
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Generalized necessary scaling condition and

stability of chemical reactors with several educts

Messoud Efendiev, 1 Georg Hebermehl, 2 Rupert Lasser 3

submitted: 19th November 2001

1 Universität Stuttgart

Mathematisches Institut A

Pfa�enwaldring 57

D - 70569 Stuttgart

Germany

E-Mail: efendiev@mathematik.uni-stuttgart.de

2 Weierstrass-Institute for

Applied Analysis and Stochastics

Mohrenstraÿe 39

D - 10117 Berlin

Germany

E-Mail: hebermehl@wias-berlin.de

3 GSF - National Research Centre for Environment and Health

IBB - Institute for Biomathematics and Biometry

Ingolstadter Landstr. 1

D - 85758 Neuherberg, München, Germany

Preprint No. 699

Berlin 2001

WIAS
2000 Mathematics Subject Classi�cation. 35Q60, 65F15, 65N22.

Key words and phrases. Reaction-Di�usion equation, stability, chemical radical reactions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289297887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

We present, for a class of industrially relevant chemical reactions with two

educts the dependence of stability on important chemical parameters, such as

coolant, dilution and di�usion rates. The main analytical tools are general-

ized upscaling balance condition for the equilibria concentrations and spectral

properties of corresponding operators. Although we illustrate the stability

analysis for a model reactor (2 educts, E1 and E2), it should be emphasized

that our approach is applicable to more complex reaction mechanisms.
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1 Introduction

As an example of stability of chemical reactor we consider a class of chemical radical

reactions with starter S, educts E1, E2 and chemical product of form

S ! 2S�;

S� + E1 ! E�

1 +D1;

S� + E2 ! E�

2 +D2;

E�

1 + E2 ! P �;

E�

2 + E1 ! P �;

P � + E1 ! P + E�

1 ;

P � + E2 ! P + E�

2 ;

E�

1 + E�

2 ! P;

2E�

1 ! D3;

2E�

2 ! D4;

E�

1 + S� ! D5;

E�

2 + S� ! D6;

(1)

where by Di; i = 1(1)6, denote by-products. The three blocks in (1) characterize

starter, chain and reactions, respectively. Note, that the educt radicals E�

1 and E�

2

act �catalytically� even in low concentrations. Therefore these reactions are usually

run with low starter concentrations S, Therefore these reactions are usually run with

low starter concentrations S, already producing su�cient quantities of E�

1 , E
�

2 .

We emphasize that, a reaction mechanism (2) is industrially relevant, and arise for

example, in photosensitive chlorivation of aromates, where E1 = Cl2; E2 Toluoene.

The chemical product of these reactions, Chlorbenzene, plays an important role both

in food and pharmaceutical industries (see [5]).

In this paper we study stability of chemical reactor from important parameters, such

as di�usion, dilution rates, when � := S0 goes to zero.

We use the following designations

S;E1; E2 concentrations of starter and educts;

s; e1; e2 corresponding radical concentrations;

S0; E1;0; E2;0 feed concentrations;

P; p product and product radical;

ki(T ) = k�i exp
�
�


i
T

�
; i = 1; :::; 12; Arrhenius law;

dS; dE1
; dE2

; ds; de1; de2; dp; dT di�usion rates;

T; hj; j = 1; :::; 12; temperature and reaction enthalpy;

v velocity due to Navier-Stokes equations:

2



The spatially heterogeneous evolution equations for (1) take the form (see [2])

@S

@t
= dS�S + (v;r)S + S0 � k1S

@E1

@t
= dE1

�E1 + (v;r)E1 + E1;0 � k2sE1 � k5e2E1 � k6pE1

@E2

@t
= dE2

�E2 + (v;r)E2 + E2;0 � k3sE2 � k4e1E2 � k7pE2

@s
@t

= ds�s + (v;r)s+ 2k1S � k2sE1 � k3sE2 � k11e1s� k12e2s

@e1
@t

= de1�e1 + (v;r)e1 + k2sE1 � k4e1E2 + k6pE1 � k8e1e2
�2k9e1

2 � k11e1s

@e2
@t

= de2�e2 + (v;r)e2 + k3sE2 � k5e2E1 + k7pE2 � k8e1e2
�2k10e2

2 � k12e2s

@p

@t
= dp�p+ (v;r)p+ k4e1E2 + k5e2E1 � k6pE1 � k7pE2

@T

@t
= dT�T + (v;r)T + h1k1S + h2k2sE1 + h3k3sE2 + h4k4e1E2

+h5k5e2E1 + h6k6pE1 + h7k7pE2 + h8k8e1e2 + h9k9e1
2 + h10k10e2

2

+h11k11e1s+ h12k12e2s:

