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Abstract. We consider di�raction at random point scatterers on general discrete point

sets in R
� , restricted to a �nite volume. We allow for random amplitudes and random

dislocations of the scatterers. We investigate the speed of convergence of the random

scattering measures applied to an observable towards its mean, when the �nite volume tends

to in�nity. We give an explicit universal large deviation upper bound that is exponential in

the number of scatterers. The rate is given in terms of a universal function that depends on

the point set only through the minimal distance between points, and on the observable only

through a suitable Sobolev-norm. Our proof uses a cluster expansion and also provides a

central limit theorem.
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1. INTRODUCTION AND SETUP

The study of the di�raction theory of `ordered point sets' is a classical subject to

physicists: Crystals produce sharp di�raction images, with bright spots known as Bragg
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peaks. It is known since the eighties (and mathematically well-understood by now)

that this is also true for quasi-crystals ([Hof95b]). They posses long-range order but no

translation symmetry and show geometrically intriguing di�raction patterns. Of course,

sharp behavior of the scattering image occurs only in the limit of an in�nite system of

scatterers, much in analogy to the sharpness of phase transitions in statistical mechanics.

What changes, if one is adding randomness (`disorder') to the picture? It is reason-

able to expect that there should be a well-de�ned limit of the di�raction image when

the number of scatterers tends to in�nity, under natural assumptions. What assump-

tions exactly do we need mathematically? Do sample uctuations matter? Do we have

control over corrections to the in�nite volume behavior when the number of scatterers

is �nite? There have been few mathematical papers about the �rst two questions (see

however [BaaMoo98], [BaaHoe00], [Hof95a]), and no results at all about the �nite volume

behavior.

Suppose at �rst one is choosing the scatterers according to some translation-ergodic

distribution while keeping the position �xed on a perfect crystal. Then the scattering

images will converge to their disorder-averages in a distributional sense, by soft ergodicity

arguments. This is true for almost any realization of the scatterers, using the ergodic

theorem. Note however that these arguments do not provide any control over the �nite

volume corrections of the observed scattering image.

When one gives up translation invariance of the underlying structure or the distribu-

tion, there are not very many mathematical results in the literature. Ergodicity argu-

ments are not available any more and one must resort to explicit methods. Subjecting

the sites of a quasicrystal to an i.i.d. thermal motion leads to an in�nite volume pic-

ture that is well-known from crystals: The intensity of the sharp peaks is reduced by a

Debye-Waller factor with a di�use background appearing. It is however not diÆcult to

rigorously justify this kind of law-of-large number result when no control over the speed of

convergence is required (see [Hof95a]). For mathematical results about the scattering at

random tilings in the in�nite volume limit we refer the reader to the recent review article

of [BaaHoe00]. This paper provides a number of interesting and pedagogical examples

and can also serve as a good introduction to mathematical scattering theory.

In the present paper we provide a contribution to the di�raction theory of random

scatterers on general point sets by answering the question

How large is the probability for a deviation of the scattering image of a �nite

portion of scatterers from its sample average?

This is the probabilistically natural question for self-averaging and the experimental-

ist's question `Is my system large enough?'. Our emphasis in this paper is that we do not

assume a lattice structure, quasiperiodic structure or any symmetry of the set or of the

distribution. For our results we only assume a minimal distance between the points of

the reference point set. In particular all of our results hold for lattices or quasi-crystals.

The answer then immediately leads to results about convergence of the scattering images

for almost every realization, when it is combined with information about the behavior of

the mean (without unnecessary assumptions as found in the literature).
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We consider two types of randomness: A) We choose the scattering amplitudes ac-

cording to a random distribution while keeping their locations �xed or B) subject them

to thermal motion around their sites. We can treat both types in a uni�ed way. In order

to investigate the selfaveraging properties in a physically meaningful way, we adopt the

following point of view. Fix an observable, modelling the counter used in an experiment,

and look at the result of the corresponding measurement. Then estimate the proba-

bility distribution of the resulting quantity (that is random w.r.t sample uctuations)

in any �nite volume. This provides much more information than the mere statement

of the convergence of the scattering measures in the sense of distributions, for almost

every realization of the scatterers, as it is conventionally done ([BaaMoo98], [BaaHoe00],

[Hof95a]).

We note that, for a typical observable (e.g. Gaussian test function) the resulting ex-

pression will involve all autocorrelation coeÆcients of the array of scatterers and there-

fore does not trivially decompose into independent parts, even for scatterers that behave

independently. In the language of statistical mechanics, the observable produces an inter-

acting system! Treating the autocorrelation coeÆcients as individual random variables

without using their dependence would suÆce for a mere convergence result, but would

lead to very bad large-deviation estimates. To deal with this interaction it will there-

fore be appropriate to employ (high-temperature) expansion methods from statistical

mechanics, as will become clear soon. This shows the usefulness of such methods to

give sharp explicit results, even in situations that do not a priori smell like dependent

spin systems and Gibbs-measures. So, it would be nice if the paper could also serve as

a motivation for probabilists and mathematical physicists who are sceptical about the

use of expansions to take a closer look. In fact we restrict ourselves to the situation of

independent scatterers to keep the technicalities down. To generalize the method to the

case of weakly coupled scatterers is possible, but it would complicate the theorems, and

make the general idea less transparent. We therefore leave it to a future paper.

In this setup we will provide general upper bounds on the probability that the mea-

surement in �nite volume deviates from its mean, and even provide explicit numerical

values of the constants appearing. These estimates are universal in the sense that they

depend only: 1) on the minimal distance between sites, but not on details of the point set;

and 2) on the concentration of the observable, measured in a suitable Sobolev-norm of its

Fourier-transform, but not on any more details. The fact that the estimate depends on

the point set only through the minimal distance is important because one might want to

be able to interpret the di�raction images without knowing beforehand the geometrical

structure of the point set, while having some physical a priori-estimate on the mimimal

distance.

Computing the average of a scattering image is simple and seeing whether it con-

verges or not reduces to the knowledge of the autocorrelation structure already needed

to understand the deterministic image of the point-set (see Appendix A).

Let us now de�ne the models and state our results more precisely. We discuss the

scattering image at in�nity that is created by single-scattering at (a �nite collection of)

the point-scatterers described by the following random measures.
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Model A: Disordered scattering amplitudes, �xed positions

We look at the complex random measure (`random Dirac comb') given by

��(�) =
X
x2�

�xÆx (1.1)

where Æx denotes the Dirac-measure at the site x. The point set ��R� is assumed to

be countable. Here �x are random, possibly complex scattering amplitudes, independent

over the sites x 2 �. They are assumed to be bounded.

