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Abstract

We consider a Newtonian system of many diatomic molecules, each of which

consisting of two atoms of equal mass, which are separated by a �xed dis-

tance. The barycenters are allowed to move along some �xed straight line.

Moreover, each molecule has an additional rotational degree of freedom. The

atoms of neighbouring molecules interact to each other by a generic pair po-

tential. By means of this example we propose a new method for deriving

macroscopic models from microscopic ones. The method is based on the de�-

nition of macroscopic observables and the derivation of corresponding balance

laws by interpolation, smoothing/averaging and subsequent scaling of particle

trajectories.

1 Introduction

The subject of micro-macro transitions can be outlined as follows. Assume we will

describe some physical system on the microscopic or atomic scale. This involves a

set of microscopic observables and parameters, measured in microscopic time and

space units, along with an evolution equation, which determines the values of the

observables from given initial and/or boundary values. The aim is to derive conse-

quences that this microscopic system imposes on some larger, macroscopic scales.

In particular, one wish to identify macroscopic observables and parameters as well

as macroscopic governing equations which allow one to determine the macroscopic

observables from given initial or/and boundary values by techniques from modern

analysis. On the other hand, given any macroscopic law, one might as well ask,

whether the expected solutions can in some sense be approximated and analyzed

by particle solutions, that is by some microscopic law. Typically, the microscopic

setting consists of a �nite or in�nite system of particles being governed by Newton's

law, and the macroscopic setting consists of a closed system of partial di�erential

equations, equipped with appropriate initial and boundary conditions.

In [3] macroscopic observables have been de�ned by means of what is called window

function there. This means that macroscopic observables were de�ned by time and

space averages in phase space of the microscopic solutions. There results an in�nite

sequence of coupled balance laws, and the so-called closure problem is to cut o� this

in�nite sequence to get a �nite system of equations, which one is able to handle. A

remarkable feature of a wide class of particle solutions observed in [3] turned out to

be their scale invariance.
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The present paper is devoted to a seemingly new way to derive macroscopic models

from microscopic ones. The key idea is to interpolate and/or smooth and/or aver-

age and scale the trajectories of the microscopic motion appropriately. The paper

is organized as follows. In the next section we introduce the microscopic model. In

section 3 we de�ne observables by applying successively a linear interpolation and

a smoothing/averaging operator to the particle trajectories. In contrast to [3], the

smoothing/averaging is about particle indices, not about phase space. The same

point of view is considered in [4] and recently in [1] and [2]. In fact, this idea re-

sults from the paper [4] which proves its usefullness for rigorous transitions between

various scales. Furthermore, the averaging is spacelike only. In section 4 we present

a few numerical results. In section 5 we introduce and investigate properties of

sequences of macroscopic observables depending on two parameters, one of which

representing a lattice parameter, the other one describing the amount of smooth-

ing/averaging introduced. In section 6 we introduce the concept of Young measure

valued solutions, [5], and illustrate this introduction with a simple explicit example.

2 The microscopic model

Let M 2 N . We consider a system of N = 2M particles. These particles are

arranged to form a set of diatomic molecules. Each molecule consists of two atoms

of equal mass. We denote by m > 0 the molecular mass, and by d > 0 the molecular

diameter, and we write

zj = (xj; yj) ; j = 1; 2; : : : ; N ; (2.1)

for the cartesian coordinates of the particles. We introduce new coordinates sj 2 R
(barycenter), �j 2 [0; 2�) (angle), j = 1; 2; : : : ;M as follows:

xj = sj +
1

2
d cos�j ; (2.2)

xj+M = sj �
1

2
d cos�j ; (2.3)

yj =
1

2
d sin�j ; (2.4)

yj+M = �1

2
d sin�j : (2.5)

The physical system is assumed to be completely determined by a Hamiltonian

H = K + � (2.6)
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with kinetic energy

K =

NX
j=1

1

4
mj _zjj2 (2.7)

=
1

4
m

MX
j=1

�
j _zjj2 + j _zj+M j2

�
(2.8)

=
1

2
m

MX
j=1

�
_s2j +

1

4
d2 _�2

j

�
(2.9)

and potential energy

� =
1

4

M�1X
j=1

�
'
�
jzj � zj+1j

�
+ '

�
jzj � zj+M+1j

�
+ (2.10)

+ '
�
jzj+1 � zj+M j

�
+ '

�
jzj+M � zj+M+1j

��
(2.11)

=
1

4

M�1X
j=1

�
'
�
jzj � zj+1j

�
+ '

�
jzj � zj+1 + d�j+1j

�
+ (2.12)

+ '
�
jzj � zj+1 � d�jj

�
+ '

�
jzj � zj+1 + d(�j+1 � �j)j

��
; (2.13)

where

�j = (cos�j; sin�j) : (2.14)

The function ' : (0;1) �! R is a generic pair potential satisfying

lim
r!0

'(r) = +1 : (2.15)

The microscopic governing equations are

m�sj = � @�
@sj

; (2.16)

1

4
md2��j = � @�

@�j
: (2.17)

After a straightforward computation and some rearrangements we arrive at the

system of equations depicted on pages 4, 5. From now on we shall assume that the

system consists of in�nitely many particles, j 2 Z. Moreover, we con�ne ourselves

to the case of non-di�usive motion, that is

max

�
sj(t)�

1

2
d cos�j(t)

�
< min

�
sj+1(t)�

1

2
d cos�j+1(t)

�
; j 2 Z ; t > 0 :

(2.18)
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Suppose ' is an analytic mapping and d is in some sense small. Then we have an

expansion

� =

1X
l=0

d2l�(l) ; (2.19)

where the �rst two coe�cients are

�(0) =
X
j

' (sj+1 � sj) ;

�(1) =
X
j

1

2

�
'0 (sj+1 � sj)

sj+1 � sj

�
sin2 �j + sin2 �j+1

�
+

+'00 (sj+1 � sj)
�
cos2 �j + cos2 �j+1

��
:

The resulting simpli�ed equations of motion read

m�sj = '0 (sj+1 � sj)� '0 (sj � sj�1) + (2.20)

+
1

8
d2
��

'0(sj+1 � sj)

sj+1 � sj

�
0 �
sin2 �j+1 + sin2 �j

�
� (2.21)

�
�
'0(sj � sj�1)

sj � sj�1

�
0 �
sin2 �j + sin2 �j�1

�
+ (2.22)

+'000 (sj+1 � sj)
�
cos2 �j+1 + cos2 �j

�
� (2.23)

�'000 (sj � sj�1)
�
cos2 �j + cos2 �j�1

��
; (2.24)

m��j =
1

2

�
'00 (sj+1 � sj)�

'0 (sj+1 � sj)

sj+1 � sj
+ (2.25)

+'00 (sj � sj�1)�
'0 (sj � sj�1)

sj � sj�1

�
sin 2�j : (2.26)

Here the prime 0 denotes di�erentiation with respect to sj+1 � sj or sj � sj�1, re-

spectively.

