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Abstract

This paper is devoted to a case study of micro-macro transitions. The

main objective is the mathematically rigorous description of the macroscopic

behavior of highly oscillating microscopic variables. In particular, we show that

the theory of Young measures provides an elegant approach to this problem.

A nontrivial application of the results is given in [1].

1 Introduction

We consider the following dynamical system

d

d�
Q(�) = A

�
"� ; Q(�)

�
; Q =

�
q

p

�
; A

�
t; Q

�
=
�

p

�@qG(t; q)

�
: (1)

From a physical point of view, this system describes the motion of a particle in the

potential G, whereas the quantities q and p correspond to the position and to the

momentum of the particle, respectively. In the System (1) there appear two time

variables � and t which we call the micro time and macro time, respectively. Both

time scales are coupled by the algebraic equation

t = "�; (2)

where " > 0 is a small parameter. Since " is small, t is the slow time, whereas � is

the fast time. At a �rst glance, the namings micro time and macro time for the fast

and slow time, respectively, may look somehow arti�cial. Thus we refer to [1] for a

more detailed motivation.

We give two typical examples for the systems which we have in mind.

Example 1.1 We consider a harmonic oscillator with external force f , i.e. we set

G(t; q) =
1

2
q2 � qf(t); f 2 C1(R): (3)

Example 1.2 We consider an anharmonic oscillator with

G(t; q) =
1

2
g
�
d(t)� 2q

�
+

1

2
g
�
d(t) + 2q

�
(4)

and d; g 2 C1(R), g convex and lim
q!�1

g(q) = 1.
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We next describe the mathematical problem in detail. Let Q0 be initial data that

do not depend on ". For any " there exists a function Q" = Q"(�), de�ned for all

� � 0, that gives the solution of (1) with initial data Q0. In order to describe the

macroscopic behavior of (1) we introduce the scaled solutions Q" = Q"(t) by

Q"(t) := Q"
� t
"

�
; t � 0: (5)

A characteristic example is depicted in Figure 1. The potential G is given as in

Example 1.1 with a slowly varying external force f . The function Q" is highly oscil-

lating with a frequency proportional to "�1.
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Figure 1: Macroscopic behavior of the scaled solutions

From the physical point of view we are interested not only in the scaled soluti-

on but also in the evolution of certain observables. An observable is a continuous

function 	u of Q that may additionally depend on the macro time t. The macros-

copic evolution of an observable 	u = 	u(t; Q) is described by a function u" which

is de�ned as follows

u"(t) := 	u

�
t; Q"(t)

�
: (6)

The most prominent observable is the energy 	e which is de�ned by

	e(t; Q) :=
1

2
p2 +G(t; Q): (7)

The function e" with

e"(t) := 	e

�
t; Q"(t)

�
(8)

describes the macroscopic evolution of the energy. From (1) we obtain by a straight

forward calculation

d

dt
e"(t) = @tG

�
t; Q"(t)

�
: (9)

The two time scales t and � in System (1) are coupled by the algebraic equation (2).

However, if " tends to zero we expect a decoupling of micro time and macro time.

From the mathematical point of view there arise some interesting questions.
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1. Which is the origin of the decoupling of micro time and macro time?

2. Is there any kind of convergence of the scaled solutions if "! 0?

3. Which are the governing equations that determine the evolution of observables

with respect to the macro time in the limiting case " = 0?

The main objective of this study is to answer these questions in terms of Young

measures. To this end we �rst summarize some properties of Young measures in

Section 2. In Section 3 we state and prove our result concerning the three posed

questions.

We proceed with further de�nitions. In order to simplify some technical arguments

we consider a �nite macro time interval T with

T :=
�
0; tend

�
; 0 < tend <1: (10)

As we shall see in Section 3, the decoupling of micro time and macro time can be

best understood by introducing the following dynamical system

d

d�
Q(�) = A

�
t; Q(�)

�
: (11)

Note that in (11) the macro time t appears only as a parameter. In particular, there

is no coupling between � and t. In the following we call the System (11) the associated

system to (1). There exists a corresponding stationary Liouville equation which

can be written in the form

divQ
�
�(dQ) � A(t; Q)

�
= 0; (12)

where � = �(dQ) 2 Prob (R2) is a measure, cf. Section 2.