(2)

To investigate the stability of chemical (model) reactor (1) we distinguish laminar

and turbulent zones of our reaction. In the laminar zone we consider partial di�er-

ential equations of the form (2). In the turbulent zone, where fast mixing prevails,

Equation (2) is averaged, spatially, to yield (see [2])

@S
@t

= S0 � k1S �D0S

@E1

@t
= E1;0 � k2sE1 � k5e2E1 � k6pE1 �D1E1

@E2

@t
= E2;0 � k3sE2 � k4e1E2 � k7pE2 �D2E2

@s

@t
= 2k1S � k2sE1 � k3sE2 � k11e1s� k12e2s�D3s

@e1
@t

= k2sE1 � k4e1E2 + k6pE1 � k8e1e2 � 2k9e1
2 � k11e1s�D4e1

@e2
@t

= k3sE2 � k5e2E1 + k7pE2 � k8e1e2 � 2k10e2
2 � k11e1s�D5e2

@p

@t
= k4e1E2 + k5e2E1 � k6pE1 � k7pE2 �D6p

@T

@t
= h1k1S + h2k2sE1 + h3k3sE2 + h4k4e1E2 + h5k5e2E1 + h6k6pE1

+h7k7pE2 + h8k8e1e2 + h9k9e1
2 + h10k10e2

2 + h11k11e1s+ h12k12e2s

��(T � T0):

(3)

Here ~D = (D0; � � � ; D6) and � indicates dilution and external cooling rate with

coolant temperature T0, respectively.
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2 Generalized necessary scaling condition

Following Feinberg [1] we write chemical reactions of species x0; � � � ; xn as

y
(j)
0 x0 + � � �+ y(j)n xn

kj
�! y

(j)
0 x0 + � � �+ y(j)n xn (4)

with integer stoichiometric coe�cients y(j); y(j) � 0 and positive real reaction rate

coe�cient kj. Then the associate dynamics is given by

_x =

MX
j=1

kjx
y
�
y(j) � y(j)

�
: (5)

Here x = (x0; � � � ; xn) 2 R
n+1 is the vector of concentrations and xy := x

y0
0 � � �x

yn
n

represents the usual mass action kinetics.

We emphasize that the external feed concentrations can be incorporated in this

model by adding formal reactions

0
ki0
�! xi: (6)

Following mathematical convention we denote by � := S0 (0
k0=�
��! S) the feed

concentration of the radical starter and � = (�0; � � � ; �n) the scaling de�ned by0
BBB@
x0
x1
...

xn

1
CCCA =

0
BBB@
��0 0 : : : 0

0 ��1 : : : 0
...

...
. . .

...

0 0 : : : ��n

1
CCCA
0
BBB@
�0
�1
...

�n

1
CCCA : (7)

Substituting (7) into (5) we obtain

��j _�j =

MX
j=1

kj�
�0y

(j)

0 +���+�ny
(j)
n �

y
(j)
0

0 � � � �y
(j)
n

n

�
y(j) � y(j)

�
: (8)

Then the equilibrium equation takes the form

MX
j=1

kj�
�y(j)�y

(j) �
y(j) � y(j)

�
= 0 (9)

for the scaled steady state � = �(�), where by �y(j) and �y
(j)

we denote

�y(j) := �0y
(j)
0 + � � �+ �ny

(j)
n and �y

(j)

:= �
y
(j)
0

0 � � � �y
(j)
n

n , respectively.

In general, for a class of chemical reations (1) the reaction rates kj can often be

determinated only up to the order of magnitude. Therefore we make following

ansatz:

kj = kj;0�
�j +O(��j) with � := S0: (10)
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De�nition 1 We call a pair (�; �) = (�0; : : : ; �n; �1; : : : ; �M) 2 Rn+1 � RM a gen-

eralized scaling exponent for the steady state concentrations x = (x0; : : : ; xn) of (5),

if there exists a sequence of scaled equilibria �(�l) = (�0(�l); : : : ; �n(�l)); �l ! 0; l!