If we replace � by �(0) + d2�(1) we will speak of the approximated model, otherwise

we speak of the full model. In case d = 0 we meet the simple atomic chain (without

spin), which has been considered in [3]. If d > 0 we speak of the atomic spin chain.

As an indispensable part of a micro-macro transition, it is necessary to establish

a link between microscopic and macroscopic initial or/and boundary data. Let

�0; v0; _ 0 : R �! R and  0 : R �! eR be given measurable functions, where

eR := R=[0; 2�) : (2.27)

We assume that �0 is uniformly bounded from below and from above in the sense

that 0 < �
�
6 �0(x) 6 ��, uniformly in x 2 R. We now introduce a small lattice

parameter " > 0, which will be related to the particle number in the chain by " =

6



1=N . Having prescribed ", we de�ne corresponding sequences fs"j;0gj2Z, f _s"j;0gj2Z,
f�"j;0gj2Z and f _�"j;0gj2Z as follows. Set

s"0;0 := 0 ; (2.28)

and, given j 2 N0 ,

s"j+1;0 := s"j;0 +
1

�0("sj;0)
(2.29)

s"
�(j+1);0 := sup

�
s 2 R : s < s"

�j;0 ; s"
�j;0 = s+

1

�0("s)

�
: (2.30)

Moreover, given j 2 Z,

_s"j;0 := v0("s
"
j;0) ; (2.31)

�"j;0 :=  0("s
"
j;0) ; (2.32)

_�"j;0 := _ 0("s
"
j;0) : (2.33)

The quantities m, d and ' do not depend on ", they are kept �xed.

In what follows, we denote by s"j = s"j(t), �
"
j = �"j(t), j 2 Z, t > 0, the solution of

the initial value problem according to the initial data just constructed. Moreover,

we shall use the terms z"j (t), x
"
j(t), y

"
j(t) and �

"
j (t), which are connected to s"j(t) and

�"j(t) through (2.1), (2.2), (2.4) and (2.14).

3 Balance laws

3.1 Interpolation

As a �rst step towards the derivation of macroscopic observables and corresponding

governing equations we shall now derive balance laws. Although the equations we

shall derive are not balance laws in the strong sense, we will use this term for

convenience.

In a �rst step we wish to interpolate the trajectories. To this end we introduce

continuous mappings s" : R2
+ �! R and �" : R2

+ �! eR , such that

s"(t; j) = s"j(t) and �"(t; j) = �"j(t) ; if j 2 Z : (3.1)

This can be achieved as follows. We denote by S the set of sequences of real numbers,

labelled by integers, that is S := R
Z. As usual, given s 2 S and j 2 Z we shall write

s(j) = sj. Next, let

I : S �! C([0; 1]) (3.2)

be a mapping such that the following properties are satis�ed:
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(i) (Is)(j) = sj, j = 0; 1,

(ii) (Is)(j) < (Is)(k), if j < k.

Moreover, we introduce shift operators Sk : S �! S by setting

(Sks)j := sj+k (3.3)

and for given j 2 R we de�ne

j� := sup fl 2 Z; l 6 jg ; (3.4)

j+ := j� + 1 : (3.5)

Then we set

s"(t; j) :=
�
IS�1

j s"(t)
�
(j � j�) ; (3.6)

�"(t; j) :=
�
IS�1

j �"(t)
�
(j � j�) : (3.7)

Obviously, by (i) the relation (3.1) is satis�ed. Moreover, in view of (ii) there exists

a mapping {" : R2
+ �! R such that

x = s"
�
t; {"(t; x)

�
; (3.8)

j = {"
�
t; s"(t; j)

�
: (3.9)

From (3.8), (3.9) it follows that

@s"

@t
+
@s"

@j

@{"

@x
= 0 ; (3.10)

@{"

@t
+
@{"

@x

@s"

@t
= 0 ; (3.11)

@s"

@j

@{"

@x
= 1 ; (3.12)

whenever the respective expressions exist.

In what follows, we shall con�ne ourselves to a special case, namely on piecewise

linear interpolation:

(Is)(j) := (1� j)s0 + js1 : (3.13)

The corresponding interpolated particle trajectories read

s"(t; j) = (j+ � j)s"j�(t) + (j � j�)s"j+(t) (3.14)

�"(t; j) = (j+ � j)�"j�(t) + (j � j�)�"j+(t) : (3.15)
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�"(t; x) :=

�
@s"

@j

�
t; {"(t; x)

���1

; (3.16)

v"(t; x) :=
@s"

@t

�
t; {"(t; x)

�
; (3.17)

 "(t; x) := �"
�
t; {"(t; x)

�
; (3.18)

_ "(t; x) :=
@�"

@t

�
t; {"(t; x)

�
: (3.19)

Proposition 3.1. The microscopic particle density, velocity, angle and spin distri-

butions de�ned above, cf. (3.16)�(3.19), satisfy

@�"

@t
(t; x) +

@(�"v")

@x
(t; x) = 0 ; (3.20)

@(�"v")

@t
(t; x) +

@(�"(v")2)

@x
(t; x) = �"(t; x)

@2s"

@t2

�
t; {"(t; x)

�
; (3.21)

@(�" ")

@t
(t; x) +

@(�"v" ")

@x
(t; x) = �"(t; x) _ "(t; x) ; (3.22)

@(�" _ ")

@t
(t; x) +

@(�"v" _ ")

@x
(t; x) = �"(t; x)

@2�"

@t2

�
t; {"(t; x)

�
; (3.23)

whenever the respective derivatives are de�ned.

Proof. This is just a straightforward computation. Indeed, by applying the chain

rule we infer from (3.16)�(3.19) and (3.8), (3.9):

@�"

@x
(t; x) = �

�
�"(t; x)

�2@2a"
@j2

�
t; {"(t; x)

�@{"
@x

(t; x) ;

@v"

@x
(t; x) =

@2a"

@t@j

�
t; {"(t; x)

�@{"
@x

(t; x)

@�"

@t
(t; x) = �

�
�"(t; x)

�2 �@2a"
@t@j

�
t; {"(t; x)

�
+
@2a"

@j2

�
t; {"(t; x)

�@{"
@t

(t; x)

�
= �

�
�"(t; x)

�2 " 1

�"(t; x)

@v"

@x
(t; x)� 1�

�"(t; x)
�2 @{"

@t
(t; x)

@{"

@x
(t; x)

@�"

@x
(t; x)

#

= ��"(t; x)@v
"

@x
(t; x)� v"(t; x)

@�"

@x
(t; x) ;

@v"

@t
(t; x) =

@2a"

@t2

�
t; {"(t; x)

�
+
@2a"

@t@j

�
t; {"(t; x)

�@{"
@t

(t; x)

=
@2a"

@t2

�
t; {"(t; x)

�
+

1

�"(t; x)

@v"

@x
(t; x)

�
�@{

"

@x
(t; x)

@a"

@t

�
t; {"(t; x)

��
=

@2a"

@t2

�
t; {"(t; x)

�
� v"(t; x)

@v"

@x
(t; x) ;

@ _ "

@t
(t; x) =

@2�"

@t2

�
t; {"(t; x)

�
� v"(t; x)

@ _ "

@x
(t; x) :

9



Note that �"(@t+v
"@x) = @t(�

":)+@x(�
"v":). When putting these relations together,

the result follows.