In this study we consider exclusively potentials G that satisfy the following as-

sumption.

Assumption 1.3

1. (Domain of de�nition)
For any t 2 T there exists an open set Ot � R and a set Et � R with

Et = fe : e � emin(t)g; (13)

such that the potential G(t; �) is well de�ned on Ot and maps Ot into Et. The

function emin is continuous on T .

2. (Regularity of the potential)
The potential G is continuously di�erentiable and @qG is uniformly continuous

on sets

�
(t; Q) : t 2 T; 	e(t; Q) � emax

	
; emax 2 R: (14)
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3. (Boundedness)
There exist two compact sets K � R

2
and L � R, such that for all " � 1 and

all t 2 T there holds

Q"(t) 2 K and e"(t) 2 L: (15)

Without loss of generality we assume 	e(t; �) : K ! L for all t 2 T .

4. (Closed orbits)
Let t 2 T and ~Q0

2 O�R be �xed and let ~Q = ~Q(�), � � 0 be the solution of

System (11) with initial data ~Q0
. We assume that (i) the function ~Q is periodic

in �, and (ii) the corresponding closed orbit is completely determined by the

initial energy 	e( ~Q
0).

The last two assumptions are crucial, whereas the two �rst ones simplify some

reasonings. The next lemma illustrates the methods which lead to uniform bounds

of Q"(t) and e"(t).

Lemma 1.4 Let G be as in Example 1.1. There exist two compact sets K � R
2
and

L � R so that the conditions (15) are satis�ed.

Proof: Due to the de�nition of the energy observable we have

jQj �
p
2	e(t; Q) + f 2(t) + jf(t)j: (16)

From the energy balance (9) and from (16) we conclude that

je"(t)j � e"(0) +

tZ
0

jf 0(s)jjQ"(s)j ds

� 	e(0; Q
0)+ kf 0 k1

tZ
0

jQ"(s)j ds

� 	e(0; Q
0)+ kf 0 k1

� tZ
0

y
�
e"(s)

�
ds+

tZ
0

y
�
f(s)2

�
+ jf j(s) ds

�
;

� C1 + C2

tZ
0

y
�
e"(s)

�
ds; (17)

where y(x) = maxf1; xg. Note that C1 and C2 are two constants which depend

on f and on the initial energy e0 = 	e(t; Q
0), but which do not depend on ".

Gronwall's Lemma provides estimates for e"(t), 0 � t � T , that are independent

of ". In particular, we can choose K and L su�ciently large. �
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2 Young measures

In this section we summarize the de�nition and the most important properties of

Young measures. For a detailed introduction in the theory of Young measures we

refer to the literature, see for instance [4], [5] and [6].

Let 
 be a subset of Rd . As usual we denote by Cc(
) the space of all continuous
functions on 
 that have a compact support in 
. The closure of Cc(
) with respect

to the norm k k1 is abbreviated by C0(
). In the case that 
 is compact, we have

Cc(
) = C0(
) = C(
). A observable on 
 is an element of C0(
).

A measure on 
 in the sense of functional analysis is a linear continuous func-

tional on C0(
). Within this paper, measure means always measure in the sense of

functional analysis. We denote the space of all measures by M(
) = C0(
)
�. Ac-

cording to a famous theorem by Riesz and Radon, any measure in the sense of

functional analysis is also a measure in the sense of measure theory, but not vice

versa. A probability measure on 
 is a positive measure whose norm is equal to 1.
We write Prob (
) for the space of all probability measures.

Let � be a measure on 
. The elements of 
 will be denoted by y. In order to

have a clear and suggestive distinction between measures which are de�ned on dif-

ferent sets, we write sometimes �(dy) instead of �.

Let  be a function that is integrable with respect to � but not necessary conti-

nuous. In order to abbreviate the integral of  with respect to � we use the following

notation

h�(dy);  (y)iy2
 :=

Z




 d� =

Z




 (y)�(dy): (18)

The usual dual pair of a measure and an observable reads

h�;  iC0(
) = h�(dy);  (y)iy2
 8  2 C(
): (19)

Note that the left hand side makes sense only for continuous  whereas the right

hand side is well de�ned for a wider class of functions.

