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SUBOPTIMAL CONTROL OF LASER SURFACE HARDENING

USING PROPER ORTHOGONAL DECOMPOSITION

D. HÖMBERG AND S. VOLKWEIN

Abstract. Laser surface hardening of steel is formulated in terms of an opti-

mal control problem, where the state equations are a semilinear heat equation

and an ordinary di�erential equation, which describes the evolution of the

high temperature phase. The optimal control problem is analyzed and �rst-

order necessary optimality conditions are derived. An error estimate for POD

(proper orthogonal decomposition) Galerkin methods for the state system is

proved. Finally a strategy to obtain suboptimal controls using POD is devel-

oped and validated by computing some numerical examples.
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1. Introduction

We consider a control problem that describes the laser surface hardening of steel.

The mode of operation of this process, which becomes more and more important,

especially in automative industry, is depicted in Figure 1.

laser beam

moving direction

workpiece

heated zone

Figure 1.1. Sketch of a laser hardening process.

A laser beam moves along the surface of a workpiece, creating a heated zone

around its trace. The heating process is accompanied by a phase transition, in

which the high temperature phase in steel, called austenite, is produced. Since

the penetration depth of the laser beam is very small, typically not more than

1mm, the heated zone is rapidly quenched by self-cooling, leading to further phase

transitions and the desired hardening e�ect.

Since one usually tries to keep the moving velocity of the laser beam constant, the

most important control parameter is the laser energy. Whenever the temperature

in the heated zone exceeds the melting temperature of steel, the work-piece quality

is destroyed. Hence, the decent adjustment of laser energy is an important task,

especially when the laser approaches a work-piece boundary or when there are large

variations in the work-piece thickness.

In [11] the corresponding optimal control problem with pointwise state con-

straints on the temperature is investigated. More details about models for phase

transitions in steel and the simulation of surface heat treatments can be found in

[8]. In [20] a survey of mathematical models for further laser material treatments

is given.

Proper orthogonal decomposition (POD) provides a method for deriving low

order models of dynamical systems. It was successfully used in a variety of �elds

including signal analysis and pattern recognition (see e.g. [9]), �uid dynamics and

coherent structures (see e.g. [5, 23]) and more recently in control theory (see e.g.

[1, 2, 14, 21, 22]) and inverse problems (see [4]). Surprisingly good approximation

properties are reported for POD based schemes in several articles, see [7, 13, 19],

for example. Symmetry preserving properties of POD approximations are analyzed

in [3]. Convergence results for POD methods applied to parabolic equations can be

found in [15, 16].

The new contribution of this paper is the development of a suboptimal control

strategy for laser surface hardening. We adopt a penalization approach to the state

constraint problem and approximate the state equations by a semi-implicit POD

Galerkin method. An error estimate for the state system is proved. This extends

the analysis done in [15]. Finally, POD is used to compute suboptimal controls.
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The paper is organized as follows: In Section 2 we analyze the optimal control

problem, prove convergence of the penalized problem to the state constraint one and

derive optimality conditions for the penalized problem. In Section 3 we propose a

POD Galerkin method for the state system, present an error estimate and describe

our suboptimal control strategy. The last section is devoted to numerical results.

2. The optimal control problem

In this section we specify the optimal control problem that will be considered

in this paper and prove existence of an optimal solution. Moreover, we study the

�rst-order necessary optimality conditions.

2.1. Problem statement and assumptions. Let 
 � R3 with Lipschitz bound-

ary, Q = 
 � (0; T ) and � = @
 � (0; T ). The formation of austenite is described

by the following initial-value problem (cf. [17]):

at = f(�; a) =
1

� (�)

�
aeq(�) � a

�
H
�
aeq(�) � a

�
in Q;(2.1a)

a(0) = 0 in 
;(2.1b)

where a is the volume fraction of austenite. The equilibrium volume fraction aeq and
the time constant � both depend on the temperature �. Concerning the nonlinearity
f we make the following assumptions:

(A1) aeq(x) 2 [0; 1] for all x 2 R, kaeqkC2(R) � c;
(A2) 0 < � � � (x) � �� for all x 2 R, k�kC2(R) � c;

(A3) H 2 C2;1(R), monotone approximation of the Heaviside function satisfying

H(x) = 0 for x � 0.

