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Abstract

We consider an affine term structure model of interest rates, where the
factors satisfy a linear diffusion equation. We assume that the information
available to an agent comes from observing the yields of a finite number
of traded bonds and that this information is not sufficient to reconstruct
exactly the factors. We derive a method to obtain arbitrage-free prices
of illiquid or non traded bonds that are compatible with the available
incomplete information. The method is based on an application of the
Kalman filter for linear Gaussian systems.

1 Introduction

We study multifactor affine term structure models of interest rates (see e.g. [12,
16]), where the factors x(t) satisfy a linear diffusion equation. The factors may
be viewed as representing market fundamentals, but in our context they need not
have a specific interpretation and may just be viewed as abstract factors. They
are considered as latent variables that are not directly observable, but can be
estimated (filtered) from observations of traded bond yields.

The purpose is to derive a consistent pricing system to price illiquid and non
traded bonds on the basis of the incomplete information available to agents. We
assume that this incomplete/partial information, represented by a subfiltration
F̂t ⊂ Ft of the full filtration Ft, comes from observing the prices p̃(t, Ti) (or
corresponding yields) of a finite number N of traded bonds. The crucial further
assumption is that this information is not sufficient to completely reconstruct
the factors xt. More precisely, we assume that each of the N observations comes
with additional uncertainty and that the additional uncertainty sources together
form a further factor ξ(t) of dimension N . This happens e.g. in the realistic
situation when the actually observed term structure does not correspond exactly
to a theoretical arbitrage-factor model. We call the thus resulting term structure
model the “perturbed model”. Assuming a situation of this latter type, we derive
a method to obtain arbitrage-free prices p̂(t, T ) of non traded (illiquid) bonds
that are compatible with the available partial information F̂t and we call this the
projected price system. Specifically, we obtain the formula

p̂(t, T ) =
EQ[p̃(t, T )/M̃(t)|F̂t]

EQ[1/M̃(t)|F̂t]
, (1)

where p̃(t, T ) are the bond prices in the perturbed model; M̃(t) is the correspond-
ing money market account and Q a given risk-neutral (martingale) measure. To
this effect we derive some intermediate results justifying formula (1).

Thanks to (1), the computation of the projected price system reduces to the
computation of the conditional expectations on the right hand side of (1). It
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is then shown that these conditional expectations can be computed if one can
compute means and covariances of the vector of the original and latent factors
(x(t), ξ(t)), conditional on F̂t. This is where stochastic filtering comes in and we
show that it reduces to an application of the classical Kalman filter for linear-
Gaussian systems. This method extends thus in a nontrivial way a previous re-
lated work by two of the authors [21].

Instead of the “economic” definition of the filtered term structure through (1),
it is possible to define the filtered forward rates using the filtered factors from the
Kalman filter and applying the HJM-no-arbitrage condition. We show that the
two definitions are equivalent.

Stochastic filtering techniques have recently found various applications in fi-
nance, in particular also in the context of the term structure of interest rates as
e.g in [1, 3, 9, 20, 24]. The context of these latter papers is however different from
that of the present work.

In the next section 2 we introduce the basic theoretical arbitrage-free affine
term structure model. The perturbed model is then described in section 3. In
section 4 we show how to derive from the perturbed model the projected pricing
system. In section 5 we then show how the projected price system can actually
be computed by use of Kalman filtering. In section 6 we show the equivalence of
the two alternative definitions of the filtered term structure.

2 Notation and preliminary results

We consider a class of interest rate models which are the output of a time-varying
linear Gaussian system. Given a filtered probability space (Ω,F ,Ft, Q), assume
that we have an n-dimensional diffusion

dx(t) = A(t)x(t)dt + B(t)dw(t) (2)

where A(t) and B(t) are n × n and n ×m-matrices, respectively, which depend
only on t, w is an m-dimensional Wiener-process and x(0) = x0 = 0 (we will show
in the sequel that the latter assumption is not restrictive). The matrices A and
B are assumed to be bounded on finite intervals. The forward rates are given by

f(t, T ) = C(t, T )x(t) + G(t, T ), (3)

where we assume that the functions t 7→ C(t, T ) and t 7→ G(t, T ) are differen-
tiable.

As usual, p(t, T ) = exp{−
∫ T

t
f(t, s)ds} is the time-t price of the zero-bond

maturing at T , r(t) = f(t, t) is the instantaneous short rate, and M(t) =
∫ t

0
r(s)ds

the money market account. Let f ∗(0, T ) denote the forward rates at time 0.
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Setting C(t) := C(t, t) and G(t) := G(t, t), the short rate has the representation{
dx(t) = A(t)x(t)dt + B(t)dw(t)
r(t) = C(t)x(t) + G(t).

What are the conditions on the coefficients C and G to have absence of arbi-
trage?

Similarly to [22], we define a model to be arbitrage-free for a given filtration
F = {Ft}, if there exists another probability measure Q∗ ∼ Q, and a numeraire
N(t) (a positive process that is bounded away from zero) such that the dis-
counted zero-bond price processes p(t, T )/N(t) are (Q∗,F)-martingales for all T .
The measure Q∗ is called the risk-neutral probability measure for the term struc-
ture {p(t, T )}0≤t≤T w.r.t. the numeraire N(t). (In [22], the numeraire is fixed

to the money market account M(t) = exp{
∫ t

0
rsds}; in section 4 below, for an

information structure represented by a subfiltration F̂ ⊂ F , we shall consider
numeraires different from M .)

