: (2.11)

Otherwise, the new state is �z = J(z; i; j; e) :

For calculating the quantity (2.11), one needs to evaluate the empirical density (cf.

(2.5))

f̂(z; v) =
n

N

NX
k=1

g(v; vk) ; (2.12)

for v = v�(vi; vj; e) and v = w�(vi; vj; e) : Note that (2.6) impliesZ
R3

f̂ (z; v) dv = n ; 8z 2 Z :

For numerical purposes, it is convenient to introduce some partition Vl ; l = 1; :::;M ; of

the velocity space and to use the function

g(v;w) =
MX
l=1

1

jVlj
�Vl

(v)�Vl
(w) ; (2.13)

where � denotes the indicator function. Let Nl ; l = 1; :::;M ; be the number of particles

with velocities in cell Vl : Then the empirical density (2.12) takes the form

f̂(z; v) =
nNl(v)

N jVl(v)j
; v 2 R3 ; (2.14)
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where l(v) denotes the number of the cell to which v belongs. Note that the function

(2.14) is constant in each cell.

The following algorithm is obtained.

0. Generate the initial state z so that (2.12) approximates f0 for large N :

1. Given z calculate the time step

1

2� n Ŷ (z) B̂(z) (N � 1)

according to (2.10).

2. Generate i ; j ; e uniformly and calculate

v�i = v�(vi; vj; e) ; v�j = w�(vi; vj; e)

according to (2.4).

3. With probability (2.11), i.e. if

Y (f̂(z; v�i ); f̂(z; v
�
j ))

Ŷ (z)

B(vi; vj; e)

B̂(z)
� RAND ;

go to 1.

4. Replace vi ; vj by v
�
i ; v

�
j :

5. Update B̂ ; f̂ ; Ŷ and go to 1.

Some remarks: First, in the Boltzmann case Y � 1 ; the procedure di�ers slightly

from standard DSMC. This is due to the fact that in general Y depends on e so that this
parameter also must be generated before the rejection. Second, note that the function Ŷ

in (2.8) can be adapted during the process of computation, similar to the adaption of the

function B̂ in (2.9) depending on the maximum relative velocity. Third, even if M =1 ;

the sum (2.13) remains �nite. Alternatively, one considers the set outside some (big) ball

in the velocity space as the last cell. The empirical density is there approximated by

zero. Finally, the limiting equation (as N ! 1) for this Markov process is the UUB

equation (1.1), for the choice

Y (x; y) = (1 + � x) (1 + � y) ; x; y 2 R : (2.15)

The derivation of this result is presented in the next section.

3. Derivation of the limiting equation

The Markov process (2.1) satis�es

�(Z(t)) = �(Z(0)) +

Z t

0

A(�)(Z(s)) ds +M(t) ; t � 0 ; (3.1)
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where M(t) is some martingale term. We consider (cf. (2.3))

�(z) =
n

N

NX
i=1

'(vi) ; z 2 Z ;

for appropriate test functions ' : Note that

�(Z(t)) =
n

N

NX
i=1

'(Vi(t)) =:

Z
R3

'(v) �(N)(t; dv) ; (3.2)

where �(N) is the empirical measure of the particle system (2.1). According to (2.2)�(2.5),

one obtains

A(�)(z) =

n2

2N2

X
1�i6=j�N

Z
S2
Y

 
n

N

NX
k=1

g(v�(vi; vj; e); vk);
n

N

NX
k=1

g(w�(vi; vj; e); vk)

!
�

B(vi; vj; e)
h
'(v�(vi; vj; e)) + '(w�(vi; vj; e))� '(vi)� '(vj)

i
de

and

A(�)(Z(s)) = (3.3)

1

2

Z
R3

Z
R3

Z
S2
Y

�Z
R3

g(v�; u) �(N)(s; du);

Z
R3

g(w�; u) �(N)(s; du)

�
�

B(v;w; e)
h
'(v�) + '(w�)� '(v)� '(w)

i
de �(N)(s; dv) �(N)(s; dw) +O(N�1) ;

where the functions v�; w� depend on the arguments v;w; e as de�ned in (1.2).