Note that, in case �0 is continuous, it holds

8x 2 R : �"0(x) := �"(0; x) �! �0(x) as "! 0 ; (3.24)

and corresponding relations are of course valid for the �elds v,  and _ too.

We now have to evaluate the right hand sides of (3.21) and (3.23). We have

�"(t; x) =
�
s"{";+(t;x)(t)� s"{";�(t;x)(t)

�
�1

;

v"(t; x) =
�
{";+(t; x)� {"(t; x)

�
_s"{";�(t;x)(t) +

�
{"(t; x)� {";�(t; x)

�
_s"{";+(t;x)(t) ;

where

{";�(t; x) = sup
�
j 2 Z; s"j(t) 6 x

	
; (3.25)

{";+(t; x) = {";�(t; x) + 1 ; (3.26)

{"(t; x) = �"(t; x)
�
x�

�
{";+(t; x)s"(t; {";�(t; x)) + {";�(t; x)s"(t; {";+(t; x))

��
:(3.27)

Similar expression can be written down for  " and _ ", respectively. We observe that

{"(t; x)� {";�(t; x) + {";+(t; x)

2
= �"(t; x)

�
x� s"

�
t; {";�(t; x)

��
� 1

2
: (3.28)

In order to be able to rewrite the resulting balance laws in a more compact form,

we introduce

�"
�
(t; x) :=

�
@s"

@j

�
t; {"(t; x)� 1

���1

; (3.29)

v"
�
(t; x) :=

@s"

@t

�
t; {"(t; x)� 1

�
; (3.30)

 "
�
(t; x) := �"

�
t; {"(t; x)� 1

�
; (3.31)

_ "
�
(t; x) :=

@�"

@t

�
t; {"(t; x)� 1

�
: (3.32)

By de�nition we have

@2s"

@t2
(t; j) = (j+ � j)�s"j� + (j � j�)�s"j+ (3.33)

= �s"j� + (j � j�)(�s"j+ � �s"j�) (3.34)

= �s"j+ + (j � j+)(�s"j+ � �s"j�) (3.35)

=
1

2
(�s"j+ + �s"j�) +

�
j � j� + j+

2

�
(�s"j+ � �s"j�) ; (3.36)

10



and in case d = 0 the right hand side of (3.21) can therefore be written

@2s"

@t2

�
t; {"(t; x)

�
= ({";+ � {")

�
'0
�

1

�"

�
� '0

�
1

�"
�

��
+ (3.37)

+({" � {";�)

�
'0
�

1

�"+

�
� '0

�
1

�"

��
(3.38)

=
1

2

�
'0
�

1

�"+

�
� '0

�
1

�"
�

��
+ (3.39)

+

�
{" �

{";� + {";+

2

��
'0
�

1

�"+

�
+ '0

�
1

�"
�

�
� 2'0

�
1

�"

��
(3.40)

The basic idea is to introduce scaled �elds �" and v", say, by �"(t; x) := �"("�1t; "�1x)

and by v"(t; x) := v"("�1t; "�1x). From (3.20), (3.21) and the above relation we get

@�"

@t
+
@(�"v")

@x
= 0 ; (3.41)

@(�"v")

@t
+
@(�"(v")2)

@x
= �" �

�
1

2"

�
'0
�

1

�"+

�
� '0

�
1

�"
�

��
+ (3.42)

+

�
{" �

{";� + {";+

2

�
1

"2

�
'0
�

1

�"+

�
+ '0

�
1

�"
�

�
� 2'0

�
1

�"

���
; (3.43)

where �"
�
(t; x) =

h
@s"

@j

�
t; {"(t; x)� "

�i�1

, s"(t; j) = "s"("�1t; "�1j),

{"(t; x) = "{"("�1t; "�1x). Now, letting " tend to 0, and assuming that �" tends

to a smooth limiting �eld �, the �rst expression on the right hand side of (3.42)

looks like @x'
0(1=�)., and the second tends to 0. We arrive at the the so called cold

closure micro-macro transition [3].

3.2 Smoothing of discontinuous sequences

The procedure carried out so far is easy to handle. Note, however, that the ap-

proximating sequences are discontinuous. In order to get smooth approximating

sequences, we will apply a smoothing operator. Let Æ > 0 be an additional real

parameter, and let JÆ be a molli�er, that is

JÆ 2 C1(R) ; JÆ > 0 ;

1Z
�1

JÆ(x) dx = 1 : (3.44)

Furthermore, given any � > 0, we assume that�
JÆ > �

	
�! f0g as Æ ! 0 . (3.45)

A particular choice is

JÆ(x) := Æ�1J1(Æ�1x) ; (3.46)
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where we assume that (3.44) is satis�ed for Æ = 1, and where limx!1 xJ1(x) = 0.

Additionally we assume here that JÆ is even, JÆ(x) = JÆ(�x), x 2 R.

s";Æ(t; j) :=
�
JÆ � s"(t; :)

�
(j) ; (3.47)

�";Æ(t; j) :=
�
JÆ � �"(t; :)

�
(j) : (3.48)

Then s";Æ and �";Æ are smooth mappings, and s";Æ is still invertible in view of

@s";Æ

@j
(t; j) =

1Z
�1

@

@j

�
JÆ(j�k)

�
s"(t; k) dk =

1Z
�1

JÆ(j�k) @
@k

�
s"(t; k)

�
dk > 0 : (3.49)

Denoting by {";Æ the inverse mapping we de�ne corresponding functions �";Æ, v";Æ,

 ";Æ, _ ";Æ along the same lines as before, cf. (3.16)�(3.19), with {" replaced by {";Æ.

The relations (3.8), (3.9) remain valid by de�niton, and so these �elds are smooth

and satisfy the equations (3.20)�(3.23).

In order to be able to write subsequent formulae in a more compact form, we need

to introduce some more notation:

Zj;1 := 0; (3.50)

Zj;2 := ��j+1; (3.51)

Zj;3 := �j; (3.52)

Zj;4 := Zj;2 + Zj;3: (3.53)

We �nd

@2s";Æ

@t2
(t; j) =

1Z
�1

JÆ(j � k)
@2s"

@t2
(t; k) dk (3.54)

=

1Z
�1

JÆ(j � k)
�
(k � k�)�s"k+(t) + (k+ � k)�s"k�(t)

�
dk ; (3.55)

and, as the right hand side of the �rst equation on page 4 has the structure a(zj+1; zj)�
a(zj; zj�1), where

a(zj+1; zj) =

3X
l=0

'0 (jzj+1 � zj + dZj;lj)
jzj+1 � zj + dZj;lj

�
xj+1 � xj + dZ1

j;l

�
; (3.56)
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we get

1Z
�1

JÆ(j � k)(k � k�)�s"k+(t) dk = (3.57)

=

1Z
�1

JÆ(j � k)(k � k�)
�
a(z"k++1(t); z

"
k+(t))� a(z"k+(t); z

"
k�(t))

