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Abstract. We study both, by experimental and numerical means the �uid dynamical phe-

nomenon of so-called edge tones. Of particular interest is the clari�cation of certain scaling

laws relating the frequency f to geometrical quantities, namely d, the height of the jet, w, the

stand�o� distance and the velocity of the jet. We conclude that the Strouhal number Sd is

given by Sd = C � (d=w)n with n � 1 in our case. Moreover, the constant C of the experiment

agrees within 10�15% with the result of the simulation. As for the frequency dependence on the

geometry and on the jet velocity there is a very good agreement of experimental and numerical

results.

1. Introduction

Edge tone is a �uid dynamical phenomenon which develops as a jet leaves a �ue and encounters an

edge. This may result in an oscillatory behaviour of the jet due to positive �uid dynamical feedback.

Similarly, when a �ow traverses a shallow wall cavity a so called cavitone may be produced. In this

paper we investigate the edge tone phenomenon by experiment as well as by numerical simulation.

The phenomenon addressed here is a �uid dynamical problem which is based on an instability

of the �ow due to shear layers. The situation can be characterized by the Reynolds number

which is large compared to one, so that the transverse perturbation is able to cross a certain

characteristic distance of the con�guration without being damped away. As the Reynolds number

further increases and surpasses a critical value the system enters into another regime, turbulence

becomes dominant [19]. In this investigation we are well within the regime of instability, but below

turbulence. The �ow seems to be laminar at small perturbations, but due to the growing instability

there is a breakdown of the laminar �ow and �ow separation occurs (pseudo-laminar �ow).

At certain conditions periodic movement due to the positive feedback mechanism occurs and creates

audible acoustical waves. For this reason the edge tone phenomenon was observed for some time,

see for instance Sondhaus [31] and Brown [7]. Scaling laws relating the frequency with the geometry

and the jet speed have been suggested already in [7].

Particularly obvious are the main features by the simplifying consideration �rst stated by Powell

[26]: A perturbation of the jet with speed U �nally results in a vortex further downstream. It

travels with a phase velocity cp and encounters the edge at the stand�o� distance w. Here the

vortex interacts and radiates an acoustical wave feeding back upstream to the region of the nozzle.

The same picture holds as a �ow passes across a shallow cavity since the leading and trailing edge

is coupled in the same way. The oscillatory behaviour with the frequency f is related with the

phase velocity of both, the acoustical wave c0 as well as the perturbation. The Rossiter equation

[28] reads

(1) w=cp + w=c0 = k=f; k = 1; 2; 3; : : : ;

where the index k is constant for a �stage� or �uid dynamical mode. From experiments it appears

that k has to be replaced by (k � �), � being a phase o�set. As a result the above relation would

yield

(2) Sw = (k � �)=(U=cp +M)

in terms of the Strouhal number Sw = wf=U , where M = U=c0 is the Mach number. In our case

c0 is much larger than cp. Typical values for cp=U are between 0.4 � 0.6. Our prime interest in

this investigation is focussed on the �Stage I�, or the fundamental �uid dynamical mode k = 1.

Scaling laws of the above type have been derived from experimental data by Brown [7], Nyborg

and others [1, 24]. As mentioned above a justi�cation of such a law has been formulated in [26]

and later followed up in [18]. Moreover Holger [14] and Crighton [10] state a more general law in

terms of the Strouhal number Sd given here for k = 1:

(3) Sd =
f � d
U0

= C � (d=w)n;
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where d is the height of the nozzle, U0 the maximum velocity at the exit of the nozzle. The constant

C behaves like C � (1� �)(cp=U) for small Mach numbers.

The exponent n in (3) is the prime subject of this investigation. In former experiments it was

shown to be between 1 and 3=2, depending on the experimental con�guration. There are two

explanations for a behaviour with n > 1 depending on the state of turbulence of the jet.

(1) At low Reynolds numbers the �ow is pseudo-laminar. As will be argued below, the phase

velocity can be derived from linear instability theory through dispersion relations. From

this its frequency dependence results in n � 1.

(2) As observed by Carriere [8] and Jones [16] there is a slowing down of the jet velocity itself

and therefore a decrease of the wave length of the disturbance would produce a power

larger than one. This may happen if the jet is highly turbulent and loses momentum.

As can be shown, this results in n � 3=2 and would be encountered at higher Reynolds

numbers.

Our investigation deals with moderate Reynolds numbers, namely 113 � Red � 873 in the exper-

iment and 171 � Red � 912 in the simulation, and Strouhal numbers 0:028 � Sd � 0:177 and

0:027 � Sd � 0:077 respectively. Hence, rather the situation n ' 1 is expected.