Since H is a regularized Heaviside function, the term xH(x) is a regularization

of the positive part function

[x]+ =
x+ jxj

2
:

Thus, with (A3) holding we have at � 0 a.e. in Q. In other words, we only

model the austenite growth during heating and keep the volume fraction when the

temperature decreases again.

Assuming the density �, the heat capacity cp, the heat conductivity k and the

latent heat L to be positive constants, we obtain the following heat equation:

(2.1c)

�cp�t � k�� = ��Lat + u� in Q;

@�

@�
= 0 on �;

�(0) = �0 in 
:

Since the main cooling e�ect is the self-cooling of the workpiece, we have assumed

homogeneous Neumann conditions on the boundary. The term ��Lat describes
the consumption of latent heat due to the phase transition. The term u(t)�(x; t) is
the volumetric heat source due to laser radiation, where the laser energy u(t) will
serve as a control parameter.

In addition to (A1)�(A3) we require the following assumptions:

(A4) �0 2 H1(
), �0 � �m � Æ a.e. in 
, where the constant �m > 0 denotes the

melting temperature of the steel and Æ is a positive constant;

(A5) � 2 L1(0; T ;L1(
));

(A6) u 2 L2(0; T ).
3



The goal of every heat treatment is to achieve a desired phase distribution, i.e., we

consider the cost functional of tracking type

(2.2) J(u) =
�

2

Z



ja(x; T )� ad(x)j2dx+
�

2

TZ
0

u2dt:

Here, � and � denote positive constants and ad is a given desired volume fraction

of austenite satisfying

(A7) ad 2 L2(
), 0 � ad � 1 a.e. in 
.

We study the state and control constrained optimal control problem

(CP)

(
minJ(u)

s.t. (�; a; u) solves (2.1), � � �m a.e. in Q and u 2 Uad;

where Uad = fu 2 L2(0; T ) : kukL2(0;T ) � Mg with some constant M > 0 is the

closed, bounded and convex set of admissible controls.

Introducing the mapping I : L2(0; T )! [0;1) by

(2.3) I(u) =

TZ
0

Z



�
� � �m

�2
+
dxdt;

where � = �(u) solves (2.1) for u 2 L2(0; T ), we approximate (CP) for " > 0 by the

control constrained optimal control problem

(CP")

8<
: minJ"(u) = J(u) +

1

2"
I(u)

s.t. (�; a; u) solves (2.1) and u 2 Uad:
Note that I(u) is Fréchet-di�erentiable and satis�es I(u) � 0 for all u 2 Uad and

I(u) = 0 () � � �m � 0 a.e. in Q:

2.2. Analysis of the state equations. The main result of this subsection is

Theorem 2.1. Suppose that (A1)�(A6) hold. Then (2.1) has a unique solution

(�; a) 2 H1;1(Q)�W 1;1(0; T ;L1(
));

where H1;1(Q) = L2(0; T ;H1(
))\H1(0; T ;L2(
)) is a Hilbert space endowed with

the common inner product.

To prove the theorem, we need the following

Lemma 2.2. With (A1)�(A6) holding we have:

a) Let � 2 L1(Q), then (2.1a)�(2.1b) has a unique solution satisfying

(2.4) 0 � a(x; t) < 1 a.e. in Q

and

(2.5) kakW1;1(0;T ;L1(
)) �M

with a constant M > 0 independent of �.
b) Let �1; �2 2 L2p(Q); 1 � p < 1, and a1; a2 the corresponding solutions to

(2.1), then there exists a constant C > 0, such that for all t 2 [0; T ]

ka1(t)� a2(t)kL2p(
) � C

tZ
0

k�1(s) � �2(s)k2pL2p(
)ds:
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c) Let � 2 L2(Q) and let f�kgk2N� L2(Q) with limk!1 k�k � �kL2(Q) = 0.

Then

ak �! a strongly in C([0; T ];L2(
)) \H1(0; T ;L2(
));

where ak and a are the solution to (2.1a)�(2.1b) with the temperature �k
and �, respectively.

Proof. a) This is a direct consequence of the theorem of Carathéodory, see e.g.

[26, p. 1044]. Using (A1)�(A3) and the theory of di�erential inequalities (cf.