Suppose that the following relations are ful�lled as N !1,

�(N)(t)! F (t) ; M (N)(t)! 0 ; 8t � 0 ;

for some deterministicmeasure-valued function F (t) : Under certain assumptions concern-

ing this convergence, one can conclude from (3.1), (3.3) that the limit F (t) satis�es the
equationZ

R3

'(v)F (t; dv) =

Z
R3

'(v)F0(dv)

+
1

2

Z t

0

Z
R3

Z
R3

Z
S2
Y

�Z
R3

g(v�; u)F (s; du);

Z
R3

g(w�; u)F (s; du)

�
�

B(v;w; e)
h
'(v�) + '(w�)� '(v)� '(w)

i
deF (s; dv)F (s; dw) ds :

The di�erential form with respect to t is

d

dt

Z
R3

'(v)F (t; dv) =
1

2

Z
R3

Z
R3

Z
S2
�(t; v�; w�)� (3.4)

B(v;w; e)
h
'(v�) + '(w�)� '(v)� '(w)

i
deF (t; dv)F (t; dw) ;
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with the initial condition

F0 = lim
N!1

�(N)(0) ; (3.5)

where we denote

�(t; x; y) = Y

�Z
R3

g(x; u)F (t; du);

Z
R3

g(y; u)F (t; du)

�
: (3.6)

Note that, in case (2.13),Z
R3

g(v; u)F (t; du) =
1

jVl(v)j
F (t;Vl(v)) ; 8v 2 R3 ;

and that (3.5) implies (cf. (3.2))

F0(R
3) = lim

N!1
�(N)(0;R3) = n :

Note that the conservation properties are derived from (3.4), as in the Boltzmann case

Y � 1 ; for ' = 1; v; kvk2 :

Assume the limiting measures have densities,

F (t; dv) = f(t; v) dv ;

the function Y is symmetric, and

B(v;w; e) = B(v�; w�; e) = B(w; v; e) = B(v;w;�e) : (3.7)

Note that the hard sphere kernel satis�es (3.7). Applying the substitution (v�; w�) !
(v;w) ; the terms at the right-hand side of equation (3.4) transform according toZ

R3

Z
R3

Z
S2
�(t; v�; w�)B(v;w; e)'(v�) f(t; v) f(t; w) de dv dw =Z

R3

Z
R3

Z
S2
�(t; v; w)B(v;w; e)'(v) f(t; v�) f(t; w�) de dv dw :

Removing the test functions, one obtains

@

@t
f(t; v) = (3.8)Z
R3

dw

Z
S2
deB(v;w; e)

h
�(t; v; w) f(t; ; v�) f(t; w�)� �(t; v�; w�) f(t; v) f(t; w)

i
:

If

g(x; y) = g(N)(x; y) ! Æ(x� y) as N !1 ;

then (cf. (3.6)) �(t; x; y) = Y (f(t; x); f(t; y)) ; and equation (3.8) takes the form

@

@t
f(t; v) =

Z
R3

dw

Z
S2
deB(v;w; e)� (3.9)h

Y (f(t; v); f(t; w)) f(t; v�) f(t; w�) � Y (f(t; v�); f(t; w�)) f(t; v) f(t; w)
i
:

Equation (1.1) is obtained from (3.9) for the choice (2.15), with the particular cases � = 1
(Bose-Einstein), � = 0 (Boltzmann) and � = �1 (Fermi-Dirac). Note that since the

function Y should be non-negative, it is more accurate to de�ne (2.15) for � < 0 as

Y (x; y) = (1 + � x)+(1 + � y)+;

where a+ = a if a > 0 and a+ = 0 otherwise.
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4. Equilibrium behavior

First we recall the derivation of an H-theorem (cf., e.g., [13, Section 5.4.3]). Let f be a

solution to equation (3.9) with Y as in (2.15). De�ning

H(t) =

Z
R3

�
f(t; v) log f(t; v)�

1

�
(1 + � f(t; v)) log(1 + � f(t; v))

�
dv

one obtains

d

dt
H(t) =Z

R3

�
@

@t
f(t; v) log f(t; v) +

@

@t
f(t; v)�

@

@t
f(t; v) log(1 + � f(t; v))�

@

@t
f(t; v)

�
dv

=

Z
R3

�
@

@t
f(t; v) log

f(t; v)

1 + � f(t; v)

�
dv : (4.1)

Note that the case � = 0 is easily covered, but in the case � < 0 the condition

f(t; v) < �

1

�
(4.2)

has to be assumed. Using (3.9) and the notation s(t; v) = 1 + � f(t; v) ; the right-hand

side of (4.1) takes the formZ
R3

dv

Z
R3

dw

Z
S2
deB(v;w; e)�

h
s(t; v) s(t; w) f(t; v�) f(t; w�)� s(t; v�) s(t; w�) f(t; v) f(t; w)

i
log

f(t; v)

s(t; v)

=

Z
R3

dv

Z
R3

dw

Z
S2
deB(v;w; e)�

h
s(t; v) s(t; w) f(t; v�) f(t; w�)� s(t; v�) s(t; w�) f(t; v) f(t; w)

i
log

f(t; w)

s(t; w)

= �

Z
R3

dv

Z
R3

dw

Z
S2
deB(v;w; e)�

h
s(t; v) s(t; w) f(t; v�) f(t; w�)� s(t; v�) s(t; w�) f(t; v) f(t; w)

i
log

f(t; v�)

s(t; v�)

