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Geometric singular perturbation theory

for stochastic di�erential equations

Nils Berglund and Barbara Gentz

Abstract

We consider slow�fast systems of di�erential equations, in which both the slow and

fast variables are perturbed by additive noise. When the deterministic system admits

a uniformly asymptotically stable slow manifold, we show that the sample paths of the

stochastic system are concentrated in a neighbourhood of the slow manifold, which

we construct explicitly. Depending on the dynamics of the reduced system, the re-

sults cover time spans which can be exponentially long in the noise intensity squared

(that is, up to Kramers' time). We give exponentially small upper and lower bounds

on the probability of exceptional paths. If the slow manifold contains bifurcation

points, we show similar concentration properties for the fast variables corresponding

to non-bifurcating modes. We also give conditions under which the system can be

approximated by a lower-dimensional one, in which the fast variables contain only

bifurcating modes.

Date. March 30, 2002.

2000 Mathematical Subject Classi�cation. 37H20, 34E15 (primary), 60H10 (secondary)

Keywords and phrases. Singular perturbations, slow�fast systems, invariant manifolds, dynamic

bifurcations, stochastic di�erential equations, �rst-exit times, concentration of measure.

1 Introduction

Systems involving twowell-separated timescales are often described by slow�fast di�erential

equations of the form

" _x = f(x; y; ");

_y = g(x; y; ");
(1.1)

where " is a small parameter. Since _x can be much larger than _y, x is called the fast variable

and y is called the slow variable. Such equations occur, for instance, in climatology, with

the slow variables describing the state of the oceans, and the fast variables the state of

the atmosphere. In physics, slow�fast equations model in particular systems containing

heavy particles (e. g. nuclei) and light particles (e. g. electrons). Another example, taken

from ecology, would be the dynamics of a predator�prey system in which the rates of

reproduction of predator and prey are very di�erent.

The system (1.1) behaves singularly in the limit " ! 0. In fact, the results depend

on the way this limit is performed. If we simply set " to zero in (1.1), we obtain the

algebraic�di�erential system

0 = f(x; y; 0);

_y = g(x; y; 0):
(1.2)
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Assume there exists a di�erentiable manifold with equation x = x
?(y) on which f = 0.

Then x = x
?(y) is called a slow manifold, and the dynamics on it is described by the

reduced equation

_y = g(x?(y); y; 0): (1.3)

Another way to analyze the limit " ! 0 is to scale time by a factor 1=", so that the

slow�fast system (1.1) becomes

x
0 = f(x; y; ");

y
0 = "g(x; y; "):

(1.4)

In the limit "! 0, we obtain the so-called associated system

x
0 = f(x; y; 0);

y
0 = 0;

(1.5)

in which y plays the rôle of a parameter. The slow manifold x = x
?(y) consists of equilib-

rium points of (1.5), and (1.4) can be viewed as a perturbation of (1.5) with slowly drifting

parameter y.

Under certain conditions, both the reduced equation (1.3) and the associated sys-

tem (1.5) give good approximations of the initial slow�fast system (1.1), but on di�erent

timescales. Assume for instance that for each y, x?(y) is an asymptotically stable equilib-

rium of the associated system (1.5). Then solutions of (1.1) starting in a neighbourhood

of the slow manifold will approach x
?(y) in a time of order "jlog "j. During this time in-

terval they are well approximated by solutions of (1.5). This �rst phase of the motion is

sometimes called the boundary-layer behaviour. For larger times, solutions of (1.1) remain

in an "-neighbourhood of the slow manifold, and are thus well approximated by solutions

of the reduced equation (1.3). This result was �rst proved by Grad²te��n [15] and Tihonov

[26].

Fenichel [11] has given results allowing for a geometrical description of these phenomena

in terms of invariant manifolds. He showed, in particular, the existence of an invariant

manifold

x = �x(y; "); with �x(y; ") = x
?(y) +O("), (1.6)

for su�ciently small ", whenever x?(y) is a family of hyperbolic equilibria of the associated

system (1.5). The dynamics on this invariant manifold is given by the equation

_y = g(�x(y; "); y; "); (1.7)

which can be treated by methods of regular perturbation theory, and reduces to (1.3) in

the limit " ! 0. In fact, Fenichel's results are more general. For instance, if x?(y) is a

saddle, they also show the existence of invariant manifolds associated with the stable and

unstable manifolds of x?(y). See [17] for a review.

New, interesting phenomena arise when the dynamics of (1.7) causes y to approach a

bifurcation point of (1.5). For instance, the passage through a saddle�node bifurcation,

corresponding to a fold of the slow manifold, produces a jump to some other region in phase

space, which can cause relaxation oscillations and hysteresis phenomena (see in particular

[24] and [16], as well as [21] for an overview). Transcritical and pitchfork bifurcations

generically lead to a smoother transition to another equilibrium [20, 19], while the passage

through a Hopf bifurcation is accompanied by the delayed appearance of oscillations [22,
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23]. There exist many more recent studies of what has become known as the �eld of

dynamic bifurcations, see for instance [4].

In many situations, low-dimensional ordinary di�erential equations of the form _x =

f(x) are not su�cient to describe the dynamics of the system under study. The e�ect of

unknown degrees of freedom is often modelled by noise, leading to a stochastic di�erential

equation (SDE) of the form

dxt = f(xt) dt + �F (xt) dWt; (1.8)

where � is a small parameter, andWt denotes a standard, generally vector-valued Brownian

motion. On short timescales, the main e�ect of the noise term �F (xt) dWt is to cause

solutions to �uctuate around their deterministic counterpart, but the probability of large

deviations is very small (of the order e�const=�2). On longer timescales, however, the noise

term can induce transitions to other regions of phase space.

The best understood situation is the one where f admits an asymptotically stable equi-

librium point x?. The �rst-exit time �(!) of the sample path xt(!) from a neighbourhood

of x? is a random variable, the characterization of which is the object of the exit problem. If

f derives from a potential U (i. e., f = �rU) of which x
? is a local minimum, the asymp-

totic behaviour of the typical �rst-exit time for � � 1 has been long known by physicists:

it is of order e2H=�
2
, where H is the height of the lowest potential barrier separating x?

from other potential wells. A theory of large deviations generalizing this result to quite

a large class of SDEs has been developed by Freidlin and Wentzell [14]. More detailed

information on the asymptotics of the expected �rst-exit time, and on the distribution of

� , has been obtained, see in particular [2, 12, 9].

The more di�cult problem of the dynamics near a saddle point has been studied in [18]

and in [10]. The situation where f depends on a parameter and undergoes bifurcations

has not yet been studied in that much detail. An approach based on the notion of random

attractors [25, 1, 8] gives information on the limit t!1, when the system has reached a

stationary state. Note, however, that the time needed to reach this regime, in which (in

the gradient case) xt is most likely to be found near the deepest potential well, may be

very long if the wells are separated by barriers substantially higher than �2. The dynamics

on intermediate timescales, known as the metastable regime, is not yet well understood in

the presence of bifurcations.

In this work, we are interested in the e�ect of additive noise on slow�fast systems of

the form (1.1). Such systems have been studied before in [13], using techniques from large

deviation theory to describe the limit � ! 0. Here we use di�erent methods to give a

more precise description of the regime of small, but �nite noise intensity, our main goal

being to estimate quantitatively the noise-induced spreading of typical paths, as well as the

probability of exceptional paths. We will consider situations in which both the slow and

fast variables are a�ected by noise, with noise intensities taking into account the di�erence

between the timescales. In (1.8), the di�usive nature of the Brownian motion causes paths

to spread like �
p
t. In the case of the slow�fast system (1.1), we shall choose the following

scaling of the noise intensities:

dxt =
1

"
f(xt; yt; ") dt+

�p
"
F (xt; yt; ") dWt;

dyt = g(xt; yt; ") dt + �
0
G(xt; yt; ") dWt:

(1.9)

In this way, �2 and (�0)2 both measure the ratio between the rate of di�usion squared and

the speed of drift, respectively, for the fast and slow variable. We consider general �nite-
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dimensional x 2 Rn and y 2 Rm, while Wt denotes a k-dimensional standard Brownian

motion. Accordingly, F and G are matrix-valued functions of respective dimensions n� k

and m�k. We consider ", � and �0 as small parameters, and think of � and �0 as functions
of ". We limit the analysis to situations where �0 does not dominate �, i. e., we assume

�
0 = �� where � may depend on " but is uniformly bounded above in ".

We �rst consider the case where the deterministic slow�fast system (1.1) admits an

asymptotically stable slow manifold x?(y). Our �rst main result, Theorem 2.4, states that

the sample paths of (1.9) are concentrated in a �layer� surrounding the adiabatic manifold

�x(y; "), of the form

B(h) =
�
(x; y) :



(x� �x(y; ")); X(y; ")�1(x� �x(y; "))

�
< h

2
	

(1.10)

up to time t, with a probability behaving roughly like (t2=") e�h
2=2�2 as long as the paths

do not reach the vicinity of a bifurcation point. The matrix X(y; "), de�ning the elliptical

cross-section of the layer, is itself a solution of a slow�fast system, and depends only on

the values of F and @xf on the slow manifold. In particular, X(y; 0) is a solution of the

Liapunov equation

A
?(y)X +XA

?(y)T + F (x?(y); y; 0)F (x?(y); y; 0)T = 0; (1.11)

where A?(y) = @xf(x
?(y); y; 0). For instance, if f derives from a potential U , �A? is the

Hessian matrix of U at its minimum, and B(h) is more elongated in those directions in

which the curvature of U is smallest.

Theorem 2.5 gives a more detailed description of the dynamics inside B(h), by show-

ing that paths (xt; yt) are concentrated in a neighbourhood of the deterministic solution

(xdett ; y
det
t ) at least up to times of order 1. The spreading in the y-direction grows at a rate

corresponding to the �nite-time Lyapunov exponents of the deterministic solution.

Next we turn to situations where the deterministic solution approaches a bifurcation

point of the associated system. In this case, the adiabatic manifold �x(y; ") is not de�ned

in general. However, by splitting x into a stable direction x
� and a bifurcating direction

z, one can de�ne a (centre) manifold x
� = �x�(z; y; ") which is locally invariant under the

deterministic �ow. Theorem 2.7 shows that paths of the stochastic system are concentrated

in a neighbourhood of �x�(z; y; "). The size of this neighbourhood again depends on noise

and linearized drift term in the stable x�-direction.
In order to make use of previous results on the passage through bifurcation points for

one-dimensional fast variables, such as [7, 5, 6], it is necessary to control the deviation

between solutions of the full system (1.9), and the reduced stochastic system obtained

by setting x� equal to �x�(z; y; "). Theorem 2.8 provides such an estimate under certain

assumptions on the dynamics of the reduced system.

We present the detailed results in Section 2, Subsection 2.2 containing a summary of

results on deterministic slow�fast systems, while Subsection 2.3 is dedicated to the random

case with a stable slow manifold and Subsection 2.4 to the case of bifurcations. Sections 3

to 5 contain the proofs of these results.
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2 Results

2.1 Preliminaries

Let D be an open subset of Rn�Rm and "0 a constant. We consider slow�fast stochastic

di�erential equations of the form

dxt =
1

"
f(xt; yt; ") dt+

�p
"
F (xt; yt; ") dWt;

dyt = g(xt; yt; ") dt + �
0
G(xt; yt; ") dWt;

(2.1)

with drift coe�cients f 2 C2(D � [0; "0);R
n) and g 2 C2(D � [0; "0);R

m), and di�usion

coe�cients F 2 C1(D � [0; "0);R
n�k) and G 2 C1(D � [0; "0);R

m�k).
We require that f , g, and all their derivatives up to order 2 are uniformly bounded in

norm in D � [0; "0), and similarly for F , G and their derivatives. We also assume that f

and g satisfy the usual (local) Lipschitz and bounded-growth conditions which guarantee

existence and pathwise uniqueness of a strong solution f(xt; yt)gt>t0 of (2.1).

The stochastic process fWtgt>0 is a standard k-dimensional Brownian motion on some

probability space (
;F ;P). Initial conditions (x0; y0) are always assumed to be square-

integrable with respect to P and independent of fWtgt>0. Our assumptions on f and g

guarantee the existence of a continuous version of f(xt; yt)gt>0. Therefore we may assume

that the paths ! 7! (xt(!); yt(!)) are continuous for P-almost all ! 2 
.

We introduce the notation Pt0;(x0;y0) for the law of the process f(xt; yt)gt>t0 , starting
in (x0; y0) at time t0, and use E t0 ;(x0;y0) to denote expectations with respect to Pt0;(x0;y0).

Note that the stochastic process f(xt; yt)gt>t0 is a time-homogeneous Markov process. Let

A � D be Borel-measurable. Assuming (x0; y0) 2 A, we denote by

�A = inf
�
t > 0: (xt; yt) 62 A

	
(2.2)

the �rst-exit time of (xt; yt) from A. Note that �A is a stopping time with respect to the

�ltration of (
;F ;P) generated by the Brownian motion fWtgt>0.
Throughout this work, we use the following notations:

� Let a, b be real numbers. We denote by dae, a^ b and a_ b, respectively, the smallest

integer greater than or equal to a, the minimum of a and b, and the maximum of a

and b.

� By g(u) = O(u) we indicate that there exist Æ > 0 and K > 0 such that g(u) 6 Ku

for all u 2 [0; Æ], where Æ and K of course do not depend on ", � or �0.
� We use kxk to denote the Euclidean norm of x 2 R d, while kAk stands for the corre-

sponding operator norm of a matrix A 2 Rd1�d2 . If A(t) is a matrix-valued function

de�ned for t in an interval I , we denote by kAkI the supremum of kA(t)k over t 2 I ,

and often we write kAk1 if the interval is evident from the context.

� For a given set B, we denote by 1B the indicator function on B, de�ned by 1B(x) = 1,

if x 2 B, and 1B(x) = 0, otherwise.

� If Rn�Rm 3 (x; y) 7! f(x; y) 2 Rd is di�erentiable, we write @xf(x; y) and @yf(x; y)

to denote the Jacobian matrices of x 7! f(x; y) and y 7! f(x; y), respectively.
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2.2 Deterministic stable case

We start by recalling a few properties of deterministic slow�fast systems of the form

" _x = f(x; y; ");

_y = g(x; y; "):
(2.3)

De�nition 2.1. Let D0 � R
m

and assume that there exists a (continuous) function x
? :

D0 ! R
n
such that

� (x?(y); y) 2 D for all y 2 D0,

� f(x?(y); y; 0) = 0 for all y 2 D0.