How to go from the real-world measure to the risk-neutral measure, which is
related to the “market price of risk”, is an important question, but this will not
be the focus of this paper. As is usual in many other term structure models, we
will assume that Q itself is a risk-neutral probability with respect to the money
market account as the numeraire. The next proposition gives conditions under
which this is the case.

Proposition 2.1 A necessary and sufficient condition for Q being a risk-neutral
probability measure for the term structure model (2), (3) w.r.t. the numeraire M
is that the coefficients C(t, T ), G(t, T ) in (3) satisfy the following:

C(t, T ) = C(T )e
∫ T

t A(s)ds, (4)

where C(T ) is a function that is bounded on finite intervals, and

G(t, T ) = f ∗(0, T ) +
1

2

∫ t

0

βT (s, T )ds, (5)

with

β(t, T ) :=

∣∣∣∣∣∣∣∣∫ T

t

C(t, u)B(t)du

∣∣∣∣∣∣∣∣2 . (6)

Proof. Differentiation with respect to t yields

df(t, T ) = Ct(t, T )x(t)dt

+ C(t, T )A(t)x(t)dt + C(t, T )B(t)dw(t) + Gt(t, T )dt. (7)
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Now, the Heath-Jarrow-Morton drift condition [22] reads

µ(t, T ) = C(t, T )B(t)

∫ T

t

B(t)′C(t, u)′du, (8)

where µ(t, T ) is the drift and σ(t, T ) = C(t, T )B(t) is the diffusion coefficient of
f(t, T ) in (7). Since x(t) does not appear in (8), its coefficients must vanish in
(7); thus we obtain

Ct(t, T ) + C(t, T )A(t) = 0, (9)

which has the solution
C(t, T ) = C(T )e

∫ T
t A(s)ds.

The deterministic term must satisfy the equation

Gt(t, T ) = C(t, T )B(t)B(t)′
∫ T

t

C ′(t, u)du =

=
1

2

∂

∂T

∥∥∥∥∫ T

t

C(u)e
∫ u

t A(s)dsB(t)du

∥∥∥∥2

=
1

2
βT (t, T ), (10)

where we have used (4). As a consequence of (3) we get G(0, T ) = f ∗(0, T ). Thus,
(10) and (5) are equivalent.

This proves that conditions (4) and (5) are equivalent to the HJM drift
condition, which is necessary and sufficient for p(., T )/M being local (Q,F)-
martingales. Novikov’s condition for p(., T )/M being a martingale on [0, T ] is

E[exp(
1

2

∫ T

0

β(s, T )ds)] < ∞,

which is fulfilled since A, B, and C(.) are bounded on finite intervals.

The moral is that, given the functions f ∗, A, B, and C(.), the functions C(t, T )
and G(t, T ) are completely determined by the no arbitrage assumption.

The quantity G(t, T ) can be computed in an almost closed form, as we shall
see in Section 5; however, if A, B, C(.) are constant in t and A is invertible, things
simplify even further and we have (see [6])

G(t, T ) = f ∗(0, T ) +
1

2

{
||CA−1eAT B||2 − ||CA−1eA(T−t)B||2

}
+ CA−1

[
eA(T−t) − eAT

]
BB′A′−1

C ′. (11)

We now show that the forward rates f(t, T ) are independent of the initial
condition x0. Suppose that in (2) we have an arbitrary initial condition x0 in-
dependent of w and denote by f 0(t, T ) the corresponding term structure; then,
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denoting by G0(t, T ) the correction term, since we want f(0, T ) = f ∗(0, T ) to
hold, it must be G0(0, T ) = −C(0, T )x0 + f ∗(0, T ), which implies that

G0(t, T ) = −C(0, T )x0 + f ∗(t, T ) +
1

2

∫ t

0

βT (s, T )ds (12)

with β(t, T ) as in (6). Then we have the following lemma:

Lemma 2.2 Let the forward rates f 0(t, T ) be given by{
dx0(t) = A(t)x0(t)dt + B(t)dw(t)
f 0(t, T ) = C(t, T )x(t) + G0(t, T )

(13)

with initial condition x0(0) = x0, and C(t, T ) as in (4), and let G0(t, T ) be as in
(12). Then the term structure f 0(t, T ) is independent of x0.

Proof. The solution to the first equation in (13) is

x0(t) = e
∫ t
0 A(s)dsx0 +

∫ t

0

e
∫ t

s A(u)duB(s)dw(s).

In view of (4), C(0, T ) = C(T )e
∫ T
0 A(s)ds, which gives

f 0(t, T ) = C(t, T )x0(t)− C(0, T )x0 + f ∗(0, T ) +
1

2

∫ t

0

βT (s, T )ds

= C(T )e
∫ T

t A(s)ds

[∫ t

0

e
∫ t

s A(u)duB(s)dw(s) + e
∫ t
0 A(s)dsx0

]
−C(T )e

∫ T
0 A(s)dsx0 + f ∗(0, T ) +

1

2

∫ t

0

βT (s, T )ds

= C(t, T )x(t) + f ∗(0, T ) +
1

2

∫ t

0

βT (s, T )ds.

where x(t) is the solution to (2) with x0 = 0, as wanted.

Remark 2.3 If the number N of bonds on the market is greater than the dimen-
sion n of the state x, the latter can generally be exactly reconstructed from the
knowledge of their yields.