= �

Z
R3

dv

Z
R3

dw

Z
S2
deB(v;w; e)�

h
s(t; v) s(t; w) f(t; v�) f(t; w�)� s(t; v�) s(t; w�) f(t; v) f(t; w)

i
log

f(t; w�)

s(t; w�)

=
1

4

Z
R3

dv

Z
R3

dw

Z
S2
deB(v;w; e)�h

s(t; v) s(t; w) f(t; v�) f(t; w�)� s(t; v�) s(t; w�) f(t; v) f(t; w)
i
�

log
f(t; v) f(t; w) s(t; v�) s(t; w�)

s(t; v) s(t; w) f(t; v�) f(t; w�)
: (4.3)

8



From (b� a) log a

b
� 0 and (4.1), (4.3) one obtains

d

dt
H(t) � 0 :

Next we consider the problem of the steady state p (cf. [7, Ch. 17.5]). From (3.9)

one obtains

p(v�) p(w�)

Y (p(v�); p(w�))
=

p(v) p(w)

Y (p(v); p(w))
(4.4)

as a su�cient condition. Assuming

Y (x; y) = ~Y (x) ~Y (y) ; (4.5)

condition (4.4) takes the form

log
p(v�)

~Y (p(v�))
+ log

p(w�)
~Y (p(w�))

= log
p(v)

~Y (p(v))
+ log

p(w)
~Y (p(w))

: (4.6)

Since  (v�) +  (w�) =  (v) +  (w) implies  (v) = c1 + c2 kv � �vk2 ; for some c1; c2 2 R

and �v 2 R3 ; we obtain from (4.6)

p(v) = ~Y (p(v)) exp
�
c1 + c2 kv � �vk2

�
: (4.7)

The function (2.15) satis�es (4.5), with ~Y (x) = 1 + � x : Thus, (4.7) implies

p(v) =
exp(c1 + c2 kv � �vk2)

1� � exp(c1 + c2 kv � �vk2)
=

1

exp(�c1 � c2 kv � �vk2)� �
: (4.8)

The parameters c1; c2 and �v have to be chosen to �t the conserved quantities. Necessary

conditions (for positivity and integrability) are

exp(�c1) > � ; c2 < 0 : (4.9)

Note that, in the case � < 0 ; condition p(v) < �1
�
(cf. (4.2)) is satis�ed.

Let �v = 0 ; c1 = � logA ; c2 = �� so that the equilibrium density (4.8) takes the

form

p(v) = p�;A;�(v) =
1

A exp(� kvk2)� �
; (4.10)

where, according to (4.9),

A > max(�; 0) and � > 0 : (4.11)

Note that, in case � > 0 and A ! � ; some delta-like distribution is obtained (Bose-

Einstein condensation), while in case � < 0 and A ! 0 ; an approximate uniform distri-

bution is obtained (Fermi level). For A ! 1 distributions in both cases are close to a

Maxwellian (with mean � 1
A
). Finally, in case � = 0 ; a pure Maxwellian is obtained. In

the Fermi-Dirac case � < 0 ; the equilibrium density is bounded by �1
�
: If the function

f(t; v) exceeds this bound, the gain term in equation (3.9) becomes zero so that the func-

tion decreases. One might expect that the correct equilibrium density is obtained even

for initial densities f0 that are not bounded by �1
�
:

If the empirical density (2.14) exceeds the bound �1
�
; then no more particles will come

to the corresponding cell, but particles can leave that cell. So that, at steady state, the

empirical density will satisfy the necessary condition (at least approximately as N !1).
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5. Numerical experiments

Since the equilibrium density is isotropic, it will be useful to consider the speed distribu-

tion, de�ned as

~p(u) =
4�u2

A exp(� u2)� �
; (5.1)

where u = kvk : Note that the speed distribution is mearly p(v) given in (4.10) integrated

over angle.

5.1. Fermi-Dirac case

Figure 1 shows the steady state speed distribution (5.1) measured in the simulation of

a gas of Fermi-Dirac particles (� = �1). The parameters in this case are A = 0:01 and

� = 1 (cf. (4.11)), which corresponds to a temperature of 0:21TF where TF is the Fermi

temperature [10]. The simulation used N = 104 particles and M = 104 velocity cells,

which were cubic with a width of �v = 0:45.1 Note that for this choice of parameters we

�nd good agreement with the expected equilibrium distribution.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

Velocity

F
in

al
 D

is
tr

ib
ut

io
n 

(A
ve

ra
ge

d)

Fermi−Dirac Dist.
Max.−Boltz. Dist.