1 of (9), with kj given by (10), such that for all m = 0; � � � ; n the following nonde-

generacy conditions holds:

0 < lim
l!1

inf �m(�l) � lim
l!1

sup �m(�l) <1: (11)

Theorem 1 Any generalized scaling exponent (�; �) 2 Rn+1 � RM satis�es

min
j:y

j
m 6=0

f(�y(j)) + �jg = min
i:y

(i)
m 6=0

f(�y(i)) + �ig: (12)

Proof. Let (�; �) 2 R
n+1 � R

M be any generalized scaling exponent. We rewrite

Equation (9) for the scaled steady state � = �(�) in components m = 0; � � � ; n as

MX
j=1

kj�
�y(j)�y

(j)

y(j) =

MX
i=1

ki�
�y(i)�y

(i)

y(i) (13)

or equivalently X
j:y

(j)
m 6=0

kj�
�y(j)�y

(j)

y(j)m =
X

i:y
(i)
m 6=0

ki�
�y(i)�y

(i)

y(i)m : (14)

Let kj = kj;0�
�j +O(��j); � := S0 (see (10)), and �x m. We sort the terms on each

side of last equality by increasing powers �y(j) + �j; �y(i) + �i of �, respectively.

Note, that all terms are strictly positive by the nondegeneracy assumption (11). Let

min
j:y

j
m 6=0

f(�y(j)) + �jg = �y(jo) + �jo and min
i:y

(i)
m 6=0

f(�y(i)) + �ig = �y(io) + �io

in (14). Then the leading (alias: lowest) power of � in the m-th component of

(14) is given by �y(jo) + �jo on the left, as compared to �y(io) + �io on the right.

Note, that these leading powers may in fact be realized by several other terms

�y(j)+�j; �y(i)+�i in addition. Comparing coe�cients, we divide (14) by � to the

powers

min f�y(jo) + �jo; �y
(io) + �iog

and let �! 0. This immediatly yields

�y(jo) + �jo = �y(io) + �io

by positivity of all terms in the sums. This proves the Theorem 1.
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3 Necessary scaling exponent for a model reactor

with two educts: full picture

In this section we apply Theorem 1 to concrete reaction mechanism (1). We start

our analysis in the case kj = O(1), that is �j = 0; j = 1; � � � ;M , and D = 0. For

very spatial case, that is chemical reactions for 1 (one) educt (see [4]). Based on

mass action kinetics we add to reaction mechanism (1) following terms

0
k0=�
��! S;

0
k10=E1;0

����! E1;

0
k20=E2;0

����! E2:

9>>=
>>; input

Hence we consider the following radical reaction

0
k0=�
��! S;

0
k10=E1;0

����! E1;

0
k20=E2;0

����! E2;

9>>=
>>; input (15)

S
k1
�! 2S�;

S� + Ei

ki;k3
��! E�

i +Di;

)
starter; i = 1; 2; (16)

E�

1 + E2
k4
�! P �;

E�

2 + E1
k5
�! P �;

P � + Ei

k6;k7
���! P + E�

i ;

9>=
>; chain; i = 1; 2; (17)

E�

1 + E�

2

k8
�! P;

2E�

i

k9;k10
���! Di+2;

E�

i + S�
k11;k12
����! Di+4;

9>=
>;by reactions; i = 1; 2; (18)

with � := S0 > 0. Note, that photosensitive chlorivation of aromate is a speci�c

example of mechanism (15) - (18) ( see [5]).

With x = (x0; � � � ; x6) = (S;E1; E2; s; e1; e2; p) and �j = 0 and � = S0, the general-

ized necessary scaling condition (12) for the scaling exponent � = (�0; � � � ; �6) :=

(�S; �E1
; �E2

; �s; �e1; �e2; �p) takes the following form

�S = 1; (19a)

min f�E1
+ �s; �E1

+ �e2 ; �E1
+ �pg = 0; (19b)

min f�E2
+ �s; �E2

+ �e1 ; �E2
+ �pg = 0; (19c)

min f�E1
+ �s; �E2

+ �s; �s + �e1 ; �s + �e2g = �S; (19d)

minf�E2
+ �e1; �e1 + �e2; 2�e1; �s + �e1g = min f�E1

+ �s; �E1
+ �pg; (19e)

min f�E1
+ �e2 ; �e1 + �e2; 2�e2; �s + �e2g = minf�E2

+ �s; �E2
+ �pg; (19f)

minf�E1
+ �p; �E2

+ �pg = min f�E2
+ �e1 ; �E1

+ �e2g: (19g)
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Theorem 2 Let � = (�S; �E1
; �E2

; �s; �e1; �e2; �p) be any scaling exponent of

(15) -(18). Then � = (1; �E1
;�1

2
; 1� �E1

; 1
2
;�1

2
� 2�E1

;��E1
) with �E1

� �
1
2
.