�
dk (3.58)

=

1Z
�1

�
JÆ(j � k)� JÆ(j � 1� k)

�
(k � k�)a(z"k++1(t); z

"
k+(t)) dk (3.59)

Analogous

1Z
�1

JÆ(j � k)(k+ � k)�s"k�(t) dk = (3.60)

=

1Z
�1

�
JÆ(j � k)� JÆ(j � 1� k)

�
(k+ � k)a(z"k+(t); z

"
k�(t)) dk : (3.61)

In view of

JÆ
�
{";Æ(t; x)� k

�
� JÆ

�
{";Æ(t; x)� 1� k

�
= (3.62)

= �
1Z

0

d

ds
JÆ
�
{";Æ(t; x)� k � s

�
ds (3.63)

=
1

@{";Æ

@x
(t; x)

@

@x

1Z
0

JÆ
�
{";Æ(t; x)� k � s

�
ds (3.64)

we have thus proved that

�";Æ(t; x)
@2s";Æ

@t2

�
t; {";Æ(t; x)

�
=
@p";Æ

@x
(t; x) ; (3.65)

where

p";Æ(t; x) =

1Z
�1

1Z
0

JÆ
�
{";Æ(t; x)� k � s)

�
P ";Æ(t; k) ds dk ; (3.66)

P ";Æ(t; k) = (k � k�)a(z"k++1(t); z
"
k+(t)) + (k+ � k)a(z"k+(t); z

"
k�(t)) : (3.67)
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p";Æ(t; x)=

1Z
�1

1Z
0

�
(k�k�)JÆ

�
{";Æ(t; x)�k�s+1)

�
+(k+�k)JÆ

�
{";Æ(t; x)�k�s)

��
a(k"j+(t); z

"
k�(t)) dsdk

=

1Z
�1

1Z
0

JÆ
�
{";Æ(t; x)� k � s)

�
a(z"k+(t); z

"
k�(t)) dsdk +

+

1Z
�1

1Z
0

(k � k�)
h
JÆ
�
{";Æ(t; x)�k�s+1)

�
�JÆ

�
{";Æ(t; x)�k�s)

�i
a(z"k+(t); z

"
k�(t)) dsdk

=

1Z
�1

1Z
0

JÆ
�
{";Æ(t; x)�k � s)

�
a(z"k+(t); z

"
k�(t)) dsdk +

+
1

�";Æ(t; x)

@

@x

1Z
�1

1Z
0

1Z
0

(k�k�)
h
JÆ
�
{";Æ(t; x)�k�s+�)

�i
a(z"k+(t); z

"
k�(t)) dsd� dk

=p";Æ1 (t; x) +
1

�";Æ(t; x)

@p
";Æ
2

@x
(t; x) :

Now, the right hand side of the second relation on page 4 can be written in the form

b(zj+1; zj)� b(zj; zj�1) (3.68)

+sin�j (c(zj+1; zj)� c(zj; zj�1)) (3.69)

+sin�j (d(zj+1; zj) + d(zj; zj�1)) : (3.70)

Here

b(zj+1; zj) =
1

2
d

4X
l=1

(�1)[ l2 ]
'0
�
jzj+1 � zj + dZ1

j;lj
�

jzj+1 � zj + dZ1
j;lj

sin (�j+1 � �j) ; (3.71)

and

c = c1 + c2 ; d = d1 + d2 ; (3.72)

where

c1(zj+1; zj) = �'
0 (jzj+1 � zjj)
jzj+1 � zjj

(sj+1 � sj) (3.73)

c2(zj+1; zj) =
'0 (jzj+1 � zj � d(�j+1 � �j)j)
jzj+1 � zj � d(�j+1 � �j)j

(sj+1 � sj) (3.74)

d1(zj+1; zj) = �'
0 (jzj+1 � zj � d�j+1j)
jzj+1 � zj � d�j+1j

(sj+1 � sj) (3.75)

d2(zj+1; zj) =
'0 (jzj+1 � zj + d�jj)
jzj+1 � zj + d�jj

(sj+1 � sj) (3.76)
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Following the same argumentation as above we deduce that

�";Æ(t; x)
@2�";Æ

@t2

�
t; {";Æ(t; x)

�
=

@

@x

(
p
";Æ
3 (t; x) +

1

�";Æ(t; x)

@p
";Æ
4

@x
(t; x)

)
+ (3.77)

+p
";Æ
5 (t; x) + p

";Æ
6 (t; x) ;

where

p
";Æ
3 (t; x)=

1Z
�1

1Z
0

JÆ
�
{";Æ(t; x)� k � s)

�
b(z"k+(t); z

"
k�(t)) ds dk (3.78)

p
";Æ
4 (t; x)=

1Z
�1

1Z
0

1Z
0

(k�k�)
�
JÆ
�
{";Æ(t; x)�k�s+�)

��
b(z"k+(t); z

"
k�(t)) ds d� dk (3.79)

p
";Æ
5 (t; x)=

1Z
�1

[(k � k�)JÆ({";Æ(t; x)� k + 1) + (k+ � k)JÆ({";Æ(t; x)� k)]� (3.80)

� sin�k�(c(zk+(t); zk�(t))� c(zk�(t); zk��1(t)))dk

p
";Æ
6 (t; x)=

1Z
�1

[(k � k�)JÆ({";Æ(t; x)� k + 1) + (k+ � k)JÆ({";Æ(t; x)� k)]� (3.81)

� sin�k�(d(zk+(t); zk�(t))� d(zk�(t); zk��1(t)))dk

There is a relation which might prove to be useful in later applications.

Proposition 3.2. Let N 2 N . Then we have an expansion of the form

p";Æ = p
";Æ
1 +

1

�";Æ
@

@x

(
p
";Æ
2 +

1

�";Æ
@

@x

(
p
";Æ
3 + : : :

(
p
";Æ

N +
1

�";Æ
@q

";Æ

N

@x

)
: : :

))
(3.82)

where p
";Æ
1 =

1R
�1

1R
0

JÆ
�
{";Æ � k � s

�
a
�
z"
k+
; z"
k�

�
ds dk and

p
";Æ
N =

1Z
�1

1Z
0

: : :

1Z
0| {z }

N times

(k�k�)JÆ
�
{";Æ�k�s1�: : :�sN

�
a (z"k+ ; z

"
k�) ds1 : : : dsN dk ; N > 2 ;

q
";Æ
N =

1Z
�1

1Z
0

: : :

1Z
0| {z }

N + 1 times

(k�k�)JÆ
�
{";Æ�k�s1�: : :� sN+�

�
a (z"k+ ; z

"
k�) ds1: : :dsN d� dk :
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Proof. It su�ces to prove that q
";Æ

N = p
";Æ

N+1 +
1

�";Æ

@q
";Æ

N+1

@x
. This follows from

JÆ
�
{";Æ � k � s1 � : : :� sN + �

�
= JÆ

�
{";Æ � k � s1 � : : :� sN + � � 1

�
+

+

1Z
0

�

d

d�
JÆ
�
{";Æ � k � s1 � : : :� sN + � � �

�
d�

= JÆ
�
{";Æ � k � s1 � : : :� sN + � � 1

�
+

+
1

�";Æ
@

@x

1Z
0

JÆ
�
{";Æ�k�s1�: : :�sN�sN+1+�

�
dsN+1

by integrating about k, s1, . . . , sN and � and substituting � � 1 = �sN+1 within

the �rst summand.