Figure 1: Steady-state speed distribution in a Fermi-Dirac gas. Data from a simulation

with N = 104 particles and M = 104 cells is shown as histogram bars; expected distri-
bution shown by asterisks. The Maxwell-Boltzmann distribution for a gas with the same
kinetic energy is shown, by open circles, for comparison.

1Actually the value of M is rounded to the nearest cubic integer, e.g., for M = 10
5 the number of

velocity cells is actually 97336 = 46
3.
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To quantify this agreement, the square integrated di�erence between the measured

and expected speed distribution was evaluated as,

E(N;M) =

Z 1

0

[~p(u)� ~ps(u;N;M)]2 du

where ~ps is the estimated steady state distribution from the simulation. For the results

shown in Fig. 1 this error was 0:031 : For comparison, a similar simulation for a Maxwell-

Boltzmann gas (i.e., standard DSMC) had an integrated square di�erence of about 10�5.
As the value of E also varies with the parameters A and �, we use the normalized error

de�ned as �E(N;M) = E(N;M)=E(104; 104).

Interestingly, increasing the number of velocity cells can reduce the accuracy of the

distribution, as seen in Figure 2, which is similar to the previous �gure but with the

number of velocity cells increase to M = 106 (and the cell size reduced to �v = 0:09).
When the number of cells is signi�cantly larger than the number of particles, Fermi

exclusion is not accurately modelled.
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Figure 2: Same as Figure 1 but for a simulation with M = 106 velocity cells.

11



This e�ect is con�rmed in Figure 3, which shows the normalized error as a function

of the number of cells for various values of N . On the other hand, for a given number of

cells the error plateaus when N �M , as shown in Figure 4. Roughly speaking, the error

is minimumwhen N �M and when we take the number of particles equal to the number

of cells we �nd that the �E � 1=M , as shown in Figure 5. One also �nds that even

when N =M � 300 the distribution retains a strong quantum signature, when compared

with the corresponding Maxwell-Boltzmann distribution (dashed line in Figure 5). Note

that all of these results are for simulations using the parameters A = 0:01 and � = 1;
for di�erent values of the parameters we expect quantitatively di�erent errors (e.g., �E
decreases as A increases) but qualitatively similar dependence on N and M .
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Figure 3: Normalized error, �E(N;M), in the steady-state Fermi-Dirac speed distribution

as a function of the number of velocity cells.
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Figure 4: Normalized error, �E(N;M), in the steady-state Fermi-Dirac speed distribution
as a function of the number of particles.
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Figure 5: Normalized error, �E(N;M), in the steady-state Fermi-Dirac speed distribution

as a function of N =M . For comparison, the error for a Maxwell-Boltzmann distribution

(i.e., open circles in Fig. 1) is shown as a dashed line.
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5.2. Bose-Einstein case

Figure 6 shows the steady state speed distribution (5.1) measured in the simulation of

a gas of Bose-Einstein particles (� = 1). The parameters in this case are A = 1:01 and

� = 1 (cf. (4.11)), which corresponds to a temperature of 1:08Tc where Tc is the critical
temperature [10]. The simulation parameters are N = 104 ; M = 104 and �v = 0:38 :
Although the agreement with the expected distribution is poor, Figure 7 shows that the

agreement is very good when N and M are increased to 106 (and �v reduced to 0:08).
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Figure 6: Steady-state speed distribution in a Bose-Einstein simulation with N = 104

particles and M = 104 cells.
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Figure 7: Steady-state speed distribution in a Bose-Einstein simulation with N = 106

particles and M = 106 cells.
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Figure 8 shows that in these simulations of a Bose-Einstein gas, the normalized error

drops with increasing number of particle cells until M � 100N . On the other hand, for

a given number of cells �E(N;M) is approximately constant in N , as shown in Figure 9,

when N > M=10. Finally, graphing �E(N;M) versus N = M (Figure 10) shows that

the error decreases roughly as 1=M except for small simulations (M < 103). For those

simulations the error plateaus at approximately that of a DSMC simulation for a Maxwell-

Boltzmann gas (i.e., � = 0), though the distribution is not Maxwellian. Again, all of the

Bose-Einstein simulations used the parameters A = 1:01 and � = 1; for di�erent values of
the parameters we expect quantitatively di�erent errors (e.g., �E decreases as A increases)

but qualitatively similar dependence on N and M .
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Figure 8: Normalized error, �E(N;M), in the steady-state Bose-Einstein speed distribu-
tion as a function of the number of velocity cells.
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Figure 9: Normalized error, �E(N;M), in the steady-state Bose-Einstein speed distribu-
tion as a function of the number of particles.
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Figure 10: Normalized error, �E(N;M), in the steady-state Bose-Einstein speed distri-

bution as a function of N = M . For comparison, the error for a Maxwell-Boltzmann

distribution (i.e., open circles in Fig. 6) is shown as a dashed line.
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