The problem addressed here was treated theoretically by linear instability theory on the basis of the

Raleigh equation [11]. Generally, a free jet develops an instability after leaving the nozzle. There

are two eigenmodes: a symmetric, sinusoidal and an asymmetric, varicose mode with exponentially

increasing amplitudes. They are obtained analytically with a spatial solution by Mattingly and

Criminale [21]. The �rst mode is the dominating one. It de�ects the jet in the transverse direction

with respect to the primary direction. If the jet encounters a sheet or a wedge like edge the

de�ection produces a backward reaching velocity �eld which feeds back to the jet at the nozzle. A

stable oscillatory condition occurs as the resulting distortion reaches the edge at a proper transit

time producing a phase lock feedback cycle. In order to produce a stable condition the stand�

o� distance w has to be of the order of a wave length � = cp � f . This spatial description was

experimentally proven by [23] to be the preferred one in contrast to the temporal description given

for instance by [29].

For the understanding of the power dependence in (3) and the phase o�set � the derivations

of Holger [14] and Crighton [10] are relevant. The former include experimentally determined

parameters in order to achieve a value for the constant C. There is some overall agreement with

data given in [7, 24]. Crightons derivation is without any adjustable parameters and overestimates

the constant C by an order of magnitude. Both, however, work with a low frequency approximation

of the dispersion relation: at very low frequencies the phase velocity cp behaves like cp � S
1=3

d
,

which leads to an exponent n = 3=2. In fact, the low frequency approximation taken from the

temporal solution is actually mentioned as a possible cause for the overestimation of the constant

C in [10]. In contrast to these results a closer look at the experiments shown for comparison rather

displays a n = 1 behaviour [1, 7, 24]. This behaviour is already explicitly stated in [7] in a similar

expression like (3) with n = 1.

A recent theoretical calculation by Howe [15] using a linearized analysis, in which free shear layers,

representing a thin jet, are treated as vortex sheets, again states n = 3=2 for the w dependence.

However, it is mentioned that the thin jet approximation is not applicable for small stand-o�

distances which is usually relevant for the fundamental �uid dynamical mode.

Generally, there is an uncertainty with respect to the dependence of the height d of the �ue and the

velocity pro�le of the jet as it leaves the exit of the nozzle. Theoretical calculations often assume

ideal conditions as �at hat shape, or Bickley pro�le. In [10] and [15] the Kutta condition at the

nozzle exit is used for the calculation resulting in a straight continuation of the jet at this point.

At this point new experiments and computational simulations were in order for a clari�cation

of the behaviour of the exponent n. The mathematical model used for the simulations are the
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incompressible Navier-Stokes equations. Within linear instability analysis the growth of three-

dimensional perturbations are less ampli�ed than two-dimensional perturbations [11]. Thus, we

are using the two dimensional Navier-Stokes equations for sake of saving computing time. The

incompressibility condition is well justi�ed considering low Mach numbers M < 0:05. Since we are

dealing with moderate Reynolds numbers, viscous e�ects cannot be neglected and are treated by

the numerical method. The detailed comparison of the simulation with the experiment is important

with respect to the assumptions made in our model.

As can be seen from (1) a positive feedback loop may be formed by more than one value k for a

given ratio of k=f . There is one dominant frequency and therefore the frequency jumps at certain

distances. Furthermore, a hysteresis e�ect is associated with these jumps which has been observed

experimentally in this investigation.

The aim of this paper can be summarized as follows:

� A veri�cation of the scaling law and its constant C by experiment and simulation. The

reproduction of the constant C is one of the major achievements of this investigation.

� A clari�cation of the 1=w-behaviour. The exponent n ' 1 has been observed in this

investigation, both by the experiment and the simulation.

In our investigation we concentrate on the �rst �uid dynamical mode for reasons of simplicity. The

detailed understanding of edge tone phenomena in general might also be useful in applications as

�uid velocimetry from edge tone frequency.

Finally, the importance of the edge tone phenomena may be stated in relation with �ute like

wind instruments. The oscillatory pressure di�erence at the edge creates the acoustical wave. In

presence of a resonator the acoustical �eld is ampli�ed and takes over the feed back loop. In wind

instruments, like organ pipes the edge tone often plays an important role in the transitory regime

of the onset of response [9].

The paper is organized as follows: In � 2 we describe the experimental setup and the experimental

measurement procedure. The discretization and the used solver for the numerical simulation as

well as the numerical measurement procedure are explained in � 3. In � 4 we present and compare

the results of the experiment and the simulation both proving a n = 1 behaviour in (3). We

conclude the paper with a short summary in � 5.

2. Experimental setup

The investigations are carried out in a relatively low velocity regime. The e�ort is concentrated

on the �rst �uid dynamical mode, which is an experimental challenge for moderate aspect ratios

like w=d=3.5. For the experimental arrangement see Figure 1.

The setup consists of a �ue with two possible cross sections of 1 � 10 mm2 and 0:5 � 10 mm2,

respectively. The length of the �ue is 150 mm. It is chosen long enough in order to guarantee the

parabolic velocity pro�le of the jet at the outlet.

The edge consists of a wedge with an angle of � = 230 as shown in Figure 1. The position for the

stand-o� distance w is adjustable by micro meter screws with a precision of 0.05 mm. The o�set

" from the lower edge of the �ue is also adjustable with the same precision.

The arrangement is such that any extended object is at a distance of more than 20 cm. This

way unwanted acoustical feedback is suppressed. A number of preparative experiments proved the

following conditions:

� The lateral extension of the jet with 10 mm is proven to be large enough by changing this

quantity down to 5 mm without sizeable change of the frequency.