Let d = 0. In order to establish a link to [3], we de�ne the speci�c energy of the

j-th particle, ej, by

ej :=
1

2
m _s2j +

1

2

�
'(sj+1 � sj) + '(sj � sj�1)

�
: (3.83)

It follows

_ej = m _sj�sj +
1

2

�
'0(sj+1 � sj)( _sj+1 � _sj) + '0(sj � sj�1)( _sj � _sj�1)

�
(3.84)

=
1

2

�
'0(sj+1 � sj)( _sj+1 + _sj)� '0(sj � sj�1)( _sj + _sj�1)

�
: (3.85)

Therefore, denoting by e"j(t) the corresponding value with sj replaced by s"j(t), and

setting

e"(t; j) :=
�
IS�1

j e"(t)
�
(j � j�) ; (3.86)

e";Æ(t; x) :=
�
JÆ � e"(t; :)

� �
{";Æ(t; x)

�
; (3.87)

we arrive at

@

@t
�";Æ +

@

@x

�
�";Æv";Æ

�
= 0 ; (3.88)

@

@t

�
�";Æv";Æ

�
+

@

@x

�
�";Æ(v";Æ)2 + p";Æ

�
= 0 ; (3.89)

@

@t

�
�";Æe";Æ

�
+

@

@x

�
�";Æv";Æe";Æ + v";Æp";Æ + q";Æ

�
= 0 ; (3.90)

which is formally the same system of balance laws derived in [3] for the atomic chain
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(without spin). The representations of pressure p and heat �ux q now read

p";Æ=�
1Z

�1

1Z
0

JÆ
�
{";Æ � k � s

�
'0 (z"k+ � z"k�) ds dk +

� 1

�";Æ
@

@x

1Z
�1

1Z
0

1Z
0

(k � k�)JÆ
�
{";Æ � k � s+ �

�
'0 (z"k+ � z"k�) ds d� dk ;

q";Æ=�
1Z

�1

1Z
0

JÆ
�
{";Æ � k � s

�
'0 (s"k+ � s"k�)

�
1

2
( _s"k+ + _s"k�)� v";Æ

�
ds dk +

� 1

�";Æ
@

@x

1Z
�1

1Z
0

1Z
0

(k�k�)JÆ
�
{";Æ�k�s+�

�
'0 (s"k+�s"k�)

�
1

2
(_s"k++ _s"k�)�v";Æ

�
ds d� dk :

Remark 3.3. As long as we restrict our attention to the case of piecewise linear

interpolation, all integrals about the k variable can be evaluated and replaced by

sums. Note that, however, that the interpolation of particle trajectories is of interest

in itself. But in order to get approximating sequences which are at least continuous,

we have to take interpolation formulas into account, which become necessarily non-

linear. While piecewise polynomial interpolation does not seem to yield appropriate

results, piecewise spline interpolation is more favourable. The resulting balance laws

look much more complicated, so we refrain from carrying out the details here.

4 Numerical experiments

The numerical experiments carried out are based on the so-called velocity Verlet

scheme, which is one of the most popular numerical integration methods for systems

of ordinary di�erential equations of the form

_qj = pj ; (4.1)

_pj = Fj (qk) : (4.2)

Denoting by �t > 0 the timestep, and by q
(n)

j and p
(n)

j the approximate (generalized)

j-th particle coordinates and velocities, respectively, computed at time tn = n �(�t),
n 2 N0 , this algorithm reads as follows:

q
(n+1)

j = q
(n)

j + p
(n)

j � (�t) + 1

2
Fj

�
q
(n)

k

�
� (�t)2 ; (4.3)

p
(n+1)

j = p
(n)

j +
1

2

h
Fj

�
q
(n)

k

�
+ Fj

�
q
(n+1)

k

�i
� (�t) : (4.4)

Compared to the more basic Verlet-Störmer algorithm used in [3], the scheme (4.3),

(4.4) is advantageous in so far as it's accuracy in the p-component is locally and
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globally better than for Verlet-Störmer. In particular, the (kinetic) energy is better

conserved when using (4.3), (4.4). For a numerical analysis of (4.3), (4.4) and related

schemes, the reader is referred to [6] and the references cited therein.

All simulations have been carried out under almost equal conditions on several

machines, with double precision, and with parameters

m = 1:0 ; d = 0:1 (4.5)

and timestep

�t = 0:001 : (4.6)

The pair potential ' is of Lennard-Jones type:

'(r) =
1

8

�
1

r

�4

� 1

4

�
1

r

�2

: (4.7)

Falling back on the setting introduced at the very beginning of section 2, we con-

sider initial value problems with an increasing number N of particles and a lattice

parameter " � 1

N
. The particles at the boundary of the chain are kept �xed.

initial data: �0(x) = �0;l, if x < 0, �0(x) = �0;r, if x > 0

�0;l = 1:36 ; �0;r = 1:0 ; (4.8)

v0;l = 0:53 ; v0;r = 0:0 ; (4.9)

 0;l = 0:5 � � ;  0;r = 0:5 � 3 ; (4.10)

_ 0;l = 0:0 ; _ 0;r = 0:0 : (4.11)

The macroscopic observables are computed with a Gaussian distribution:

JÆ(x) =
1p
�
e�x

2

: (4.12)

The �gures depicted on the subsequent pages visualize the observed density, velocity,

angle and spin distributions, respectively. One can identify three space-time regions,

denoted I, II and III from up to down, in which the solution shows quite di�erent

qualitative behavior.

Figures 1�3: The initial conditions �0; �0 are choosen to ensure the occurence of a

single shock wave, if d = 0, cf. [3].

Figures 4�6: The discontinuity of �0 leads to the occurence of some kind of mi-

crostructure within the space-time regions I and II. The particular shape of the

region II depends on the initial condition �0.
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Figures 7, 8: Given a velocity distribution � and a spin distribution _�, we de�ne

corresponding temperature and spin-temperature distribution via

T�(t; x) :=

1Z
�1

J({(t; x)� k)

�
@s

@t
(t; k)� �(t; x)

�2

dk;

T _ (t; x) :=

1Z
�1

J({(t; x)� k)

�
@�

@t
(t; k)� _ (t; x)

�2

dk:

Here we have dropped the dependencies on "; Æ. The development of tempera-

ture and spin-temperature is restricted to the space-time region II. While the de-

velopment of temperature is concentrated in the vicinity of the shock front, spin-

temperature develops uniformly within the region II. Furthermore, turning to the

approximated model, the development of temperature remains unchanged, while the

development of spin-tempereture is drastically reduced.

5 Micro-macro transition

Up to now, the microscopic setting has not been left. We shall next introduce

macroscopic time and space scales by de�ning scaled �elds as follows. For simplicity,

from now on we do not consider the energy balance and the corresponding scalings.