In fact, let y(t, T ) :=
∫ T

t
f(t, s)ds denote the time-t yield of the zero-bond ma-

turing at T and assume these yields are observed for the maturities T1 < T2 <
... < Tn with n ≤ N .
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Setting

M(t) =


∫ T1

t
C(s)e

∫ s
t A(u)duds∫ T2

t
C(s)e

∫ s
t A(u)duds

...∫ Tn

t
C(s)e

∫ s
t A(u)duds

 ,

we get, from (3) and using (4)
y(t, T1)
y(t, T2)

...
y(t, Tn)

 = M(t)


x1(t)
x2(t)

...
xn(t)

 +


∫ T1

t
G(t, u)du∫ T2

t
G(t, u)du

...∫ Tn

t
G(t, u)du

 , (14)

so that we can obtain x explicitly as soon as M is invertible. Without further
assumptions on A, B, C more precise statements are difficult to make; but in the
special case when A, B, C are constant, it can be shown that this situation is
generic, i.e., the set of maturities T1, ..., Tn, for which M is rank deficient, is a set
contained in an algebraic surface in Rn (see [6]).

3 The Perturbed Model

Suppose now that we are in a situation where the state cannot be observed
directly. This happens e.g. in the realistic situation when a low-dimensional, par-
simonious factor model can describe certain long-term, time-series features of the
term structure well, but fails to achieve sufficient accuracy in fitting all the cur-
rent prices. In this context see e.g. [14] [15] in a similar setup. Assume then that
the maturities of the actually traded and thus also observed bonds are T1, . . . , TN

for some integer N and consider the following perturbed version of (3), namely

dx(t) = A(t)x(t)dt + B(t)dw(t) (15)

dξ(t) = Aξ(t)ξ(t)dt + Bξ(t)dv(t), (16)

f̃(t, T ) = C(t, T )x(t) + Cξ(t, T )ξ(t) + G̃(t, T ) (t ≤ T ), (17)

where v is an N−dimensional Wiener process, independent of w and x(0) = 0,
ξ(0) = 0. The function Cξ(s, T ) is, for fixed T , an N -dimensional row vector
of functions that are bounded on finite intervals. The function t 7→ G̃(t, T ) is
assumed to be differentiable.

Let then

p̃(t, T ) := exp

[
−

∫ T

t

f̃(t, u)du

]
(18)

and consider as numeraire

M̃(t) := exp

[∫ t

0

r̃(s)ds

]
with r̃(t) = f̃(t, t). (19)
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Equation (17) together with the dynamics of the extended state

x̃(t) :=

[
x(t)
ξ(t)

]
(20)

can be written in the same form as the unperturbed system (2)-(3):

dx̃(t) = Ã(t)x̃(t)dt + B̃(t)dw̃(t) (21)

f̃(t, T ) = C̃(t, T )x̃(t) + G̃(t, T ) (22)

with

Ã(t) :=

[
A(t) 0

0 Aξ(t)

]
, B̃(t) :=

[
B(t) 0

0 Bξ(t)

]
,

C̃(t, T ) := [C(t, T ), Cξ(t, T )], w̃(t) :=

[
w(t)
v(t)

] (23)

We will assume, without loss of generality, that B̃ has full column-rank. Thus
applying Proposition (2.1) to the new system (21)-(22) leads to

Proposition 3.1 A necessary and sufficient condition for Q being a risk-neutral
probability measure for the term structure (p̃(t, T ))0≤t≤T<∞ with respect to the nu-
meraire M̃t is that C̃(t, T ) and G̃(t, T ) in (22) satisfy the following two conditions
corresponding to (4) and (5)

C̃(t, T ) = C̃(T )e
∫ T

t Ã(s)ds, (24)

where C̃(T ) is bounded on finite intervals, and

G̃(t, T ) = f̃ ∗(0, T ) +
1

2

∫ t

0

β̃T (s, T )ds, (25)

where

β̃(t, T ) :=

∣∣∣∣∣∣∣∣∫ T

t

C̃(t, u)B̃(t)du

∣∣∣∣∣∣∣∣2 = β(t, T ) +

∣∣∣∣∣∣∣∣∫ T

t

Cξ(t, u)Bξ(t)du

∣∣∣∣∣∣∣∣2 . (26)

Remark 3.2 Corresponding to Remark 2.3 notice now that in our perturbed term
structure model, reformulated as (21) and (22), we shall never have enough bonds
to reconstruct the (augmented) state x̃ exactly. In fact, since the dimension of x̃
is n + N , it is impossible to derive an invertible matrix M as in (14).

Remark 3.3 Notice that (16) and (24) yield

Cξ(t, T )ξ(t) = Cξ(T )

∫ t

0

e
∫ T

s Aξ(τ)dτBξ(s)dv(s).

Taking Aξ = 0, Bξ = I and Ci
ξ(T ) := χ(Ti−1,Ti], we get the special case discussed

in [21].
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In what follows we shall therefore suppose that we are in a situation where the
state cannot be observed directly and that our (partial) information corresponds
to a subfiltration F̂t ⊂ Ft. Typically, and this will be the setting in section 5
below, F̂ results from the observations of the traded bond prices (or their yields),
but for the time being, in particular for the next section 4, we shall consider a
generic subfiltration F̂t ⊂ F containing the σ-algebra generated by the set of
prices (p̃(t, Ti))i=1,...,N .