� The use of smaller length of the �ue gave the same results.



4 � The Schlieren method together with a stroboscopic illumination is used to visualize the

jet. Indeed the jet appeared to be not turbulent.

Air is used as medium and supplied from a bottle. The pressure is regulated by a precision valve.

The pressure of the air at the entrance of the �ue is measured for reference with a water manometer.

The velocity of the jet is determined by a hot wire anemometer (DANTEC C35) at a distance

1 mm downstream of the �ue exit. During the measurement of edge tones the anemometer is

retracted above exit of the �ue in order to avoid any disturbance. The calibration is done with a

Pitot tube in an independent setup for velocities ranging between 2 and 20 m/s. The accuracy of

the calibration is estimated to be about �0:5 m/s.

In order to be independent of the acoustical power produced by the jet movement the oscillation

is measured near the edge by a pressure sensor (KULITE 9322M). The size of the opening leading

to the sensor near the edge is only 0.4 mm in diameter, see Figure 1.

The ampli�ed signal, typically 20 mV/Pa is fed into a spectrum analyser (TEKTRONIX 2642A)

in order to determine the frequency of the fundamental. The sensitivity gained by this setup is

considerable as compared with a microphone positioned at some distance, specially at the onset of

the periodic movement at low stand-o� distance w. The frequency determination is done with the

spectral analyzer with a precision of 1% in the frequency range covered in this experiment.

2.1. Procedure of the Measurement. The measurements are done in the following way: The

velocity pro�le of the jet is checked in the condition, where the edge is removed, at a distance of

1 mm from the outlet. The pro�le is to a good approximation parabolic with negligible wings.

For the measurements at a given jet velocity of a given �ue cross section the maximum velocity at

the center of the �ue is determined.

The frequency is measured as a function of the edge distance from the �ue within the limits of

the closest distance yielding a self sustained periodic signal and the change into the higher �uid

α = 23o

30 m
m

150 mm

10 mm

100 mm

ε

16 m
m

Air

5 mm

hot wire anemometer pressure sensor

d

w x

y

Figure 1. Experimental setup. Above: top view, below: side view. The edge

tone signal is derived from the pressure sensor near the edge.



5
dynamic mode. This is observed by the appearance of an additional peak in the frequency spectrum

not being a harmonic partial of the prominent frequency.

It is observed that the frequencies near the transition point deviate from the general 1=w-law. This

transition region is observed to be typically 0.5 mm and not taken into account for the comparison

with the simulations.

The frequency measurements as a function of the distance w are done for di�erent jet velocities

ranging from 3.4 m/s to 13.0 m/s. The variation of w is between 2 mm to 9 mm.

Two sets of measurements corresponding to the di�erent heights of the jet d = 0:5 mm and

d = 1:0 mm are performed.

For a given height the o�set " is adjusted by the following procedure. Within the limits of " '0 and
" ' d=2 the periodic movement of the jet is observed to be stable. For the frequency measurement

it then is set about halfway between these limits, i.e. for d = 0:5 mm the o�set is chosen as

" = 0:13 mm and " =0.25 mm for d = 1:0 mm. It is observed that the change of frequency is

moderately small: less than 5% lower frequency at the limits of stable periodic operation of the

jet. Small changes in " yield nearly no changes in the measured frequencies.

3. Numerical simulation

Figure 2. Geometry and parabolic in�ow pro�le for the simulation. The inlet

is indicated by the bold line and the restriction to the bounded computational

domain by the dotted arc. The parabolic in�ow pro�le is shown as a zoom.

As outlined in � 1 we use the two dimensional incompressible, isothermal Navier-Stokes equations

as the mathematical model for the simulations: Find the velocity �eld u and pressure p such that

@tu� ��u+ (u � r)u+
1

�
rp = 0 in 
; t > 0;(4a)

divu = 0 in 
;(4b)

where the (unbounded) domain 
 is shown in Figure 2. The parameters describing 
, such as the

stand�o� distance w, the height of the nozzle d, etc., are as in Figure 1, � = 1:535e�5[m2/s] is the

kinematic viscosity and � = 1:188 [kg/m3] the density of air at 20Æ C and 1:0 [105Pa].

A parabolic in�ow pro�le for the velocity is prescribed on the in�ow boundary, indicated by the

bold line in Figure 2:

(5) u(x; �) := U0
x2 � y

d

�
1�

x2 � y

d

��
1

0

�
:
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Here, U0 is the maximal in�ow velocity and y the position of the bottom of the in�ow channel.

On the solid walls of the domain and on the surface of the labium we assume no-slip boundary

conditions for the velocity.

In order to obtain a bounded computational domain for the numerical simulation, we intersect


 with some ball of radius R, where R is chosen su�ciently large. This introduces an arti�cial

boundary, indicated by the dotted line in Figure 2. On this arti�cial boundary we use a so called

`transparent' boundary condition [13].