Model B: Thermally dislocated scatterers

Here we look at the scattering image of the random measure given by

��(!) =
X
x2�

Æx+!x (1.2)

where !x are random (`thermal') dislocations taking values in R
� , independent over the

sites x 2 �. They are assumed to be bounded, too.

Fix any �nite volume �r��. Then, the object that contains all information about

the scattering image of the points in �r is the �nite volume scattering measure which is

the Fourier-transform of the corresponding �nite volume autocorrelation measure. (For

a summary of the basic notions of mathematical scattering theory, see Appendix A and,

for more details, e.g. Chapter II of [BaaHoe00].) Here, for Model A the autocorrelation

measure in the �nite volume �r is given by


�

r
:=

1

j�rj

X
y2�r��r

Æy

X
x2�r :
x�y2�r

�x�
�
x�y (1.3)

where the star denotes complex conjugate and the y-sum is over all di�erence vectors in

�r. Since we allow �r to be any �nite set, we have chosen the natural normalization by

the number of points (in contrast to [BaaHoe00]). This leads to simpler formulas in our

theorems. For Model B we put


!

r
:=

1

j�rj

X
x;x02�r

Æx�x0+!x�!x0 (1.4)

for the �nite volume autocorrelation measure. Suppose now a measurement on the scat-

tered intensity is performed that is described by an observable '(k) in Fourier-space,

modelling the counter. Usually it is assumed to be a real Schwartz function. The corre-

sponding result of the measurement is then given by ̂
�

r
(') �

R
̂
�

r
(k)'(k)dk. Here the

Fourier-transform of a tempered distribution  is de�ned by duality, ̂(') = ('̂), where

'̂ denotes the Fourier-integral of the Schwartz-function ' over R� . (For a quick reminder
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of the explanation for this and some comments, see Appendix A. For more expository

details, see [BaaHoe00].) The sample average of the measurement is
R
�(d�)̂�

r
('). This

object has the correct normalization (by the total number of scatterers) to be able to

converge to a well-de�ned limit, as it does of course for non-random scatterers on a

lattice. (We remark that this average won't converge [e.g. for i.i.d. scatterers] along

any sequence of volumes �r, but e.g. an increasing sequence of balls or cubes works for

crystals and quasi-crystals.)

Main result for Model A

Let us formulate the bound in the simplest form, which is suitable for the computation

of explicit numbers bounding the probability of a large deviation. It makes explicit

the uniformity of the large deviation upper-bound, independently of the set � (other

than the minimal distance between points in �), the form of the distribution (other

than through uniform bounds on the magnitude of the scatterers), and the observable '

(other than through a Sobolev-norm). We also provide a di�erent version of the large

deviation estimate in Chapter 4 under the name `Addition to Theorem 1'. It is slightly

sharper in certain cases but less useful for direct application. In Chapter 4 we also give

a corresponding Central Limit Theorem.

Now, to state the theorem we de�ne the following Sobolev-norm involving integrals of

derivatives up to the order of the dimension �, where we also introduce a scaling factor

a=2. For a function g : R� ! C we put

kgk�;a :=
1

jB1j

�X
k=0

1

k!

1

(a=2)��k

Z
R�

kd
k
g(y)kdy (1.5)

Here jB1j denotes the volume of the �-dimensional unit ball. The symbol

d
k
g(y) : (R� )k ! R

� denotes the k-th di�erential of g at the point y and

kdkg(y)k := supjv1j=:::jvkj=1 jd
k
g(y)[v1; : : : ; vk]j is the usual norm of a k-multilinear map-

ping, at any �xed point y, where jvj denotes the Euclidean norm.

Then we have

Theorem 1. Suppose that �r�R
�
is any �nite set and denote the minimal distance be-

tween its points by a. Assume that � = (�x)x2� are (possibly complex) random variables,

independent, but not necessarily identically distributed. Denote their distribution by �.

Suppose the uniform bounds j� (�x) j � M < 1 and j�x � �(�x)j � B < 1, for all

x 2 �r, for �-a.e. realization.

Then the corresponding random scattering image ̂
�

r
(') in the �nite volume �r obeys

the universal large deviation estimate

�

�����̂�r (')�
Z

�(d�)̂�
r
(')

���� � "

�
� 2 exp

�
�j�rj � J

�
"

Kk'̂k�;a

��
(1.6)

for any " > 0, for any function ' : R� 7! R, s.t. its Fourier-transform has �nite norm

k'̂k�;a.
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Here K = 2MB + B
2
, and J is a nonnegative, convex, strictly monotone function

that is independent of the form of the distribution � and the set �.

Remark. The universal function J : [0;1)! [0;1) in the theorem has the form

J(�") =

(
16

27D2

��
1 + 3

4
D�"
� 3
2 � 1� 9

8
D�"
�
; if " � d(4 + 3Dd)

d (�"� d (2 + dD)) ; else
(1.7)

where the numerical constants can be chosen like d = 0:0525, and D = 4:54 � 103. Note

the asymptotics J(�") � �"2

8
for �" # 0 and J(�") � d�" for �" " 1.

A structural and practical virtue of the form of the large-deviation estimate of Theo-

rem 1 lies in the fact that its dependence on the observable ' is formulated entirely in

terms of the continuum-object k'̂k�;a. All details of the set �r have disappeared! This

Sobolev-norm can be computed (at least numerically) with little e�ort, and so one may

easily derive explicit numbers.

Remark. Note the natural fact that the bound is scale-invariant in the following way:

Suppose the counter is modelled by a probability density '�(k) = �
��
'1(k=�) in Fourier-

space with variance (`precision of measurement') �2. (Think e.g. of a Gaussian!) Then,

by scaling we have k'̂�k�;a = k'̂1k�;a�. So we have k'̂�k�;a � (a�)��
R
R�
j'̂1(y)jdy with

� # 0, when a is �xed (under the condition that the higher derivatives are integrable).

This immediately controls the deterioration of our large deviation estimate when we make

� smaller to increase the precision of measurement of the scattering image. (Without loss

we could have chosen our length-scale in such a way that a = 1 from the beginning, so

that the general statement is regained by rescaling the observable in k-space. We believe

however that the present form of the theorem is more intuitive.)