Then the set f(x; y) : x = x
?(y); y 2 D0g is called a slow manifold of the system (2.3).

Let A
?(y) = @xf(x

?(y); y; 0). The slow manifold is called

� hyperbolic if all eigenvalues of A
?(y) have nonzero real parts for all y 2 D0;

� uniformly hyperbolic if all eigenvalues of A?(y) have real parts uniformly bounded away

from zero (for y 2 D0);

� asymptotically stable if all eigenvalues of A?(y) have negative real parts for all y 2 D0;

� uniformly asymptotically stable if all eigenvalues of A
?(y) have negative real parts,

uniformly bounded away from zero for y 2 D0.

Grad²te��n [15] and Tihonov [26] have shown that if x? represents a uniformly hyperbolic

slow manifold of (2.3), then the system (2.3) admits particular solutions which remain

in a neighbourhood of order " of the slow manifold. If, moreover, the slow manifold is

asymptotically stable, then the solutions starting in a neighbourhood of order 1 of the slow

manifold converge exponentially fast in t=" to an "-neighbourhood of the slow manifold.

Fenichel [11] has given extensions of this result based on a geometrical approach. If (2.3)

admits a hyperbolic slow manifold, then there exists, for su�ciently small ", an invariant

manifold

y = �x(y; ") = x
?(y) +O("); y 2 D0: (2.4)

Here invariant means that if y0 2 D0 and x0 = �x(y0; "), then xt = �x(yt; ") as long as t is

such that ys 2 D0 for all s 6 t. We will call the set f(�x(y; "); y) : y 2 D0g an adiabatic

manifold. It is easy to see from (2.3) that �x(y; ") must satisfy the PDE

"@y �x(y; ")g(�x(y; "); y; ") = f(�x(y; "); y; "): (2.5)

The local existence of the adiabatic manifold follows directly from the centre manifold

theorem. Indeed, we can rewrite System (2.3) in the form

x
0 = f(x; y; ");

y
0 = "g(x; y; ");

"
0 = 0;

(2.6)

where prime denotes derivation with respect to the fast time t=". Any point of the form

(x?(y); y; 0) with y 2 D0 is an equilibrium point of (2.6). The linearization of (2.6) around

such a point admits 0 as eigenvalue of multiplicity m + 1, the n other eigenvalues being

those of A?(y), which are bounded away from the imaginary axis. The centre manifold

theorem implies the existence of a local invariant manifold x = �x(y; "). Fenichel's result

shows that this manifold actually exists for all y 2 D0.
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Being a centre manifold, the adiabatic manifold is not necessarily unique (though in the

present case, �x(y; 0) = x
?(y) is uniquely de�ned). Nevertheless, �x(y; ") has a unique Taylor

series in y and ", which can be obtained by solving (2.5) order by order. The dynamics on

the adiabatic manifold is described by the so-called reduced equation

_y = g(�x(y; "); y; ") = g(x?(y); y; 0)+ O("): (2.7)

If x?(y) is uniformly asymptotically stable, �x(y; ") is locally attractive and thus any solu-

tion of (2.3) starting su�ciently close to �x(y; ") converges exponentially fast to a solution

of (2.7).

2.3 Random stable case

We turn now to the random slow�fast system given by the stochastic di�erential equation

dxt =
1

"
f(xt; yt; ") dt+

�p
"
F (xt; yt; ") dWt;

dyt = g(xt; yt; ") dt + �
0
G(xt; yt; ") dWt;

(2.8)

where we will assume the following.

Assumption 2.2. For � = �
0 = 0, System (2.8) admits a uniformly hyperbolic, asymp-

totically stable slow manifold x = x
?(y), y 2 D0.

By Fenichel's theorem, there exists an adiabatic manifold x = �x(y; ") with �x(y; 0) =

x
?(y), y 2 D0. We �x a particular solution (xdett ; y

det
t ) = (�x(ydett ; "); ydett ) of the deter-

ministic system. (That is, ydett satis�es the reduced equation (2.7).) We want to describe

the noise-induced deviations of the sample paths (xt; yt)t>0 of (2.8) from the adiabatic

manifold.

It turns out to be convenient to use the transformation

xt = �x(ydett
+ �t; ") + �t;

yt = y
det
t + �t;

(2.9)

which yields a system of the form

d�t =
1

"
f̂(�t; �t; t; ") dt+

�p
"

bF (�t; �t; t; ") dWt;

d�t = ĝ(�t; �t; t; ") dt + �
0 bG(�t; �t; t; ") dWt;

(2.10)

where the new drift and di�usion coe�cients are given by

f̂(�; �; t; ") = f(�x(ydett + �; ") + �; y
det
t + �; ")

� "@y �x(y
det
t + �; ")g(�x(ydett + �; ") + �; y

det
t + �; ");bF (�; �; t; ") = F (�x(ydett + �; ") + �; y

det
t + �; ")

� �
p
"@y �x(y

det
t + �; ")G(�x(ydett + �; ") + �; y

det
t + �; ");

ĝ(�; �; t; ") = g(�x(ydett + �; ") + �; y
det
t + �; ")� g(�x(ydett ; "); ydett ; ");bG(�; �; t; ") = G(�x(ydett + �; ") + �; y
det
t + �; "): (2.11)

7



Note that because of the property (2.5) of the adiabatic manifold, f̂(0; 0; t; ") = 0. We

introduce the notation

A(ydett ; ") = @�f̂ (0; 0; t; ") (2.12)

= @xf(�x(y
det
t ; "); ydett ; ")� "@y �x(y

det
t ; ")@xg(�x(y

det
t ; "); ydett ; ")

for the linearization of f̂ at the origin. Note that for " = 0, we have A(ydett ; 0) =

@xf(�x(y
det
t ; 0); ydett ; 0) = A

?(ydett ), so that by Assumption 2.2, the eigenvalues of A(ydett ; ")

have negative real parts for su�ciently small ".

One of the basic ideas of our approach is to compare the solutions of (2.10) with those

of the �linear approximation�

d�0t =
1

"
A(ydett ; ")�0t dt +

�p
"
F0(y

det
t ; ") dWt;

dydett = g(�x(ydett ; "); ydett ; ") dt;

(2.13)

where F0(y
det
t ; ") = bF (0; 0; t; "). Note that the de�nition of the adiabatic manifold implies

F0(y; 0) = F (x?(y); y; 0). For �xed t, �0t is a Gaussian random variable with covariance

matrix

Cov(�0t ) =
�
2

"

Z
t

0

U(t; s)F0(y
det
s ; ")F0(y

det
s ; ")TU(t; s)T ds; (2.14)

where U(t; s) denotes the principal solution of the homogeneous system " _� = A(ydett ; ")�.

We now observe that ��2Cov(�0t ) is the X-variable of a particular solution of the

slow�fast system

" _X = A(y; ")X +XA(y; ")T + F0(y; ")F0(y; ")
T
;

_y = g(�x(y; "); y; "):
(2.15)

This system admits a slow manifold X = X
?(y), given by the Liapunov equation

A
?(y)X?(y) +X

?(y)A?(y)T + F0(y; 0)F0(y; 0)
T = 0; (2.16)

which is known [3] to admit the (unique) solution

X
?(y) =

Z 1

0

esA
?(y)

F0(y; 0)F0(y; 0)
T esA

?(y)T ds: (2.17)

Moreover, the eigenvalues of the operatorX 7! AX+XA
T are exactly ai+aj , 1 6 i; j 6 n,

where ai are the eigenvalues of A. Thus the slow manifold X = X
?(y) is uniformly

asymptotically stable (for small enough "), so that Fenichel's theorem shows the existence

of an adiabatic manifold

X = X(y; ") = X
?(y) + O("): (2.18)

Note thatX(ydett ; ") is uniquely determined by the �initial� value X(ydet0 ; ") via the relation

X(ydett ; ") = U(t)

�
X(ydet0 ; ") +

1

"

Z
t

0

U(s)�1F0(y
det
s ; ")F0(y

det
s ; ")TU(s)�T ds

�
U(t)T ;

(2.19)

where U(t) = U(t; 0) and U(s)�T = [U(s)�1]T .
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We now introduce the set

B(h) =
�
(x; y) : y 2 D0;



(x� �x(y; ")); X(y; ")�1(x� �x(y; "))

�
< h

2
	
; (2.20)

assuming that X(y; ") is invertible for all y 2 D0. The set B(h) is a �layer� around the

adiabatic manifold x = �x(y; "), with ellipsoidal cross-section determined by X(y; "). For

�xed t, the solution �
0
t of the linear approximation (2.13) is concentrated (in density) in

the cross-section of B(�) taken at yt. Our �rst main result (Theorem 2.4 below) gives

conditions under which the whole sample path (xt; yt) of the original equation (2.8) is

likely to remain in such a set B(h). By

�B(h) = infft > 0: (xt; yt) 62 B(h)g (2.21)

we denote the �rst-exit time of the sample path (xt; yt) from B(h).
Remark 2.3. Fix y for the moment. If X?(y)�1 is bounded, then X(y; ")�1 is bounded
for su�ciently small ". A su�cient condition for X?(y)�1 to be bounded is that the

symmetric matrix F0(y; 0)F0(y; 0)
T be positive de�nite. This condition is, however, by no

means necessary. In fact, X?(y) is singular if and only if there exists a vector x 6= 0 such

that

F0(y; 0)
T esA

?(y)T
x = 0 8s > 0; (2.22)

which occurs if and only if

F0(y; 0)
T(A?(y)T )kx = 0 8k = 0; 1; 2; : : : (2.23)

i. e., when the kernel of F0(y; 0)
T is invariant under A?(y)T .

Theorem 2.4. Assume that kX(y; ")k and kX(y; ")�1k are uniformly bounded in D0.

Choose a deterministic initial condition y0 2 D0, x0 = �x(y0; "), and let

�D0
= inffs > 0: ys 62 D0g: (2.24)

Then there exist constants "0;�0; h0 > 0 (independent of the chosen initial condition y0)

such that for all " 6 "0, � 6 �0, h 6 h0, and all 0 <  < 1=2, the following assertions

hold.

(a) The upper bound: For all t > 0,

P
0;(x0;y0)f�B(h) < t ^ �D0

g 6 C+
n;m;;�(t; ")

h
2

�2
e��

+h2=�2

; (2.25)

where

�
+ = 

�
1�O(h)� O(�)�O

�
e�const="

=(1� 2)
��

(2.26)

and

C+
n;m;;�

(t; ") =
(1 + t)2

�"

h
(1� 2)�n + en=4+em=4

i
: (2.27)

(b) The lower bound: There exists t0 > 0 of order 1 such for all t > 0,

P
0;(x0;y0)f�B(h) < tg > C�n;m(t; "; h; �) e��

�h2=�2
; (2.28)

where

�
� =

1

2

�
1 +O(h) + O

�
e�const (t^t0)="�� (2.29)

and

C�n;m(t; "; h; �) = 1�
�
en=4+4 em=4

�
e��

�h2=(2�2)
: (2.30)

9



(c) General initial conditions: There exist Æ0 > 0 and a time t1 of order "jlog hj such
that for all Æ 6 Æ0, all initial conditions (x0; y0) which satisfy y0 2 D0 as well as

h�0; X(y0)
�1
�0i < Æ

2
, and all t > t1,

P
0;(�0;0)

�
sup

t16s6t^�D0



�s; X(ys)

�1
�s

�
> h

2

�
6 C+

n;m;;�(t; ")
h
2

�2
e��

+h2=�2

; (2.31)

where C+
n;m;;�(t; ") is the same prefactor as in (2.25), and

�
+ = 

�
1� O(h)�O(�)� O

�
Æ e�const (t1^1)=" =(1� 2)

��
: (2.32)

Unless explicitly stated, the error terms in the exponents �
+
and �

�
are uniform in t.

Estimate (2.25) shows that for h � �, paths starting in B(h) are far more likely to

leave this set through the �border� fy 2 @D0; h�;X(y; ")�1�i < h
2g than through the

�sides� fy 2 intD0; h�;X(y; ")�1�i = h
2g, unless we wait for time spans exponentially long

in h
2
=�

2. Below we discuss how to characterize �D0
more precisely, using information on

the reduced dynamics on the adiabatic manifold. If, for instance, all deterministic solutions

starting in D0 remain in this set, �D0
will typically be very large.

The upper bound (2.25) has been designed to yield the best possible exponent �+,

while the prefactor C+
n;m;;� is certainly not optimal. Note that an estimate with the

same exponent, but with a smaller prefactor holds for the probability that the endpoint

(xt; yt) does not lie in B(h), cf. Corollary 3.10. The parameters � and  can be chosen

arbitrarily within their intervals of de�nition. Taking � small and  close to 1=2 improves

the exponent while increasing the prefactor. A convenient choice is to take � and 1=2� 

of order h or ". The kind of time-dependence of C is probably not optimal, but the fact

that C increases with time is to be expected, since it re�ects the fact that the probability of

observing paths making excursions away from the adiabatic manifold increases with time.

As for the dependence of the prefactor on the dimensions n and m, it is due to the fact

that the tails of standard Gaussian random variables show their typical decay only outside

a ball of radius scaling with the square-root of the dimension.

The upper bound (2.25) and lower bound (2.28) together show that the exponential

rate of decay of the probability to leave the set B(h) before time t behaves like h2=(2�2)

in the limit of �, " and h going to zero, as one would expect from other approaches,

based for instance on the theory of large deviations. The bounds hold, however, in a full

neighbourhood of � = " = h = 0.

Finally, Estimate (2.31) allows to extend these results to all initial conditions in a

neighbourhood of order 1 of the adiabatic manifold. The only di�erence is that we have

to wait for a time of order "jlog hj before the path is likely to have reached the set B(h).
After this time, typical paths behave as if they had started on the adiabatic manifold.

We remark in passing that the assumption that kX(y; ")�1k is uniformly bounded in

D0 excludes purely multiplicative noise.