Let X be a compact and convex set in R
d and let T be a closed time interval

as in (10). The elements of X and T are denoted by x and t, respectively. In the

next section, in which we apply the Young measures, we consider the two cases

X = K with x = Q and X = L with x = e, respectively.

The space of Young-measures Y (T ; K) consists of all positive measures � on T�K

that have the following property

D
�
�
d(t; x)

�
; g(t)

E
(t; x)2T�X

=
D
�(dt); g(t)

E
t2T

=

Z

T

g(t) dt 8 g 2 C(T ); (20)
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where � denotes the Lebesgue measure on T .

A very useful tool in the theory of Young-measures is the disintegration. The di-

sintegration of a Young-measure � 2 Y (T ; X) is a family of probability measures
�
�(t)

	
t2T

with �(t) = �(t)(dx) 2 Prob (X); (21)

which is de�ned almost everywhere on T and that satis�es the following property.

For any 	 = 	(t; x) that is integrable with respect to � there exists a function

b�; 	c 2 L1(T ; X) (22)

such that

b�; 	c(t) =


�(t)(dx); 	(t; x)

�
x2X

; (23)D
�
�
d(t; x)

�
; 	(t; x)

E
(t; x)2T�X

=

Z

T

b�; 	c(t) dt: (24)

The measures �(t) is called the disintegration of � at t. Since there exist disintegra-

tions, we write as usual

�(t; dx) instead of �
�
d(t; x)

�
: (25)

For any function f 2 L1(T ; X) there exists a Young measure Æf such that

Æf (t; dx) = Æf(t)(dx) (26)

where Æf(t)(dx) is the delta-distribution with support ff(t)g. The measure Æf is

called the Young measure of the function f . There holds

bÆf ; 	c(t) = 	
�
t; f(t)

�
: (27)

Next we discuss convergence of Young measures. Let (�j)j be a sequence and let

�1 be an element of Y (T ; X). We write

�j ! �1 in Y (T ; X)

provided

�j ! �1 weak* in M(T �X):

This convergence can be characterized as follows.

Lemma 2.1 A sequence of (�i)i of Young-measures converges to �1 in Y (T ; X)
if and only if

lim
i!1



�i(t; dx); 	(t; x)

�
(t; x)2T�X

=


�1(t; dx); 	(t; x)

�
(t; x)2T�X

(28)

holds for all bounded Caratheodory functions 	 2 Car (T; X).
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The next theorem gives another characterization of convergence.

Theorem 2.2 Let (�i)i be a sequence of Young-measures so that

�i ! �1 in Y (T ; X): (29)

Then there holds

b�i; 	c ! b�1; 	c weak� in L1(T ; X) (30)

for all 	 2 Car (T; X).

The main theorem in the theory of Young measures is the following compactness

result.

Theorem 2.3 For any sequence (�n)n in Y (T ; X) there exist a subsequence (�i)i
and a measure �1 2 Y (T ; X) such that

�i ! �1 in Y (T ; X): (31)

Let (�i)i be a sequence which converges to �1. A very important problem is the

determination of the disintegration of �1. Unfortunately, �i(t) does not converge
weakly* in Prob (X) to �1(t) for almost every t 2 T . In the following we thus

derive a useful description of disintegrations of Young measure limits.

We denote by � the indicator function of the interval [�1; 0]. Furthermore, for

 > 0 we set

�(t) :=
1


�
� t


�
; i.e. � =

1


1[�; 0]: (32)

Let � 2 Y (T ; X) be a given Young measure. For any t 2 T and  > 0 we de�ne

a measure

�(t) = �(t; dx) 2 Prob (X) (33)

by



�(t; dx);  (x)

�
x2X

:=
1



t+Z
t



�(s; dx);  (x)

�
x2X

ds 8  2 C(X): (34)

Lemma 2.4 For � 2 Y (T ; X),  2 C(X),  > 0 and t 2 T there holds



�(t; dx);  (x)

�
x2X

=
D
�(s; dx);

1


1[t; t+](s) (x)

E
(s; x)2T�X

=
�
b�;  c � �

�
(t): (35)
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Proof: The identities (35) follow by a straight forward calculation. �

Corollary 2.5

1. Let � 2 Y (T ; X) and  2 C(X). If  ! 0, the L1-functions

t ;


�(t; dx);  (x)

�
x2X

(36)

converge to b�;  c in Lr(T ) for all 1 � r < 1. In particular, if (j)j is a

sequence with j ! 0, there exists a subsequence (k)k and a set S � T , such

that jSj = 0 and

lim
k!1



�k(t; dx);  (x)

�
x2X

=


�(t; dx);  (x)

�
x2X

8 t 2 S: (37)

2. Let �i ! �1 in Y (T ; X). For all  2 C(X),  > 0 and all t 2 T there holds

lim
i!1



�


i
(t; dx);  (x)

�
x2X

=


�
1
(t; dx);  (x)

�
x2X

: (38)

3. Let �i ! �1 in Y (T ; X), let  2 C(X) be �xed and let (j)j be a sequence

with j ! 1. Then there exists a subsequence (k)k and a set S � T , such

that jSj = 0 and

lim
k!1

lim
i!1



�
k

i
(t; dx);  (x)

�
x2X

=


�1(t; dx);  (x)

�
x2X

8 t 2 S: (39)

Proof: 1 : is a direct consequence of (35) and the properties of convolution operators,

2 : follows imediately from (35) and Lemma 2.1. Finally, 1 : and 2 : imply 3 . �

The last statement of Corollary 2.5 provides a very useful characterization ofYoung

measure limits. In particular, it relates Young measure limits to averages of ob-

servables. To explain this in more detail, let (fi)i be a sequence of functions in

L1(T ; X), so that the corresponding Young measures (Æfi)i converge to a Young
measure �1. Furthermore, let  2 C(X) be a �xed observable. Then we can choose

a sequence (k)k such that the identity



�1(t; dx);  (x)

�
x2X

= lim
k!1

lim
i!1

1

k

t+kZ
t

 
�
fi(s)

�
ds (40)

holds almost everywhere on T .

Finally we mention that the measures �(t; dx), cf. (32), may be de�ned by other

averaging kernels. In particular, all results remain valid as long as the averaging

kernel � is as usual, i.e. � is nonnegative and bounded, has compact support and

satis�es
R
� = 1.
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3 The limit "! 0

In this section we study the behavior of Q" if " tends to zero. We choose two compact

subsets K � R
2 and L � R as in Assumption 1.3. According to Theorem 2.3, the set

fÆQ"
g"�1 is precompact in Y (T ; K). Thus, there exist sequences ("j)j with "j !1

such that ÆQ"j
converges to a limit measure. In this section we prove the uniqueness

of such a limit measure.

Assumption 3.1 Let ("j)j be a subsequence with "j ! 0 such that

�j := ÆQ"j
! �1 in Y (T ; R2) (41)

Our main result can be formulated as follows

Theorem 3.2 Let �1 be given as in Assumption 3.1. Then, �1 is uniquely deter-

mined by the initial data Q0. In other words, �1 does not depend on the sequence

("j)j.

This theorem implies immediately the following Corollary.

Corollary 3.3 The Young measures corresponding to the functions Q" converge

for "! 0 to a unique limit measure �1.

In the following we consider a �xed sequence ("j)j that satis�es the Assumptions 3.1.

We prove Theorem 3.2 in several steps. In Subsection 3.1 we introduce some fur-

ther notations. In particular, we de�ne an energy measure �1 corresponding to �1.

In Subsection 3.2 we prove, that the measure �1 is completely determined by �1.

Finally, in Subsection 3.3 we derive a deterministic evolution equation for �1.

3.1 Further notations

For shortness we write

Qj := Q"j ; Qj = Q"j
and ej := e"j (42)

for all j 2 N . According to (5) we have

Qj(t) = Qj
� t
"j

�
: (43)

Let N = N [ f1g. We consider the probability measures �


j
(t) which are de�ned in

Section 2, cf. (34). We �nd



�


j
(t; dQ);  (Q)

�
Q2K

=
1



t+Z
t



�j(s; dQ);  (Q)

�
Q2K

ds 8  2 C(K): (44)
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Recall that (44) is well de�ned for all j 2 N ,  > 0 and all t 2 T . According to

Corollary 2.5, the measures �


j
(t) can be regarded as good approximations of �1(t).