Remark. The norm appearing is �nite in particular for the commonly used Schwartz-

test-functions. So our result in particular implies convergence-statements in the sense

of tempered distributions. Suppose we are given an increasing sequence of volumes �r.

Then we immediately obtain the strong law of large numbers as a consequence of Theorem

1, saying that the centered autocorrelation measure applied to a test function ' whose

Fourier transform has �nite norm converges to zero, for P-a.e. �. This follows trivially by

summing the exponential bound (1.6) over the volumes using the Borel-Cantelli Lemma.

Remark. The fact that the dependence on the observable ', on the point-set � and on

the distribution � can be expressed in terms of the handy quantity Kk'̂k�;a is not a

priori obvious. The occurrence of the norm however is not diÆcult to understand. It can

be motivated by noting that 4(Kk'̂k�;a)
2
=j�rj is an upper bound for the �-expectation

of the square of the modulus inside the probability on the l.h.s. of (1.6). (This is seen

using the independence of the scatterers by Fourier-transform, and substituting the norm-

estimate of Proposition 3.) Believing in the corresponding Gaussian behavior, the small

�"-behavior given in (1.7) should follow. An essential part of the real proof consists in

estimating all the higher moments contained in the Laplace-transform in terms of powers
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of Kk'̂k�;a. One can not expect a large deviation principle [which would in particular

mean the existence of the limit � limr
1

j�rj log � (j : : : j � ")] without any assumptions on

the set � other than minimal distance. In fact, without further assumptions on �, the

Laplace-transform won't converge.

Main result for Model B

For the Model B of thermal dislocations the result is quite analogous. Here, however

the Sobolev-norm of the variation of the Fourier-transform of the observable appears.

Again, there will be a sharper version of this result in Chapter 4 that is called `Addition

to Theorem 2', and the Central Limit Theorem.

Theorem 2. Suppose again that �r�R
�
is any �nite set and denote the minimial dis-

tance between its points by a.

Suppose that the dislocations ! = (!x)x2�r have independent, not necessarily identical

distribution �, such that j!xj � Æ < a=4, for all x 2 �r, �-a.s.

Then the �nite volume scattering image ̂
!

r
(') obeys the universal large deviation

estimate

�

�����̂!r (')�
Z

�(d!)̂!
r
(')

���� � "

�
� 2 exp

�
�j�rj � ~J

�
"

4Æ kd'̂k�;a�4Æ

��
(1.8)

The function ~J has the same form as the function J from Theorem 1 (see (1.7)), but

with the slightly better constant ~D = 4:38 �103
�
� D

�
instead of D, and the same constant

d.

Here the appearing norm has the obvious meaning obtained by extending the previous

de�nition (1.5) that was given for functions to linear functionals. It equals

kdgk�;a =
1

jB1j
P

�

k=0
1
k!

1
(a=2)��k

R
R�
kdk+1

g(y)kdy.

Remark. The restriction Æ < a=4 is only for simplicity. The more general statement of

the Addition to Theorem 2 stays true for any �nite Æ. The fact that the estimate involves

the Sobolev-norm of the derivative of ' rather than the Sobolev-norm of ' itself is due

to the fact that !
r
(�) is non-random when the function � is a constant.

Remark. Note again the scale-invariance of the estimate, where of course the spatial

distance Æ must be rescaled, too: As for Model A, take a rescaled observable '�(k) =

�
��
'1(k=�) in Fourier-space. Then we have Æ kd'̂�k�;a�4Æ = Æ� kd'̂1k�;a��4Æ�. So,

assuming that the higher derivatives are integrable, the quantity appearing in the large

deviation estimate behaves like

Æ kd'̂�k�;a�4Æ � Æ(a� 4Æ)����(�+1)
R
R�
kd'̂1(y)kdy with � # 0 and a; Æ �xed.
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We conclude this introduction with an outline of the rest of the paper along with

some ideas of the proof. In Chapter 2 we derive bounds on the Laplace transform of

the centered random scattering measures, applied to some observable '. To do so we

look at this quantity as a (possibly complex) Hamiltonian of a spin-system. Here the

random variables modelling the scatterers (resp. their dislocations) play the role of

spins. The Laplace-transform then becomes a partition function. We can treat it by

high-temperature expansion methods from statistical mechanics, under the assumption

that the interaction be small. The smallness of the interaction of the spin-system we

need for the expansion will be guaranteed by smallness of the Fourier-transform '̂ in a

suitable norm. From the point of view of the expansion it is natural to introduce discrete

�-dependent norms, so that we can control the terms of the expansion with constants that

are independent of the structure of �. The resulting bounds for the Laplace-transforms

including the computation of numerical constants are provided in Proposition 1 for Model

A. In Chapter 3 the work of Chapter 2 is adapted to treat Model B. In Chapter 4 we

state the sharpened results of the `Additions to Theorems 1 and 2' and the Central Limit

Theorem, along with their proofs. They follow immediately from the norm-estimates on

the Laplace-transform.

In Appendix A we recall the basic notions of scattering theory for point scatterers. In

Appendix B we give estimates on our discrete �-dependent norms in terms of Sobolev-

norms that depend on � only through the minimal distance. This input is needed to

show the uniformity in � and the nice bounds given in Theorems 1 and 2.

2. NORM BOUNDS ON MOMENT GENERATING FUNCTION

In this chapter we use an expansion to derive bounds on the Laplace transform of the

random variable in question. We will look at this random variable as a Hamiltonian of a

spin system. We will formulate the bounds obtained in this chapter in terms of a suitable

discrete norm that is close to what is needed for the proof of convergence, and compute

numerical constants. These constants are obtained employing the known Kotecky-Preiss

estimates for abstract polymer models. The result of this is found in Proposition 1.

Now, let us use the short notation

Xr(�) � j�rj (
�

r
(�)� � (�

r
(�))) (2.1)

for the nonnormalized centered autocorrelation measure applied to the function � : R� !

C . This is the random variable in question. To derive bounds on its Laplace-transform

and control the terms higher than second order in � we need a suitable norm. It turns

out that the appropriate norm is the discrete l1-type norm

k�k� := sup
x2�

X
z2�

j�(x� z)j (2.2)
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Of course, for � = aZ
d this is just an l1-norm, for general � it is slightly more complicated.

