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Abstract

It is well known that projection schemes for certain linear ill�posed problems Ax = y

can be regularized by a proper choice of the discretization level only, where no

additional regularization is needed. The previous study of this self�regularization

phenomenon was restricted to the case of so�called moderately ill�posed problems,

i.e., when the singular values �k(A); k = 1; 2; :::, of the operator A tend to zero with

polynomial rate. The main accomplishment of the present paper is a new strategy for

a discretization level choice that provides optimal order accuracy also for severely ill�

posed problems, i.e., when �k(A) tend to zero exponentially. The proposed strategy

does not require a priori information regarding the solution smoothness and the

exact rate of �k(A).

1 Introduction

In this paper, we wish to recover an element x of some Hilbert space X from observations

near

y = Ax; (1)

where A is some injective linear compact and in�nitely smoothing operator acting from

X into another Hilbert space Y, while the solution x = A
�1
y has only a �nite smoothness

in some sense. The inner product and corresponding norm on each of the Hilbert spaces

X and Y will be denoted by h�; �i and k � k, respectively. (It will be always clear from the

context which space is concerned.)

Inverse problems involving in�nitely smoothing operators often arise in scienti�c context,

ranging from tomography [17], non-destructive detection [6], to satellite geodetic explo-

rations [7]. These problems are severely ill�posed in the sense that noisy data yÆ with

arbitrarily small noise level Æ;

ky � yÆk � Æ;

can lead to disproportionally large deviations in the solution.

More precisely, if x = A
�1
y belongs to some subspace U continuously embedded in X, and

the singular values �k of the canonical embedding operator JU : U ! X tend to zero with

polynomial rate, say O(k��); (solution has a �nite smoothness), while the singular values

�k(A) of the operator A tend to zero exponentially (A is an in�nitely smoothing operator),

then, as it was shown by Mair [12], one can expect to recover the solution x = A
�1
y in

the space X with the accuracy O

�
ln
�� 1

Æ

�
only, where Æ is the noise level and � > 0 can

be taken as the smoothness index of x. Thus, in order to obtain stable approximations

to x = A
�1
y; regularization methods have to be applied. Order�optimal regularization

methods of the worst�case error for severely ill�posed problems were constructed in [12],

[19], [3],[4]. These methods require an exact knowledge of the smoothness index � and/or
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the exponential rate of �k(A): However, such a priori information is rarely available in

practice. This drawback was overcome recently in [9], [16], where it was shown that the

combination of a well-known discrepancy principle and the simplest version of Tikhonov's

regularization method is always order�optimal for severely ill�posed problems. It should

be noted that this combination does not require the a priori information mentioned above.

Note, that regularized problems are usually de�ned in an in�nite�dimensional setting and

have to be discretized for an implementation.

At the same time, in practice even noisy observations

yÆ = Ax + Æ�; k�k � 1; (2)

are possible only in a discretized form. To be more precise, we have only a vector

fyÆ;ig
n

i=1
2 R

n de�ned by yÆ;i = hyÆ; 'ii = hAx; 'ii+ Æh�; 'ii; i = 1; 2; :::; n, where

Vn = spanf'1; :::; 'ng � Y

is some �nite�dimensional subspace.

It was shown in [14] that an e�ective projection scheme with properly choosen discretiza-

tion level n allows to obtain a regularization e�ect; no additional regularization of the

problem is needed. This phenomenon is sometimes called self�regularization or regular-

ization by projection. Self�regularization with a priori chosen discretization level was

analyzed in [1], [2], [15], [13]. In these papers it is assumed that the smoothness index �

of x = A
�1
y is known a priori. An a posteriori regularization strategy, that yields optimal

order of accuracy without using knowledge of �, was proposed recently in [10], [18].

But it is worth to note that the previous study of self�regularization was restricted to

the case of so�called moderately ill�posed problems, i.e., when the singular values of the

operator A tend to zero with polynomial rate. To the best of our knowledge there are no

papers devoted to the analysis of the self�regularization phenomenon for severely ill�posed

problems.

The main accomplishment of this paper is to propose a new strategy for a discretization

level choice that provides the accuracy of optimal order O
�
ln
�� 1

Æ

�
for severely ill�posed

problems and does not require an exact knowledge of � and f�k(A)g. For �xed data one

has to compute the discretized solution for a number of subsequent discretization levels,

then, from this series, our algorithm will select one with optimal order of accuracy.

In Section 2 our assumptions will be explained and motivated. The algorithm will be de-

veloped in Section 3, and in Section 4 some easy numercal experiments will be performed.