Proof. We distinguish two cases:

(a) �E1
< �E2

,

(b) �E1
= �E2

.

Let us start with the case (a). Then we rewrite (19e) and (19f) as

�e1 +min f�E2
; �s; �e1; �e2g = �E1

+minf�s; �pg;

�e2 +minf�E1
; �s; �e1; �e2g = �E2

+minf�s; �pg:
(20)

From (20) follows that �e1 < �e2 .

Next we prove �e1 < �p. Assume contrary, i.e. �e1 � �p. Then from (19b) and

(19c) we obtain

�E1
+min f�s; �pg = 0;

�E2
+min f�s; �pg = 0:

Hence �E1
= �E2

contradicting �E1
< �E2

. Note, that �s+�E2
� 1 due to Equation

(19d) and (19a). Thus Equation (19c) takes the form

�E2
+minf�e1 ; �pg = �E2

+ �e1 = 0;

that is �e1 = ��E2
.

As a result Equation (19g) can be written as

�p + �E1
= minf�e1 + �E2

; �E1
+ �e2g = min f0; �E1

+ �e2g:

Last equality implies �p + �E1
= 0, since �E1

+ �e2 � 0 (due to Equation (19b)),

that is �p = ��E1
. Next we show �E2

� 0. To this end we emphasize that �e1 < �s,

because otherwise we get contradiction

0 = �e1 + �E2
� �s + �E2

� �S = 1

due to (19a) and (19d). To obtain �E2
� 0 we rewrite Equation (19e) in the form

�e1 +minf�E2
; �e2; �e1; �sg = minf�s + �E1

; �p + �E1
g:

With �p = ��E1
, �e1 < �e2 , �e1 < �s, �s + �E1

� 1 last equality yields

�e1 +min f�E2
; �e1g = 0

or equivalently, with �e1 = ��E2

min f�e1 + �E2
; 2�e1g = min f0;�2�E2

g = 0;

7



which in turn implies �E2
� 0. Let us prove that �s = 1 � �E1

. Indeed (19d) can

be written as

�s +min f�E1
; �E2

; �e1 ; �e2g = 1; (21)

so that taking into account �E1
< �E2

� 0 and �e2 > �e1 = ��E2
� 0, we obtain

from (21) that �s = 1 � �E1
. To express �e2 through �E1

and �E2
we rewrite

Equation (19f) as follows

�e2 +minf�E1
; �e1; �e2; �sg = �E2

+minf�s; �pg (22)

Due to �e1 < �e2, �e1 < �s, �E1
< �e1, �p = ��E1

, and �p < �s, it follows from

(22) that

�e2 + �E1
= �E2

� �E1

or equivalently �e2 = �E2
� 2�E1

. Thus we obtain

� = (1; �E1
; �E2

; 1� �E1
;��E2

; �E2
� 2�E1

;��E1
) with �E2

� 0:

To prove Theorem 2 it remains to show that �E2
= �

1
2
. To this end, we consider

the equations _e1 = 0, _e2 = 0, _p = 0, that is

0 = _e1 = k2sE1 � k4e1E2 + k6pE1 � k8e1e2 � 2k9e1
2 � k11e1s;

0 = _e2 = k3sE2 � k5e2E1 + k7pE2 � k8e1e2 � 2k10e2
2 � k12e2s;

0 = _p = k4e1E2 + k5e2E1 � k6pE1 � k7pE2:

(23)

Adding these equations we obtain

k2sE1 + k3sE2 = 2k8e1e2 + 2k9e1
2 + 2k10e2

2 + k11e1s+ k12e2s: (24)

Comparing powers � in (24)

1 = minf�2�E1
;�2�E2

; 2(�E2
� 2�E1

); 1� �E1
� �E2

; 1� 3�E1
+ �E2

g:

Therefore �E2
= �

1
2
and

� =

�
1; �E1

;�
1

2
; 1� �E1

;
1

2
;�

1

2
� 2�E1

;��E1

�
with �E1

< �
1

2
: (25)

This proves Theorem 2 in the case (a) �E1
< �E2

.