The result of this chapter is then the following.

Proposition 1. Suppose that the scatterers �x have independent, not necessarily identi-

cal distribution �, such that j� (�x) j �M <1 and j�x � �(�x)j � B <1 for all x 2 �,

�-a.s.

Then there are universal constants d > 0, and D < 1, independent of the set �

and the distribution � (for given K), such that, whenever � : R� ! C is such that

j�(x)j = j�(�x)j for all x 2 �, and Kk�k� � d, we have the estimate����log ��eXr(�)
�
�

1

2
� (Xr(�))

2

���� � j�rjD � (Kk�k�)
3 (2.3)

with K := 2MB +B
2
.

The values of the constants can be chosen like d = 0:0525, and D = 4:54 � 103.

Remark. Note that the quadratic term in � under the modulus may not have a limit with

r " 1, for general sets �, even in the i.i.d. case. Much less need the higher moments of

Xr(�) possess a limit. The essential point is however that all higher order terms in �

are estimated uniformly in the set �. This uniformity follows from the cluster expansion

error bounds and some explicit work.

Proof. We interpret Xr(�) as the (negative) Hamiltonian of a spin-system with spin-

variables �x, x 2 �r and open boundary conditions. It is then most intuitive from the

point of view of statistical mechanics to write it in the form

Xr(�) =
X

fx;zg��r
x 6=z

Ux;z +
X
x2�r

Vx
(2.4)

with the single-site potential

Vx = �(0)
�
j�xj

2
� �

�
j�xj

2
��

(2.5)

and the pair potential

Ux;y =�(x� y)
�
�x�

�
y
� �(�x�

�
y
)
�
+ �(y � x)

�
�y�

�
x
� �(�y�

�
x
)
�

(2.6)

for x 6= y. Note that when � is the Fourier-transform of a real function, the pair

potential is real. In general we allow it to be complex. Note that the potentials V and

U are linear in the function �. Note that in general the interaction will act between

all pairs scatterers �x. We look at the logarithm of the Laplace transform of Xr(�)

which becomes the partition function of the spin-system. Then we want to compute the

partition function of corresponding spin model to quadratic order in the strength of the

interaction and control the remainder term. If we restrict ourselves to suÆciently `small'
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� this will allow us to perform a cluster expansion, as we will see. This corresponds to

`small inverse temperature'. Such an expansion is in principle well-known in statistical

mechanics, but we have to be careful about the precise assumptions we need on � and

keep track of the constants appearing. It turns out that all we need to for the control is

the quantity Kk�k�.

Let us start. We note that

kVxk1 � j�(0)jB2
; kUx;yk1 � 2Kj�(x� y)j (2.8)

Then we put �[V ](�) := �( � e
P

x2�r
Vx)=�(e

P
x2�r

Vx) to separate the single-site contribu-

tions and write

�

�
e
Xr(�)

�
=�(e

P
x2�r

Vx) = �[V ]

0
@ Y
fx;zg��r

�
e
Ux;z � 1 + 1

�1A

=
X
T�Br

�

0
@ Y
fx;zg2T

�
e
Ux;z � 1

�1A
(2.9)

The set Br describes the set of edges on the complete graph with vertices �r. We write

T = P1 [ � � � [ Pn for the unique decomposition into connected components and call the

Pi's polymers. A polymer P is thus of the form P = ffx1; z1g; fx2; z2g; : : : ; fxk; zkgg

and will be considered as a connected graph. There is the obvious notion of pairwise

compatibility: P1; P2 are compatible i� they don't have any sites in common. So we

write the last expression as a sum over pairwise compatible families of polymers with

polymer-activities that depend on �.

�

�
e
Xr(�)

�
=
Y
x2�r

�
�
e
Vx
�
�

X
(P1;:::;Pn)c

nY
i=1

�Pi(�) (2.10)

Here the polymer activity of a polymer is given by

�P � �P (�) = �[V ]

0
@ Y
fx;zg2P

(eUx;z � 1)

1
A (2.11)

This is the general formulation of a polymer partition function in an abstract polymer

model. We want to perform the corresponding cluster-expansion for the logarithm of

it. This is nothing but the Taylor-expansion when the polymer-activities are treated as

independent (complex) variables �P .

After this is done, we expand the activities �P to quadratic order as functions of

�. Expanding the exponential in powers of � gives the following. Let us write gl(s) =P1
i=l

s
i

i!
for the remainder term of the Taylor-series of the exponential and use that

jgl(s)j � gl(jsj).
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For a general polymer we have the bound

j�P (�)j �
Y

fx;zg2P

g1 (ux;z) (2.12)

with the abbreviation

ux;z := kUx;zk1 (2.13)

using the uniform bound on the scatterers.

This is the bound we use to prove convergence of the expansion. We apply (a slight

extension of) Proposition A.1 that can be found in [K01]. It says

Proposition A.1 of [K01]. Suppose that
P

(P1;:::;Pn)c

Q
n

i=1 �Pi is a polymer partition

function, where: `Polymers' P are graphs on a set �r having at least one edge. Two

polymers are called compatible if they have disjoint vertex sets. The sum is over pairwise

compatible families of polymers. Assume that the (possibly complex) activities �P satisfy

the bounds

j�P j � e
�
P

b2P
�b where � := sup

x2�r

X
y2�r :y 6=x

e
��x;y � �

�
� 0:110909 (2.14)

for some function �b = �x;y � 0 on the set of edges on �r, where the above b-sum is over

all edges of the graph P .

Then, the cluster expansion converges, i.e. the Taylor-series of the logarithm of the

partition function has the representation

log
X

(P1;:::;Pn)c

nY
i=1

�Pi =
X
C

�C (2.15)

where the sum is over indecomposable subsets C�P. `Indecomposable' means that there

do not exist nonempty C1 and C2 s.t. the pairs P1, P2 are always compatible for P1 2 C1,

P2 2 C2. The weight �C =
P0

I:I2NP cI

Q
P2P �

IP

P
is the sum over all monomials in the

Taylor-expansion corresponding to multi-indices I with IP � 1 for all P 2 C and cI is

the corresponding combinatorial factor, depending only on the incompatibility relation.

Moreover, we have the decay-estimate of the form

X
C:C icpP

j�C j

�
�
�

�

�jCj
� a

�
jP j; where a

�
� 0:633 (2.16)

for any �xed P . Here the sum is over all clusters incompatible with P , i.e. containing at

least one polymer incompatible with P and we have put jCj =
P

P2C jP j where jP j is the
number of bonds of the polymer P .