Equation (4) is scaled to dimensionless variables by using the maximal in�ow velocity U0 [m/s]

as a characteristic velocity, d [mm] as a characteristic length and T = d

U0

as a characteristic time

scale. Introducing the dimensionless variables

x̂ =
x

d
; t̂ =

t

T
; û =

u

U0
; and p̂ =

p

�U2
0

;

the dimensionless Navier-Stokes equations read

@
t̂
û�

1

Red
�̂û+ (û � r̂) û+ r̂p̂ = 0 in 
̂; t̂ > 0;(6a)

d̂iv û = 0 in 
̂; t̂ > 0;(6b)

where Red = U0 d=� is the Reynolds number and 
̂ is the domain 
 \ BR scaled by 1=d.

Denote by �̂D the union of the solid walls of 
̂, the surface of the labium, and the in�ow boundary.

Let �̂N be the arti�cial boundary. De�ning ĝ to be the scaled parabolic in�ow pro�le (5) on the

in�ow boundary

ĝ(x̂) := (x̂2 � ŷ) (1� (x̂2 � ŷ))

�
1

0

�

and 0 on the other parts of �̂D we use the following boundary values:

û = ĝ on �̂D; t̂ > 0;(6c)

1

Red
@nû+ p̂n = 0 on �̂N ; t̂ > 0:(6d)

In the sequel we omit the `^' and use the notation u, p etc. for the scaled variables for simplicity.

3.1. Adaptive �nite element methods. For the numerical solution of (6) we use an adaptive

�nite element method. For the discretization of parabolic problems we combine a discretization in

space with �nite elements on an underlying conforming triangulation consisting of triangles with

an appropriate discretization in time.

Given some tolerance for the error between the discrete and true solution, the aim of an adaptive

method is the e�cient approximation of the solution within this prescribed tolerance. In each time

step the underlying triangulation is adapted in such a way that it is �ne in regions where a high

resolution is needed but it still is as coarse as possible in all other regions.

Since the true solution is not known, information about the error between discrete and true solution

has to be obtained by computable quantities. This goal can be achieved by a posteriori error

indicators, which involve only information about the discrete solution and data of the problem and

are thus computable [32]. A posteriori error indicators give information about the total error as

well as local contributions on single mesh elements.

The adaptive method uses such indicators for the adaptation of the grids. The meshes are optimized

by local re�nement and coarsening of mesh elements (and reduction or enlargement of the time

step size, if appropriate). The aim of this optimization is the equidistribution of local contributions

over mesh elements while the error is below the given tolerance.
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Starting with an initial grid T0, we construct a sequence of conforming triangulations Tn+1 of 
 at

time tn+1 := (n+1)� . For the time step (tn; tn+1), the discrete problem is solved in �nite element

spaces on Tn+1.

In each time step, the adaptive algorithm iteratively solves the discrete problem, estimates the

error, and adapts the mesh (and time step size) until the given tolerance is reached. We start

with the mesh from the last time step. The mesh adaption is performed by local re�nement

and coarsening, using bisection (compare Figure 3) [3, 30]. All elements T with large local error

Figure 3. Iterative bisection of a triangle. Due to the passing on of the re�nement

edges (indicated by the bold lines) from parent to children, the minimum angle is

uniformly bounded from below for all descendants.

indicator are marked for re�nement and those elements T with local indicators much smaller than

the local tolerance are marked for coarsening. If the grid is re�ned, the discrete problem is solved

again, and the adaptive process is iterated. Usually, only a small number of adaptive iterations are

needed in each time step. If the changes of the solution in time are very small, an explicit adaptive

strategy is also su�cient, where the problem is solved only once in each time step. For our problem

it turned out that it is even su�cient to perform a mesh adaptation every 3 time steps. For more

details about adaptive methods we refer to [30].

3.2. Discretization of the Navier-Stokes equations.

3.2.1. Time discretization. Since we are studying highly transient �ows the choice of the time

discretization is crucial. First order methods are not appropriate due to their strong numerical

dissipation. We use the so called fractional �-scheme which was introduced in [6]. For an appro-

priate choice of � and � (see below) this scheme is strongly A-stable and (nearly) non-dissipative,

see e.g. [22]. Furthermore, we use this scheme in a variant as operator splitting, which decouples

the two fundamental di�culties in the numerical treatment of the Navier-Stokes equations: the

solenoidal condition and the nonlinearity. Each time step is split into three fractional steps. In

the �rst and third step we compute a divergence free velocity �eld with corresponding pressure by

solving a linear saddle point problem and handling the nonlinearity explicitly. In the second step

we disregard the solenoidal condition and solve a non-linear elliptic problem for the velocity. The

stability and convergence properties of this scheme for the time discretization of the Navier-Stokes

equations are analyzed in [12, 17, 22].

The fractional �-scheme reads: Let � = 1�
p
2=2, �0 = 1� 2�, let � 2 ( 1

2
; 1) and � = 1� �.