The behaviour of typical paths depends essentially on the dynamics of the reduced

deterministic system (2.7). In fact, in the proof of Theorem 2.4, we use the fact that yt
does not di�er too much from y

det
t on timescales of order 1 (see Lemma 3.4). There are

thus two main possibilities to be considered:

� either the reduced �ow is such that ydett reaches the boundary of D0 in a time of order 1

(for instance, ydett may approach a bifurcation set of the slow manifold); then yt is likely

to leave D0 as well;

10



� or the reduced �ow is such that ydett remains in D0 for all times t > 0; in that case,

paths can only leave B(h) due to the in�uence of noise, which we expect to be unlikely

on subexponential timescales.

We will discuss the �rst situation in more detail in Subsection 2.4. In both situations,

it is desirable to have a more precise description of the deviation �t of the slow variable yt
from its deterministic counterpart ydett , in order to achieve a better control of the �rst-exit

time �D0
.

The following coupled system gives a better approximation of the dynamics of (2.10)

than the system (2.13):

d�0t =
1

"
A(ydett ; ")�0t dt +

�p
"
F0(y

det
t ; ") dWt;

d�0t =
�
B(ydett ; ")�0t + C(ydett ; ")�0t

�
dt+ �

0
G0(y

det
t ; ") dWt;

(2.33)

where G0(y
det
t ; ") = bG(0; 0; t; ") = G(�x(ydett ; "); ydett ; ") and the Jacobian matrices B and C

are given by

B(ydett ; ") = @� ĝ(0; 0; t; ")

= C(ydett ; ")@y�x(y
det
t ; ") + @yg(�x(y

det
t ; "); ydett ; "); (2.34)

C(ydett
; ") = @�ĝ(0; 0; t; ")

= @xg(�x(y
det
t ; "); ydett ; "): (2.35)

The coupled system (2.33) can be written in compact form as

d�0t = A(ydett ; ")�0t dt+ �F0(y
det
t ; ") dWt; (2.36)

where (�0)T = ((�0)T ; (�0)T ) and

A(ydett ; ") =

 
1
"
A(ydett ; ") 0

C(ydett ; ") B(ydett ; ")

!
; F0(y

det
t ; ") =

 
1p
"
F0(y

det
t ; ")

�G0(y
det
t ; ")

!
: (2.37)

The solution of the linear SDE (2.36) is given by

�
0
t = U(t)�0 + �

Z
t

0

U(t; s)F0(y
det
s ; ") dWs; (2.38)

where U(t; s) denotes the principal solution of the homogeneous system _� = A(ydett ; ")�. It

can be written in the form

U(t; s) =
�
U(t; s) 0

S(t; s) V (t; s)

�
; (2.39)

where U(t; s) and V (t; s) denote, respectively, the fundamental solutions of " _� = A(ydett ; ")�

and _� = B(ydett ; ")�, while

S(t; s) =

Z
t

s

V (t; u)C(ydetu ; ")U(u; s) du: (2.40)

11



The Gaussian process �0t has a covariance matrix of the form

Cov(�0
t
) = �

2

Z
t

0

U(t; s)F0(y
det
s
; ")F0(y

det
s
; ")TU(t; s)T ds

= �
2

�
X(t) Z(t)

Z(t)T Y (t)

�
: (2.41)

The matrices X(t) 2 Rn�n, Y (t) 2 Rm�m and Z(t) 2 Rn�m are a particular solution of

the following slow�fast system, which generalizes (2.15):

" _X = A(y; ")X +XA(y; ")T + F0(y; ")F0(y; ")
T
;

" _Z = A(y; ")Z + "ZB(y; ")T + "XC(y; ")T +
p
"�F0(y; ")G0(y; ")

T
;

_Y = B(y; ")Y + Y B(y; ")T + C(y; ")Z + Z
T
C(y; ")T + �

2
G0(y; ")G0(y; ")

T
;

_y = g(�x(y; "); y; "):

(2.42)

This system admits a slow manifold given by

X = X
?(y);

Z = Z
?(y; ") = �

p
"�A(y; ")�1F0(y; ")G0(y; ")

T +O("); (2.43)

whereX?(y) is given by (2.17). It is straightforward to check that this manifold is uniformly

asymptotically stable for su�ciently small ", so that Fenichel's theorem yields the existence

of an adiabatic manifold X = X(y; "), Z = Z(y; "), at a distance of order " from the

slow manifold. This manifold attracts nearby solutions of (2.42) exponentially fast, and

thus asymptotically, the expectations of �0t (�
0
t )
T and �0t (�

0
t )
T will be close, respectively, to

�
2
X(ydett ; ") and �

2
Z(ydett ; ").

In general, the matrix Y (t) cannot be expected to approach some asymptotic value

depending only on ydett and ". In fact, if B has eigenvalues with positive real parts, kY (t)k
can grow exponentially fast. In order to measure this growth, we introduce the functions

�
(1)(t) = sup

06s6t

Z
s

0

�
sup

u6v6s

kV (s; v)k
�
du; (2.44)

�
(2)(t) = sup

06s6t

Z
s

0

�
sup

u6v6s

kV (s; v)k2
�
du: (2.45)

The solution of (2.42) with initial condition Y (0) = Y0 satis�es

Y (t; Y0) = V (t)Y0V (t)
T (2.46)

+ �
2

Z
t

0

V (t; s)G0(y
det
t ; ")G0(y

det
t ; ")TV (t; s)T ds +O(("+ �

p
")�(2)(t)):

We thus de�ne an �asymptotic� covariance matrix Z(t) = Z(t; Y0; ") by

Z(t; Y0; ") =
 
X(ydett ; ") Z(ydett ; ")

Z(ydett ; ")T Y (t; Y0)

!
; (2.47)

and use Z(t)�1 to characterize the ellipsoidal region in which �(t) is concentrated.
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Theorem 2.5. Assume that kX(ydets ; ")k and kX(ydets ; ")�1)k are uniformly bounded for

0 6 s 6 t and that Y0 has been chosen in such a way that kY (s)�1k = O(1=(�2 + ")) for

0 6 s 6 t. Fix an initial condition (x0; y0) with y0 2 D0 and x0 = �x(y0; "), and let t be

such that y
det
s 2 D0 for all s 6 t. De�ne

R(t) = kZk[0;t]
h
1 +

�
1 + kY �1k1=2

[0;t]

�
�
(1)(t) + �

(2)(t)
i
: (2.48)

There exists a constant h0 > 0, independent of y0 and t, such that for all h 6 h0R(t)
�1
,

P
0;(0;0)

n
sup

06s6t^�
D0



�u;Z(u)�1�u

�
> h

2
o
6 Cn+m;;�(t; ") e

��h2=�2
; (2.49)

with

Cn+m;;�(t; ") =

�
t

�"

���
1

1� 2

�(n+m)=2

+ e(n+m)=4

�
; (2.50)

� = 

h
1�O

�
" +�+ hR(t)

�i
: (2.51)

Let us �rst consider timescales of order 1. Then the functions kZk[0;t], �(1)(t) and �(2)(t)
are at most of order 1, and kY (t)�1k remains of the same order as kY �1

0 k. The probabil-
ity (2.49) becomes small as soon as h � �. Because of the restriction h 6 h0R(t)

�1, the
result is useful provided kY �1k[0;t] � �

�2. In order to obtain the optimal concentration

result, we have to choose Y0 according to two opposed criteria. On the one hand, we would

like to choose Y0 as small as possible, so that the set


�u;Z(u)�1�u

�
< h

2 is small. On the

other hand, kY �1
0 k must not exceed certain bounds for Theorem 2.5 to be valid. Thus we

require that

Y0 >
�
�
2 _ (�2 + ")

�
1lm: (2.52)

Because of the Gaussian decay of the probability (2.49) in �=h, we can interpret the theorem

by saying that the typical spreading of paths in the y-direction is of order �(� +
p
") if

� < �+
p
" and of order �2 if � > �+

p
".

The term � is clearly due to the intensity �
0 = �� of the noise acting on the slow

variable. It prevails if � > � _ p". The term
p
" is due to the linear part of the coupling

between slow and fast variables, while the behaviour in �
2 observed when � > �+

p
" can

be traced back to the nonlinear coupling between slow and fast variables.

For longer timescales, the condition h 6 h0R(t)
�1 obliges us to take a larger Y0, while

Y (t) typically grows with time. If the matrix B always has eigenvalues with positive real

parts (or, more precisely, if the largest Lyapunov exponent is positive), this growth is

exponential in time, so that the spreading of paths along the adiabatic manifold will reach

order 1 in a time of order logj� _ (�2 + ")j.

Remark 2.6. Consider the reduced stochastic system

dy0t = g(�x(y0t ; "); y
0
t ; ") dt+ �

0
G(�x(y0t ; "); y

0
t ; ") dWt (2.53)

obtained by setting x equal to �x(y; ") in (2.8). One may wonder whether y0t gives a better
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approximation of yt than y
det
t . In fact, one can show that

P
0;(0;0)

n
sup

06s6t^�
D0

y0s � y
det
s

 > h1

o
6 c

�
1 + t

�
em=4 exp

n
��1h

2
1(1� O(h1�(1)(t)))
(�0)2�(2)(t)

o
;

P
0;(0;0)

n
sup

06s6t^�
B(h)

ys � y
0
s

 > h

o
6 c

�
1 + t

�
em=4 exp

n
��1h

2
1(1� O(h1�(1)(t)))
(�0)2�(2)(t)

o
+ c

�
1 +

t

"

�
em=4 exp

n
��2h

2(1�O((h + h1)�
(1)(t)))

[(�0)2h2 + �2"]�(2)(t)

o
(2.54)

holds for all h; h1 up to order �(1)(t)�1 and some positive constants c; �1; �2. (The proofs

can be adapted from the proof of Lemma 3.4). This shows that the typical spreading of y0t
around y

det
t is of order �0�(2)(t)1=2 = ���

(2)(t)1=2, while the typical deviation of paths y0t
of the reduced system from paths yt of the original system is of order �

p
"�

(2)(t)1=2. Thus

for � >
p
", the reduced stochastic system gives a better approximation of the dynamics

than the deterministic one.

If B has no eigenvalue with positive real part, the spreading of paths will grow more

slowly. As an important particular case, let us consider the situation where ydett is an

asymptotically stable periodic orbit with period T , entirely contained in D0 (and not too

close to its boundary). Then all coe�cients in (2.33) depend periodically on time, and, in

particular, Floquet's theorem allows us to write

V (t) = P (t) e�t; (2.55)

where P (t) is a T -periodic matrix. The asymptotic stability of the orbit means that all

eigenvalues but one of the monodromy matrix � have strictly negative real parts, the last

eigenvalue, which corresponds to translations along the orbit, being 0. In that case, �(1)(t)

and �
(2)(t) grow only linearly with time, so that the spreading of paths in the y-direction

remains small on timescales of order 1=(� _ (�2 + ")).

In fact, we even expect this spreading to occur mainly along the periodic orbit, while

the paths remain con�ned to a neighbourhood of the orbit on subexponential timescales.

To see that this is true, we can use a new set of variables in the neighbourhood of the

orbit. In order not to introduce too many new notations, we will replace y by (y; z), where

y 2 Rm�1 describes the degrees of freedom transversal to the orbit, and z 2 R parametrizes

the motion along the orbit. In fact, we can use an equal-time parametrization of the orbit,

so that _z = 1 on the orbit, i. e., we have zdett = t (mod T ). The SDE takes the form

dxt =
1

"
f(xt; yt; zt; ") dt+

�p
"
F (xt; yt; zt; ") dWt;

dyt = g(xt; yt; zt; ") dt + �
0
G(xt; yt; zt; ") dWt;

dzt =
�
1 + h(xt; yt; zt; ")

�
dt + �

0
H(xt; yt; zt; ") dWt;

(2.56)

where h = O(kytk2 + kxt � x
det
t k2) and @yg(x

det
t ; 0; zdett ; ") has eigenvalues with negative

real parts, uniformly bounded away from zero. As linear approximation of the dynamics
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of (�t; �t) = (xt � x
det
t ; yt � y

det
t ) = (xt � x

det
t ; yt) we take

d�0
t
=

1

"
A(zdet

t
; ")�0

t
dt +

�p
"
F0(z

det
t
; ") dWt;

d�0t =
�
B(zdett ; ")�0t + C(zdett ; ")�0t

�
dt + �

0
G0(z

det
t ; ") dWt;

dz0t = dt + �
0
H0(z

det
t ; ") dWt;

(2.57)

which depends periodically on time. One can again compute the covariance matrix of the

Gaussian process (�0t ; �
0
t ; z

0
t ) as a function of the principal solutions U and V associated

with A and B. In particular, the covariance matrix Y (t) of �0t still obeys the ODE

_Y = B(y; ")Y + Y B(y; ")T + C(y; ")Z + Z
T
C(y; ")T + �

2
G0(y; ")G0(y; ")

T
: (2.58)

This is now a linear, inhomogeneous ODE with time-periodic coe�cients. It is well known

that such a system admits a unique periodic solution Y
per
t , which is of order �2+ " since Z

is of order �
p
"+" and �2G0G

T
0 is of order �2. We can thus de�ne an asymptotic covariance

matrix Z(t) of (�0t ; �0t ), which depends periodically on time. If �t = (�t; �t), Theorem 2.5

shows that on timescales of order 1 (at least), the paths �t are concentrated in a set of the

form h�t;Z(t)�1�ti < h
2, while zt remains h-close to zdett .

On longer timescales, the distribution of paths will be smeared out along the periodic

orbit. However, the same line of reasoning as in Section 3.2, based on a comparison with

di�erent deterministic solutions on successive time intervals of order 1, can be used to

show that �t remains concentrated in the set h�t;Z(t)�1�ti < h
2 up to exponentially long

timescales.

2.4 Bifurcations

In the previous section, we have assumed that the slow manifold x = x
?(y) is uniformly

asymptotically stable for y 2 D0. We consider now the situation arising when the reduced

deterministic �ow causes ydett to leave D0, and to approach a bifurcation point of the slow

manifold.

We call (x̂; ŷ) a bifurcation point of the deterministic system

" _x = f(x; y; ");

_y = g(x; y; ");
(2.59)

if f(x̂; ŷ; 0) = 0 and @xf(x̂; ŷ; 0) has q eigenvalues on the imaginary axis, q 2 f1; : : : ; ng.
We consider here the situation where q < n and the other n � q eigenvalues have strictly

negative real parts.