The proof is the same as that provided in [K01]. Only the result was formulated for a

translation-invariant setting, and applied as a technical tool in a di�erent situation. (It
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relies on the the general Kotecky-Preiss estimate [KP86]. A simpler proof of this kind of

result is given in [BoZa00].)

We note that in our case � is estimated from above by

� � �(�) := sup
x2�

X
y2�:y 6=x

g1 (ux;y) � g1 (u) (2.17)

where we have put

u := sup
x2�

X
y2�:y 6=x

ux;y (2.18)

The second inequality of (2.17) follows from the positivity of the Taylor coeÆcients of

g1. This estimate explains the occurence of the norm k � k�. Such an estimate will be

used over and over below.

To compute the logarithm of the Laplace transform up to quadratic order in � we

need only keep clusters with at most two bonds. We get from the general estimate on

cluster sums provided by (2.16) the bound�������log �
�
e
Xr(�)

�
�
X
x2�r

log �
�
e
Vx
�
�

X
P :jP j=1;2

�fPg �
X

fP1;P2g:jP1j=jP2j=1;P1 6=P2
X(P1)\X(P2)6=;

�fP1;P2g

�������
� a

�
j�rj

�
g1(u)

��

�3

for u � log(1 + �
�)

(2.19)

The hard part of the Taylor-expansion is now done by the general estimate. It remains

to do some less elegant but elementary work: We still need to expand the three sums

appearing under the modulus on the l.h.s. up to quadratic order in �, estimate the

remainder terms and verify that they can be estimated in terms of the norms we have

introduced. The quadratic order term obviously produces 1
2
� (Xr(�))

2
.

Now, the �rst sum is trivially estimated. Let us de�ne the function l(x) = � log(1�

x)� x =
P

k=2 x
k
=k. We have

����log� �eVx�� 1

2
�
�
V

2
x

����� = ��log (1 + �(g2(Vx)))� �(g2(Vx)) + �(g3(Vx))
��

� l(g2(v)) + g3(v)

(2.20)

with
v := sup

x2�
kVxk1 (2.21)

Here we used that �(Vx) = 0.

Let us come to the cluster sums. The cluster weights are obtained by comparing

Taylor-coeÆcients (or by the inclusion-exclusion formula). One always has for single

polymer clusters appearing in the second sum under the modulus of (2.19) that �fPg =
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log(1 + �P ). For these clusters we will write �fPg = (log(1 + �P )� �P ) + �P . Using

�(Ux;y) = 0 we see that the activity of the single bond polymer P = fx; yg is in fact

of quadratic order in �. [This is better than the application of the bound (2.12) which

holds for all polymers would show.] Indeed,

j�P (�)j =

�����(Ux;yg1(Vx + Vy))

�(eVx+Vy )
+ �[V ](g2(Ux;y))

����
� ux;yg1 (2v) e

2v + g2 (ux;y)

(2.22)

Therefore, log(1 + �P ) � �P is of fourth order, for both jP j = 1; 2. Thus we need to

expand �P up to second order and control the third order error terms for both jP j = 1; 2.

Finally the �fP1;P2g-term is of forth order, too. To control its magnitude it is convenient

to use again Proposition A.1 using the improved bound (2.22).

Now, let us give some more details on the estimation of the error terms. To estimate

the di�erence between the cluster weights appearing under the second sum in (2.19) and

the corresponding activities we use
���fPg � �P

�� � l (j�P j) to get

������
X

P :jP j=1;2

�
�fPg � �P

������� �
X
fx;yg

x6=y

l
�
ux;yg1 (2v) e

2v + g2 (ux;y)
�

+
X
y2�r

X
x;z2�r

x6=y;z 6=y;x 6=z

l

�
g1(ux;y)g1(uy;z)

� (2.23)

Using the fact that all the functions appearing have positive Taylor coeÆcients we may

estimate the r.h.s. by

j�rj

�
1

2
l
�
ug1 (2v) e

2v + g2 (u)
�
+ l

�
g1(u)

2
��

(2.24)

Next we need the error terms for the quadratic approximation on the polymer weights.

Keeping the second order terms and using similar arguments as before we get for the

single-bond polymer�����P (�)� � (Ux;y(Vx + Vy))�
1

2
�
�
U
2
x;y

�����
� ux;y

�
2vg1 (2v) + g2 (2v) e

2v
�
+

1

2
u
2
x;y

g1 (2v) (1 + e
2v) + g3 (ux;y)

(2.25)

For a double-bond polymer P = ffx; yg; fy; zgg we get in a similar fashion

j�P (�)� � (Ux;yUy;z)j � ux;yg2(uy;z) + uy;zg2(ux;y) + g2(ux;y)g2(uy;z)

+ (ux;y + uy;z)
�
2vg1 (2v) + g2 (2v) e

2v
�
+

1

2
ux;yuy;zg1(3v)(1 + e

3v)
(2.26)
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Summing over the polymer and using the positivity of the Taylor coeÆcients of l; g1; g2
we obtain������

X
x2�r

log�
�
e
Vx
�
+

X
P :jP j=1;2

�fPg �
1

2
�
�
Xr(�)

2
������� � j�rj

 
l(g2(v)) + g3(v)

+
1

2
u
�
2vg1 (2v) + g2 (2v) e

2v
�
+

1

4
u
2
g1 (2v) (1 + e

2v) +
1

2
g3 (u)

+ 2ug2(u) + g2(u)
2 + 2u

�
2vg1 (2v) + g2 (2v) e

2v
�
+

1

2
u
2
g1(3v)(1 + e

3v)

!
(2.27)

Let us �nally treat the last cluster sum under the modulus on the l.h.s. of (2.19) involving

two single-bond polymers. For a pair of incompatible polymers P1, P2 one always has

by the inclusion-exclusion formula that �fP1;P2g = log(1 + �P1 + �P2) � log(1 + �P1) �

log(1 + �P2). The easiest way to treat this term here is by application of Proposition

A.1 to the restricted polymer system that contains only single-bond polymers. We can

use the improved second order bound (2.22). Denoting by �0C the corresponding cluster

weights we thus have from (2.16) that

X
C:C icpP

j�0C j

�
�
�

�0

�jCj
� a

�
jP j (2.28)

with the same a� � 0:633 and

�
0 := sup

x2�

X
y2�:y 6=x

j�fx;ygj � ug1 (2v) e
2v + g2 (u) (2.29)