In particular, for any observable  2 C(K) there exists a sequence (k)k, k ! 0,
such that for almost every t 2 T there holds


�1(t; dQ);  (Q)
�
Q2K

= lim
k!1



�k
1
(t; dQ);  (Q)

�
Q2K

= lim
k!1

lim
j!1



�
k

j
(t; dQ);  (Q)

�
Q2K

: (45)

Moreover, for j 2 N we de�ne the energy measure �j 2 Y (T ; L) corresponding to

�j by

h�j; �iC(T�L) := h�j; � Æ	eiC(T�L) 8 � 2 C(T � L) (46)

where

(� Æ	e)(t; Q) := �
�
t; 	e(t; Q)

�
: (47)

Obviously we have

1. �j = Æej if j 6=1, and

2. �j ! �1 for j !1 in Y (T ; L).

3.2 Nontrivial relation between �1 and �1

As mentioned in Section 1 we expect a decoupling of micro time and macro time if

"! 0. The next theorem describes the mechanism of this decoupling.

Theorem 3.4 The measure �1(t) = �1(t; dQ) satis�es for almost every t 2 T

the following equation

divQ
�
�1(t; dQ) � A(t; Q)

�
= 0: (48)

In other words, �1(t) is a solution of the stationary Liouville equation (12) that

corresponds to the associated system (11).

Proof:

1. Let j 2 N , t 2 T ,  > 0 be �xed. We �nd

divQ
�
�


j
(t; dQ) � A(t; Q)

�
=

=
1



t+Z
t

divQ
�
�j(s; dQ) � A(t; Q)

�
ds

=
1



t+Z
t

divQ
�
�j(s; dQ) � A(s; Q)

�
ds+

1



t+Z
t

divQ
�
�j(s; dQ) � fA(t; Q)� A(s; Q)g

�
ds: (49)

10



Let ' = '(Q) 2 C1
c
(R2) be a smooth test function. For any s 2 T we set

� := "�1
j
s. There holds

X1(s) :=
D
divQ

�
�j(s; dQ) � A(s; Q)

�
; '

E
C1
c (R

2)

=
D
�j(s; dQ); (gradQ')(Q) � A(s; Q)

E
Q2K

= �grad
Q
'
�
Qj(s)

�
� A

�
s; Qj(s)

�
= �grad

Q
'
�
Qj(�)

�
� A

�
s; Qj(�)

�
: (50)

Since Qj = Qj(�) is a solution of the dynamical system (1) with parameter "j
we end up with

X1(s) = grad
Q
'
�
Qj(�)

�
�

d

d�
Qj(�)

= grad
Q
'
�
Qj(s)

�
� "j

d

dt
Qj(s)

= "j
d

dt
(' ÆQj)(s): (51)

Finally we �nd

��1


t+Z
t

X1(s) ds
�� =

��"j


t+Z
t

d

dt
(' ÆQj)(s)

�
ds
��

=
"j



��(' ÆQj)(t+ )� (' ÆQj)(t)
��

�

2 � "j


k'k1 : (52)

Furthermore there holds

X2(s) :=
D
divQ

�
�j(s; dQ) �

�
A(t; Q)� A(s; Q)

	�
; '

E
C1
c (R

2)

=
D
�j(s; dQ); gradQ'(Q) �

�
A(t; Q)� A(s; Q)

	E
Q2K

=
D
�j(s; dQ); @p'(Q)

�
@qG(s; Q)� @qG(t; Q)

	E
Q2K

:

= @p'
�
Qj(s)

��
@qG

�
s; Qj(s)

�
� @qG

�
t; Qj(s)

��
: (53)

According to Assumption (1.3), the function @qG is uniformly continuous on

sets with �nite energy. We �nd

��X2(s)
�� � kgrad

Q
'k1 m(t� s); (54)

where m denotes the modulus of continuity of @qG. The inequalities (52) and

11



(54) imply

��hdivQ��j (t; dQ) � A(t; Q)�; 'iC1
c (R

2)

�� =

=
1



t+Z
t

X1(s) +X2(s) ds

�

2"j


k'k1 +
1


kgrad

Q
'k1

t+Z
t

m(t� s) ds

�

2"j


k'k1 +m() kgrad
Q
'k1 : (55)