In the same manner (even simple) we prove that, if �E1
= �E2

(case (b)), then

scaling exponent

� =

�
1;�

1

2
;�

1

2
;
3

2
;
1

2
;
1

2
;
1

2

�
:

8



4 Stability of chemical reactor in the presence of

di�usion

For simplicity we restrict ourselves to the case, when the dilution vector ~D :=

(D1; :::; D6) = 0 and � = 0. Moreover we assume that the bulk of reactor to be

well-mixed. Let G be a reactor volume and 
 � G be a domain where laminar �ow

prevails. We denote by

u�(�) = (S(�); E1(�); E2(�); s(�); e1(�); e2(�); p(�); T
�(�))

homogeneous equilibrium of (3). Due to the Theorem 2 we have following (for

simplicity we restrict ourselves to the case �E1
= �E2

= �
1
2
) asymptotic expansions

for equilibrium u�(�), that is

S(�) s � +O(�); E1(�) s ��
1
2 +O(��

1
2 );

E2(�) s ��
1
2 +O(��

1
2 ); s(�) s �

3
2 +O(�

3
2 ); (26)

e1(�) s �
1
2 +O(�

1
2 ); e2(�) s �

1
2 +O(�

1
2 );

p(�) s �
1
2 +O(�

1
2 ):

The equation _T = 0 yields an �-expansion of the steady state temperature T �(�),

that is

T �(�) s
E1;0 + E2;0

2
+ �T0 +O(�): (27)

We rewrite Equation (2) in the absence of transport terms (r; v) in the following

abstract form
@~u

@t
= D�~u+ ~F (u); ~uj@
 = u�(�); (28)

where D = diag(dS; dE1
; dE2

; ds; de1; de2; dp; dT ) and u�(�) is a homogeneous equi-

librum mentioned above. Both due to equilibria concentrations and the bulk of

reactor to be well-mixed. Let

~u(x; t) = u�(�) +W (x; t):

Then W (x; t) satis�es

@W

@t
= D�W + F 0(u�(�))W; W j@
 = 0; (29)

where F 0(u�(�)) is the (8; 8)-matrix at u�(�), that is

F 0(u�(�)) = (30)0
BBBBBBBBBB@

�k1 0 0 0 0 0 0 k01S

0 �1 0 �k2E1 0 �k5E1 �k6E1 �1

0 0 �2 �k3E2 �k4E2 0 �k7E2 �2

2k1 �k2s �k3s �3 �k11s �k12s 0 �3

0 k2s+ k6p �k4e1 k2E1 � k11e1 �4 �k8e1 k6E1 �4

0 �k5e2 k3s+ k7p k3E2 � k12e2 �k8e2 �5 k7E2 �5

0 k5e2 � k6p k4e1 � k7p 0 k4E2 k5E1 �6 �6

h1k1 
1 
2 
3 
4 
5 
6 �7

1
CCCCCCCCCCA
;
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where

�1 = �k2s� k5e2 � k6p; �2 = �k3s� k4e1 � k7p;

�3 = �k2E1 � k3E2 � k11e1 � k12e2; �4 = �k4E2 � k8e2 � 4k9e1 � k11s;

�5 = �k5E1 � k8e1 � 4k10e2 � k12s; �6 = �k6E1 � k7E2;


1 = h2k2s+ h5k5e2 + h6k6p;


2 = h3k3s+ h4k4e1 + h7k7p;


3 = h2k2E1 + h3k3E2 + h11k11e1 + h12k12e2;


4 = h4k4E2 + h8k8e2 + 2h9k9e1 + h11k11s;


5 = h5k5E1 + h8k8e1 + 2h10k10e2 + h12k12s;


6 = h6k6E1 + h7k7E2;

�1 = �k02sE1 � k05e2E1 � k06pE1;

�2 = �k03sE2 � k04e1E2 � k07pE2;

�3 = 2k01S � k02sE1 � k03sE2 � k011e1s� k012e2s;