So we get X
fP1;P2g:jP1j=jP2j=1;P1 6=P2

X(P1)\X(P2) 6=;

j�fP1;P2gj �
a
�

(��)2
j�rj

�
ug1 (2v) e

2v + g2 (u)
�2

(2.30)

Collecting terms we arrive at the �nal estimate����log��eXr(�)
�
�

1

2
�
�
Xr(�)

2
����� � j�rjh(u; v) (2.31)

with

h(u; v) =
a
�

(��)3
g1(u)

3 + l(g2(v)) + g3(v)

+
1

2
u
�
2vg1 (2v) + g2 (2v) e

2v
�
+

1

4
u
2
g1 (2v) (1 + e

2v) +
1

2
g3 (u)

+ 2ug2(u) + g2(u)
2 + 2u

�
2vg1 (2v) + g2 (2v) e

2v
�
+

1

2
u
2
g1(3v)(1 + e

3v)

+
1

2
l
�
ug1 (2v) e

2v + g2 (u)
�
+ l

�
g1(u)

2
�
+

a
�

(��)2
�
ug1 (2v) e

2v + g2 (u)
�2

(2.32)
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Now we use that u � 2Kk�k� and v � Kk�k�. So,Kk�k� �
1
2
log(1+��) =: d � 0:05258

implies that the cluster expansion is convergent. We get for these Kk�k� the third order

norm-estimate on the higher terms in the form

h(u; v) � h (2Kk�k�; Kk�k�) � D(Kk�k�)
3 (2.33)

with D := sup
x:0�x�d

h(2x;x)
x3

=
h(2d;d)

d3
. This is clear by the positivity of the Taylor-

coeÆcients of h(x). It is then a trivial matter to compute the constant D given in the

claim of the proposition numerically. We get D �;� 4352 + 63 + 124 � 4540 where the

�rst number gives a bound on the �rst term, the last number a bound on the last term,

and the middle number a bound on the remaining terms of (2.32). This shows that the

error term coming from the estimation of the higher order terms in the cluster expansion

that depends on u alone provides by far the main contribution.

Remark. Of course one cannot expect the series to converge without any smallness as-

sumptions on k�k�. In fact, for � = Z
� with � � 2 and �(x) = J1jxj=1 we are back to

the usual ferromagnetic nearest-neighbor Ising-model, and the series is known to diverge

for large J due to the existence of a phase transition.

3. THERMAL DISLOCATIONS

It is not too diÆcult to go through the proof given in the previous section to accom-

modate the case of Model B of thermal dislocations. There are some changes, however.

First of all, we need a di�erent norm estimating the variation of the (Fourier transform

of) the observable w.r.t. variations up to the magnitude Æ. We de�ne the semi-norm

k�k�;Æ := sup
x2�

X
y2�
y 6=x

sup
z;z02R�

jzj;jz0j�2Æ

���(x� y + z)� �(x� y + z
0)
��

(3.1)

Note that this seminorm vanishes on constant functions. We denote

Yr(�) � j�rj (
!

r
(�)� � (!

r
(�))) (3.2)

for the nonnormalized centered autocorrelation measure applied to the function �.

Then we have a norm-estimate on the Laplace-transform that is analogous to Propo-

sition 1. The result is the following

Proposition 2. Suppose that the dislocations ! = (!x)x2� have independent, not nec-

essarily identical distribution �, such that j!xj � Æ <1, for all x 2 �, �-a.s.
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Then there are universal constants d > 0, and ~D < 1, independent of the set � and

the distribution �, such that, whenever � : R� ! C is small enough such that k�k�;Æ � d

and j�(x)j = j�(�x)j for all x, we have the estimate

����log ��eYr(�)�� 1

2
� (Yr(�))

2

���� � j�rj ~D k�k
3
�;Æ (3.3)

The values of the constants can be chosen like d = 0:0525 (same as in Proposition 1),

and ~D = 4:38 � 103
�
� D

�
.

Proof. We follow the lines of the proof given in the previous section. Our `Hamiltonian'

now becomes
Yr(�) =

X
fx;zg��r

x6=z

Ux;z
(3.4)

with the pair potential

Ux;y =�
�
x� y + !x � !y

�
� �

�
�

�
x� y + !x � !y

��
+�
�
y � x+ !y � !x

�
� �

�
�
�
y � x+ !y � !x

�� (3.5)

for x 6= y. Note that there is no single site potential this time, since the corresponding

expression vanishes for x = y. We note that

kUx;yk1 � 2 sup
z;z02R�

jzj;jz0j�2Æ

���(x� y + z)� �(x� y + z
0)
��

(3.6)

So we have
u
0 := sup

x2�

X
y2�:y 6=x

ux;y � 2k�k�;Æ (3.7)

Now the steps of the proof of Proposition 1 stay true, leading to formula (2.31) with

v = 0. ����log��eYr(�)�� 1

2
�
�
Yr(�)

2
����� � j�rjh(u

0
; v = 0) (3.8)

with the function h given in (2.32). The constant d stays the same and for the constant
~D we get the better value ~D =

h(2d;0)
d3

�� 4352 + 10 + 12 � 4380. This shows that we

get essentially the same constant as that of Proposition 1 and the diagonal terms didn't

do much harm.
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4. MORE BOUNDS, CLT, AND FINAL PROOFS

In this chapter we state the more detailed versions of Theorems 1 and 2, along with

their proofs and also provide the Central Limit Theorem. In particular the results will

still contain the discrete �-dependent norms (2.2) resp. (3.1). We have preferred here to

write the estimates in terms of the autocorrelation-measure applied to a function (rather

than its Fourier-transform). We will use here the notations from Chapter 2 for Model A

and Chapter 3 for Model B.

Let us start with the result for Model A. Suppose that � is a given function on R� with

j�(x)j = j�(�x)j for all x 2 R
� . Recall the de�nition of the discrete norm k�k� given

in (2.2). Recall the notation Xr(�) � j�rj (
�

r
(�)� � (�

r
(�))) for the nonnormalized

centered autocorrelation measure applied to the function �. In this situation the following

result holds.