2. Let ' = '(Q) 2 C1
c
(R2) be �xed and let

 (Q) := A(t; Q) � grad
Q
'(Q): (56)

Corollary 2:5 provides a sequence (k)k with k ! 0, such that



�1(t; dQ);  (Q)

�
Q2K

= lim
k!1

lim
j!1



�
k

j
(t; dQ);  (Q)

�
Q2K

:

almost everywhere on T . From (55) we obtain



�1(t; dQ);  (Q)

�
Q2K

= 0 (57)

for almost every t 2 T , and therefore

b�1; A � grad
Q
'c = 0: (58)

3. Let ('n)n be a dense sequence in C
1
c
(R2). For any n there exists a set Sn � T

such that jSnj = 0 and

b�1; A � grad
Q
'nc(t) = 0 8 t 2 T n Sn: (59)

We set S =
S
n2N

Sn: For any t 2 T n S we �nd

hdivQ
�
�1(t; dQ) �A(t; Q)

�
; 'niC1

c (R
2) = 0 8 n 2 N ; (60)

and �nally (48).

�

This theorem has an important consequence. As we will see below, it provides that

the measure �1(t) is completely determined by the energy measure �1(t). This fact
will be explained in the following.
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For a �xed energy value e 2 Et and �xed macro time t 2 T we consider the

solution

� ; ~Qt; e(�); 0 � � � 1; (61)

of the associated system at time t (cf. (11)) with initial data ~Q0
t; e
. The initial data

~Q0
t; e

are choosen such that

	e(t; ~Q0
t; e
) = e: (62)

The function ~Qt; e describes an orbit � in the (q; p) plane. Obviously, � depends on

t because the associated system depends on t. The Assumption 1.3 provides, that �
is closed. Furthermore, � depends on the initial data ~Q0

t; e
only via the energy, i.e.

� = �t; e. We de�ne a probability measure

�t; e = �t; e(dQ) 2 Prob (R2) (63)

by

1. The support of �t; e is �t; e.

2. �t; e is uniformly distributed along �t; e.

These two properties imply



�t; e;  

�
C(R2)

=
���t; e���1

Z

�t; e

 d�; 8  2 C(R2); (64)

where � denotes the measure on �t; e.

It can be shown that any measure �t; e solves the stationary Liouville equati-

on (12) corresponding to the associated system (11), i.e. there holds

divQ
�
�t; e(dQ) � A(t; Q)

�
= 0: (65)

Another, but equivalent characterization of the measure �t; e relates the measure

to temporal averages of observables. In particular, for �xed t and e and for any

observable  2 C(K) there holds

h�t; e;  iC(K) =


�t; e(dQ);  (Q)

�
Q2K

= lim
�end!1

1

�end

�endZ
0

 
�
~Qt; e(�)

�
d�: (66)

This formula reveals that the probability measure �t; e describes an in�nite number

of oscillation of the associated system (11).

The measures �t; e are in a certain sense fundamental solutions of (12), because

any solution of (12) is a linear superposition of such measures �t; e with �xed t.

Regarding the case which is studied here, we summarize this result in the next

theorem.
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Theorem 3.5 For almost every t 2 T and all  2 C(K) there holds



�1(t; dQ);  (Q)

�
Q2K

=


�1(t; e); � (e)

�
e2L

: (67)

where � is a continuous function with respect to e with

� (e) :=


�t; e(dQ);  (Q)

�
Q2R

: (68)

For shortness we omit the proof of Theorem 3.5.

There remains the determination of the energy measure �1(t) for all times t. This

will be done in the next subsection. In particular we will prove, that for any macro

time t we have a well de�ned energy value e1(t), i.e.

�1(t) = Æe1(t); (69)

and henceforth

�1(t) = �t; e1(t): (70)

We mention that

1. The existence of a well de�ned energy value e1(t) has to be proved. The

Young measure approach yields a priorily only the existence of an energy

measure �1(t).

2. e1(t) generally varies with the macro time t.