[10, Lemma 2.1], we obtain (2.4), whereas (2.5) is a direct consequence of

(A1)�(A3).
b) Let �i 2 L2p(Q), 1 � p <1, i = 1; 2 and de�ne � = �1��2, then a = a1�a2

solves

(2.6) at = f(�1; a1)� f(�2; a2):

Due to (A1)�(A3) the function f(�; a) is Lipschitz-continuous in both

variables. Hence, testing (2.6) with a2p�1, 1 � p <1, we obtain

(2.7)
1

2p

Z



a2p(t)dx � c1

tZ
0

Z



j�j � jaj2p�1dx ds+ c2

tZ
0

Z



jaj2pdx ds

for two constants c1; c2 > 0. To estimate the �rst additive term on the

right-hand side of (2.7), we apply Young's inequality

cd � cq

q
+
dq

0

q0
; where c; d � 0 and

1

q
+

1

q0
= 1:

Choosing q = 2p we have q0 = 2p=(2p� 1). Hence, we obtain

tZ
0

Z



j�j � jaj2p�1dx ds � 1

2p

tZ
0

Z



j�j2pdx ds+ 2p� 1

2p

tZ
0

Z



jaj2pdx ds:

Inserting this bound into (2.7) and applying Gronwall's lemma, part b)

of the lemma follows.

c) This part is a direct consequence of b) and Lebesgue's lemma.

�

Proof of Theorem 2.1. To obtain an a-priori estimate for �, we test (2.1c) with �t
and apply Young's inequality, which gives the estimate

�cp

2

tZ
0

Z



�2sdxds+
k

2

Z



jr�(t)j2dx(2.8)

� �L

tZ
0

Z



a2sdxds+ j
j k�kL1(Q)

tZ
0

u2ds+
k

2

Z



jr�0j2dx

for all t 2 (0; T ], where j
j denotes the Lebesgue measure of 
. From (2.8), we

conclude the estimate

(2.9) k�kH1(0;T ;L2(
))\L1(0;T ;H1(
)) � c1;

with a constant c1 depending only on T and the data functions characterized in

(A1)�(A6).
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To prove the existence of a local unique solution, we apply the Banach �xed

point theorem.

To this end, we de�ne an operator F : K̂ � L2(Q)! L2(Q), �̂ 7! �, such that a
is the solution to

at = f(�̂; a) in Q;

a(0) = 0 in 
;

and � is the solution to (2.1c). FromLemma2.2 we �nd that a 2 W 1;1(0; T ;L1(
))

is uniquely determined. Since (2.1c) possesses a unique solution, see [18, Theorem

IV.9.1]), we can conclude that F is well-de�ned.

Let K̂ = f�̂ 2 L2(Q) : k�̂kL2(Q) � M̂ and �(0) = �0g, then with regard to (2.8)

we have F (K̂) � K̂, provided M̂ has been chosen large enough.

Now, we want to show that F is a contraction. Let �̂i 2 K̂ , i = 1; 2, �i = F (�̂i)

and �̂ = �̂1 � �̂2. Then � = �1 � �2 solves

(2.10)

�cp�t � k�� = ��L
�
f(�̂1; a1)� f(�̂2; a2)

�
in Q;

@�

@�
= 0 on �;

�(0) = 0 in 
:

We test (2.10) with �, integrate over 
 and over (0; t), t 2 (0; T ], and use (A3)�(A5)
and Lemma 2.2 to obtain

�cp

2

Z



�(t)2dx+ k

tZ
0

Z



jr�j2dx ds � c2

tZ
0

Z



�̂2dx ds+
1

2

tZ
0

Z



�2dx ds:

Using Gronwall's Lemma it follows that

tZ
0

Z



�2dx ds � tc3

tZ
0

Z



�̂2dx ds:

Hence, for T+ � T small enough, F is a contraction on L2(0; T+;L2(
)). Since

F is also a self-mapping on K̂, we can apply the Banach �xed point theorem to

conclude that F has a unique �xed point �, which is a local solution to (2.1). In

view of the global a priori estimate (2.9), we can extend the solution to the whole

time interval [0; T ] by a standard bootstrap argument. �

A direct consequence of Lemma 2.2 and (2.8) is the following stability estimate,

which will be used later on:

Lemma 2.3. Suppose that (A1)�(A6) hold and let �1; �2 be the solutions to (2.1c)

corresponding to u1; u2 2 L2(0; T ). Then there exists a constant C > 0 such that

k�1 � �2kH1;1(Q) � C ku1 � u2kL2(0;T ):