2 Pojection methods

In order to de�ne regularization by projection for the linear ill�posed operator equation

(1) we consider a sequence of �nite�dimensional subspaces Vn; n = 1; 2; : : : ; dimVn = n,

whose union is dense in Y, and the corresponding sequence of projected equations

QnAx = QnyÆ (3)

where Qn denotes the orthogonal projection onto Vn. Let An = QnA. A regularized

approximate solution x
Æ
n is determined from (3) as the unique element of X that has
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minimal norm among all minimizers of the residual kAnx�QnyÆk. It is well known that

the unique element minimizing the residual is given by x
Æ
n = A

y

nyÆ, where A
y

n denotes the

Moore�Penrose generalized inverse of An.

Now we are going to establish the main assumptions of this paper which will be motivated

by means of a special projection method: the so�called method of least error (also called

dual least squares method). In the case

ker(A) = 0; ker(A�) = 0; (4)

this method has the property

kx� xnk = min
u2A�Vn

kx� uk;

where xn is the solution of (3) for exact data.

Moreover, it is well known that xÆn = A
y

nyÆ 2 A
�
Vn holds. The approximate solution x

Æ
n

can be represented in the form

x
Æ
n =

nX
k=1

dkA
�

'k;

where the vector (d1; d2; :::; dn) is found from the following system of linear equations

nX
k=1

dkhA
�

'k; A
�

'li = h'l; yÆi; l = 1; 2; :::; n:

Keeping in mind that x = A
�1
y has a �nite smoothness, it is natural to assume that for

some c� � 1 and � > 0

kA�1
y � A

y

nyk = inf
u2A�Vn

kA�1
y � uk � c�n

��
; � 2 [�0; �1]; n = 1; 2; :::; (5)

and one knows only a �nite interval [�0; �1] containing the unknown � which can be

considered as the smoothness index of x = A
�1
y:

Following [5], the in�uence of non-vanishing data noise can be estimated as

kAy

ny � A
y

nyÆk � �
�1=2
n kQn(y � yÆ)k � �

�1=2
n Æ; (6)

where �n is the smallest positive eigenvalue of AnA
�

n = QnAA
�
Qn, and �

1

2
n = O(�n(A)).

For operators involved in severely ill�posed problems, �n(A); n = 1; 2; :::, tend to zero

exponentially. Therefore, in view of (6) it is natural to assume that for some a > 0; q > 1

e
an
Æ � kAy

ny � A
y

nyÆk � e
anq

Æ: (7)

This assumption seems to be realistic, when A, e.g., is a Fredholm integral operator with

analytic kernel. If the operator A is not well studied then the exponent a is rarely known

exactly. In this case q re�ects the magnitude of a gap in our knowledge of A and is

assumed to be known.

Proposition 1 Let the assumptions (4), (5), (7) hold. Then for

n� = minfn : c�n
�� � Æe

aqng

we obtain

kA�1
y � x

Æ
n�
k � 2

�+1
ec�(aq)

�
ln
�� 1

Æ
:
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Proof. Consider

�n :=

�
(aq)�1

�
ln

1

Æ
� � ln ln

1

Æ
+ ln c�(2aq)

�

��

where b�c means the smallest integer that is larger than � .

Without loss of generality we may assume that for Æ small enough

� ln ln
1

Æ
� ln c�(2aq)

� �
1

2
ln

1

Æ
:

Then

c��n
�� � c�(2aq)

� ln
�� 1

Æ
� Æe

aq�n
;

and from the de�nition of n� we conclude that

n� � �n:

It is now easy to derive from assumptions (5), (7) the desired bound:

kA�1
y � x

Æ
n�
k � kA�1

y � A
y

n�
yk+ kAy

n�
y � A

y

n�
yÆk �

� c�n
��
�

+ e
aqn�

Æ � 2Æe
aqn� � 2Æe

aq�n �

� 2�+1ec�(aq)
� ln

�� 1

Æ
:

Note that n = n� is an optimal choice for the discretization level, because under the

assumptions (5), (7) it balances the discretization error with the data noise. But this

optimal choice requires a priori information on the parameters �; c�; a; q and for this

reason it is not practicable. In the next section we will introduce our adaptive a posteriori

discretization level choice that yields the optimal rate O(ln
�� 1

Æ
) without using knowledge

of �; c�; a.

3 Adaptive discretization level choice

In this section we de�ne a new principle for an a posteriori choice of the discretization

level. It distinguishes from the residual principle discussed in [20], [10] for moderately

ill�posed problems, where the discretization level is chosen minimal with the property

kAxÆn � yÆk � cÆ. Since such a choice needs the function yÆ; it is possible only under

accessing to in�nitely many discrete data.