The most generic cases are the saddle�node bifurcation (where q = 1), corresponding

to a fold in the slow manifold, and the Hopf bifurcation (where q = 2), in which the slow

manifold changes stability, while absorbing or expelling a family of periodic orbits. In these

two cases, the set of bifurcation values ŷ typically forms a codimension-1 submanifold of

R
m.

The dynamics of the deterministic slow�fast system (2.59) in a neighbourhood of the

bifurcation point (x̂; ŷ) can again be analyzed by a centre-manifold reduction. Introduce

coordinates (x�; z) in Rn, with x
� 2 Rn�q and z 2 R q, in which the matrix @xf(x̂; ŷ; 0)

becomes block-diagonal, with a block A
� 2 R

(n�q)�(n�q) having eigenvalues in the left
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half-plane, and a block A0 2 R q�q having eigenvalues on the imaginary axis. On the fast

timescale t=", (2.59) can be rewritten as

(x�)0 = f
�(x�; z; y; ");

z
0 = f

0(x�; z; y; ");

y
0 = "g(x�; z; y; ");

"
0 = 0;

(2.60)

which admits (x̂�; ẑ; ŷ; 0) as an equilibrium point. The linearization at this point has

q +m + 1 eigenvalues on the imaginary axis (counting multiplicity), which correspond to

the directions z; y and ". In other words, z has become a slow variable near the bifurcation

point.

The centre manifold theorem implies the existence, for su�ciently small " and (z; y) in

a neighbourhood N of (ẑ; ŷ), of a locally attracting invariant manifold x
� = �x�(z; y; "),

with �x�(ẑ; ŷ; 0) = x̂. �x� plays the same rôle the adiabatic manifold played in the stable

case, and the dynamics on �x� is governed by the reduced equation

" _z = f
0(�x�(z; y; "); z; y; ");

_y = g(�x�(z; y; "); z; y; "):
(2.61)

The function �x�(z; y; ") solves the PDE

f
�(�x�(z; y; "); z; y; ") = @z �x

�(z; y; ")f0(�x�(z; y; "); z; y; ")

+ "@y�x
�(z; y; ")g(�x�(z; y; "); z; y; "): (2.62)

Let us now turn to random perturbations of the slow�fast system (1.1). In the variables

(x�; z; y), (2.1) can be written as

dx�t =
1

"
f
�(x�t ; zt; yt; ") dt +

�p
"
F
�(x�t ; zt; yt; ") dWt;

dzt =
1

"
f
0(x�t ; zt; yt; ") dt +

�p
"
F
0(x�t ; zt; yt; ") dWt;

dyt = g(x�t ; zt; yt; ") dt+ �
0
G(x�t ; zt; yt; ") dWt:

(2.63)

The noise-induced deviation of x�
t
from the adiabatic manifold is described by the variable

�
�
t = x

�
t � �x�(zt; yt; "), which obeys an SDE of the form

d��t =
1

"
f̂
�(��t ; zt; yt; ") dt +

�p
"

bF�(��t ; zt; yt; ") dWt; (2.64)

with, in particular,

f̂
�(��; z; y; ") = f

�(�x�(z; y; ") + �
�
; z; y; ")

� @z �x
�(z; y; ")f0(�x�(z; y; ") + �

�
; z; y; ")

� "@y �x
�(z; y; ")g(�x�(z; y; ") + �

�
; z; y; "): (2.65)

Note that (2.62) implies that f̂�(0; z; y; ") = 0. We further de�ne the matrix

A
�(z; y; ") = @�f̂

�(0; z; y; ") = @xf
�(�x�(z; y; "); z; y; ")

� @z �x
�(z; y; ")@xf

0(�x�(z; y; "); z; y; ")

� "@y �x
�(z; y; ")@xg(�x

�(z; y; "); z; y; "): (2.66)
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Since A�(ẑ; ŷ; 0) = A
�, the eigenvalues of A�(z; y; ") have uniformly negative real parts,

provided we take the neighbourhood N and " small enough.

Consider now the �linear approximation�

d�0t =
1

"
A
�(zdett ; y

det
t ; ")�0t dt +

�p
"
F
�
0 (zdett ; y

det
t ; ") dWt;

dzdett =
1

"
f
0(�x�(zdet; ydet; "); zdett ; y

det
t ; ") dt;

dydett = g(�x�(zdet; ydet; "); zdett ; y
det
t ; ") dt

(2.67)

of (2.63)�(2.64), where F�0 (z; y; ") = F
�(�x�(z; y; "); z; y; "). Its solution �0t has a Gaussian

distribution with covariance matrix

Cov(�0
t
) =

�
2

"

Z
t

0

U
�(t; s)F�0 (zdet

s
; y

det
s
; ")F�0 (z

det
s
; y

det
s
; ")TU�(t; s)T ds; (2.68)

where U� is the fundamental solution of " _�0 = A
�
�
0. Note that ��2Cov(�0t ) is the X

�-
variable of a particular solution of the slow�fast system

" _X� = A
�(z; y; ")X�+X

�
A
�(z; y; ")T + F

�
0 (z; y; ")F�0 (z; y; ")

T
;

" _z = f
0(�x�(z; y; "); z; y; ");

_y = g(�x�(z; y; "); z; y; ");

(2.69)

which admits an invariant manifold X
� = X

�(z; y; ") for (z; y) 2 N . We thus expect the

paths to be concentrated in a set

B�(h) =
�
(x�; z; y) : (z; y) 2 N ;



x
� � �x�(z; y; "); X�(z; y; ")�1(x� � �x�(z; y; "))

�
< h

2
	
:

(2.70)

The following theorem shows that this is indeed the case, as long as (zt; yt) remains in N .

Theorem 2.7. Assume that kX�(z; y; ")k and kX�(z; y; ")�1)k are uniformly bounded in

N . Choose a deterministic initial condition (z0; y0) 2 N , x
�
0 = �x�(z0; y0; "), and let

�N = inffs > 0: (zs; ys) 62 Ng: (2.71)

Then there exist constants h0 > 0, �0 > 0 and � 2 (0; 1] such that for all h 6 h0, all

� 6 �0 and all 0 <  < 1=2,

P
0;(x�0 ;z0;y0)f�B�(h) < t ^ �Ng 6 Cn;m;q;;�(t; ")

h
2

�2
e��h

2=�2

; (2.72)

provided "jlog(h(1� 2))j 6 1. Here

� = 
�
1�O(�)� O(h�(1� 2)1��jlog(h(1� 2))j1=2)

�
; (2.73)

Cn;m;q;;�(t; ") = const
t

�"

�
1 +

t

"

�h
(1� 2)�(n�q) + e(n�q)=4+em=4+eq=4

i
: (2.74)

The exponent � is related to the maximal rate of divergence of solutions of the reduced

system (2.61), see Subsection 5.1.

This result shows that on timescales of order 1 (and larger if, e. g., N is positively

invariant), paths are likely to remain in a small neighbourhood of the adiabatic manifold
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x = �x�(z; y; "). The dynamics will thus be essentially governed by the behaviour of the

�slow� variables z and y.

In fact, it seems plausible that the dynamics of (2.63) will be well approximated by the

dynamics of the reduced stochastic system

dz0t =
1

"
f
0(�x�(z0t ; y

0
t ; "); z

0
t ; y

0
t ; ") dt +

�p
"
F
0(�x�(z0t ; y

0
t ; "); z

0
t ; y

0
t ; ") dWt;

dy0t = g(�x�(z0t ; y
0
t ; "); z

0
t ; y

0
t ; ") dt + �

0
G(�x�(z0t ; y

0
t ; "); z

0
t ; y

0
t ; ") dWt;

(2.75)

obtained by setting x
� equal to �x�(z; y; ") in (2.63). This turns out to be true under

certain hypotheses on the solutions of (2.75). Let us �x an initial condition (z00; y
0
0) 2 N ,

and call �0t = (z0t ; y
0
t ) the corresponding process. We de�ne the (random) matrices

B(�0t ; ") =

�
@zf

0
@yf

0

"@zg "@yg

�����
x=�x�(z0

t
;y0
t
;");z=z0

t
;y=y0

t

; (2.76)

C(�0t ; ") =

�
@xf

0

"@xg

�����
x=�x�(z0

t
;y0
t
;");z=z0

t
;y=y0

t

: (2.77)

Observe that C((ẑ; ŷ); 0) = 0 because of our choice of coordinates, so that kC(�0t ; ")k will
be small in a neighbourhood of the origin. We denote, for each realization �

0(!), by V!
the principal solution of

d�t(!) =
1

"
B(�0t (!); ")�t(!) dt: (2.78)

(Note that we may assume that almost all realizations �0(!) are continuous.) We need

to assume the existence of deterministic functions #(t; s), #C(t; s), and a stopping time

� 6 �B�(h) such thatV!(t; s) 6 #(t; s);
V!(t; s)C(�0s(!); ") 6 #C(t; s) (2.79)

hold for all s 6 t 6 �(!) and (almost) all paths (�0
u
(!))u>0 of (2.75). Then we de�ne

�
(i)(t) = sup

06s6t

1

"

Z
s

0

#(s; u)i du;

�
(i)

C
(t) = sup

06s6t

1

"

Z
s

0

�
sup

u6v6s

#C(s; v)
i

�
du (2.80)

for i = 1; 2, and the following result holds.

Theorem 2.8. Assume that there exist constants �; #0 > 0 (of order 1) such that #(s; u) 6

#0 and #C(s; u) 6 #0 whenever 0 < s � u 6 �". Then there exist constants h0; �0 > 0

such that for all h 6 h0[�
(1)(t) _ �(1)

C
(t)]�1 and all initial conditions (x�0 ; z

0
0; y

0
0) 2 B�(h),

P
0;(x�0 ;z

0
0 ;y

0
0)
n

sup
06s6t^�

(zs; ys)� (z0s ; y
0
s)
 > h

o
6 Cm;q(t; ") exp

�
��0

h
2

�2

1

�
(2)

C
(t) + h2�(2)(t)

�
; (2.81)

where

Cm;q(t; ") = const

�
1 +

t

"

�
e(m+q)=4

: (2.82)
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This result shows that typical solutions of the reduced system (2.75) approximate so-

lutions of the initial system (2.63) to order ��
(2)

C
(t)1=2, as long as �(1)(t)� 1=�. Checking

the validity of Condition (2.79) for a reasonable stopping time � is, of course, not straight-

forward, but it depends only on the dynamics of the reduced system, which is usually easier

to analyze.

Example 2.9. Assume the reduced equation has the form

dz0t =
1

"

�
y
0
t z

0
t � (z0t )

3
�
dt +

�p
"
dWt;

dy0t = 1;

(2.83)

i. e., there is a pitchfork bifurcation at the origin. We choose an initial condition (z0; y0)

with y0 < 0 at time t0 = y0, to that yt = t. In [7] we proved that if � 6
p
", the paths

fzsgs>t0 are concentrated in strip of width of order �=(jyj1=2 _ "1=4) up to time
p
".

Using for � the �rst-exit time from a set of this form, one �nds that �
(2)

C
(
p
") is of

order
p
"+ �

2
=". Thus the typical spreading of zs around reduced solutions z0s is of order

�"
1=4 + �

2
=
p
", which is smaller than the spreading of z0s around a deterministic solution.

Hence the reduced system provides a good approximation to the full system up to timep
".

For larger times, however, �
(2)

C
(
p
") grows like et

2=" until the paths leave a neighbour-

hood of the unstable equilibrium z = 0, which typically occurs at a time of order
p
"jlog �j.

Thus the spreading is too fast for the reduced system to provide a good approximation to

the dynamics. This shows that Theorem 2.8 is not quite su�cient to reduce the problem

to a one-dimensional one, and a more detailed description has to be used for the region of

instability.

3 Proofs � Exit from B(h)

In this section, we consider the SDE

dxt =
1

"
f(xt; yt; ") dt+

�p
"
F (xt; yt; ") dWt;

dyt = g(xt; yt; ") dt + �
0
G(xt; yt; ") dWt

(3.1)

under Assumption 2.2, that is, when starting near a uniformly asymptotically stable man-

ifold. We denote by (xdett ; y
det
t ), with x

det
t = �x(ydett ; "), the deterministic solution starting

in y
det
0 = y0 2 D0.

The transformation

xt = �x(ydett + �t; ") + �t;

yt = y
det
t + �t

(3.2)

yields a system of the form (2.10), which can be written, using Taylor expansions, as

d�t =
1

"

�
A(ydett ; ")�t + b(�t; �t; t; ")

�
dt +

�p
"

�
F0(y

det
t ; ") + F1(�t; �t; t; ")

�
dWt; (3.3)

d�t =
�
C(ydett ; ")�t +B(ydett ; ")�t+ c(�t; �t; t; ")

�
dt + �

0�
G0(y

det
t ; ") +G1(�t; �t; t; ")

�
dWt:
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There are constants M;M1 such that the remainder terms satisfy the bounds

kb(�; �; t; ")k6M
�
k�k2 + k�kk�k

�
;

kc(�; �; t; ")k6M
�
k�k2 + k�k2

�
;

kF1(�; �; t; ")k6M1

�
k�k+ k�k

�
;

kG1(�; �; t; ")k6M1

�
k�k+ k�k

� (3.4)

for all (�; �) in a compact set and all t such that ydett 2 D0.

3.1 Timescales of order 1

We �rst examine the behaviour of �u on an interval [s; t] with � = (t� s)=" = O"(1). For
this purpose, we �x an initial condition y0 2 D0 and assume that t is chosen in such a way

that ydetu 2 D0 for all u 6 t.

To ease notations, we will not indicate the "-dependence of X(y). We assume that

kX(y)k 6 K+ and kX(y)�1k 6 K� for all y 2 D0, and de�ne the functions

	(t) =
1

"

Z
t

0

U(t; u)TX(ydett )�1U(t; u)
du;

�(t) =
1

"

Z
t

0

Tr
�
U(t; u)TX(ydett )�1U(t; u)

�
du; (3.5)

�(t) =
1

"

Z
t

0

kU(t; u)k du;

where U(t; u) again denotes the principal solution of " _� = A(ydett ; ")�. Note that the

stability of the adiabatic manifold implies that kU(t; u)k is bounded by a constant times

expf�K0(t� u)="g, K0 > 0, for all t and u 6 t. Hence 	(t) and �(t) are of order 1, while

�(t) is of order n. In particular, �(t) 6 n	(t) holds for all times t.