For n � 0 and for s = �; 1 � �; 1 de�ne gn+s := g(�; tn + s �). Compute approximations un to

u(�; tn) and pn to p(�; tn) in the following way. For n = 0 set

(7) u
0 = u0

and for n > 0 calculate (un+1; pn+1) from (un; pn) in three steps (compare Fig. 4):

Step 1: De�ne

(8a) f
n+�

:=
1

� �
u
n
+

�

Red
�u

n � (u
n � r)u

n
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-

tn

tn+� tn+1��

tn+1

Figure 4. Subdivision of one time step for the �-scheme.

and solve the linear saddle point problem

(8b)

1

� �
u
n+� �

�

Red
�u

n+�
+rpn+� = f

n+�;

divu
n+�

= 0

in 
 with boundary conditions

(8c)
�

Red
@nu

n+� + pn+�n = 0 on �N ; u
n+� = g

n+� on �D:

Step 2: De�ne

(9a) f
n+1��

:=
1

�0 �
u
n+�

+
�

Red
�u

n �rpn

and solve the nonlinear elliptic problem

(9b)
1

�0 �
u
n+1�� �

�

Red
�u

n+1��
+ (u

n+1�� � r)u
n+1��

= f
n+1��

in 
 with boundary conditions

(9c)
�

Red
@nu

n+1��
= �pn+�n on �N ; u

n+1��
= g

n+1�� on �D:

Step 3: De�ne

(10a) f
n+1

:=
1

� �
u
n+1�� +

�

Red
�un+1�� � (un+1�� � r)un+1��

and solve the linear saddle point problem

(10b)

1

� �
u
n+1 �

�

Red
�u

n+1
+rpn+1 = f

n+1;

divu
n+1

= 0

in 
 with boundary conditions

(10c)
�

Red
@nu

n+1
+ pn+1n = 0 on �N ; u

n+1
= g

n+1 on �D:

3.2.2. The fully discrete equations. The fully discretized system is a �nite element approximation

of the weak formulation for the fractional �-scheme (8)�(10). Note that the transparent boundary

conditions on �N are natural boundary conditions in the weak equations (compare Sections 3.2.3

and 3.2.4).

We use the Taylor-Hood element on an adapted triangulation Tn of 
 for time step (tn; tn+1), i.e.

the discrete velocity space Xn is given by

Xn =
�
� 2 C0(�
; Rd ); �jT 2 Pk(T ; R2 ); T 2 Tn; � = 0 on �D

	
and the discrete pressure space Yn by

Yn =
�
	 2 C0

(�
); 	jT 2 P1(T ); T 2 Tn;
R


	 dx = 0

	
;
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where Pk denotes the space of polynomials of degree k, k = 1; 2. In the following we denote by

f�1; : : : ;�Nn
g the usual nodal basis of Xn, by f	1; : : : ;	Mn

g the basis of Yn and by X�

n
and Y �

n

the dual spaces of Xn and Yn respectively.

3.2.3. The solution of the linear saddle point problem. De�ne the linear operators An : Xn !X
�

n

by 

An�i; �j

�
=

1

��

Z



�i�j dx+
�

Red

Z



r�ir�j dx

for all i; j = 1; : : : ; Nn and Bn : Yn !X
�

n
by



Bn	i; �j

�
= �

Z



	i div�j dx

for all i = 1; : : : ;Mn, j = 1; : : : ; Nn.

Note that by the above variational formulation the out�ow condition (6d) is incorporated as a

natural boundary condition.

Denote by B�

n
: Xn ! Y �

n
the adjoint operator of Bn. For s = �; 1 (�rst and third step of the

fractional �-scheme, respectively), we have to solve the following linear saddle point problem: Find

U
n+s 2 gn+s +Xn and Pn+s 2 Yn such that

(11)

�
An Bn

B�

n 0

� �
U
n+s

Pn+s

�
=

�
F
n+s

0

�
in X�

n � Y �

n ;

where the functional F n+s 2X�

n
is given by the right-hand side of (8) and (10) respectively.

The saddle point problem (11) has a unique solution (U
n+s; Pn+s) since An is invertible and

the Taylor-Hood element is a stable discretization, i.e. the Ladyºenskaja-Babu²ka-Brezzi (LBB)

condition

(12) inf
	2Ynnf0g

sup
�2Xnnf0g

R



	 div� dx

k	kL2(
) k�kH1(
;Rd)

� 

is satis�ed with a constant  which only depends on the minimal angle of the underlying triangu-

lation. A proof of (12) can for instance be found in [25].

The pressure Pn+s is the unique solution of

(13) B�

n
A�1
n
Bn P

n+s
= B�

n
A�1
n
F
n+s in Y �

n

and the velocity Un+s is then given as

AnU
n+s

= F
n+s �Bn P

n+s in X�

n
:

The Schur complement operator B�

n
A�1
n
Bn : Yn ! Y �

n
is a symmetric, positive de�nite operator.

Hence, we can use a conjugate gradient method for the numerical solution of (13), as presented in

[6].

In �nite element methods all operators correspond to sparse matrices due to the �nite support

of the basis functions. The inverse of a sparse matrix is in general a dense matrix and thus the

matrix of B�

nA
�1
n Bn is not stored explicitly. In the conjugate gradient method we do not need the

matrix but only the evaluation of B�

n
A�1
n
Bn	 for some given 	 2 Yn. This can be done by solving

a problem of the form: For given 	 2 Yn, �nd � 2 Xn such that

(14) An� = Bn	 in X�

n

and then applying B�

n
to �.