�";Æ(t; x) := �";Æ
�
"�1t; "�1x

�
; (5.1)

v";Æ(t; x) := v";Æ
�
"�1t; "�1x

�
; (5.2)

 
";Æ
(t; x) :=  ";Æ

�
"�1t; "�1x

�
; (5.3)

_ 
";Æ

(t; x) := "�1 _ "
�
"�1t; "�1x

�
: (5.4)

If we de�ne

s";Æ(t; j) := "s";Æ("�1t; "�1j) ; (5.5)

{";Æ(t; x) := "{";Æ("�1t; "�1x) (5.6)

there still holds

x = s";Æ
�
t; {";Æ(t; x)

�
; (5.7)

j = {";Æ
�
t; s";Æ(t; j)

�
: (5.8)

Setting

�";Æ(t; j) := �";Æ("�1t; "�1j) (5.9)

19



t

x

t

x

Figure 1: density and velocity for the full model, N = 2000
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Figure 2: density and velocity for the approximated model, N = 2000
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Figure 3: density and velocity in case d = 0:0, N = 2000
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Figure 4: angle and spin for the full model, N = 1000
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Figure 5: angle and spin for the full model, N = 2000
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Figure 6: angle and spin for the full model, N = 4000
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Figure 7: temperature and spin-temperature for the full model, N = 2000
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Figure 8: temperature and spin-temperature for the approximated model, N = 2000
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Figure 9: angle and spin for the approximated model, N = 2000
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one has

@�";Æ

@t
(t; x) +

@(�";Æv";Æ)

@x
(t; x) = 0 ; (5.10)

@(�";Æv";Æ)

@t
(t; x) +

@(�";Æ(v";Æ)2)

@t
(t; x) = �";Æ(t; x)

@2s";Æ

@t2

�
t; {";Æ(t; x)

�
; (5.11)

@(�";Æ 
";Æ
)

@t
(t; x) +

@(�";Æv";Æ 
";Æ
)

@x
(t; x) = �";Æ(t; x) _ 

";Æ

(t; x) ; (5.12)

@(�";Æ _ 
";Æ

)

@t
(t; x) + "1��

@(�";Æv";Æ _ 
";Æ

)

@x
(t; x) = �";Æ(t; x)

@2�";Æ

@t2

�
t; {";Æ(t; x)

�
: (5.13)

This system can now be reduced to

@��";Æ

@t
+

(@��";Æ��";Æ)

@x
= 0; (5.14)

(@��";Æ��";Æ)

@t
+
@(��";Æ(��";Æ)2)

@x
=

@�p";Æ

@x
; (5.15)

where �p";Æ = �p
";Æ
1 + 1

@(��";Æ
@�p

";Æ

2

@x
,

�p";Æ1 =

1Z
�1

1Z
0

JÆ
�
"�1�{";Æ(t; x)� k � s

�
�
�
z"k+("

�1t); z"k�("
�1t)

�
dsdk; (5.16)

�p";Æ2 = " �

1Z
�1

1Z
0

(k�k�)JÆ
�
"�1�{";Æ(t; x)�k�s+�

�
�
�
z"k+("

�1t); z"k�("
�1t)

�
dsd�dk: (5.17)

On the other hand, from (5.12), (5.13), and (5.14) it follows that

" �
�
@ � ";Æ

@t
+ ��";Æ

@ � ";Æ

@x

�
=

�_ ";Æ; (5.18)

" �
 
@
�_ ";Æ

@t
+ ��";Æ

@
�_ ";Æ

@x

!
= �g";Æ; (5.19)
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where �g";Æ = �g
";Æ
1 + �g

";Æ
2 +

�g
";Æ

3

@x
+ @

@x

�
1

��";Æ
@�g

";Æ

4

@x

�
,

�g";Æ1 =

1Z
�1

1Z
0

h
(k � k�)JÆ

�
"�1�{";Æ(t; x)� k + 1

�
+ (k � k�)JÆ

�
"�1�{";Æ(t; x)� k

�i
� (5.20)

� sin�"k�("
�1t)

�
d
�
z"k+("

�1t); z"k�("
�1t)

�
+ d

�
z"k�("

�1t); z"k��1("
�1t)

��
dsd�dk;

�g";Æ2 =

1Z
�1

1Z
0

h
(k � k�)JÆ

�
"�1�{";Æ(t; x)� k + 1

�
+ (k � k�)JÆ

�
"�1�{";Æ(t; x)� k

�i
� (5.21)

� sin�"k�("
�1t)

�
c
�
z"k+("

�1t); z"k�("
�1t)

�
+ c

�
z"k�("

�1t); z"k��1("
�1t)

��
dsd�dk;

�g";Æ3 = " �

1Z
�1

1Z
0

JÆ
�
"�1�{";Æ(t; x)� k � s

�
b
�
z"k+("

�1t); z"k�("
�1t)

�
dsdk; (5.22)

�g";Æ4 = "2 �

1Z
�1

1Z
0

(k � k�)JÆ
�
"�1�{";Æ(t; x)� k � s

�
�
�
z"k+("

�1t); z"k�("
�1t)

�
dsd�dk:(5.23)

Based on the numerical observations of the preceding section we expect a macro-

scopic model having measure valued solutions, which will be described in section

6.

By taking the limit " ! 0, and denoting the smooth limiting �elds by �, v,  and
_ , respectively, we arrive at the following system of equations, which we call in

analogue of what is called cold closure in [3] of the atomic chain:

@

@t
�+

@

@x
(�v) = 0 (5.24)

@

@t
(�v) +

@

@x

(
�v2 + A(�;  )

)
= 0 ; (5.25)

@

@t
(� ) +

@

@x
(�v ) = � _ (5.26)

@

@t
(� _ ) +

@

@x
(�v _ ) = B(�;  ) (5.27)
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A(�;  ) = (5.28)

�

1

2
'0
�
1

�

�
�

1

4

'0
�
1
�

p
1� 2d� cos + d2�2

�
p
1� 2d� cos + d2�2

�
1� d� cos 

�
� (5.29)

�

1

4

'0
�
1
�

p
1 + 2d� cos + d2�2

�
p
1 + 2d� cos + d2�2

�
1 + d� cos 

�
(5.30)

= �'0
�
1

�

�
�

1

4
d2
��
�'0

�
1

�

��
0

sin2  + '000
�
1

�

�
cos2  

�
+O

�
d4
�

(5.31)

B(�;  ) = (5.32)

1

d

8<
:
'0
�
1
�

p
1 + 2d� cos + d2�2

�
p
1 + 2d� cos + d2�2

�

'0
�
1
�

p
1� 2d� cos + d2�2

�
p
1� 2d� cos + d2�2

9=
; � sin (5.33)

=

�
�'0

�
1

�

��
0

sin(2 ) +O
�
d2
�
: (5.34)

We propose to interpret the sequence of solutions observed in the preceding section

(in the limit " ! 0, Æ ! 0) as a Young-measure solution of this system. It should

be mentioned, however, that we are not aware of any rigorous proof of convergence.