We �rst concentrate on upper estimates on the probabilities and will deal with the

lower bound in Corollary 3.5. Let us remark that on timescales of order 1, we may safely

assume that the deviation �s of ys from its deterministic counterpart remains small. We

�x a deterministic h1 > 0 and de�ne

�� = inf
�
s > 0: k�sk > h1

	
: (3.6)

Lemma 3.4 below provides an estimate on the tails of the distribution of ��. The following

proposition estimates the probability that xt leaves a �layer� similar to B(h) during the

time interval [s; t] despite of �u remaining small. Note that in the proposition the �thickness

of the layer� is measured at ydetu instead of yu.

Proposition 3.1. For all � 2 [0; 1), all  2 (0; 1=2) and all � > 0,

sup
�0 : h�0;X(y0)

�1�0i6�2h2
P
0;(�0;0)

�
sup

s6u6t^��



�u; X(ydetu )�1�u

�
> h

2

�
6

1

(1� 2)n=2
exp

�
� h

2

�2

h
1� �

2 �M0

�
�+ �h + (h+ h1)�(t)

�i�
+ e�(t)=4	(t) exp

�
�h

2

�2

�
2(1�M0�)

8M2
1 (
p
K+ + h1=h)2	(t)

�
(3.7)

holds for all h < 1=�, with a constant M0 depending only on the linearization A of f , K+,

K�, M and kF0k1.
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Proof: The solution of (3.3) can be written as

�u = U(u)�0 +
�p
"

Z
u

0

U(u; v)F0(y
det
v ; ") dWv (3.8)

+
�p
"

Z
u

0

U(u; v)F1(�v; �v; v; ") dWv +
1

"

Z
u

0

U(u; v)b(�v; �v; v; ") dv:

Writing �u = U(u; s)�u and de�ning

�� = inffu > 0:


�u; X(ydetu )�1�u

�
> h

2g; (3.9)

the probability on the left-hand side of (3.7) can be rewritten as

P = P0;(�0;0)

�
sup

s6u6t^��^��
kQ(u)�uk > h

�
; (3.10)

where Q(u) = Qs(u) is the symmetric matrix de�ned by

Q(u)2 = U(u; s)TX(ydet
u )�1U(u; s): (3.11)

To eliminate the u-dependence of Q in (3.10), we estimate P by

P 6 P
0;(�0;0)

�
sup

s6u6t^��^��
kQ(t)�uk > H

�
; (3.12)

where

H = h

�
sup
s6u6t

Q(u)Q(t)�1��1: (3.13)

In order to estimate the supremum in (3.13), we use the fact that Q(v)�2 satis�es the

di�erential equation

d

dv
Q(v)�2 =

1

"
U(s; v)

h
�A(ydetv )X(ydetv )�X(ydetv )A(ydetv )T + "

d

dv
X(ydetv )

i
U(s; v)T

=
1

"
U(s; v)F0(y

det
v ; ")F0(y

det
v ; ")TU(s; v)T ; (3.14)

and thus

Q(u)2Q(t)�2 = 1l + Q(u)2
1

"

Z
t

u

U(s; v)F0(y
det
v ; ")F0(y

det
v ; ")TU(s; v)T dv = 1l +O(�):

(3.15)

(Recall that t � u 6 t � s 6 "� in this subsection, which implies kU(s; v)k = 1 + O(�)

and kQ(u)2k 6 K�(1 +O(�)).) Therefore, H = h(1�O(�)).

We now split �u into three parts, writing �u = �0
u +�1

u + �2
u, where

�0
u = U(s)�0 +

�p
"

Z
u

0

U(s; v)F0(y
det
v ; ") dWv;

�1
u =

�p
"

Z
u

0

U(s; v)F1(�v; �v; v; ") dWv; (3.16)

�2
u =

1

"

Z
u

0

U(s; v)b(�v; �v; v; ") dv;
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and estimate P by the sum of the corresponding probabilities

P0 = P
0;(�0;0)

�
sup
s6u6t

kQ(t)�0
uk > H0

�
;

P1 = P
0;(�0;0)

�
sup

s6u6t^��^��
kQ(t)�1

uk > H1

�
; (3.17)

P2 = P
0;(�0;0)

�
sup

s6u6t^��^��
kQ(t)�2

uk > H2

�
;

where H0; H1; H2 satisfy H0+H1+H2 = H . Note that P2 can be estimated trivially using

the fact that

sup
s6u6t^��^��

kQ(t)�2
uk 6

p
K�M(K+h

2 +
p
K+hh1)(1 + O(�))�(t) :=H2: (3.18)

Now, we choose

H2 = 2H2;

H1 = �hH; (3.19)

H0 = H �H1 �H2

for 0 < � < 1=h, and estimate the remaining probabilities P0 and P1 by Lemmas 3.2

and 3.3 below which completes the proof.

Lemma 3.2. Under the hypotheses of Proposition 3.1, we have for every  2 (0; 1=2),

P0 = P
0;(�0;0)

�
sup
s6u6t

kQ(t)�0
uk > H0

�
6

1

(1� 2)n=2
exp

�
�H

2
0 � �

2
h
2

�2

�
; (3.20)

holding uniformly for all �0 such that h�0; X(y0)
�1
�0i 6 �

2
h
2.

Proof: For every b > 0, (expfbkQ(t)�0
u
k2g)u>s is a positive submartingale and, there-

fore, Doob's submartingale inequality yields

P0 = P
0;(�0;0)

n
sup
s6u6t

ebkQ(t)�
0
uk2 > ebH

2
0

o
6 e�bH

2
0 E

0;(�0 ;0)
�
ebkQ(t)�

0
tk2
	
: (3.21)

Now, the random variable Q(t)�0
t is Gaussian, with expectation E = Q(t)U(s)�0 and

covariance matrix

� =
�
2

"
Q(t)

�Z
t

0

U(s; v)F0(y
det
v ; ")F0(y

det
v ; ")TU(s; v)T dv

�
Q(t)T : (3.22)

Thus, using completion of squares to compute the Gaussian integral, we �nd

E
0;(�0 ;0)

�
ebkQ(t)�

0
t
k2	 = ebhE;(1l�2b�)

�1Ei

(det[1l� 2b�])1=2 : (3.23)

By (2.19), we can write

� = �
2
Q(t)U(s; t)

�
X(ydett )� U(t)X(ydet0 )U(t)T

�
U(s; t)TQ(t)T = �

2
�
1l �RR

T
�
; (3.24)
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where R = Q(t)U(s)X(ydet0 )1=2, and we have used the fact that U(s; t)X(ydett )U(s; t)T =

Q(t)�2. This shows in particular that

det[1l� 2b�] > (1� 2b�2)n: (3.25)

Moreover, since kRRTk = kRT
Rk 2 (0; 1), we also have

hE; (1l� 2b�)�1Ei = hX(ydet0 )�1=2�0; R
T (1l� 2b�)�1RX(ydet0 )�1=2�0i

6 �
2
h
2
RT

�
1l � 2b�2[1l� RR

T ]
��1

R


6 �
2
h
2
�
[1� 2b�2]kRT

Rk�1 + 2b�2��1 6 �
2
h
2 (3.26)

for all �0 satisfying h�0; X(y0)
�1
�0i 6 �

2
h
2. Now, (3.20) follows from (3.23) by choosingb = =�

2.

Lemma 3.3. Under the hypotheses of Proposition 3.1,

P1 = P
0;(�0;0)

�
sup

s6u6t^��^��
kQ(t)�1

uk > H1

�
6exp

�
�
�
H

2
1 � �

2
M

2
1 (
p
K+h+ h1)

2�(t)
�2

8�2M2
1 (
p
K+h+ h1)2H

2
1	(t)

�
(3.27)

holds uniformly for all �0 such that h�0; X(y0)
�1
�0i 6 h

2
.

Proof: Let � denote the stopping time

� = �� ^ �� ^ inffu > 0: kQ(t)�1
uk > H1g; (3.28)

and de�ne, for a given 1, the stochastic process

�u = e1kQ(t)�
1
uk2 : (3.29)

(�u)u being a positive submartingale, another application of Doob's submartingale in-

equality yields

P1 6 e�1H
2
1 E

0;(�0 ;0)
�
�t^�

	
: (3.30)

Itô's formula (together with the fact that (dWu)
T
R
T
R dWu = Tr(RT

R) du for any matrix

R 2 Rn�k) shows that �u obeys the SDE

d�u = 21
�p
"
�u(�

1
u)
T
Q(t)2U(s; u)F1(�u; �u; u; ") dWu+1

�
2

"
�u Tr

�
R
T
1R1+21R

T
2R2

�
du;

(3.31)

where

R1 = Q(t)U(s; u)F1(�u; �u; u; ");

R2 = (�1
u)

T
Q(t)2U(s; u)F1(�u; �u; u; "):

(3.32)

The �rst term in the trace can be estimated as

Tr
�
R
T
1R1

�
= Tr

�
R1R

T
1

�
6M

2
1

�
k�uk+ k�uk

�2
Tr
�
Q(t)TU(s; u)U(s; u)TQ(t)

�
6M

2
1

�
k�uk+ k�uk

�2
Tr
�
U(t; u)TX(ydett )�1U(t; u)

�
; (3.33)
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while the second term satis�es the bound

Tr
�
R
T

2R2

�
=
F1(�u; �u; u; ")TU(s; u)TQ(t)2�1

u

2
6M

2
1

�
k�uk+ k�uk

�2U(s; u)TQ(t)2kQ(t)�1
uk2

= M
2
1

�
k�uk+ k�uk

�2U(t; u)TX(ydett )�1U(t; u)
kQ(t)�1

uk2: (3.34)

Using the fact that k�uk 6
p
K+h, k�uk 6 h1 and kQ(t)�1

uk 6 H1 hold for all 0 6 u 6 t^� ,
we obtain

E
0;(�0 ;0)

�
�u^�

	
6 1 + 1

�
2

"
M

2
1

�p
K+h+ h1

�2 Z u

0

E
0;(�0 ;0)

�
�v^�

	
�
h
Tr
�
U(t; v)TX(ydett )�1U(t; v)

�
+ 21H

2
1

U(t; v)TX(ydett )�1U(t; v)
i dv; (3.35)

and Gronwall's inequality yields

E
0;(�0 ;0)

�
�t^�

	
6 exp

n
1�

2
M

2
1

�p
K+h + h1

�2�
�(t) + 21H

2
1	(t)

�o
: (3.36)

Now, (3.30) implies

P1 6 exp
n
�1

�
H

2
1��2M2

1 (
p
K+h+h1)

2�(t)
�
+221�

2
M

2
1 (
p
K+h+h1)

2
H

2
1	(t)

o
; (3.37)

and (3.27) follows by optimizing over 1.

Proposition 3.1 allows to control the �rst-exit time of (xt; yt) from B(h), provided

�s = ys � y
det
s remains small. In order to complete the proof of Theorem 2.4 we need to

control the tails of the distribution of ��. The following lemma provides a rough a priori

estimate which is su�cient for the time being. We will provide more precise estimates in

the next section.

Recall the notations V (u; v) for the principal solution of _� = B(ydetu ; ")�, and

�
(1)(t) = sup

06s6t

Z
s

0

�
sup

u6v6s

kV (s; v)k
�
du; (3.38)

�
(2)(t) = sup

06s6t

Z
s

0

�
sup

u6v6s

kV (s; v)k2
�
du: (3.39)

from Subsection 2.3.

Lemma 3.4. There exists a constant c� > 0 such that for all choices of t > 0 and h1 > 0

satisfying ydets 2 D0 for all s 6 t and h1 6 c��
(1)(t)�1,

sup
�0 : h�0;X(y0)�1�0i6h2

P
0;(�0;0)

�
sup

06u6t^�
B(h)

k�uk > h1

�
6 2

�
t

�"

�
em=4 exp

�
��0

h
2
1(1� O(�"))

�2(�2 + ")�(2)(t)

�
1�M

0
0 �

(1)(t) h1

�
1 +K+

h
2

h
2
1

���
; (3.40)

where �0, M
0
0 are constants depending only on k bF k1, k bGk1, M , kCk1 and U .
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Proof: We �rst consider a time interval [s; t] with t�s = �". Let u 2 [s; t] and recall the

de�ning SDE (3.3) for �u. Its solution can be split into four parts, �u = �
0
u+ �

1
u+ �

2
u+ �

3
u,

where

�
0
u = �

0
Z

u

0

V (u; v) bG(�v; �v; v; ") dWv ;

�
1
u =

�p
"

Z
u

0

S(u; v)bF(�v; �v; v; ") dWv;

�
2
u =

Z
u

0

V (u; v)c(�v; �v; v; ") dv;

�
3
u =

1

"

Z
u

0

S(u; v)b(�v; �v; v; ") dv;

(3.41)

with

S(u; v) =

Z
u

v

V (u; w)C(ydetw ; ")U(w; v) dw: (3.42)

Let � = �B(h) ^ ��. It follows immediately from the de�nitions of �B(h), �� and the

bounds (3.4) that �2u^� 6M(1 + O(�"))�(1)(t)(K+h
2 + h

2
1);�3u^� 6M

0
�
(1)(t)(K+h

2 +
p
K+hh1)

(3.43)

for all u 2 [s; t]. Here M 0 depends only on M , U and kCk1. Furthermore, using similar

ideas as in the proof of Lemma 3.3, it is straightforward to establish for all H0; H1 > 0

that

P
0;(�0;0)

�
sup

s6u6t^�
k�0uk > H0

�
6 em=4 exp

�
� H

2
0(1� O(�"))

8(�0)2k bGk21�(2)(t)
�
;

P
0;(�0;0)

�
sup

s6u6t^�
k�1uk > H1

�
6 em=4 exp

�
� H

2
1(1�O(�"))

8�2"cSk bFk21�(2)(t)
�
;

(3.44)

where cS is a constant depending only on S. Then the local analogue of estimate (3.40)

(without the t-dependent prefactor) is obtained by taking, for instance, H0 = H1 =
1
2
h1�

2(M +M
0)�(1)(t)(K+h

2 + h
2
1).