The existence of a well de�ned energy value e1(t) allows the following interpretation
of the decoupling of micro time and macro time. In the limiting case " = 0 we have

for any macro time t another microscopic oscillator. This oscillator is described by

the associated system (11) and performs an in�nite number of oscillations. The

ergodic behavior of the microscopic oscillator is given by the measure �1(t) that
describes temporal averages of observables, see Equation (66).

3.3 The evolution of �
1
(t)

As mentioned at the end of the last subsection, we now will determine the energy

measure �1.

Theorem 3.6 The energy measure �1 satis�es the transport equation

@t�1 + @e
�
h�1

�
= 0; (71)

where

h(t; e) =


�t; e(dQ); @tG(t; Q)

�
Q2K

: (72)
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Proof: Let t 2 T and ' 2 C1
0 (L) with compact support be �xed. For any j 2 N

Equation (9) implies

d

dt



�j(t; de); '(e)

�
e2L

=
d

dt
'
�
ej(t)

�

= '0
�
ej(t)

� d
dt
ej(t)

= '0
�
ej(t)

�
@tG

�
t; Qj(t)

�
= 	1

�
t; Qj(t)

�
=



�j(t; dQ); 	1(t; Q)

�
Q2K

: (73)

where 	1(t; Q) = @tG(t; Q)'
0
�
	e(t; Q)

�
. We conclude

d

dt
b�j; 'c = b�j; 	1c: (74)

Now we can pass to the limit in the sense of Young measures. We end up with

d

dt
b�1; 'c = b�1; 	1c; (75)

which is an equality of distributions. From Theorem (3.4) and the identity



�t; e(dQ); 	1(t; Q)

�
Q2K

= '0(e)


�t; e(dQ); @tG(t; Q)

�
Q2K

= '0(e)h(t; e) (76)

we �nd

b�1; 	1c(t) =


�1(t; dQ); 	1(Q; t)

�
Q2K

=
D
�1(t; de);



�t; e(dQ); 	1(Q; t)

�
Q2K

E
e2L

=
D
�1(t; de); '

0(e)h(t; e)
E
e2L

=
D
h(t; e)�1(t; de); '

0(e)
E
e2L

= �

D
@e
�
h(t; e)�1(t; de)

�
; '(e)

E
e2L

: (77)

Finally we conclude

D
@t�1(t; de); '(e)

E
e2L

=
d

dt
b�1; 'c(t) = b�1; 	1c(t)

= �

D
@e
�
h(t; e)�1(t; de)

�
; '(e)

E
e2L

: (78)

�

This Theorem implies the following
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Corollary 3.7

1. The energy measure �1(t) at time t 2 T is a delta distribution in e1(t), i.e.

�1(t) = Æe1(t): (79)

2. The function e1 is completely determined by the initial energy measure Æe0. In

particular there holds

d

dt
e1(t) = h

�
t; e1(t)

�
and e1(0) = e0: (80)

Obviously, we obtain this nice result because we have assumed, that the initial data

Q0 do not depend on ". However, Theorem 3.6 can be generalized to initial data

that depend on ".

For the Examples 1.1 and 1.2 the explicit form of Equation (80) is given by

d

dt
e1(t) = f(t)f 0(t) (81)

and

d

dt
e1(t) = d0(t)

D
�t; e1(t)(dQ); g

0
�
d(t) + 2q

�
+ g0

�
d(t)� 2q

�E
Q2K

; (82)

respectively.

Theorem 3.2 and Corollary 3.3 are immediate consequences of Corollary 3.7.

4 Summary

We have studied a simple dynamical equation (1) which describes the high frequent

motion of a single particle under the in�uence of slowly varying external perturbati-

ons. Consequently, there are two di�erent time scales, which are coupled by a small

scaling parameter ".

The theory of Young measures provides an elegant description of the limiting case

" ! 0, where the time scales decouple. The main results can be summarized as

follows.

1. The highly oscillating solutions of (1) converge to a unique limit measure �1
whose disintegration is given by a family of probability measures f�1(t)gt.

2. For any macro time t there holds: The measure �1(t) is completely determi-

ned by the energy e1(t). In particular, �1(t) corresponds to an microscopic

oscillator performing an in�nite number of oscillations.
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3. There exists a macroscopic evolution equation for the energy function e1(t).

Finally, we refer to [1], where these results are used in order to describe micro-macro

transitions of atomic chains.
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