4 The Projected Price System

In a previous paper [21] two of the authors have studied the problem of con-
structing a consistent price system under partial information in a similar setting.
It relies, however, on the assumption that the perturbed money market account
M̃t is observed (F̂ -adapted) and liquidly traded, which may be unrealistic. Think
of the term structure of defaultable bonds from a specific issuer, for example. In
the following we present a way of defining an arbitrage-free term structure p̂ that
is F̂ -adapted, in the case when the money market account M̃ is not observed.

We start by recalling the price system defined by the triple (Q, M̃,F), which
is

Πt,T (X; Q, M̃,F) := M̃(t)EQ[X/M̃(T ) | Ft],

where Πt,T (X; Q, M̃,F) is the price of a time-T claim X ∈ FT , contracted at
time t.

If M̃t is not observed (nor traded), it seems prudent to take a numeraire that
is actually traded and observed. The same price system Π can alternatively be
represented by a risk-neutral probability measure Q∗ w.r.t. another numeraire
M∗, if M∗ is of the form

M∗(t) = L(t)M̃(t),

where L is a positive (Q,F)-martingale with L(0) = 1. L is then a valid Radon-
Nikodym derivative and d(Q∗|FT ) := L(T )d(Q|FT ) defines another probability
measure on FT . The general formula for the change of measure in conditional
expectations,

EQ∗
[X|G] =

EQ[L(T )X|G]

EQ[L(T )|G]
∀ G ⊆ FT and X bounded, FT -measurable, (27)

together with L(t) = EQ[L(T )|Ft] imply that (Q, M̃,F) and (Q∗, M∗,F) define
the same price system.

Potential candidates for such alternative numeraires are the traded and ob-
served zero-bonds M i(t) := p̃(t,Ti)

p̃(0,Ti)
, since Li(t) := p̃(t,Ti)

p̃(0,Ti)M̃(t)
is a positive (Q,F)-

martingale with L(0) = 1 for any i. The measure Qi is defined on FT (T ≤ Ti)
by d(Qi|FT ) := Li(T )d(Q|FT ) (see e.g. [19] or [5]).
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If the actual set of information up to time t is F̂t, it is natural to consider the
projected price systems

Πt,T (X; Qi, M i, F̂) = M i(t)EQi

[X/M i(T ) | F̂t], (t ≤ T ≤ Ti) (28)

The crucial question is how this projection of the original price system onto the
(smaller) filtration F̂ depends on the choice of the representation (Qi, M i, F̂).

Proposition 4.1 Let (Q1, M1,F) and (Q2, M2,F) be triples that define the same
price system and let F̂ be a subfiltration of F . If M1 and M2 are F̂-adapted, then

Πt,T (X; Q1, M1, F̂) = Πt,T (X; Q2, M2, F̂)

holds for all bounded, FT -measurable X. In other words, the projected price system
(28) is invariant under changes of the numeraire, as long as both numeraires are
observed.

Proof. W.l.o.g. assume M1(0) = M2(0) = 1. Let T be arbitrary and X be a
bounded, FT -measurable random variable. Both representations define the same
price system, i.e.,

M1(t)E
Q1 [X/M1(T )|Ft] = M2(t)E

Q2 [X/M2(T )|Ft]. (t ≤ T ) (29)

Define L(t) := dQ2|Ft

dQ1|Ft
. Setting t = 0 and using the definition of L, (29) gives

EQ1 [X/M1(T )] = EQ1 [L(T )X/M2(T )],

which implies

L(T ) =
M2(T )

M1(T )
(Q1|FT )− almost surely. (30)

Thus, L is in fact F̂ -adapted and L(t) = dQ2|F̂t

dQ1|F̂t
= EQ1 [L(T )|F̂t] (for t ≤ T ) holds

as well. Now

Πt,T (X; Q2, M2, F̂) = M2(t)E
Q2 [X/M2(T )|F̂t],

becomes, using (27),

=
M2(t)

L(t)
EQ1 [L(T )X/M2(T )|F̂t],

and, using (30),

= M1(t)E
Q1 [X/M1(T )|F̂t].

10



Note that this proposition applies to any measure change in a filtering setting,
not just to term structures of interest rates.

As a consequence of Proposition 4.1, Πt,T (1; Qi, M i, F̂) and Πt,T (1; Qj, M j, F̂)
are equal for t ≤ T ≤ min(Ti, Tj). The projected zero-bond prices in (28) are thus
independent of which of the traded zero-bonds is chosen as numeraire, except
that longer maturity bonds allow for a larger domain of definition. Due to the
restriction t ≤ T ≤ Ti, we choose as numeraire the bond with largest maturity
TN to temporarily define here the projected zero-bond prices for t ≤ T ≤ TN by

p̂(t, T ) := Πt,T (1; Qi, M i, F̂), (31)

Below (see Corollary 4.3) we shall extend this definition also beyond TN .

Proposition 4.2 The system of bond prices p̂ as defined in (31) is arbitrage-free
in the sense of section 2, more precisely, for each i

p̂(t, T )

p̃(t, Ti)
is a (Qi, F̂)-martingale (∀T ≤ Ti).

Furthermore, letting
M0(t) := 1/EQ[1/M̃(t)|F̂t] (32)

one has
Πt,T (X; Qi, M i, F̂) = Πt,T (X; Q,M0, F̂) , (T ≤ Ti)

for all bounded, F̂T -measurable X. In other words, the triple (Q,M0, F̂) is yet an-
other way to represent the price system defined by either of the triples (Qi, M i, F̂),
but only for F̂T -claims.