The idea of our principle has its origin in the paper [11] devoted to statistical estimation

from direct white noise observations that corresponds to (1) with identity operator A, but

with random noise data. In the context of ill�posed problems of the form (1) with compact

operators acting along some Hilbert scale (the case of moderately ill�posed problems), but

still with random noise, this idea has been realized in [8] for adaptive estimating the value

of a linear functional on the solution of (1). If, as it is usual for statisticians, we will

treat the discretization error term (5) and the data noise term (6) as bias and variance,

respectively, then the idea is to choose the minimal n for which the bias is still dominated

by the variance. For pseudodi�erential equations of negative order with deterministic noise

(moderately ill�posed problem) the same idea was used in the paper [18] also devoted to
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adaptive regularization by projection. But in all papers just listed it has been essentially

used that the order of the data noise term (variance) is a priori known. In view of (7) such

an assumption is rather restrictive. Therefore we will combine the above�mentioned idea

with successive testing the hypothesis that the exponent aq from (7) is less than some

term of the progression

Bq =
�
bj : bj = b0q

j
; j = 0; 1; :::

	
:

If �0 and b0 are the minimal expected smoothness index from (5) and the minimal expected

exponent aq from (7), respectively, then in view of Proposition 1 it is natural to choose

the discretization level from the �nite set

NÆ = fn : n = 1; 2; :::; n � Ng;

where

N = b
�1
0 (ln

1

Æ
� �0 ln ln

1

Æ
):

To shorten notation we assume that N is an integer. Let

Mj =
�
m 2 NÆ : 8k; n � m; k; n 2 NÆ kxÆn � x

Æ
kk � 2Æ[ebjn + e

bjk]
	

(8)

Let us study the properties of the sequence

mj = minfm : m 2Mjg; j = 1; 2; :::

Lemma 1 The sequence fmjg is monotone non�increasing:

N � m1 � m2 � ::: � mj � ::: � 1:

Proof. It follows immediately from the fact that the set Mj becomes larger if j grows,

i.e. Mj �Mj+1 and

mj = minfm : m 2 Mjg � minfm : m 2Mj+1g = mj+1:

De�ne the integer � such that

b� = maxfbj : bj 2 Bq; bj � ag:

Without loss of generality we may assume that � > 1.

Lemma 2 Let the assumtions (4), (5), (7) hold. Assume that Æ is small enough such

that

Æ
q�1 ln

�0(q�1)
1

Æ
<

1

8
: (9)

Then for any j = 1; 2; :::; � � 1

mj � q
�1

(N � b
�1
0 ln 6):
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Proof. We prove the lemma considering the cases n� < mj and n� � mj separately,

where n� is de�ned in Proposition 1.

Assume that mj > n�. Then for k = N; n = mj from the de�nition (8) of mj and

assumptions (5), (7) we obtain

4ÆebjN � 2Æ[ebjN + e
bjmj ] � kxÆN � x

Æ
mj
k � kA�1

y � x
Æ
Nk

� kA�1
y � x

Æ
mj
k � kAy

Ny � A
y

NyÆk � kA�1
y � A

y

Nyk

� c�m
��
j � Æe

aqmj � e
aN
Æ � c�N

�� � c�m
��
j � Æe

aqmj

� e
aN
Æ � 2c�m

��
j � Æe

aqmj � e
aN
Æ � 3eaqmjÆ:

Using (9) one can rewrite it as

3eaqmj � e
aN
�
1� 4e(bj�a)N

�
� e

aN
�
1� 4e(b��1�b�)N

�
= e

aN
�
1� 4eq

��1b0(1�q)N
�
� e

aN

�
1� 4Æq�1 ln

�0(q�1)
1

Æ

�

�
1

2
e
aN
:

Thus,

mj � q
�1(N � a

�1 ln 6) � q
�1(N � b

�1
0 ln 6);

and we obtain the statement of the lemma under the assumption that mj > n�.

Now let us consider the remaining case. Under the assumption n� � mj we can repeat

the previous argument with mj replaced by n�. It gives the inequality

n� � q
�1(N � b

�1
0 ln 6) � b

�1
1 ln

1

Æ
� b

�1
1 �0 ln ln

1

Æ
+O(1):

On the other hand, from the proof of Proposition 1 one knows that

n� � �n � (aq)�1 ln
1

Æ
� �(aq)�1 ln ln

1

Æ
+O(1);

where aq > b1 by de�nition. Therefore the hypothesis, that for some j 2 f1; 2; :::; � �
1g n� � mj, leads to the relation ln 1

Æ
= O

�
ln ln 1

Æ

�
being in contradiction with the

assumption that Æ is small enough. Thus for such Æ the case n� � mj is impossible. This

completes the proof of the lemma.