The properties of the system will be studied in a forthcoming paper.

6 Towards Young measure solutions for the atomic

chain

In order to illustrate the usefullness of Young measure solutions we consider a simpler

example as it is given by the spin system.

Let I � R be an open interval, I 6= ;, and let be �: I �! R a smooth function. In

the following we consider a Hamilton function H : I � R �! R, which is de�ned by

H(q; p) :=
1

2
p2 + �(q); (6.1)

and corresponding initial value problems

_q = p ; (6.2)

_p = ��0(q) ; (6.3)

q(0) = q0 ; (6.4)

p(0) = p0 (6.5)

with given q0 2 I and p0 2 R. We interprete q(t), p(t) as position and momentum,

respectively, of a particle at time t � 0, which is subjected to the potential �.
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Note that, for any smooth solution q = q(t), p = p(t) of (6.2), (6.3) there holds
d
dt
H(q(t); p(t)) � 0. Thus there holds

H(q(t); p(t)) = H0 := H(q0; p0) (6.6)

for all t from the maximal domain of existence of the solution from (6.2)�(6.5). We

now make additional assumptions regarding the function �, in order to guarantee

the existence of a global periodic solution. We require

lim
q!@I

�(q) = +1: (6.7)

The function � is assumed to have a unique global minimum �
�
at q

�
, thus

�
�
= min

I
� = �(q

�
): (6.8)

Furthermore we assume

(q � q
�
)�0(q) > 0 for all q 2 I; q 6= q

�
: (6.9)

In particular �(q) is thus strict monotone increasing and decreasing for q > q
�
and

q < q
�
, respectively. In fact, unter these assumptions the initial value problem

(6.2)�(6.5) has a unique smooth solution q = q(t), p = p(t), t � 0.

Periodicity: due to the assumptions regarding � there are two uniquely determined

real numbers q
�
; q+ 2 I with q� � q

�
� q+, so that

H0 = �(q
�
) = �(q+): (6.10)

If either p0 6= 0 or q0 6= q
�
, then there holds q

�
< q

�
< q+. Furthermore we de�ne

p
�
; p+ 2 R by

p
�
:= �

p
2H0 � 2�

�
: (6.11)

Finally we de�ne T0 by

T0 :=

q+Z
q
�

dqp
2H0 � 2�

�
(q)

: (6.12)

The solution of (6.2)�(6.5) represents a periodic motion with the half period T0 of the

considered particle. The minimal and maximal positions are q
�
and q+, respectively,

and the minimal and maximal momenta are p
�
and p+, respectively.

More precisely: There exist smooth functions ~q : [0; t0] �! I and ~p : [0; T0] �! R,

so that with t0; + infft � 0; p(t) = 0g and tk+1 := tk + T0 for k 2 N0 = f0; 1; : : : g
there holds

q(t) = ~q(t� t2k); (6.13)

p(t) = ~p(t� t2k); (6.14)

26



if t 2 [t2k; t2k+1] and

q(t) = ~q(t2k+2 � t); (6.15)

p(t) = �~p(t2k+2 � t); (6.16)

if t 2 [t2k+1; t2k+2]. The two last relations remain valid for k = �1 if we set t1 := 0.

There holds ~q0 = ~p, ~p0 = ��0(~q).

The function ~q maps the interval [0; T0] bijectively onto the interval [q
�
; q+]. Fur-

thermore we have T0 = T0;� + T0;+ with

T0;� :=

q
�Z

q
�

dqp
2H0 � 2�

�
(q)

; T0;+ :=

q+Z
q
�

dqp
2H0 � 2�

�
(q)

: (6.17)

If p0 > 0 and p0 < 0, respectively, then the function ~p maps the intervals [0; T0;�]

and [T0;�; T0] bijectively onto the interval [p
�
; 0] and [0; p+], respectively. If p0 = 0

and if additionally there holds q0 > q
�
and q0 < q

�
, respectively, than the function ~p

maps the intervals [0; T0;�] and [T0;�; T0], again bijectively onto the interval [p
�
; 0]

and [0; p+], respectively.

In the following " > 0 denotes a small real parameter. We start from the solution

q = q(t), p = p(t) of the initial value problem (6.2)�(6.5) and de�ne rescaled maps

q" = q"(t) and p" = p"(t) by the de�nitions

q"(t) := q("�1t); (6.18)

p"(t) := p("�1t): (6.19)

We now pose the question, whether at all and in which sense the limit " ! 0 can

be established.

We set R+ := (0;+1), and in a �rst step we introduce continuous functions ' :

R+ � [q
�
; q+] �! R with compact support and study the integrals

1Z
0

'(t; q"(t))dt: (6.20)

For simplicity we consider at �rst functions ' with the representation

'(t; x) = '1(t)'2(x); (6.21)

and we try to evaluate the limit of (6.20) for " ! 0. To this end we rely on the
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introduced notations without mentioning this in each case. There holds

1Z
0

'(t; q"(t))dt (6.22)

=

1X
k=0

8<:
"t2k+1Z
"t2k

'1(t)'2(q
"(t))dt+

"t2k+2Z
"t2k+1

'1(t)'2(q
"(t))dt

9=; (6.23)

=

1X
k=0

8<:
"t2k+1Z
"t2k

'1(t)'2(~q("
�1t� t2k))dt+

"t2k+2Z
"t2k+1

'1(t)'2(~q(t2k+2 � "�1t))dt

9=;(6.24)
=

1X
k=0

8<:
T0Z
0

'1("t2k + "t)'2(~q(t))"dt +

T0Z
0

'1("t2k+2 + "t)'2(~q(t))"dt

9=; (6.25)

=

1X
k=0

q+Z
q
�

'1("t2k + "~q�1(s))'2(s)
"p

2H0 � 2�(s)
ds+ (6.26)

+

1X
k=0

q+Z
q
�

'1("t2k+2 � "~q�1(s))'2(s)
"p

2H0 � 2�(s)
ds: (6.27)

In the limiting case "! 0, each of the both sums converges to the expression

1Z
0

q+Z
q
�

'1(t)'2(s)
1

2T0

1p
2H0 � 2�(s)

dsdt: (6.28)

Thus we have proved

lim
"!0

1Z
0

'(t; q"(t))dt =

1Z
0

q+Z
q
�

'1(t)'2(s)
1

2T0

1p
2H0 � 2�(s)

dsdt; (6.29)

however, only for those continuous functions ' with compact support of the kind

(6.21). For a better reading we de�ne

F (s) :=
1

T0

1p
2H0 � 2�(s)

: (6.30)

Relying on the notation of measure theory we alternatively reformulate the limit

(6.29): We denote by �q" the Young measure that is induced by the function q" :

R+ ! [q
�
; q+], i.e.

h�q"; 'i =
1Z
0

'(t; q"(t))dt; ' 2 C0
0(R+ � [q

�
; q+]): (6.31)
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Furthermore we introduce �F 2 M1
+([q�; q+]) which represents the probability mea-

sure that is induced by the probability density F :

h�F ; 'i =
q+Z
q
�

'(s)F (s)ds; ' 2 C0
0 ([q�; q+]): (6.32)

Finally we introduce the Lebesgue measure �, restricted to the positive half line R+ .