Proof. Using the definition of M i, the price of a bounded, FT -measurable random
variable X under the projected price system is

Πt,T (X; Qi, M i, F̂) = EQi

[
p̃(t, Ti)

p̃(T, Ti)
X

∣∣∣F̂t

]
, (T ≤ Ti). (33)

Since p̃(t, Ti) is observed (F̂ -measurable), this equation (with X = 1) implies
that p̂(t, T )/p̃(t, Ti) is a (Qi, F̂)-martingale, thus showing the first statement.

Re-expressing now (33) as an expectation under Q, using formula (27) and
the definition of Li gives

Πt,T (X; Qi, M i, F̂) =
EQ

[
Li(T )p̃(t, Ti)X/p̃(T, Ti)

∣∣∣F̂t

]
EQ

[
Li(t)

∣∣∣F̂t

]
=

EQ
[

p̃(t,Ti)

p̃(0,Ti)M̃(T )
X

∣∣∣F̂t

]
EQ

[
p̃(t,Ti)

p̃(0,Ti)M̃(t)

∣∣∣F̂t

] .

11



Using the fact that p̃(t, Ti) is F̂t-measurable, this reduces to

Πt,T (X; Qi, M i, F̂) =
EQ[X/M̃(T )|F̂t]

EQ[1/M̃(t)|F̂t]
, (34)

i.e., by definition of M0 to

Πt,T (X; Qi, M i, F̂) = Πt,T (X; Q,M0, F̂)

for all bounded, F̂T -measurable X.

Since EQ[1/M̃(T )|Ft] = p̃(t, T )/M̃(t), equation (34) in the above proof leads
to the following corollary

Corollary 4.3 The system of bond prices p̂, defined in (31) for T ≤ TN , admits
the representation

p̂(t, T ) =
EQ[p̃(t, T )/M̃(t)|F̂t]

EQ[1/M̃(t)|F̂t]
. (35)

and this justifies (35) as definition for the projected zero-bond prices also for
0 ≤ t ≤ T < ∞.

Furthermore, if the money market account M̃ is observable, then M0 = M̃
and formula (35) reduces to

p̂(t, T ) = EQ[p̃(t, T )|F̂t],

thereby recovering the special case of [21].

5 Computation of the Projected Prices by Kal-

man Filtering

The purpose of this section is to show that the projected price system p̂ of the
previous section 4 (see (35)) can actually be computed by the use of Kalman
filtering, if the subfiltration F̂t is generated by the N prices (p̃(t, Ti))i=1,...,N , or
equivalently, the cumulative yields (ỹ(t, Ti))i=1,...,N defined by

ỹ(t, T ) := − log(p̃(t, T )) =

∫ T

t

f̃(t, s)ds. (36)

Lemma 5.1 Let F̂ be the filtration that is generated by the N yields (ỹ(t, Ti))i=1,...,N .
Then we have

EQ[p̃(t, T )/M̃(t)|F̂t]

EQ[1/M̃(t)|F̂t]
= exp

{
−ŷ(t, T ) +

1

2
Γ1(t, T ) + Γ2(t, T )

}
, (37)
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with

ŷ(t, T ) := EQ
[
ỹ(t, T )

∣∣∣F̂t

]
, (38)

Γ1(t, T ) := varQ
[
ỹ(t, T )

∣∣∣F̂t

]
, and (39)

Γ2(t, T ) := covQ

[
ỹ(t, T ),

∫ t

0

f̃(s, s)ds

∣∣∣∣ F̂t

]
. (40)

Γ1(t, T ) and Γ2(t, T ) are constant as a function of ω, i.e., they are deterministic.

Proof. From the moment generating function of the normal distribution, we have

E[eY |F ] = eE[Y |F ]+ 1
2

var[Y |F ], (41)

whenever the conditional distribution of some random variable Y under some
σ-algebra F is Gaussian. (The second term in the exponent is the variance of the
conditional distribution of Y given F , var[Y |F ] = E[(Y − E[Y |F ])2|F ].)

Thus, in view of (41), we can write

EQ[p̃(t, T )/M̃(t)|F̂t]

EQ[1/M̃(t)|F̂t]
=

EQ
[
exp

{
−ỹ(t, T )−

∫ t

0
f̃(s, s)ds

}∣∣∣ F̂t

]
EQ

[
exp

{
−

∫ t

0
f̃(s, s)ds

}∣∣∣ F̂t

]
=

exp
{

EQ
[
−ỹ(t, T )−

∫ t

0
f̃(s, s)ds

∣∣∣ F̂t

]
+ 1

2
Σ1

}
exp

{
EQ

[
−

∫ t

0
f̃(s, s)ds

∣∣∣ F̂t

]
+ 1

2
Σ2

} (42)

where

Σ1 = varQ

[
−ỹ(t, T )−

∫ t

0

f̃(s, s)ds

∣∣∣∣ F̂t

]
= varQ

[
ỹ(t, T )

∣∣∣F̂t

]
+ varQ

[∫ t

0

f̃(s, s)ds

∣∣∣∣ F̂t

]
+ 2 covQ

[
ỹ(t, T ),

∫ t

0

f̃(s, s)ds

∣∣∣∣ F̂t

]
(43)

and

Σ2 = varQ

[∫ t

0

f̃(s, s)ds

∣∣∣∣ F̂t

]
. (44)

Putting (43) and (44) into (42) and canceling terms, gives (37).