Since the condition number of B�

n
A�1
n
Bn blows up for �

Re
! 0 we use a preconditioned conjugate

gradient algorithm. This ensures that the number of iterations does not depend on these param-

eters. This preconditioning involves the additional solution of a Laplace equation with Neumann

boundary conditions on �D and a Robin boundary condition on �N in the pressure space Yn, see

[4, 6] for details.
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3.2.4. The solution of the non-linear elliptic equation. De�ne the linear operators An : Xn !X

�

n

by 

An�i; �j

�
=

1

�0�

Z



�i�j dx+
�

Red

Z



r�ir�j dx

for all i; j = 1; : : : ; Nn and Dn : Xn �Xn !X
�

n
by



Dn(V ;�i); �j

�
=

Z



V � r�i�j dx

for all V 2Xn and i; j = 1; : : : ; Nn. The �nite element discretization of (9) leads to the following

non-linear equation for the velocity: Find Un+1�� 2 gn+1�� +Xn:

(15) AnU
n+1��

+Dn(U
n+1��;Un+1��

) = F
n+1�� in X�

n
;

where F n+1�� 2 X�

n is given by the right-hand side of (9).

For the numerical solution of this non-linear equation we use the nonlinear GMRES method pro-

posed in [4] and [20]. Fix k 2 N, and let V 0 an initial guess for the discrete velocity (V = U
n+�,

e.g.). For m � 0 compute V m+1 2Xn from V m by solving the linearized equation

AnV m+1 +Dn(V m;V m+1) = F
n+1�� in X�

n

approximately, i.e. use one step of the GMRES method with restart k and initial guess V m for the

solution of the resulting linear system. If V m+1 is a solution of (15) (or, in practice, the residual

of the equation is su�ciently small) then set Un+1��
= V m+1 and stop. Otherwise increment m

and do the next iteration.

If the time step size � is su�ciently small the nonlinear GMRES converges fast in practice (usually

5 to 10 iterations with k � 15).

3.2.5. Data transfer during mesh modi�cations. During mesh re�nement or coarsening we have to

transfer Un from the old grid Tn�1 to the new grid Tn. Using the standard nodal interpolation In
between Xn�1 and Xn, InU

n may not be discretely divergence free on the new grid and the term

1

� �
InU

n

in the right-hand side of (8) for the fully discrete problem may then lead to strong numerical

oscillations in the discrete pressure P .

In order to avoid these oscillations we therefore replace this term by

1

� �
�nU

n;

where �nU
n is a projection of the discrete velocity from the old time step onto the space of

discretely divergence free functions on the new grid as proposed in [5].

For that let �; � be positive constants and de�ne An : Xn !X
�

n
by



An�i; �j

�
= �

Z



�i�j dx+ �

Z



r�ir�j dx

for all i; j = 1; : : : ; Nn and de�ne F 2X�

n by

�

Z



U
n
�j dx+ �

Z



rUnr�j dx

for all j = 1; : : : ; Nn. Solving now a linear saddle point problem for �nU
n 2 gn+Xn and Q 2 Yn

such that �
An Bn

B�

n
0

� �
�nU

n

Q

�
=

�
F

0

�
in X�

n � Y �

n ;

we end up with a discretely divergence free projection �nU
n 2Xn of Un which then can be used

on the right-hand side of the fully discrete equations of (8). Note that the above projection is

nothing else but a generalized Stokes problem for �nU
n.
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3.3. Procedure of the Measurement. The frequencies in the numerical simulations were ob-

tained in the following way: We analyzed the temporal behaviour of a typical quantity of the �ow

at a �xed position x1 2 
 after computing for a su�ciently large number of periods. We used x1,

a point w=5 left and slightly above the edge of the labium. As quantity we chose the horizontal

velocity component u1(x1; �) at x1.

Note that the obtained frequencies do not depend on the speci�c choice of the quantity or position

x1, since the �rst harmonic is predominant for this set of values.

d = 0:5 mm

U0[m/s] wmin�wmax[mm] Sd( �f)

3.38 3.7 � 7.7 0.027

4.67 3.2 � 6.7 0.027

5.94 2.8 � 6.3 0.040

6.20 2.7 � 6.2 0.040

� � �

7.92 2.6 � 5.3 0.040

9.77 2.3 � 4.8 0.046

11.12 2.3 � 4.5 0.050

12.60 2.3 � 4.3 0.050

d = 1:0 mm

U0[m/s] wmin�wmax[mm] Sd( �f)

3.38 6.4 � 8.9 0.044

4.88 4.5 � 7.6 0.057

6.20 4.1 � 6.6 0.057

6.54 4.2 � 7.2 0.061

7.43 3.7 � 6.2 0.067

8.18 4.0 � 6.7 0.066

9.78 3.7 � 6.5 0.070

11.34 3.5 � 6.0 0.076

13.04 3.5 � 5.7 0.077

Table 1. The essential parameters of the experiment: the velocity U0 of the

center of the jet at the �ue exit, the range of the stand-o� distance w used for the

�t and the average Strouhal number Sd of the mean frequency measured, respec-

tively.