It remains to extend (3.40) to a general time interval [0; t] for t of order 1. For this

purpose, we choose a partition 0 = u0 < u1 < � � � < uK = t of [0; t], satisfying uk = k�"

for 0 6 k < K = dt=(�")e. Applying the local version of (3.40) to each interval [uk; uk+1]

and using the monotonicity of �(2)(u), the claimed estimate follows from

P
0;(�0;0)

n
sup

06u6t^�
B(h)

k�uk > h1

o
6

K�1X
k=0

P
0;(�0;0)

n
sup

uk6u6uk+1^�B(h)
k�uk > h1

o
: (3.45)

Proposition 3.1 and Lemma 3.4 together are su�cient to prove Theorem 2.4 on a

timescale of order 1. We continue to assume that y0 2 D0 but we will no longer assume

that ydetu 2 D0 automatically holds for all u 6 t. Instead, we will employ Lemma 3.4 to

compare yu 2 D0 and y
det
u , taking advantage of the fact that on timescales of order 1, �t

is likely to remain small. Note that if the uniform-hyperbolicity Assumption 2.2 holds for
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D0, then there exists a Æ > 0 of order 1 such that the Æ-neighbourhood D+
0 (Æ) also satis�es

this assumption. We introduce the �rst-exit time �
det
D0

of the deterministic process ydetu

from D+
0 (Æ) as

�
det
D0

= inffu > 0: ydetu 62 D+
0 (Æ)g (3.46)

and remark in passing that �B(h) ^ �� 6 �
det
D0

holds whenever h1 6 Æ.

Corollary 3.5. Fix a time t > 0 and h > 0 in such a way that h 6 c1�
(1)(t^ �detD0

)�1 for a

su�ciently small constant c1 > 0 and �
(2)(t ^ �detD0

) 6 (�2+ ")�1. Then for any � 2 [0; 1),

any  2 (0; 1=2) and any su�ciently small �,

C
�
n;m(t; ") e

���(0)h2=�2
6 P

0;(�0;0)
�
�B(h) < t

	
6 C

+
n;m;(t; ") e

��+(�)h2=�2 (3.47)

holds uniformly for all �0 satisfying h�0; X(y0)
�1
�0i 6 �

2
h
2
. Here

�
+(�) = 

�
1� �

2 �O(�)� O((1 + �
(1)(t ^ �detD0

))h)
�
; (3.48)

�
�(0) =

1

2

�
1 + O(h) +O

�
e�K0t="

��
; (3.49)

C
+
n;m;

(t; ") =

�
t

�"

��
1

(1� 2)n=2
+
�
en=4+2 em=4

�
e��

+(0)h2=�2
�
; (3.50)

C
�
n;m(t; ") =

�r
2

�

h

�
^ 1

�
�
�
en=4+4 em=4

�
e
� h

2

2�2
[1�O(e�K0t=")�O((1+�(1)(t^�det

D0
))h)]

:

(3.51)

Proof: We �rst establish the upper bound. Fix an initial condition (�0; 0) satisfying

h�0; X(y0)
�1
�0i 6 �

2
h
2, and observe that

P
0;(�0;0)

�
�B(h) < t

	
6 P

0;(�0;0)
�
�B(h) < t ^ ��

	
+ P0;(�0;0)

�
�� < t ^ �B(h)

	
(3.52)

= P
0;(�0;0)

�
�B(h) < t ^ �detD0

^ ��
	
+P0;(�0;0)

�
�� < t ^ �detD0

^ �B(h)
	
:

To estimate the �rst term on the right-hand side, we again introduce a partition 0 = u0 <

u1 < � � � < uK = t of the time interval [0; t], de�ned by uk = k�" for 0 6 k < K =

dt=(�")e. Thus we obtain

P
0;(�0;0)

�
�B(h) < t ^ �detD0

^ ��
	
6

KX
k=1

P
0;(�0;0)

�
uk�1 6 �B(h) < uk ^ �detD0

^ ��
	
: (3.53)

Before we estimate the summands on the right-hand side of (3.53), note that by the

boundedness assumption on kX(y)k and kX�1(y)k, we haveX(yu)
�1 = X(ydetu )�1+O(h1)

for u 6 �
det
D0
^�� . Thus the bound obtained in Proposition 3.1 can also be applied to estimate

�rst-exit times from B(h) itself:

P
0;(�0;0)

�
uk�1 6 �B(h) < uk ^ �detD0

^ ��
	

6 P
0;(�0;0)

n
sup

uk�16u<uk^�det
D0

^��



�u; X(ydetu )�1�u

�
> h

2(1�O(h1))
o
: (3.54)

The second term on the right-hand side of (3.52) can be estimated by Lemma 3.4 with

�
2 = 8M2

1

�p
K+ + h1=(h(1�O(h1)))

�2
	(t ^ �detD0

)=
�
1� O(h1)�M0�

�
(3.55)
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and h1 = h=
p
�0 which are chosen in such a way that the Gaussian part of �t gives the

major contribution to the probability. Thus we obtain that the probability in (3.52) is

bounded by�
t

�"

��
1

(1� 2)n=2
exp
n
� h

2

�2

�
1� �

2 �O(�)�O(h)
�o

+ en=4 e�h
2
=�

2

+ 2 em=4 exp

�
�
h
2(1� O(�(1)(t ^ �detD0

)h)�O(�"))
�2(�2 + ")�(2)(t ^ �detD0

)

��
; (3.56)

where we have used the fact that �(t) 6 n	(t), while 	(t) and �(t) are at most of order 1.

This completes the proof of the upper bound in (3.47).

The lower bound is a consequence of the fact that the Gaussian part of �t gives the

major contribution to the probability in (3.47). To check this, we split the probability as

follows:

P
0;(�0;0)

�
�B(h) < t

	
= P

0;(�0;0)
�
�B(h) < t; �� > t; ~�� > t

	
+ P0;(�0;0)

�
�� > t; ~�� < t

	
+P0;(�0;0)

�
�B(h) < t; �� < t

	
; (3.57)

where

~�� = inffu > 0:


�u; X(ydetu )�1�u

�
> h

2(1 +O(h1))g; (3.58)

and the O(h1)-term stems from estimating X(yu)
�1 by X(ydetu )�1 as in (3.54). Also note

that �B(h) 6 ~��. The �rst term on the right-hand side of (3.57) can be estimated as in

the proof of Proposition 3.1. (Note that a lower bound is obtained trivially by considering

the endpoint instead of the whole path.) Instead of applying Lemma 3.2, the Gaussian

contribution can be estimated below by a straightforward calculation. The non-Gaussian

parts are estimated above as before and are of smaller order. Finally, we need an upper

bound for the probability that �� < t 6 �B(h) which can be obtained from Lemma 3.4.

3.2 Longer timescales

Corollary 3.5 describes the dynamics on a timescale of order 1, or even on a slightly

longer timescale if �(1)(t), �(2)(t) do not grow too fast. It may happen, however, that ydett

remains in D0 for all positive times (e. g. when D0 is positively invariant under the reduced

deterministic �ow). In such a case, one would expect the vast majority of paths to remain

concentrated in B(h) for a rather long period of time.

The approach used in Subsection 3.1 fails to control the dynamics on timescales on

which �
(i)(t)� 1, because it uses in an essential way the fact that �t = yt � y

det
t remains

small. Our strategy in order to describe the paths on longer timescales is to compare

them to di�erent deterministic solutions on time intervals [0; T ], [T; 2T ], . . . , where T is a

possibly large constant such that Corollary 3.5 holds on time intervals of length T , provided

yt remains in D0. Essential ingredients for this approach are the Markov property and the

following technical lemma, which is based on integration by parts.

Lemma 3.6. Fix constants s1 6 s2 in [0;1], and assume we are given two continuously

di�erentiable functions

� ' : [0;1)! [0;1), which is monotonously increasing and satis�es '(s2) = 1,

� '0 : [0;1)! R which satis�es '0(s) 6 0 for all s 6 s1.
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Let X > 0 be a random variable such that PfX < sg > '0(s) for all s > 0. Then we have,

for all t > 0,

E
�
1[0;t)(X)'̂(X)

	
6 '̂(t)PfX < tg �

Z
s2^t

s1^t
'
0(s)'0(s) ds; (3.59)

where '̂(s) = '(s) ^ 1.

We omit the proof of this result, which is rather standard. See, for instance, [7,

Lemma A.1] for a very similar result.

When applying the preceding lemma, we will also need an estimate on the probability

that h�T ; X(yT)
�1
�T i exceeds h2. Corollary 3.5 provides, of course, such an estimate, but

since it applies to the whole path, it does not give optimal bounds for the endpoint. An

improved bound is given by the following lemma. Recall the de�nition of the �rst-exit time

�D0
of yt from D0 from (2.24).

Lemma 3.7. If T and h satisfy h 6 c1�
(1)(T ^ �

det
D0

)�1 and �
(2)(T ^ �detD0

) 6 (�2 + ")�1,
we have, for every  2 (0; 1=2),

sup
�0 : h�0;X(y0)�1�0i6h2

P
0;(�0;0)

n
h�T ; X(yT)

�1
�T i > h

2
; �D0

> T

o
6 bCn;m;(T; ") e

��0h2=�2
;

(3.60)

where

�
0 = 

�
1�O(�)� O(h)�O

�
e�2K0T=" =(1� 2)

��
; (3.61)bCn;m;(T; ") =

1

(1� 2)n=2
+ 4C+

n;m;(T; ") e
�2�+(0)h2=�2

: (3.62)

Proof: We decompose �t as �t = �
0
t + �

1
t + �

2
t , where

�
0
t = U(t)�0 +

�p
"

Z
t

0

U(t; u)F0(y
det
u ; ") dWu;

�
1
t =

�p
"

Z
t

0

U(t; u)F1(�u; �u; u; ") dWu;

�
2
t =

1

"

Z
t

0

U(t; u)b(�u; �u; u; ") du; (3.63)

and introduce the notations ~�� and ~�� for the stopping times which are de�ned like ��

and �� in (3.9) and (3.6), but with h and h1 replaced by 2h and 2h1, respectively. The

probability in (3.60) is bounded by

P
0;(�0;0)

n
h�T ; X(ydetT )�1�T i > h

2(1� O(h1)); ~�� > T

o
+ P0;(�0;0)

n
~�� 6 T

o
: (3.64)

LetH2 = h
2(1�O(h1)). As in the proof of Proposition 3.1, the �rst term on the right-hand

side can be further decomposed as

P
0;(�0;0)

n
h�T ; X(ydetT )�1�T i > H

2
; ~�� > T

o
6 P

0;(�0;0)
nX(ydetT )�1=2�0T

 > H0

o
+P0;(�0;0)

n
~�� > T; ~�� 6 T

o
+ P0;(�0;0)

nX(ydetT )�1=2�1T
 > H1; ~�� > T; ~�� > T

o
+ P0;(�0;0)

nX(ydetT )�1=2�2T
 > H2; ~�� > T; ~�� > T

o
; (3.65)
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where we choose H1, H2 twice as large as in the proof of Proposition 3.1, while H0 =

H �H1 �H2.

The �rst term on the right-hand side can be estimated as in Lemma 3.2, with the

di�erence that, the expectation of �0
T
being exponentially small in T=", it leads only to a

correction of order e�2K0T=" =(1� 2) in the exponent. The second and the third term can

be estimated by Corollary 3.5 and Lemma 3.3, the only di�erence lying in a larger absolute

value of the exponent, because we enlarged h and h1. The last term vanishes by our choice

of H2. Finally, the second term on the right-hand side of (3.64) can be estimated by

splitting according to the value of �B(2h) and applying Lemma 3.4 and Corollary 3.5.

We are now prepared to establish an improved estimate on the distribution of �B(h).
As we will restart the process ydett whenever t is a multiple of T , we need the assumptions

made in the previous section to hold uniformly in the initial condition y0 2 D0. Therefore

we will introduce replacements for some of the notations introduced before. Note that

�
(1)(t) = �

(1)
y0 (t) and �

(2)(t) = �
(2)
y0 (t) depend on y0 via the principal solution V . Also

�
det
D0

= �
det
D0

(y0) naturally depends on y0. We de�ne

b�(1)(t) = sup
y02D0

�
(1)
y0

�
t ^ �detD0

(y0)
�
; (3.66)

b�(2)(t) = sup
y02D0

�
(2)
y0

�
t ^ �detD0

(y0)
�
: (3.67)

In the same spirit, the �(i)(T )-dependent O(�)-terms in the de�nitions of �+(�), �0 and
the prefactors like C+

n;m;(T; ") are modi�ed.

We �x a time T of order 1 satisfying b�(2)(T ) 6 (�2 + ")�1. T is chosen in such a way

that whenever h 6 c1b�(1)(T )�1, Corollary 3.5 (and Lemma 3.7) apply. Note that larger T

would be possible unless � is of order 1, but for larger T the constraint on h becomes more

restrictive which is not desirable. Having chosen T , we de�ne the probabilities

Pk(h) = P
0;(0;0)

�
�B(h) < kT ^ �D0

	
; (3.68)

Qk(h) = P
0;(0;0)

�
h�kT ; X(ykT)

�1
�kT i > h

2
; �D0

> kT
	
: (3.69)

Corollary 3.5 provides a bound for P1(h), and Lemma 3.7 provides a bound for Q1(h).

Subsequent bounds are computed by induction, and the following proposition describes

one induction step.

Proposition 3.8. Let �̂ 6 �
+(0) ^ �0. Assume that for some k 2 N ,

Pk(h) 6 Dk e
��̂h2=�2

; (3.70)

Qk(h) 6 bDk e
��̂h2=�2

: (3.71)

Then the same bounds hold for k replaced by k + 1, provided

Dk+1 > Dk + C
+
n;m;(T; ")

bDk



 � �̂
e(��̂)h

2=�2 (3.72)

bDk+1 > bDk + bCn;m;(T; "): (3.73)

Remark 3.9. Note that ��̂ = O(h)+O(�)+O((1+ b�(1)(T ))h)+O�e�2K0T=" =(1�2)
�
.

In the case �+(0) = �
0 = , we may either choose �̂ < �

+(0)^�0, or we may replace (3.72)

by

Dk+1 > Dk + C
+
n;m;(T; ")

bDk

�
1 + log

�
C
+
n;m;(T; ")bDk

eh
2=�2

��
: (3.74)
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Below we will optimize with respect to �̂.