Addition to Theorem 1. We have the large deviation estimate

�

�
jXr(�)j � "j�rj

�
� 2 exp

 
�j�rj � jd;D

�
"

Kk�k�
; sr

�!
(4.1)

for all " > 0, where sr =
1
j�rj�

�
X

2
r

�
�

Kk�k�

��
� 4.

Here, for �xed s � 0 the function jd;D( � ; s) : [0;1)! [0;1) has the form

jd;D(�"; s) =

(
1

108D2

�
(12D�"+ s

2)
3
2 � 18D�"s� s

3
�
; if �" � d(s+ 3Dd)

d
�
�"� d

�
s

2
+ dD

��
; else

(4.2)

where d > 0, D < 1 are the same numerical constants as in Theorem 1. It is convex,

nonnegative, strictly increasing in �". It is decreasing in s and in D, and increasing in d.

Remark. The statement is stronger than the simpler one given in Theorem 1 in two ways.

First of all, the Sobolev-norm k � k�;a appearing therein is replaced by the sharper norm

k � k� introduced in (2.2). This is only very minor because the Sobolev-norm will be used

in practical applications. Next, we have kept the normalized variance sr. Usually sr will

be of the order unity, e.g. when � is a lattice and the scatterers are i.i.d. There can

however be cases of sets �r and functions � for which this quantity will go to zero with

r " 1.

Now, putting together the two pieces of information sr � 4 and k � k� � k � k�;a (see

Appendix B, Proposition 3) the simpli�ed statement of Theorem 1 immediately follows,

by the monotonicity of the function j in s.

The situation is completely analogous for Model B of thermal dislocations. To for-

mulate the corresponding statement we recall de�nition (3.2) for the non-normalized

autocorrelation-measure applied to �. Recall the discrete �-dependent semi-norm (3.1).

Then our result reads as follows.
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Addition to Theorem 2. Suppose that Æ <1. Then we have

�

�
jYr(�)j � "j�rj

�
� 2 exp

 
�j�rj � j

d; ~D

�
"

k�k�;Æ
; qr

�!
(4.3)

for all " > 0, where qr = 1
j�r j�

�
Y

2
r

�
�

k�k�;Æ

��
. Again d > 0, ~D < 1 are the same

numerical constants as in Theorem 2 and the function j
d; ~D is given in (4.2).

Remark. The statement of Theorem 2 follows from here by qr � 4 and the norm estimate

given in Appendix B, Proposition 4.

Looking at the variable on the central-limit scale we get the following result.

Theorem 3. Suppose that limr"1 �
�
X

2
r
(�)
�
j�rj

� 2
3 = 1. Then the standardized vari-

able Xr(�)
�
�
�
X

2
r
(�)
��� 1

2
converges weakly to a standard Gaussian distribution. The

same statement holds for Yr replacing Xr.

Finally we give the proofs.

Proof of the Addition to Theorem 1. Assuming the uniform estimates on the Laplace

transform provided in Proposition 1 it is a trivial matter to derive the large deviation

upper bound. Indeed, by the exponential Chebychev inequality we have

� (�Xr(�) � j�rj") � inf
t:0�t�d

e
� "

Kk�k�
j�rjt

�

�
e
�Xr(t�=(Kk�k�))

�

� exp

�
�j�rj � sup

t:0�t�d

�
"

Kk�k�
t�

1

j�rj
�

�
X

2
r

�
�

Kk�k�

��
t
2

2
�Dt

3

�� (4.4)

Call the function appearing in the exponent in the bound

jd;D(�"; s) := sup
t:0�t�d

�
�"t�

st
2

2
�Dt

3

�
(4.5)

Observe that jd=�;�3D(��";�
2
s) = jd;D(�"; s). A simple computation shows then that j

has in fact the explicit form (4.2) given in the Addition to the Theorem 1. (In the small

"-range the maximizer is t = �s+
p
12D"+s2

6D
, in the large "-range the maximizer is t = d.)

j is convex and nonnegative. The monotonicity properties claimed in the Addition to

Theorem 1 are now immediate by formula (4.5). Finally, it is a simple exercise to see

that sr � 4, using the independence of the scatterers.

The proof of the Addition to Theorem 2 is the same.
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Proof of Theorem 3. From the bound on the error for the quadratic approximation of the

Laplace transform given in Proposition 1 follows immediately that, for all �xed t 2 C we

have that limr"1 log �
�
exp

�
tXr(�)

�
�
�
X

2
r
(�)
��� 1

2

��
= t

2
=2, under the assumptions of

the theorem. This shows the claim. The proof for Model B is identical.

APPENDIX A: SCATTERING THEORY FOR POINT SCATTERERS

Let us briey recall the basic elementary formulae of scattering theory that describe

the connection between the autocorrelation 
�

r
(resp. !

r
) and the scattering image. For

notational concreteness we only consider Model A (�xed locations). (For more on this see

[Hof95b], [BaaHoe00]). Suppose a beam with wavelength �b hits the �nite collection of

point-scatterers located in the �nitely many points �r. Denote by e0 2 R
� the incoming

direction (where je0j = 1 is a unit vector). The modulus of the scattering amplitude �x
gives the amplitude of the scattered wave and the phase of �x gives a local phase shift at

the site x. Consequently the intensity of radiation scattered elastically in the direction

e is given by
���P

x2�r �xe
ik�x
���2 with k = 2�(e � e0)=�b. To understand the l.h.s. of this

formula take �x � 1 and note that in this case k � x is the phase di�erence of a beam

scattered at site x relative to that of a beam scattered at a (hypothetical) scatterer at

site 0.

Multiplying the intensity by a test-function '(k) (that models the sensitivity of a

counter) and normalizing by the number of scatterers then leads to the quantity �
r
('̂) =

̂
�

r
('). Here we choose the convention '̂(x) =

R
R�

e
ix�k

'(k)dx to de�ne the Fourier-

transform of a Schwartz-function '. The Fourier-transform of a tempered distribution is

then de�ned by duality.

So, when one is interested in the in�nite volume limit, one likes to look ([Hof95b])

at the scattering measures ̂�
r
in the sense of (tempered) distributions and is interested

in the weak limit r " 1, i.e. limr"1 ̂
�

r
(') where ' is a Schwartz function. Then, if a

limiting distribution exists at all, it can have a discrete part, an absolutely continuous

and a singular continuous part, the discrete part (Bragg peaks) caused by `order', the

continuous parts showing di�use scattering caused by `disorder' of the scatterers. This

is in analogy to statistical mechanics where sharp phase transitions occur only in the

in�nite volume.