4. Experimental and Numerical Investigation

4.1. Experimental Investigation. A number of test runs precede the measurements described

here in order to explore the reliability of the conditions. This concerns higher velocities than

quoted below and also larger distances w. Especially larger distances show the expected higher

hydro dynamical modes and their frequency dependence are very similar to the �rst mode. The

frequency near the transition to the higher mode is lower by about 10% as compared with the

1=w-parametrization.

The measurements are performed as a variation in w in steps of 0.5 mm at the velocities given in

Table 1. The corresponding Reynolds numbers Red range between 113 and 416 for d = 0:5 mm

and between 225 and 873 for d = 1:0 mm. Note that for the ease of presentation in this table

only average Strouhal numbers (from average frequencies �f) are listed. In the comparison with the

simulations in Figure 5 all measuered frequencies enter individually.

4.2. Numerical investigation. We perform the numerical simulations for all combinations of

values for w = 2:5, 3:0, 3:5, 4:0, 4:5 [mm], U0 = 5:25, 7:00, 8:75, 10:50,12:25, 14:00 [m/s] and

d = 0:5; 1:0 [mm]. The o�set is " = 0:2 mm for d = 0:5 mm and " = 0:4 mm for d = 1:0 mm

respectively. The results of the simulations are listed in Table 2. The corresponding Reynolds

numbers Red range between 171 and 456 for d = 0:5 mm and between 343 and 912 for d = 1:0 mm.

In this table the Strouhal number is given for each setting of the stand-o� distance w.

As can be seen from Table 2 the frequencies behave quite well for most cases of the chosen param-

eters. There are only some limiting cases, where no reasonable frequencies could be obtained: For

d = 0:5 mm the �ow becomes more chaotic for bigger values of w and U0. For instance in the case

w = 4:5 mm and U0 = 14:00 m/s the �ow is no longer periodic or quasi periodic, so that no single

frequency could be extracted any more. In the case d = 1:0 mm the system does not oscillate for

small values of w and U0, see Table 2.
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d = 0:5 mm

U0 [m/s] w [mm] Sd(f)

2.5 0.052

3.0 0.042

5.25 3.5 0.036

4.0 0.031

4.5 0.028

2.5 0.055

3.0 0.045

7.00 3.5 0.039

4.0 0.034

4.5 0.029

2.5 0.057

3.0 0.047

8.75 3.5 0.041

4.0 0.037

4.5 0.030

2.5 0.059

3.0 0.049

10.50 3.5 0.043

4.0 0.036

4.5 0.034

2.5 0.061

3.0 0.051

12.25 3.5 0.045

4.0 0.040

4.5 0.035

2.5 0.062

3.0 0.053

14.00 3.5 0.045

4.0 0.038

4.5 �

d = 1:0 mm

U0 [m/s] w [mm] Sd(f)

2.5 �

3.0 0.094

5.25 3.5 0.080

4.0 0.073

4.5 0.064

2.5 �

3.0 �

7.00 3.5 0.085

4.0 0.076

4.5 0.068

2.5 �

3.0 0.097

8.75 3.5 0.086

4.0 0.077

4.5 0.070

2.5 0.111

3.0 0.100

10.50 3.5 0.087

4.0 0.078

4.5 0.070

2.5 0.117

3.0 0.100

12.25 3.5 0.090

4.0 0.079

4.5 0.072

2.5 0.116

3.0 0.103

14.00 3.5 0.092

4.0 0.079

4.5 0.072

Table 2. Parameters of the simulation: the maximal in�ow velocity of the the

jet U0, the stand-o� distance w, Strouhal number Sd of the frequency.

4.3. Evaluation and comparison. The considered Reynolds numbers Red with respect to the

height d are between 113 and 873 for the experiment and between 171 and 912 for the simulation;

note that the Reynolds number with respect to the stand-o� distance would typically be larger

by a factor 5 to 8. The corresponding frequencies for both the experiment and simulation are

displayed in Figure 5.

Along with the measured values of the frequency the dependence of the scaling law (3) with n = 1

(16) f = Cd
U0

w

is displayed with a global factor being �tted to given data. The following values have been deter-

mined in the experiment:

�Cd=0:5 mm = 0:33� 0:02 and �Cd=1:0 mm = 0:35� 0:02:

The error quoted is mainly due to the velocity determination in this experiment. It should be

mentioned that several preceding runs yield results which are consistent.
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Experiment Simulation
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Figure 5. Frequencies f versus stand-o� distance w from experiment and sim-

ulation. Top: d = 0:5 mm, bottom: d = 1:0 mm. The solid lines are the �tted

curves according to (16) with the experimental and numerical values of �Cd=0:5 mm

and �Cd=1:0 mm, respectively.

By the simulation we have computed the following average values for �Cd :

�Cd=0:5 mm = 0:29� 0:04 and �Cd=1:0 mm = 0:30� 0:03:

In general, there is an excellent agreement between experiment and simulation:

� There is a good proportionality of the frequency with the velocity for both, the experiment

and the simulation.