Proof of Proposition 3.8. We start by establishing (3.73). The Markov property al-

lows for the decomposition

Qk+1(h)

6 P
0;(0;0)

�
�B(h) < kT; �D0

> kT
	

+ E0;(0;0)
n
1f�

B(h)>kTgP
kT;(�kT ;0)

�
h�(k+1)T ; X(y(k+1)T)

�1
�(k+1)T i > h

2
; �D0

> (k + 1)T
	o

6 Qk(h) + bCn;m;(T; ") e
��̂h2=�2

; (3.75)

where the initial condition (�kT ; 0) indicates that at time kT , we also restart the process

of the deterministic slow variables ydett
in the point ykT 2 D0. In the second line, we used

Lemma 3.7. This shows (3.73).

As for (3.72), we again start from a decomposition, similar to (3.75):

Pk+1(h) = P
0;(0;0)

�
�B(h) < kT ^ �D0

	
+ E0;(0;0)

n
1f�

B(h)>kTgP
kT;(�kT ;0)

�
�B(h) < (k + 1)T ^ �D0

	o
: (3.76)

Corollary 3.5 allows us to estimate

Pk+1(h)

6 Pk(h) + E
0;(0;0)

n
1fh�kT ;X(ykT )

�1�kT i6h2g
�
'
�
h�kT ; X(ykT)

�1
�kT i

�
^ 1
� ��� �D0

> kT

o
� P0;(0;0)

�
�D0

> kT
	
; (3.77)

with

'(s) = C
+
n;m;(T; ") e

(��̂)h2=�2 e�(h
2�s)=�2

: (3.78)

(3.71) shows that

P
0;(0;0)

�
h�kT ; X(ykT)

�1
�kT i < s

�� �D0
> kT

	
> 'k(s); (3.79)

where

'k(s) :=
�
1� bDk e

��̂s=�2�Æ
P
0;(0;0)

�
�D0

> kT
	
: (3.80)

The functions ' and 'k ful�l the assumptions of Lemma 3.6 with

es2=�
2

= C
+
n;m;(T; ")

�1 e�̂h
2=�2 and e�̂s1=�

2

= bDk: (3.81)

For h2 6 s1, (3.70) becomes trivial, while for h2 > s1, Lemma 3.6 shows

Pk+1(h) 6 Pk(h)� '(h2 ^ s2)
�
1�P0;(0;0)

�
h�kT ; X(ykT)

�1
�kT i < h

2
; �D0

> kT
	�

+ '(s1) +

Z
s2^h2

s1

'
0(s) bDk e

��̂s=�2 ds

6 Pk(h) + C
+
n;m;(T; ")

bDk



 � �̂
e(��̂)h

2=�2 e��̂h
2=�2

: (3.82)

Now, (3.72) is immediate.
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Repeated application of the previous result �nally leads to the following estimate, which

is equivalent to the upper bound in Theorem 2.4. Note that the lower bound in Theorem 2.4

is a direct consequence of the lower bound in Corollary 3.5, so that the corollary below

completes the proof of the theorem.

Corollary 3.10. Assume that y0 2 D0, x0 = �x(y0; "). Then, for every t > 0, we have

P
0;(x0;y0)

�
�B(h) < t ^ �D0

	
6 C

+
n;m;(T; ")

�
1 + bCn;m;(T; ")

�
1

2
+

t

T

�2


2( � �̂)

�
e�(2�̂�)h

2=�2

: (3.83)

In addition, the distribution of the endpoint �t satis�es

P
0;(x0;y0)

�
h�t; X(yt)

�1
�ti > h

2
; �D0

> t
	
6 bCn;m;(T; ")

�
t

T

�
e��̂h

2
=�

2

: (3.84)

Proof: We already know the bounds (3.70) and (3.71) to hold for k = 1, with D1 =

C
+
n;m;(T; ") and

bD1 = bCn;m;(T; "). Now the inductive relations (3.72) and (3.73) are seen

to be satis�ed by

bDk = k bCn;m;(T; ");

Dk = C
+
n;m;(T; ")

�
1 + bCn;m;(T; ")



� �̂
e(��̂)h

2=�2
k�1X
j=1

j

�
: (3.85)

The conclusion follows by taking k = dt=Te and bounding the sum by 1
2(t=T )(t=T + 1) 6

1
2
(t=T + 1=2)2.

To complete the proof of Theorem 2.4, we �rst optimize our choice of �̂, taking into

account the constraint �̂ 6 �
+(0) ^ �0. By doing so, we �nd that



2( � �̂)
e�(2�̂�)h

2=�2
6

2h2

�2
e��h

2=�2
; (3.86)

where we have set

� = 
�
1�O(h)� O(�)�O

�
e�const="

=(1� 2)
��
: (3.87)

Simplifying the prefactor in (3.83) �nally yields

P
0;(x0;y0)

�
�B(h) < t ^ �D0

	
6

(1 + t)2

�"

h
(1� 2)�n + en=4+em=4

i
h
2

�2
e��h

2=�2

: (3.88)

3.3 Approaching the adiabatic manifold

The following result gives a rather rough description of the behaviour of paths starting

at a (su�ciently small) distance of order 1 from the adiabatic manifold. It is, however,

su�cient to show that with large probability, these paths will reach the set B(h), for some

h > �, in a time of order "jlog hj.
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Proposition 3.11. Let t satisfy the hypotheses of Corollary 3.5. Then there exist constants

h0, Æ0, c0 and K0 such that, for h 6 h0, Æ 6 Æ0,  2 (0; 1=2) and � su�ciently small,

sup
�0 : h�0;X(y0)�1�0i6Æ2

P
0;(�0;0)

�
sup

06s6t^�
D0



�s; X(ys)

�1
�s

�
(h+ c0Æ e�K0s=")2

> 1

�
(3.89)

6

�
t

�"

��
1

(1� 2)n=2
+
�
en=4+2 em=4

�
e��h

2
=�

2

�
e��h

2
=�

2

;

where � = [1�O(h)� O(�)� O(Æ)].

Proof: We start again by considering an interval [s; t] with t�s = �". Let ydet0 = y0 2 D0.

Then

P = P0;(�0;0)

�
sup

s6u6t^�
D0
^��



�u; X(yu)

�1
�u

�
(h+ c0Æ e�K0u=")2

> 1

�
6 P

0;(�0;0)

�
sup

s6u6t^�



�u; X(ydetu )�1�u

�
> H

2

�
; (3.90)

where � is a stopping time de�ned by

� = �D0
^ �� ^ inf

�
u > 0: h�u; X(ydetu )�1�ui > (h+ c0Æ e

�K0u=")2(1� O(�))
	
; (3.91)

and H
2 is a shorthand for H2 = H

2
t = (h+ c0Æ e

�K0t=")2(1� O(�)).

The probability on the right-hand side of (3.90) can be bounded, as in Proposition 3.1,

by the sum P0 + P1 + P2, de�ned in (3.17), provided H0 + H1 +H2 = H . Since kU(s)k
decreases like e�K0s=" = eK0� e�K0t=", we have

P0 6
1

(1� 2)n=2
exp
h
�H

2
0 � const Æ2 e2K0� e�2K0t="

�2

i
: (3.92)

Following the proof of Lemma 3.3, and taking into account the new de�nition of � , we

further obtain that

P1 6 en=4 exp
n
�H

2
1

�2

1

M
2
1 const [(h+ h1)2	(t) + c

2
0Æ

2(t=") e�2K0t="]

o
: (3.93)

As for P2, it can be estimated trivially, provided

H2 > const
M

K0

h
(h2 + hh1)�(t) + c

2
0Æ

2 eK0� e�K0t="

i
: (3.94)

Choosing H1 in such a way that the exponent in (3.93) equals H2
=�

2, we obtain

P 6

�
1

(1� 2)n=2
+ en=4 e�H

2=(2�2)

�
exp
n
�H

2

�2

�
1�O(�)�O(h+ h1 + c0Æ)

�o
; (3.95)

where we choose h1 proportional to h + c0Æ e
K0� e�K0t=". The remainder of the proof is

similar to the proofs of Lemma 3.4 and Corollary 3.5.

The preceding lemma shows that after a time t1 of order "jlog hj, the paths are likely

to have reached B(h). As in Lemma 3.7, an improved bound for the distribution of the

endpoint �t1 can be obtained. Repeating the arguments leading to Theorem 2.4, namely
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using Lemma 3.6 on integration by parts and mimicking the proof of Corollary 3.10, one

can show that after time t1, the probability of leaving B(h) behaves as if the process had

started on the adiabatic manifold, i. e.,

P
0;(�0;0)

�
sup

t16s6t^�D0



�s; X(ys)

�1
�s

�
> h

2

�
6 C+

n;m;;�(t; ")
h
2

�2
e��

+
h
2
=�

2

; (3.96)

uniformly for all �0 such that h�0; X(y0)
�1
�0i 6 Æ

2. Here C+
n;m;;�(t; ") is the same prefactor

as in Theorem 2.4, cf. (2.27), and

�
+ = 

�
1�O(h)� O(�)� O

�
Æ e�const (t1^1)=" =(1� 2)

��
: (3.97)

This completes our discussion of general initial conditions.

4 Proofs � Dynamics of �t

In this section, we consider again the SDE

dxt =
1

"
f(xt; yt; ") dt+

�p
"
F (xt; yt; ") dWt;

dyt = g(xt; yt; ") dt + �
0
G(xt; yt; ") dWt

(4.1)

under Assumption 2.2, that is, when starting near a uniformly asymptotically stable man-

ifold. We denote by (xdett ; y
det
t ), with x

det
t = �x(ydett ; "), the deterministic solution starting

in ydet0 = y0 2 D0. The system can be rewritten in the form (3.3), or, in compact notation,

as

d�t =
�
A(ydett ; ")�t+ B(�t; t; ")

�
dt+ �

�
F0(y

det
t ; ") + F1(�t; t; ")

�
dWt; (4.2)

where �
T = (�T ; �T), A and F0 have been de�ned in (2.37), and the components of

BT = ("�1bT ; cT ) and FT
1 = ("�1=2FT

1 ; �G
T
1 ) satisfy the bounds (3.4).

The solution of (4.2) with initial condition �
T
0 = (�T0 ; 0) can be written in the form

�t = U(t)�0 + �

Z
t

0

U(t; s)F0(y
det
s ; ") dWs

+

Z
t

0

U(t; s)B(�s; s; ") ds+ �

Z
t

0

U(t; s)F1(�s; s; ") dWs: (4.3)

The components of the principal solution U(t; s) satisfy the bounds

kU(t; s)k 6 const e�K0(t�s)=";

kS(t; s)k 6 const kCk1
"

K0

�
1� e�K0(t�s)="� sup

s6u6t

kV (t; u)k: (4.4)

We want to estimate the �rst-exit time

�� = inf
�
u > 0: h�u;Z(u)�1�ui > h

2
	
; (4.5)

with Z(u) de�ned in (2.47). The inverse of Z(u) is given by

Z�1 =

 
(X � ZY

�1
Z
T )�1 �X�1

Z(Y � Z
T
X
�1
Z)�1

� Y
�1
Z
T (X � ZY

�1
Z
T )�1 (Y � Z

T
X
�1
Z)�1

!
: (4.6)
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Since we assume kXk1 and kX�1k1 to be bounded, kZk1 = O(p"�+") and kY �1k[0;t] =
O(1=(�2 + ")), we have

Z�1 =

 
O(1) O(1)
O(1) O(1=(�2+ "))

!
: (4.7)

As in Section 3, we start by examining the dynamics of �u on an interval [s; t] with � =

(t� s)=" = O"(1).
The following functions will play a similar rôle as the functions � and 	, introduced

in (3.5), played in Section 3:

b�(t) = Z t

0

Tr
�
J (v)TU(t; v)TZ(t)�1U(t; v)J (v)

�
dv;

b	(t) = Z t

0

J (v)TU(t; v)TZ(t)�1U(t; v)J (v)
dv; (4.8)

where

J (v) =
1

p
2M1hkZk1=21

F1(�v; v; ") =

 
O( 1p

"
)

O(�)

!
(4.9)

for v 6 �� . Using the representations (2.39) of U and (4.6) of Z�1 and expanding the

matrix product, one obtains the relations

b�(t) 6 �(t) + �
2

Z
t

0

Tr
�
V (t; v)TY (t)�1V (t; v)

�
dv +O

�
(n+m)(1 + �

(1)(t) + �
(2)(t))

�
;

b	(t) 6 	(t) + �
2

Z
t

0

V (t; v)TY (t)�1V (t; v)dv +O
�
1 + �

(1)(t) + �
(2)(t)

�
; (4.10)

valid for all t 6 �� . Now we are ready to establish the following analog of Proposition 3.1.

Proposition 4.1. Fix an initial condition (x0; y0) with y0 2 D0 and x0 = �x(y0; "), and

let t be such that y
det
u 2 D0 for all u 6 t. Then, for all � 2 [0; 1], all  2 (0; 1=2) and all

� > 0,

sup
�0=(�0;0) : h�0;X(y0)�1�0i6�2h2

P
0;�0

�
sup

s6u6t^�
D0



�u;Z(u)�1�u

�
> h

2

�
6

1

(1� 2)(n+m)=2
exp

�
� h

2

�2

h
1� �

2 � O
�
�+ " + �h + hkZk[0;t]kY �1k1=2

[0;t]
�
(1)(t)

�i�
+ e

b�(t)=4b	(t) exp

�
�h

2

�2

�
2(1�O(�))

16M2
1 kZk[0;t]b	(t)

�
(4.11)

holds for all h < 1=�.

Proof: Writing �u = U(u; s)�u, we have

P
0;�0

�
sup

s6u6t^�
D0



�u;Z(u)�1�u

�
> h

2

�
= P

0;�0

�
sup

s6u6t^�
D0
^��
kQ(u)�uk > h

�
(4.12)

where Q(u) is the symmetric matrix de�ned by

Q(u)2 = U(u; s)TZ(u)�1U(u; s): (4.13)
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As in the proof of Proposition 3.1, we want to eliminate the u-dependence of Q in (4.12).

It turns out that the relation kQ(u)Q(t)�1k = 1 + O(�) still holds in the present situ-

ation, although the proof is less straightforward than before. We establish this result in

Lemma 4.2 below.