Given random variables X, Y , Z that are joint normally distributed, X and
(Y −E[Y |X])(Z −E[Z|X]) are independent, since X and Y −E[Y |X] as well as
X and Z − E[Z|X] are uncorrelated. Thus the conditional covariance

cov[Y, Z|X] = E
[
(Y − E[Y |X])(Z − E[Z|X])

∣∣X]
13



is actually the constant

= E
[
(Y − E[Y |X])(Z − E[Z|X])

]
.

This applies to Γ1 and Γ2 since all forward rates f̃(t, T ) and yields ỹ(t, T ) are
joint normally distributed.

As a consequence of the lemma we see that our goal is achieved if we are able
to compute explicitly the conditional means and variances in (38)-(40).

The conditional mean (38) in the exponent (37) can be computed by means
of a Kalman filter and this is what we are going to derive now. In order to make
the partially observed system more compact, define

z̃(t) :=


ỹ(t, T1)−

∫ T1

t
G̃(t, u)du

ỹ(t, T2)−
∫ T2

t
G̃(t, u)du

...

ỹ(t, TN)−
∫ TN

t
G̃(t, u)du

 . (45)

Taking into account (22), (24), (36), and putting C̃(t) := C̃(t, t), G̃(t) := G̃(t, t),
we obtain the yield dynamics

dỹ(t, T ) =− f̃(t, t)dt +

∫ T

t

df̃(t, s)ds

=− C̃(t)x̃(t)dt− G̃(t)dt+

+

(∫ T

t

C̃(t, u)duB̃(t)

)
dw̃(t) +

(∫ T

t

G̃t(t, u)du

)
dt, (46)

giving

dz̃(t) = −


C̃(t)

C̃(t)
...

C̃(t)

 x̃(t)dt +


∫ T1

t
C̃(t, u)duB̃(t)∫ T2

t
C̃(t, u)duB̃(t)

...∫ TN

t
C̃(t, u)duB̃(t)

 dw̃(t). (47)

The partially observed system can now be written as{
dx̃(t) = Ã(t)x̃(t)dt + B̃(t)dw̃(t)
dz̃(t) = Ce(t)x̃(t)dt + N(t)dw̃(t)

(48)

with Ce(t) and N(t) being the terms in brackets in the equation (47). It is a
classical linear-Gaussian system, to which one can apply the Kalman filter, where
x̃(t) is the unobservable component and z̃(t) is the observable one. Clearly,

F̂t = σ{z̃(s), s ≤ t} (49)

and the following proposition follows from standard Kalman filtering theory (see
e.g. [26, Theorem 10.3, p.396]).
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Proposition 5.2 Let the system (x̃(t), z̃(t)) satisfy (48) and F̂t be given by (49).
Then the conditional distribution of x̃(t), given F̂t, is Gaussian with mean

x̂(t) := EQ
[
x̃(t)

∣∣∣F̂t

]
(50)

and covariance matrix

P (t) := varQ
[
x̃(t)

∣∣∣F̂t

]
, (51)

which is deterministic

= EQ
[
(x̃(t)− x̂(t))(x̃(t)− x̂(t))′

]
. (52)

Assuming that the matrix

D(t) := [N(t)N(t)′]1/2 (53)

is invertible, the conditional mean has the dynamics

dx̂(t) = Ã(t)x̂(t)dt + B̂(t)dŵ(t), (54)

with x̂0 = 0,

B̂(t) =
(
B̃(t)N(t)′ + P (t)Ce(t)

′
)

[D(t)′]−1 (55)

and ŵ(t) is the innovations process

dŵ(t) = D(t)−1[dz̃(t)− Ce(t)x̂(t)dt]. (56)

Furthermore, P (t) is the solution of the Riccati equation

dP

dt
= ÃP + PÃ′ − [B̃N ′ + PC ′

e](DD′)−1[B̃N ′ + PC ′
e]
′ + B̃B̃′ (57)

with initial condition P (0) = 0.

We have used the symbol D′ although D is symmetric, to follow the standard
notation for the Kalman filter. It should be noted that the term appearing on the
right-hand side of (57) for t = 0, P (0) = 0 is

B̃(I −N ′(NN ′)−1N)B̃′. (58)

Now, N ′(NN ′)−1N is the projector on the column-space (image) of N ′(t) in
Rm+N . Since N(t) has dimensions N × (m + N), it cannot have full rank; and
since we assume B̃ to have full column rank, (58) cannot be zero, and thus the
solution to (57) does not vanish identically.

Proposition 5.2 yields the means to compute the conditional mean ŷ(t, T ) as

ŷ(t, T ) = EQ[ỹ(t, T )|F̂t] =

∫ T

t

C̃(t, u)du x̂(t) +

∫ T

t

G̃(t, u)du. (59)

The conditional variance of ỹ(t, T ) can be computed similarly:
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Lemma 5.3 Suppose f̃(t, T ) has dynamics as in (22) and F̂t is as in (49) and
let P be the solution to (57). Then the functions Γ1 and Γ2 in (37) are given by

Γ1(t, T ) =

{[∫ T

t

C̃(t, u)du

]
P (t)

[∫ T

t

C̃ ′(t, u)du

]}
and

Γ2(t, T ) =

{∫ t

0

C̃(u, u)P (u)e
∫ t

u A′(τ)dτdu

} ∫ T

t

C̃ ′(t, u)du.