Disorder-averages of di�raction measures

Our theorems give us good control over the uctuations of the scattering measures

̂
�

r
. The estimates are independent of the behavior of the mean, and the nature of the

limimiting distribution, if it exists. To compute their disorder averages of the scattering

measures is a trivial matter. We get
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Model A:
R
�(d�)̂�

r
(') = ̂

m

r
(') + 1

j�rj
P

x2�r
�
�(j�xj

2)� j�(�x)j
2
�
� '̂(0)

where �(�x) =: mx is the mean-value of the scattering amplitude and m = (mx)x2�. The
�rst term describes the scattering image of a system where the scattering amplitudes have

been replaced by their means and the second term a homogenous di�use background.

So we see, that a.s. convergence for the averaged scattering images holds if and only

if the two individual terms converge. This is true for � a crystal or quasicrystal and

�x are i.i.d., with e.g. �r being increasing balls. The latter statement follows since a

crystal or quasicrystal is known to possess a natural autocorrelation function. To see

how to construct an example of independent but not identically distributed scatterers

on a quasicrystal for which the mean converges, see Paragraph 7 of [BaaMoo98]. On

the other hand, it is simple to construct examples of systems on lattices with prescribed

convergence/non-convergence of each of the two terms along a given sequence of volumes.

This is done by choosing the distribution of �x's in a non-homogenous way; think of a

sparse sequence of increasing volumes �r and choose two di�erent distributions in the

annuli �r+1n�r for r even resp. r odd. Still, also in these examples without convergence of

the mean, under the assumption of uniform boundedness of the distribution, selfaveraging

in the sense of Theorem 1 would hold.

Model B:
R
�(d!)̂!

r
(') = 1

j�rj
P

x6=x02�r � ('̂(x� x
0 + !x � !x0)) + '̂(0)

Again, one can construct arti�cial distributions of dislocations of scatterers on a lattice

such that this expression does not have a well-de�ned limit. Choose e.g. !x � 0 for x

in the annuli �r+1n�r for r even, and a non-trivial bounded law for !x for r odd. Still,

self-averaging holds.

However, if the !x's are i.i.d. with single-site distribution � we get from thisR
�(d!)̂!

r
(k) = ̂

0
r
(k)j�̂(k)j2 +

�
1� j�̂(k)j2

�
where ̂

0
r
(k) is the density of the Fourier-

transform of the autocorrelation with all the scatterers sitting at their sites in �r and

j�̂(k)j2 = j�(ei!x�k)j2 is the famous Debye-Waller factor reducing the intensity of the

reexes.

APPENDIX B: NORM ESTIMATES

Finally we like to give the norm-estimates along with their proofs that are needed to

obtain the �nal form of the theorems as they are stated in the introduction.

Proposition 3. Suppose that ��R� and the number a is a bound on the minimal dis-

tance between the points in �. Then we have the bound on the discrete �-norm in terms

of the a-weighted Sobolev-type norm of the form kgk� � kgk�;a.

Remark. By scaling one may construct examples that show one can not do with less than

the �rst � derivatives, in general.



SELF-AVERAGING OF RANDOM DIFFRACTION MEASURES 21

Proof. Put disjoint balls of radius a=2 around the points of �. Consider anyone of them.

And assume without loss that its center is z = 0. Write for simplicity B � Ba=2(0).

Then we have jg(0)j� jBj �
R
B
jg(y)�g(0)jdy+

R
B
jg(y)jdy. To express the �rst integral

on the r.h.s. as an integral of the derivatives of g over B we use Polar coordinatesR

(de)

R
a=2

0
dr r

��1
��g(re)� g(0)

��. We use the one-dimensional Taylor-expansion of the

function r 7! g(re) =: �e(r) of the radial coordinate r up to order � � 1. Expanding

around the point r we get
��g(re)� g(0)

�� �P��1
k=1

r
k

k!
j�

(k)
e (r)j+

R
r

0
ds

s
��1

(��1)!
j�

(�)
e (s)j. This

gives
R
B
jg(y)� g(0)jdy �

P
�

k=0
(a=2)k

k!

R

(de)

R
a=2

0
dr r

��1j�
(k)
e (r)j. The reader should

check that also the term for k = � can be bounded in this form (interchange the orders of

integration between s and r!) This argument only works since the power ��1 reappears

under the integral of the remainder term. Dividing this inequality by the volume of B,

bounding the k-th directional derivatives by kdkgk, and integrating over the whole of R�

now proves the claim.

For the semi-norm kgk�;Æ that was introduced in (3.1) (needed to control Model B)

we get the following analogous estimate.

Proposition 4. Suppose that ��R� and the number a is a bound on the minimal dis-

tance between the points in �. Assume that ~a := a� 4Æ > 0. Then we have the bound in

terms of the ~a-weighted Sobolev-type semi-norm

kgk�;Æ � 4Æ 1
jB1j

P
�

k=0
1
k!

1
(~a=2)��k

R
R�nBa=2(0)

kdk+1
g(y)kdy

 
� 4Ækdgk�;~a

!
.

Proof. For �xed x 6= y in � and any jzj; jz0j � 2Æ we have jg(x� y+ z)� g(x� y+ z
0)j �R jz0�zj

0
supjej=1

�� d
dt
g(x� y + z + te)

�� dt � 4Æ sup
w2B2Æ(x�y) supjej=1

��� d
dt

���
t=0

g(w + te)
���.

Using the estimate in terms of the integrals over balls in terms of derivatives up to

order of the dimension provided in the proof of Proposition 3 we get for w 2 B2Æ(x� y)��� d
dt

���
t=0

g(w + te)
��� � 1

jB1j
P

�

k=0
1
k!

1
(~a=2)��k

R
B~a=2(w)

kdk d

dt

���
t=0

g(u+ te)kdu

Here we have used the radius ~a=2 because this implies that B~a=2(w)�Ba=2(x � y),

independently of w, and so we get that the r.h.s is bounded by
1

jB1j
P

�

k=0
1
k!

1
(~a=2)��k

R
Ba=2(x�y) kd

k+1
g(u)kdu. This gives the desired estimate by sum-

ming over y that are not equal to x, and extending the integral over all of R� nBa=2(0).
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