Splitting �u into the sum �u = �0
u + �1

u + �2
u, where the �i

u are de�ned in a way

analogous to (3.16), we can estimate the probability in (4.12) by the sum P0 + P1 + P2,

where

P0 = P
0;�0

�
sup

s6u6t^�
D0

kQ(t)�0
uk > H0

�
;

P1 = P
0;�0

�
sup

s6u6t^�
D0
^��
kQ(t)�1

uk > H1

�
; (4.14)

P2 = P
0;�0

�
sup

s6u6t^�
D0
^��
kQ(t)�2

uk > H2

�
;

and H0+H1+H2 = h(1�O(�)). Following the proof of Lemma 3.2, it is straightforward

to show that

P0 6
1

(1� 2)(n+m)=2
exp
n
� 

�2
(H2

0 � �
2
h
2)(1�O("))

o
; (4.15)

the sole di�erence being the factor O(") in the exponent which stems from the fact that

h�0;Z(0)�1�0i = h�0; X(0)�1�0i(1+O(")). Furthermore, similar arguments as in the proof

of Lemma 3.3 lead to the bound

P1 6 exp

�
�
(H2

1 � 2�2M2
1h

2kZk[0;t]b�(t))2
16�2M2

1h
2H

2
1kZk[0;t]b	(t)

�
: (4.16)

Finally, the estimate

kQ(t)�2
u^��k

2
6

Z
u^��

0

Z
u^��

0

B(�v; v; ")TU(t; v)TZ(t)�1U(t; w)B(�w; w; ")dv dw
6 const h

4kZk2[0;t]
�
1 + kY �1k[0;t]�(1)(u)2

�
(4.17)

shows that P2 = 0 for H2 > O(h2kZk[0;t]kY �1k1=2
[0;t]

�
(1)(t)). Hence (4.11) follows by taking

H1 = �h
2(1�O(�)).

In the proof of Proposition 4.1, we have used the following estimate.

Lemma 4.2. For � = (t� s)=" su�ciently small,

sup
s6u6t

kQ(u)Q(t)�1k = 1+ O(�): (4.18)

Proof: Using the fact that Q(v)�2 satis�es the ODE

d

dv
Q(v)�2 = U(s; v)F0(y

det
v ; ")F0(y

det
v ; ")TU(s; v)T ; (4.19)

we obtain the relation

Q(u)2Q(t)�2 = 1l +Q(u)2
Z

t

u

U(s; v)F0(y
det
v ; ")F0(y

det
v ; ")TU(s; v)T dv: (4.20)
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The de�nition of F0 and the bound (4.4) on kSk allow us to write

U(s; v)F0(y
det
v
; ")F0(y

det
v
; ")TU(s; v)T =

 
O(1=") O(� + �=

p
")

O(� + �=
p
") O(�2

"+ �
2)

!
: (4.21)

Using the estimate (4.7) for Z�1 and the fact that we integrate over an interval of length

�", it follows that

Q(u)2Q(t)�2 � 1l = �

 
O(1) O(�"+ �

p
")

O(1) O("+ �
p
")

!
; (4.22)

which implies (4.18).

Now, Theorem 2.5 follows from Proposition 4.1, by taking a regular partition of [0; t]

with spacing �" and � = 4M1kZk1=2[0;t]
b	(t)1=2. We use in particular the fact that b	(t) =

O(1 + �
(1)(t) + �

(2)(t)).

5 Proofs � Bifurcations

We consider in this section the behaviour of the SDE (2.1) near a bifurcation point. The

system can be written in the form

d��t =
1

"
f̂
�(��t ; zt; yt; ") dt +

�p
"

bF�(��t ; zt; yt; ") dWt;

dzt =
1

"
f̂
0(��t ; zt; yt; ") dt +

�p
"

bF 0(��t ; zt; yt; ") dWt;

dyt = ĝ(��t ; zt; yt; ") dt+ �
0 bG(��t ; zt; yt; ") dWt;

(5.1)

compare (2.63) and (2.64). We consider the dynamics as long as (zt; yt) evolves in a

neighbourhood N of the bifurcation point, which is su�ciently small for the adiabatic

manifold to be uniformly asymptotically stable, that is, all the eigenvalues of @xf̂
�(0; z; y; ")

have negative real parts, uniformly bounded away from zero.

5.1 Exit from B
�(h)

Let h�; hz > 0. In addition to the stopping time

�� = inf
�
s > 0: k�sk > h�

	
; (5.2)

cf. (3.6), we introduce the corresponding stopping time for zs � z
det
s , namely,

�z = inf
�
s > 0: kzs � z

det
s k > hz

	
: (5.3)

The following result is obtained using almost the same line of thought as in Section 3.1.

Proposition 5.1. Let t be of order 1 at most. Then, for all initial conditions �
�
0 such that

h��0 ; X�(y0; z0)�1�
�
0 i 6 �

2
h
2 with an � 2 (0; 1], all  2 (0; 1=2), and all su�ciently small
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� > 0,

P
0;(��0 ;z0;y0)

n
sup

06s6t^�
N
^��^�z



�
�
s ; X

�(ys; zs)
�1
�
�
s

�
> h

2
o

6

�
t

�"

�
1

(1� 2)(n�q)=2
exp

�
� h

2

�2

h
1� �

2 �O
�
�+ (1+ �)h+ h� + hz

�i�
+

�
t

�"

�
e(n�q)=4 exp

�
�h

2

�2

�
2(1� O(�))

O((1 + (h� + hz)=h)2)

�
: (5.4)

Proof: The proof is similar to the proof of Corollary 3.5, the main di�erence being the

need for the additional stopping time �z. Note that this results in error terms depending

on h� + hz instead of h� only.

Next, we need to control the stopping times �� and �z . Lemma 3.4 holds with minor

changes, incorporating the zt-dependent terms. We �nd that

Lemma 5.2. Let ��0 satisfy h��0 ; X�(y0; z0)�1�
�
0 i 6 h

2
. Then

P
0;(�0;0)

�
sup

06u6t^�
B
�(h)^�z

k�uk > h�

�

6 2

�
t

�"

�
em=4 exp

�
��0

h
2
�
(1� O(�"))

�2(�2 + ")�(2)(t)

�
1�O

�
�
(1)(t) h�

�
1 +

h
2

h2�

+
h
2
z

h2�

����
:

(5.5)

The next result allows to control the stopping time �z . We de�ne

�
(1)
z (t) = sup

06s6t

Z
s

0

�
sup

u6v6s

kU0(s; v)k
�
du; (5.6)

�
(2)
z (t) = sup

06s6t

Z
s

0

�
sup

u6v6s

kU0(s; v)k2
�
du; (5.7)

where U0 is the principal solution of " _� = A
0(zdett ; y

det
t ; ")�.

Lemma 5.3. Let ��0 satisfy h��0 ; X�(y0; z0)�1�
�
0 i 6 h

2. Then

P
0;(�

�

0 ;z0;y0)
n

sup
06s6t^�

B
�(h)

^��
kzs � z

det
s k > hz

o
6 2

�
t

�"

�
eq=4 exp

�
��0

"h
2
z(1� O(�"))
�2�

(2)
z (t)

�
1� O

�
�
(1)
z (t) hz

�
1 +

h
2

h2z

+
h
2
�

h2z

����
:

(5.8)

Proof: The proof is almost identical with the proof of Lemma 3.4 and Lemma 5.2, with

�
0 replaced by �=

p
" and V replaced by U0.

Proof of Theorem 2.7. We can repeat the proof of Corollary 3.10 in Section 3.2, com-

paring the process to di�erent deterministic solutions on successive time intervals of length

T . The only di�erence lies in new values for the exponents �+(0) (resulting from Proposi-

tion 5.1) and �0. In fact, choosing h� proportional to h, hz proportional to (�
(2)
z (T )=")1=2h

and, �nally, �2 proportional to 1 + (h� + hz)=h, shows that

P
0;(��0 ;z0;y0)

n
sup

06s6T^�
N



�
�
s ; X

�(ys; zs)
�1
�
�
s

�
> h

2
o
6 Cn;m;q;(T; ") e

��+(�)h2=�2
; (5.9)
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valid for all ��0 satisfying h��0 ; X�(y0; z0)�1�
�
0 i 6 �

2
h
2 and all T of order 1 at most. Here

Cn;m;q;(T; ") =

�
T

�"

��
1

(1� 2)(n�q)=2
+ e(n�q)=4+2 em=4+2 eq=4

�
; (5.10)

�
+(�) = 

�
1� �

2 � O(�)�O(h)� O(h(�(2)(T ) _ �(2)z (T ))1=2=
p
")
�
: (5.11)

Similar arguments as in the proof of Lemma 3.7 yield a bound of the form

P
0;(��0 ;z0;y0)

n

�
�
T
; X

�(y
T
; z

T
)�1��

T

�
; �N > T

o
6 bC e��

0h2=�2

; (5.12)

where

�
0 = 

�
1�O(�)�O(h)�O(h(�(2)(T )_�(2)z (T ))1=2=

p
")�O(e�2K0T=" =(1�2))

�
: (5.13)

In order for the estimates (5.9) and (5.12) to be useful, we need to take T of order ".

However, this leads to an error term of order 1 in the exponent �0, which is due to the fact

that ��t has too little time to relax to the adiabatic manifold. In order to �nd the best

compromise, we take T = �" and optimize over �. Assume we are in the worst case, when

kU0k grows exponentially like eK+t=". Then �
(2)
z (T ) is of the order "� e2K+�. The choice

e�� =
�
h(1� 2)

�1=(2K0+K+) (5.14)

yields an almost optimal error term of order h�(1 � 2)1��jlog(h(1 � 2))j1=2, with � =

2K0=(2K0+K+). The smaller K+, i. e., the slower �
(2)
z (t) grows, the closer � is to one.

5.2 The reduced system

Given the SDE (5.1), we call

dz0t =
1

"
f̂
0(0; z0t ; y

0
t ; ") dt +

�p
"

bF 0(0; z0t ; y
0
t ; ") dWt;

dy0t = ĝ(0; z0t ; y
0
t ; ") dt+ �

0 bG(0; z0t ; y0t ; ") dWt

(5.15)

the reduced system of (5.1). It is obtained by setting �
�
t = 0. Let �0t = (z0t ; y

0
t ) and

�t = (zt� z
0
t ; yt� y

0
t ). Subtracting (5.15) from (5.1) and making a Taylor expansion of the

drift coe�cient, we �nd that (��
t
; �t) obeys the SDE

d��t =
1

"

�
A
�(�0t ; ")�

�
t + b(��t ; �t; �

0
t ; ")

�
dt+

�p
"

eF (��t ; �t; �0t ; ") dWt;

d�t =
1

"

�
C(�0t ; ")�

�
t
+B(�0t ; ")�t + c(��

t
; �t; �

0
t ; ")

�
dt+

�p
"

eG(��
t
; �t; �

0
t ; ") dWt;

(5.16)

where kbk and kck are both of order k��k2 + k�k2 and keGk is of order k��k + k�k, while
k eFk is bounded. The matrices A�, B and C are those de�ned in (2.66), (2.76) and (2.77).

For a given continuous sample path f�0t (!)gt>0 of (5.16), we denote by U! and V! the

principal solutions of " _�� = A
�(�0t (!); ")�

� and " _� = B(�0t (!); ")�. If we further de�ne

S!(t; s) =
1

"

Z
t

s

V!(t; u)C(�0u(!); ")U!(u; s) du; (5.17)
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we can write the solution of (5.16) as

�t(!) =
�p
"

Z
t

0

V!(t; s)eG(��s (!); �s(!); �0s (!); ") dWs(!)

+
�p
"

Z
t

0

S!(t; s) eF(��s (!); �s(!); �0s (!); ") dWs(!)

+
1

"

Z
t

0

V!(t; s)c(��s (!); �s(!); �0s (!); ") ds

+
1

"

Z
t

0

S!(t; s)b(��s (!); �s(!); �0s(!); ") ds: (5.18)

Concerning the �rst two summands in (5.18), note that the identities

V!(t; s) = V!(t; 0)V!(s; 0)�1;
S!(t; s) = S!(t; 0)U!(s; 0)�1 + V!(t; 0)S!(s; 0)�1

(5.19)

allow to rewrite the stochastic integrals in such a way that the integrands are adapted with

respect to the �ltration generated by fWsgs>0.
We now assume the existence of a stopping time � 6 �B�(h) and deterministic functions

#(t; s), #C(t; s) such that V!(t; s) 6 #(t; s);V!(t; s)C(�0s (!); ") 6 #C(t; s);
(5.20)

uniformly in ", whenever s 6 t 6 �(!), and de�ne

�
(i)(t) = sup

06s6t

1

"

Z
s

0

#(s; u)i du; i = 1; 2; (5.21)

�
(i)

C
(t) = sup

06s6t

1

"

Z
s

0

�
sup

u6v6s

#C(s; v)
i

�
du; i = 1; 2: (5.22)

The following proposition establishes a local version of Theorem 2.8.

Proposition 5.4. Let � be su�ciently small, �x times s < t such that t � s = �", and

assume that there exists a constant #0 > 0 such that #(u; s) 6 #0 and #C(u; s) 6 #0,

whenever u 2 [s; t]. Then there exist constants �0; h0 > 0 such that for all h 6 h0[�
(1)(t)_

�
(1)

C
(t)]�1,

P
0;0
n

sup
s^�6u<t^�

k�uk > h

o
6 2 e(m+q)=4 exp

n
��0

h
2

�2

1

�
(2)

C
(t) + h2�(2)(t)

o
: (5.23)

Proof: The proof follows along the lines of the proof of Lemma 3.4, the main di�erence

lying in the fact that the stochastic integrals in (5.18) involve the principal solutions U!,

V! depending on the realization of the process. However, the existence of the deterministic

bound (5.20) allows for a similar conclusion. In particular, the �rst and second term

in (5.18) create respective contributions of the form

e(m+q)=4 exp
n
� H

2
0

16�2h2M2
1�

(2)(t)

o
(5.24)

e(m+q)=4 exp
n
� H

2
1

16�2M2
1�

(2)

C
(t)

o
(5.25)
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to the probability (5.23). The third and fourth term only cause corrections of order h�(1)(t)

and h�
(1)

C
(t) in the exponent.

Now Theorem 2.8 follows from Proposition 5.4 by using a partition of the interval [0; t]

into smaller intervals of length �".
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