Proof. we can write

Γ1(t, T ) = varQ
[
ỹ(t, T )

∣∣∣F̂t

]
= EQ

[
(ỹ(t, T )− ŷ(t, T ))2]

= EQ

[(∫ T

t

C̃(t, u)du (x̃(t)− x̂(t))

)2
]

= EQ

[∫ T

t

C̃(t, u)du (x̃(t)− x̂(t))(x̃(t)′ − x̂′(t))

∫ T

t

C̃ ′(t, u)du

]
=

{∫ T

t

C̃(t, u)du

}
P (t)

{∫ T

t

C̃ ′(t, u)du

}
. (60)

As for the conditional covariance term (40), we get

Γ2(t, T ) = covQ

[∫ t

0

f̃(u, u)du, ỹ(t, T )

∣∣∣∣ F̂t

]
= EQ

[(∫ t

0

f̃(u, u)du− EQ

[∫ t

0

f̃(u, u)du

∣∣∣∣ F̂t

])
(ỹ(t, T )− ŷ(t, T ))′

]
.

Plugging in the expressions for f̃ , ỹ, and ŷ and using Fubini’s theorem twice gives

Γ2(t, T ) = EQ

[∫ t

0

C̃(u, u)
(
x̃(u)− EQ

[
x̃(u)

∣∣∣F̂t

])
du(x̃(t)′ − x̂(t)′)

∫ T

t

C̃(t, u)′du

]
=

∫ t

0

C̃(u, u)EQ [x̃(u)(x̃(t)− x̂(t))′] du

∫ T

t

C̃(t, u)′du

−
∫ t

0

C̃(u, u)EQ
[
EQ

[
x̃(u)

∣∣∣F̂t

]
(x̃(t)− x̂(t))′

]
du

∫ T

t

C̃(t, u)′du.

Since x̃(t)− x̂(t) is, by definition, orthogonal to any element which is measurable
with respect to F̂t, the term in the last line is 0. Similarly, since x̂(u) is orthogonal
to x̃(t)− x̂(t), we can write

Γ2(t, T ) =

∫ t

0

C̃(u, u)EQ [(x̃(u)− x̂(u))(x̃(t)− x̂(t))′] du

(∫ T

t

C̃ ′(t, u)du

)
.

(61)
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It is easily verified that the SDE (21) has the solution

x̃(t) = e
∫ t

u Ã(τ)dτ x̃(u) +

∫ t

u

e
∫ t

s Ã(τ)dτ B̃(s)dw̃(s) (62)

for t ≥ u. The process x̂(t) follows the analogous SDE (54) with the substitutions
Ã → Â, B̃ → B̂, and w̃ → ŵ. Since ŵ is a Wiener process with respect to the
filtration F̂ ([26]), the analogous equation to (62) holds.

Therefore,

EQ{(x̃(u)− x̂(u))(x̃(t)′ − x̂′(t))

=EQ{(x̃(u)− x̂(u))(x̃(u)′ − x̂′(u))e
∫ t

u Ã′(τ)dτ}

=P (u)e
∫ t

u Ã′(τ)dτ . (63)

Now, substitution of (63) in (61) yields

Γ2(t, T ) =

(∫ t

0

C̃(u, u)P (u)e
∫ t

u Ã′(τ)dτdu

) ∫ T

t

C̃ ′(t, u)du.

In conclusion, putting together Lemma 5.1, relation (59), and Lemma 5.3, we
have the following:

Theorem 5.4 If f̃(t, T ) has dynamics as in (22) and that F̂t is as in (49), then
the projected prices p̂(t, T ) (35) are given by

p̂(t, T ) = exp

{
−

(∫ T

t

C̃(t, u)du

)
x̂(t)−

∫ T

t

G̃(t, u)du

}
· exp

{
1

2

(∫ T

t

C̃(t, u)du

)
P (t)

(∫ T

t

C̃ ′(t, u)du

)}
· exp

{(∫ t

0

C̃(u, u)P (u)e
∫ t

u Ã′(τ)dτdu

) ∫ T

t

C̃ ′(t, u)du

}
, (64)

where x̂(t) and P (t) are computed by using the Kalman filter as in Proposition
5.2 with initial conditions x̂(0) = x̂0 = 0 and P (0) = 0.

6 Filtered Forward Rates

In this section, we define forward rates f̂ , based on the filtered state x̂. We show
that this term structure f̂ is induced by the quintuple (f̃ ∗, Ã, B̂, C̃, ŵ) in the
same way as f̃ is induced by (f̃ ∗, Ã, B̃, C̃, w̃) and f is induced by (f ∗, A,B,C, w).

17



Moreover, we show that the forward rates f̂ are indeed those associated to p̂
defined earlier.

In fact, in complete analogy to Propositions 2.1 and 3.1, we can define forward
rates processes as

f̂(t, T ) := C̃(t, T )x̂(t) + Ĝ(t, T ) (65)

with Ĝ(t, T ) given by

Ĝ(t, T ) := f̃ ∗(0, T ) +
1

2

∫ t

0

β̂T (s, T )ds (66)

and

β̂(t, T ) :=

∣∣∣∣∣∣∣∣∫ T

t

C̃(t, u)B̂(t)du

∣∣∣∣∣∣∣∣2 . (67)

It is not immediately obvious that the forward rates f̂ thus defined are indeed
those associated to p̂. It turns out, though, that this indeed the case:

Theorem 6.1 Let p̂(t, T ) be defined by (35) and f̂(t, T ) by (65) - (67). Then

p̂(t, T ) = exp

{
−

∫ T

t

f̂(t, u)du

}
. (68)

Before we prove this theorem, we need some intermediate results.