� There is almost no deviation from the simple law with n = 1. It should be mentioned that

this statement holds also for the higher hydro dynamical modes.

� The constants C are almost the same, i.e. �Cd=0:5 mm= �Cd=1:0 mm = 0:96 � 0:02 in the

experiment and �Cd=0:5 mm= �Cd=1:0 mm = 0:96� 0:11 in the simulation.

The following remarks concern further observations:

� The agreement of experiment and simulation for the absolute value of the constants Cd
within 10�15% is remarkable.

� Assuming a f � (1=w)n-dependence the results of our investigation might suggest that

n > 1 and therefore giving rise to �Cd=0:5 mm= �Cd=1:0 mm < 1, which is indeed observed.
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for the distance w where oscillations occur: especially at low velocities and for d = 1 mm

the regime of the oscillation of the �rst hydro dynamic mode is shifted to smaller values

of w in the simulation. The onset of oscillations is certainly in�uenced by noise which is

not treated explicitly in these investigations.

The result of the simple scaling law with n = 1 deserves a closer look. There is an indication

in the publication of Mattingly and Criminale [21], which leads to the correct power dependence:

Dispersion relations from the linearized �uid dynamical equations show a steeply increasing phase

velocity at low Strouhal numbers, but �attens out at Sd > 0:016. These calculations were done

with the Bickley velocity pro�le

U(y) =
U0

sech
2
(2y=d)

:

Under the approximation of a constant phase velocity the exponent would be n = 1, indeed.

There might be a concern about a possible dependence of the exponent of the scaling law on the

velocity pro�le at the exit of the �ue. It should be mentioned that the dependence of the real

part of the dispersion relation on various velocity pro�les was determined recently by numerical

solutions of the linearised problem by H. Preckel [27]. There, it is shown that the dependence of

the real part of the wave number, and therefore of the phase velocity on the velocity pro�le of the

jet is small even if the shape approaches a top hat pro�le. Indeed, in our experimental setup a

situation of a top hat pro�le was produced by forming a nozzle with two razor blades. From these

measurements a constant �C could be deduced which is very similar to the constant obtained with

the parabolic pro�le.

Finally, we present some pictures from the experiment and simulation. Figure 6 shows a visual-

ization of the jet in a special experimental setup using the `Schlieren method' with stroboscopic

illumination for d = 1 mm. As medium for the jet carbon dioxide is used. The `Schlieren method'

Figure 6. Experimental setup for d = 1 mm. The visualisation of the jet is

achieved by the `Schlieren method'. The picture shows the hot wire anemometer

in the retracted position.
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Figure 7. Modulus of the velocity at some t0, t0 + 0:5 [10�3s], t0 + 1:0 [10�3s]

and t0 + 1:5 [10�3s] respectively.

visualizes the jet shape using the change of the refractive index compared to the surrounding air.

The hot wire anemometer is seen near the exit of the �ue positioned at the retracted position used

for the frequency measurement. The jet oscillates around the horizontal axis given by the free jet

in case the edge is removed. During the experiment, edge vortices are observed above and below

the edge, being 180Æ out of phase to each other. In the picture, the vortex is below the edge during

the downward movement of the jet.

The last pictures refer to the simulations. Figure 7 and Figure 8 show 4 time instants of the

�ow for d = 0:5 mm and w = 4:0 mm. In Figure 7 isolines of the modulus of the velocity are

displayed, while in Figure 8 the di�erence u�U is plotted, where U is the time averaged velocity,

de�ned by U(x) := 1
T

R T
0
u(x; t) dt, T su�ciently large. Both �gures underline the highly transient

character of the �ow. Figure 9 shows a phase diagram u1(x2; �) versus u1(x1; �) with x2 a point

w=5 left of x1 demonstrating the periodic behaviour of the �ow. A typical adaptive mesh (with

a zoom to the region in between inlet and labium) from the simulation can be seen in Figure 10.

These pictures clearly demonstrate the bene�t from an adaptive methods: the grid has only a high
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Figure 8. Di�erence u�U at some t0, t0+0:5 [10�3s], t0+1:0 [10�3s] and t0+1:5

[10�3s] respectively.

resolution where needed (near the tip of the labium) while it is rather coarse in all other parts of

the computational domain.

5. Summary

In this paper we have investigated the edge tone phenomena by both, experiment and numerical

simulation. Main focus was the determination of the exponent n in (3). Only the use of adaptive

�nite elements made the simulations feasible and results in an excellent agreement of the exper-

imental and numerical determination of this exponent. We have shown that this exponent has a

n = 1 behaviour for the Reynolds numbers considered in this investigation. All other e�orts for

deriving the law (3) from �rst principles without input, which is either deduced from experiment

or adjusted by hand, do not yield the right behaviour. Moreover the agreement of experiment and

simulation for the absolute value of the constants Cd within 10�15% is remarkably good.
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Figure 9. Phase diagram.

Figure 10. Typical adaptive �nite element mesh; right: close up.
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