�4 = k02sE1 � k04e1E2 + k06pE1 � k08e1e2 � 2k09e1
2
� k011e1s;

�5 = k03sE2 � k05e2E1 + k07pE2 � k08e1e2 � 2k010e2
2
� k012e2s;

�6 = k04e1E2 + k05e2E1 � k06pE1 � k07pE2;

�7 = h1k
0

1S + h2k
0

2sE1 + h3k
0

3sE2 + h4k
0

4e1E2 + h5k
0

5e2E1 + h6k
0

6pE1 + h7k
0

7pE2;

+ h8k
0

8e1e2 + h9k
0

9e1
2 + h10k

0

10e2
2 + h11k

0

11e1s+ h12k
0

12e2s� �

with

k0j :=
d

dT
kj(T ); j = 1; :::; 12:

Let 0 < �1 � �2 � � � � � �N � � � � ; �N !1 as N !1 be eigenvalues of �� (the

Laplacian) with Dirichlet boundary conditions, that is

��ek(x) = �kek(x); ekj@
 = 0: (31)

Hence stability of chemical reactor (1) in the presence of di�usion

D = diag(dS; dE1
; dE2

; ds; de1; de2; dp; dT ) will be governed by

detfF 0(u�(�))� �1diag(dS; dE1
; dE2

; ds; de1; de2; dp; dT )� �Ig = 0; (32)

where �1 is the �rst eigenvalue of ��, and I is the indentity matrix.

Note that in the absence of di�usion stability of (1) will be governed by

F 0(u�(�))� = ��: (33)

We begin our stability analysis by grouping the matrix F 0(u�(�)) according to its

leading order in � := S0. To this end we use asymptotic expansion (26). Therefore

F 0(u�(�)) can be decomposed as

F 0(u�(�)) = ��
1
2

h
A0 +O

�
�
1
2

�i
: (34)
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It remains to compute �j(A0); j = 1; ::: . Simple linear algebra computations show

that for � � �c we have stability and 0 � � < �c belongs to the instability interval.

Here �c some positive number. Recall that by � is denoted the coolant rate.

Now we are interested in stability of (1) in the presence of di�usion. To this end

we consider equation (32), where F 0(u�(�)) is the same matrix as in (33). Taking

into account that �1 > 0, it is not di�cult to see that � > �c � Æ, where �c the

same number as above (in the absence of di�usion) and Æ is some positive number

depending on �1 and ~D = (dS; dE1
; dE2

; ds; de1; de2; dp; dT ). We emphasize that the

interval �c� Æ < � < �c which provides stability of chemical reactor in the presence

of di�usion, belongs to the instability interval in the di�usionless case.

Remark 1. In the same manner one can analyse in�uence of dilution rate to the

stability of (1).

The following �gures show the role of di�usion for the stability of chemical reactor

(1) and con�rm our theoretical observations. The graphs in the Figures 1 - 16

represent the eigenvalues (ordinate) of the matrices F 0(u�(�)) for the coolant rates

� = 0 and � = 100 with �E1
= �2:00;�1:99; :::;�0:49;�0:50 (abscissa, see (25)),

� = 10�4, ki = 1; hi = 1; k0i = 1; i = 1; :::; 12. The 8 eigenvalues of each matrix

are sorted in ascending order.

Acknowledgement: We thank Gerd Reinhardt (Weierstrass Institute for Applied

Analysis and Stochastics) for his support with the graphics.

Figure 1: Eigenvalues �1, � = 0 Figure 2: Eigenvalues �1, � = 100

Figure 3: Eigenvalues �2, � = 0 Figure 4: Eigenvalues �2, � = 100
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Figure 5: Eigenvalues �3, � = 0 Figure 6: Eigenvalues �3, � = 100

Figure 7: Eigenvalues �4, � = 0 Figure 8: Eigenvalues �4, � = 100

Figure 9: Eigenvalues �5, � = 0 Figure 10: Eigenvalues �5, � = 100
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Figure 11: Eigenvalues �6, � = 0 Figure 12: Eigenvalues �6, � = 100

Figure 13: Eigenvalues �7, � = 0 Figure 14: Eigenvalues �7, � = 100

Figure 15: Eigenvalues �8, � = 0 Figure 16: Eigenvalues �8, � = 100
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