As a consequence it has been established that

n� < q
�1(N � b

�1
0 ln 6): (10)

Lemma 3 Assume that bj 2 Bq is such that bj � aq. Then under the assumptions (4),

(5), (7)

kA�1
y � x

Æ
mj
k � 6e2�+1c�b

�
j ln

�� 1

Æ
;

and

mj < q
�1(N � b

�1
0 ln 6):
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Proof. Consider

nj = min
�
n : c�n

�� � Æe
bjn
	
:

With an argument like that in the proof of Proposition 1 we get the estimate

kA�1
y � x

Æ
nj
k � 2Æebjnj � 2�+1ec�b

�
j ln

�� 1

Æ
: (11)

Note also that for any k; n 2 NÆ such that k; n � nj

kxÆn � x
Æ
kk � kA�1

y � x
Æ
nk+ kA�1

y � x
Æ
kk � c�n

�� + e
aqn

Æ

+ c�k
��

+ e
aqk

Æ � c�n
��

+ e
bjnÆ + c�k

��

+ e
bjkÆ � 2Æ

�
e
bjn + e

bjk
�
:

It means that nj belongs to the set Mj de�ned by (8), and

nj � mj := minfm : m 2Mjg: (12)

Then from (11) one has

kA�1
y � x

Æ
mj
k � kA�1

y � x
Æ
nj
k+ kxÆnj � x

Æ
mj
k � 2Æe

bjnj

+ 2Æ
�
e
bjnj + e

bjmj

�
� 6Æe

bjnj

� 6e2�+1c�b
�
j ln

�� 1

Æ
;

as claimed.

It is now easy to derive the remaining assertion concerning mj. Namely, from (10) and

(12) it follows that

mj � nj � min
�
n : c�n

�� � Æe
aqn
	
= n� < q

�1(N � b
�1
0 ln 6):

The lemma is proved.

Now we are in a position to describe a new strategy for an adaptive discretization level

choice.

First, we obtain a family of regularized approximate solutions fxÆng associated with n 2
NÆ . Second, for every bj 2 Bq; j = 1; 2; :::, we choose adaptively the discretization level

mj 2 NÆ as minimal m from the set (8) until

mj < q
�1(N � b

�1
0 ln 6):

Letml denote the maximal (or the �rst)mj satisfying this condition. By the construction,

such ml corresponds to some bl = b0q
l 2 Bq.

The regularized approximate solution we are interested in is de�ned now as xÆml+2
, where

ml+2 is the minimal m from the set (8) corresponding to bl+2 = blq
2 2 Bq.

We stress that the exact values of the parameters �; c� and a from (5), (7) are not involved

in the construction of xÆml+2
. It depends only on the three design parameters �0; b0 and q

re�ecting our a priori knowledge of the problem.

We turn to the main result of this paper.
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Theorem 1. Assume that the conditions of Lemma 2 hold. Then

kA�1
y � x

Æ
ml+2

k � c ln
�� 1

Æ
;

where c � 6e2�+1c�(aq
4)�.

Proof. From the very de�nition it follows that

b� � a � b�+1 � aq � b�+2 � aq
2 � b�+3 � aq

3 � b�+4 � aq
4
:

Then from Lemma 1 and Lemma 3 one has

m�+3 � m�+2 < q
�1

(N � b
�1
0 ln 6):

It means that ml � m�+2. On the other hand, Lemma 2 gives ml < m��1. Therefore,

ml can take only the values ml = m�, ml = m�+1 or ml = m�+2, and as a consequence,

bl+2 2 fb�+2; b�+3; b�+4g. Thus, in any case bl+2 � aq, and the statement of the Theorem

follows from Lemma 3.

The theorem just proven shows that the regularized approximate solution x
Æ
ml+2

with

adaptively chosen discretization level ml+2 yields the optimal rate of accuracy O

�
ln
�� 1

Æ

�
without using knowledge of �; c�; a.

4 Numerical results

As in [3], in order to demonstrate the performance of our method, we consider the integral

equation with logarithmic kernel

Ax(t) :=

Z 1

0

ln(t� �)x(�)d� = y(t); t 2 [2; 3]: (13)

Since [0; 1]\ [2; 3] = ;, the kernel is analytic with respect to t; � , and the integral equation

(13) is severely ill-posed in the above mentioned sense.