Then the statement (6.29) can be written as

lim
"!0

�q" = �
 �F (6.33)

in the sense of convergence of measures. Note that (6.29) remains valid if the function

' has the representation (6.21) with an integrable function '1 and a continuous

function '2. Thus for any continuous function '2 : [q�; q+]! R the limit

lim
"!0

'2(q
"(:)) =

q+Z
q
�

'(s)F (s)ds; (6.34)

exist in the sense of weak-* convergence in L1(R+).

Next we derive the corresponding limit for the rescaled momenta p"(t). For simplicity
we consider only the case p0 = 0, q0 = q

�
. Other cases can be treated analogously.

Obviously we have as before

1Z
0

'(t; p"(t))dt (6.35)

=

1X
k=0

8><
>:

"t2k+1Z
"t2k

'1(t)'2(p
"(t))dt+

"t2k+2Z
"t2k+1

'1(t)'2(p
"(t))dt

9>=
>; (6.36)

=

1X
k=0

8><
>:

"t2k+1Z
"t2k

'1(t)'2(~p("
�1t� t2k))dt+

"t2k+2Z
"t2k+1

'1(t)'2(�~p(t2k+2 � "�1t))dt

9>=
>; (6.37)

=

1X
k=0

8<
:

T0Z
0

'1("t2k + "t)'2(~p(t))"dt+

T0Z
0

'1("t2k+2 + "t)'2(�~p(t))"dt

9=
; : (6.38)

We denote by 	+ and 	
�
, respectively, the inverse mappings of the functions

29



�
��
I\[q

�
;+1)

and �
��
I\(+1;q

�
]
, respectively. It follows:

T0Z
0

'1("t2k + "t)'2(~p(t))"dt (6.39)

=

T0;�Z
0

'1("t2k + "t)'2(~p(t))"dt+

T0;+Z
T0;�

'1("t2k + "t)'2(~p(t))"dt (6.40)

=

p
�Z

0

'1("t2k + "~p�1(s))'2(s)
"

��0(~q(~p�1(s)))
ds+ (6.41)

+

0Z
p
�

'1("t2k + "~p�1(s))'2(s)
"

��0(~q(~p�1(s)))
ds (6.42)

=

0Z
p
�

'1("t2k + "~p�1(s))'2(s)
"

�0(	+(H0 � 1

2
s2))

ds� (6.43)

�
0Z

p
�

'1("t2k + "~p�1(s))'2(s)
"

�0(	
�
(H0 � 1

2
s2))

ds: (6.44)

In an analogous manner we proceed with

T0Z
0

'1("t2k+2 + "t)'2(�~p(t))"dt (6.45)

=

T0;�Z
0

'1("t2k+2 � "t)'2(�~p(t))"dt+

T0;+Z
T0;�

'1("t2k+2 � "t)'2(�~p(t))"dt(6.46)

=

p+Z
0

'1("t2k+2 � "~p�1(�s))'2(s)
"

�0(~q(~p�1(�s)))ds+ (6.47)

+

0Z
p+

'1("t2k+2 � "~p�1(�s))'2(s)
"

�0(~q(~p�1(�s)))ds (6.48)

=

p+Z
0

'1("t2k+2 � "~p�1(�s))'2(s)
"

�0(	+(H0 � 1

2
s2))

ds� (6.49)

+

p+Z
0

'1("t2k+2 � "~p�1(�s))'2(s)
"

�0(	
�
(H0 � 1

2
s2))

ds: (6.50)
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We end up with

lim
"!0

1Z
0

'(t; p"(t))dt =

1Z
0

p+Z
p
�

'(t; s)G(s)ds dt; (6.51)

where the probability density is de�ned by

G(s) =
1

2T0

�
1

�0(	+(H0 � 1

2
s2))

� 1

�0(	
�
(H0 � 1

2
s2))

�
(6.52)

=
1

2T0

�
�0
�
	+(H0 �

1

2
s2)

�
� �0

�
	
�
(H0 �

1

2
s2)

��
: (6.53)

Let �p" be the Young measure that is induced by the function p" : R+ ! [p
�
; p+]

and let furthermore be �G the probability measure that is induced by the probability

density G, so that in analogy to the former case:

lim
"!0

�p" = �
 �G (6.54)

in the sense of convergence of measures. Furthermore there holds

lim
"!0

'2(p
"(:)) =

p+Z
p
�

'2(s)G(s)ds (6.55)

for any continuous function '2 : [p�; p+]! R in the sense of weak-*-convergence of

L1(R+).

We now consider a continuous function with compact support ' : R+ [q�; q+] �
[p
�
; p+]! R. Then we can write

lim
"!0

1Z
0

(t; q"(t); p"(t))dt =

1Z
0

q+Z
q
�

n
'
�
t; s;

p
2H0 � 2�(s)

�
+ (6.56)

+'
�
t; s;�

p
2H0 � 2�(s)

�o 1

2T0

1p
2H0 � 2�(s)

ds dt:

We set

C :=
�
(q; p) 2 R2 : H(q; p) = H0

	
: (6.57)

There holds C = C
�
[ C+ where C

�
and C+ are given in parameter representation as

follows:

C+ :

�
q(s) = s

p(s) =
p

2H0 � 2�(s)
; s 2 [q

�
; q+]; (6.58)

C
�
:

�
q(s) = q

�
+ q+ � s

p(s) = �
p

2H0 � 2�(q
�
+ q+ � s)

; s 2 [q
�
; q+]: (6.59)
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For any continuous functions f : C ! R we may thus writeZ
C

f(q; p)dC =

q+Z
q
�

�
f
�
s;
p

2H0 � 2�(s)
�
+ (6.60)

+f
�
s;�

p
2H0 � 2�(s)

��s
1 +

�0(s)2

2H0 � 2�(s)
ds

to obtainZ
C

f(q; p)
1p

p2 + �0(q)2
= (6.61)

=

q+Z
q
�

�
f
�
s;
p

2H0 � 2�(s)
�
+ f

�
s;�

p
2H0 � 2�(s)

�� 1p
2H0 � 2�(s)

ds:

In the sense of convergence of measures the result (6.61) can be written as

lim
"!0

�(q";p") = �
 �A: (6.62)

Here �(q";p") denotes the Young measure corresponding to the mapping (q"; p") :

R+ ! [q
�
; q+] � [p

�
; p+] again we denote the Lebesgue measure restricted to the

positive half line R+ by �, and �A denotes the measure on C that is induced by the

probability density

A(q; p) =
1

2T0

1p
p2 + �0(q)2

; (q; p) 2 C; (6.63)

so that we may write

h�A; 'i =
Z
C

'(q; p)A(q; p)dC; ' 2 C0(C): (6.64)

It is important to note that the functions F and G have weak (integrable) singular-

ities, whereas the function A, which is depicted in the �gure, is regular in all points

of its domain of de�nition C.

Phase space of the single oscillator
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