It is well-known in system theory that the covariance P (t) = E[x(t)x(t)′] of
the process x(t) defined by (2) (with x0 = 0) satisfies the Lyapunov equation

dP

dt
(t) = A(t)P (t) + P (t)A′(t) + B(t)B′(t) (69)

with the initial condition P (0) = 0. Analogously, the covariance P̃ of x̃(t) satisfies
the Lyapunov equation for the pair (Ã, B̃) and the covariance P̂ of x̂(t) satisfies
the Lyapunov equation for the pair (Ã, B̂).

Notice next that, since x̂(t) and x̃(t)− x̂(t) are orthogonal, we have

P̃ = E[x̃(t)x̃′(t)] = E[(x̃(t)− x̂(t))(x̃(t)− x̂(t))′] + E[(x̂(t))x̂′(t)] = P + P̂ .

Lemma 6.2 Let x(t) be the solution to (2), C(t, T ) be as in (4) and P (t) be the
covariance of x(t). Then G(t, T ) in (5) can alternatively be written as

G(t, T ) = f ∗(0, T ) + C(t, T )P (t)

∫ T

t

C ′(t, u)du (70)

+

∫ t

0

C(u, u)P (u)e
∫ t

u A′(s)dsdu C ′(t, T )

=: G(t, T, A, B, C). (71)
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Proof. Observe first that

Ct(t, T ) = −C(T )e
∫ T

t A(s)dsA(t) = −C(t, T )A(t).

Then, since the two expressions (5) and (70) of G(t, T ) coincide for t = 0, we just
need to show that the partial derivatives in t are equal. Thus, from (70),

Gt(t, T ) = −C(t, T )A(t)P (t)

∫ T

t

C ′(t, u)du + C(t, T )
dP

dt
(t)

∫ T

t

C ′(t, u)du

−C(t, T )P (t)A′(t)

∫ T

t

C ′(t, u)du

−C(t, T )P (t)C ′(t, t) + C(t, t)P (t)C ′(t, T )

+

∫ t

0

C(u, u)P (u)e
∫ t

u A′(s)dsA′(t)du C ′(t, T )

−
∫ t

0

C(u, u)P (u)e
∫ t

u A′(s)dsdu A′(t)C ′(t, T )

= C(t, T )[−A(t)P (t) +
dP

dt
(t)− P (t)A′(t)]

∫ T

t

C ′(t, u)du

= C(t, T )B(t)B′(t)

∫ T

t

C ′(t, u)du,

which is (10), as wanted.

In a completely similar manner, we have that

G̃(t, T ) = G(t, T, Ã, B̃, C̃) (72)

and
Ĝ(t, T ) = G(t, T, Ã, B̂, C̃).

Proof of Theorem 6.1. Since (68) obviously holds for t = T , it suffices to
show

− ∂

∂T
log p̂(t, T )− C̃(t, T )x̂(t) = Ĝ(t, T ). (73)

Using (64), we can write:

− ∂

∂T
log p̂(t, T )− C̃(t, T )x̂(t) = G̃(t, T )− C̃(t, T ) P (t)

∫ T

t

C̃ ′(t, u)du

−
{∫ t

0

C̃(u, u)P (u)e
∫ t

u Ã′(s)dsdu

}
C̃ ′(t, T ).
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Plugging in (72) yields

− ∂

∂T
log p̂(t, T )− C̃(t, T )x̂(t) = f̃ ∗(0, T )

+ C̃(t, T )P̃ (t)

∫ T

t

C̃ ′(t, u)du +

{∫ t

0

C̃(u, u)P̃ (u)e
∫ t

u Ã′(s)dsdu

}
C̃ ′(t, T )

− C̃(t, T ) P (t)

∫ T

t

C̃ ′(t, u)du−
{∫ t

0

C̃(u, u)P (u)e
∫ t

u Ã′(s)dsdu

}
C̃ ′(t, T ),

and using the fact that P̃ (t)− P (t) = P̂ (t),

− ∂

∂T
log p̂(t, T )− C̃(t, T )x̂(t) = f̃ ∗(0, T )

+ C̃(t, T )P̂ (t)

∫ T

t

C̃ ′(t, u)du +

{∫ t

0

C̃(u, u)P̂ (u)e
∫ t

u Ã′(s)dsdu

}
C̃ ′(t, T )

= G(t, T, Ã, B̂, C̃) = Ĝ(t, T ),

which completes the proof.

Conclusion

We showed that it is possible to define a filtered term structure in a general,
model-free way, when the usual numeraire, the bank account, is not observed
(section 4).

Although not themselves linear-Gaussian, the filtered prices can be computed
by application of the standard Kalman-filter in the specific linear-Gaussian setting
(section 5).

There is a complete analogy between the term structures f , f̃ and f̂ . The
filtered prices could, instead of the “economic” definition of section 4, alternatively
be defined by mathematical analogy according to (65). It turns out – but is not
obvious – that both definitions are equivalent (section 6).

We conjecture that these three ideas carry over to a general HJM-Ito-process
setting, except for the explicit computations in section 5.
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