For testing the algorithm we consider three cases for which the solutions of (13) are known

explicitly. We choose y(t) = yk(t); k = 1; 2; 3, given by

y1(t) = t ln t� (t�
1

2
) ln(t�

1

2
)�

1

2
;

y2(t) =
t
2

2
ln t +

(t� 1)2

2
ln(t� 1)� (t

2 � t +
1

4
) ln(t�

1

2
)�

3

8
;

y3(t) =
t
2

2
ln t�

t
2 � 1

2
ln(t� 1)�

t

2
�

1

4
:

One easily checks that the functions

x1(�) =

�
1; � 2 [0; 1

2
];

0; � 2 (1
2
; 1];

x2(�) =

�
�; � 2 [0; 1

2
];

1� �; � 2 (1
2
; 1];

x3(�) = �:

8



are such that Axk(t) = yk(t); k = 1; 2; 3, i.e. xk is the solution of (13) for y = yk.

Now we generate noisy data yÆ(t) = yÆ;k(t); k = 1; 2; 3, in the form of piecewise linear

functions interpolating the values yÆ;k(ti) = yk(ti) + Æzi at the points ti = 2 + i
M
; i =

0; 1; 2; : : : ;M , where M = 5000, zi are random numbers such that jzij � 1, and Æ charac-

terizes the level of noise in the data taking the values Æ = 10�7 or Æ = 10�8.

In order to de�ne regularization by projection for noisy equations Ax = yÆ;k; k = 1; 2; 3,

with the operator A as in (13) and noisy data yÆ;k; let us use the method of least error

mentioned in Section 2. As test spaces let us take the �nite�dimensional subspaces of

piecewise constant functions

Vn = span f'1; '2; :::; 'ng ; n = 1; 2; : : : ; N;

where

'i(t) =

�
1; 2 + i�1

n
� t � 2 + i

n
;

0; else:

In this case the regularized solutions xÆn;k = A
y

nyÆ;k; k = 1; 2; 3, are de�ned as a linear

combinations of the trial functions

A
�

'i(�) = (2 +
i

n
� �) ln(2 +

i

n
� �)� (2 +

i� 1

n
� �) ln(2 +

i� 1

n
� �)�

1

n
;

i = 1; 2; : : : ; n; � 2 [0; 1];

and the computations mentioned in Section 2 can be performed explicitly.

To demonstrate our algorithm we should indicate the values of the parameters �0; b0

and q. For �xed Æ the parameters �0 and b0 can be chosen depending on the maximal

discretization level N . In our numerical experiments N takes the values between 20 and

24, and we choose �0 = 0; b0 = 0:8.

The choice of q is of particular importance for our algorithm, because the error estimate

presented in Theorem 1 crucially depends on this parameter. From (6) and (7) it follows

that q depends mainly on the operator A. Therefore, one can choose this parameter using

some test problem with known solution for the same operator A. As such a test problem

we use here the equation (13) with noisy data yÆ;1(t); Æ = 10�8. The exact solution of this

problem is x1(�). Applying our algorithm with di�erent values of q we obtain the results

presented in Table 1. Keeping in mind that the smoothness index � for the solution

x1(�) is relatively small (it can be estimated as � = 1
2
) one can not expect to reach high

accuracy for the problem (13) with such a solution. Nevertheless, the results presented in

Table 1 show that a reasonable choice for q would be q = 1:5.

Numerical results for problem (13) with noisy data yÆ;k; k = 2; 3, are presented in Tables 2

and 3, respectively. They show that within the framework of our algorithm the same value

q = 1:5 allows to reach a good level of accuracy for both problems. At the same time,

it should be noted that the error of the projection scheme has a very unstable behavior.

For example, for problem (13) with noisy data yÆ;1 the discretization level m = 6 gives

the error 0:16996 : : :, and the discretization level m = 11 gives the error 2:7665 � 10�2 for
the problem with noisy data yÆ;2. These values are slightly superior to the error obtained

with q = 1:5. However, our algorithm automatically �nds the discretization level that

gives the accuracy of the same order.
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q ml+2 kx1 � x
Æ
ml+2

k

1.3 8 0.17532...

1.5 5 0.17112...

1.7 3 0.24133...

1.9 1 0.40128...

Table 1: Numerical results for k = 1; Æ = 10�8; N = 24.

q ml+2 kx2 � x
Æ
ml+2

k

1.3 8 0.75615...

1.5 3 5.1825�10�2...

1.7 1 0.14965...

1.9 1 0.14965...

Table 2: Numerical results for k = 2; Æ = 10�7; N = 20.

q ml+2 kx3 � x
Æ
ml+2

k

1.3 8 3.3175�10�2...

1.5 4 4.8860�10�4...

1.7 3 3.7980�10�3...

1.9 1 0.39058...

Table 3: Numerical results for k = 3; Æ = 10�8; N = 21.
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