In view of Theorem 2.1 and Lemmas 2.2 and 2.3, the solution operator

(2.11) S : L2(0; T )! H1;1(Q)� C([0; T ];L2(
)); u 7! (�; a);

where (�; a) is the solution to the state system (2.1) is well-de�ned and Lipschitz

continuous. Moreover, we have

Lemma 2.4. Assume that (A1)�(A6) hold. Then S is Fréchet-di�erentiable and

its derivative

S0(u)h = (v; w)
6



is characterized by the linearized state equations

�cpvt � k�v = ��Lwt + h� in Q;(2.12a)

@v

@�
= 0 in �;(2.12b)

v(0) = 0 in 
;(2.12c)

wt = f�(�; a)v + fa(�; a)w in Q;(2.12d)

w(0) = 0 in 
;(2.12e)

where (�; a) = S(u).

Proof. The existence of a unique solution to the linearized state system (2.12) can

be derived similar to the proof of Theorem 2.1. Let (�h ; ah) be the solution to the

state system (2.1) corresponding to the control u+ h. De�ning

(2.13) p = �h � � � v; q = ah � a �w;

it remains to show that

(2.14) k(p; q)kH1;1(Q)�C([0;T ];L2(
)) = o
�
khkL2(0;T )

�
:

Using a �rst-order Taylor expansion of f (cf. (A1)�(A3)), it follows that (p; q)
satis�es

�cppt � k�p = ��Lqt in Q;(2.15a)

@p

@�
= 0 in �;(2.15b)

p(0) = 0 in 
;(2.15c)

q(0) = 0 in 
;(2.15d)

qt = f(�h ; ah)� f(�; a) � f�(�; a)v � fa(�; a)w

=
h
f�(�

� ; a�)� f�(�; a)
i
(�h � �) +

h
fa(�

� ; a�)� fa(�; a)
i
(ah � a)

� f�(�; a)p� fa(�; a)q;

(2.15e)

where (�� ; a�) = (� + �(�h � �); a + �(ah � a)) with some � 2 (0; 1). Recall that

a 2 L1(0; T ;L1(
). Testing (2.15e) with q, integrating over Qt = 
 � (0; t) and
using (A1)�(A3) as well as Young´s inequality and Lemma 2.2-b) there exists a

constant c1 > 0 such that

Z



q2(t) dx � c1

tZ
0

Z



�
(�� � �)4 + p2 + q2

�
dxds:

In view of Gronwall's lemma, we obtain

(2.16)

Z



q2(t) dx � c2

tZ
0

Z



(�h � �)4 dxds+ c2

tZ
0

Z



p2 dxds

and then, by comparison in (2.15e)

(2.17)

tZ
0

Z



q2s dxds � c3

tZ
0

Z



(�h � �)4 dxds+ c4

tZ
0

sZ
0

Z



p2 dxd~s:

7



We test (2.15a) with pt and obtain an estimate similar to (2.8), from which we can

infer

(2.18) kpk2
H1;1(Q

t
) � c5

tZ
0

Z



(�h � �)4 dxds+ c6

tZ
0

kpk2
L2(0;s;
) ds:

Invoking Gronwalls' lemma once again, the continuous embedding H1;1(Qt) �
L4(Qt), valid for dim 
 � 3, and Lemma 2.3 concludes the proof. �

2.3. Existence of optimal control. To prove existence of an optimal control

we need

Lemma 2.5. With (A1)�(A6) holding the solution operator

S : L2(0; T )! L2(Q)� C([0; T ];L2(
))

is compact, i.e. for any sequence fungn2N� L2(0; T ), un ! u weakly, we have

(�n; an) ! (�; a) strongly in L2(Q) � C([0; T ];L2(
)), where (�; a) = S(u) is the

solution to (2.1) with respect to the control u.

Proof. Since fungn2Nis bounded in L2(0; T ), (2.9) applies and there exists a

subsequence f�ngn2Nstill indicated by n satisfying �n ! � weakly in H1;1(Q)
and strongly in L2(Q). Using Lemma 2.2-c) we also have an ! a strongly in

C([0; T ];L2(
)) \ H1(0; T ;L2(
)). Hence it is easy to see that we can pass to

the limit in the state equations (2.1). Since their solution is uniquely de�ned, the

convergence holds for the whole sequence. �

Theorem 2.6. With (A1)�(A7) holding (CP) has an optimal solution u�.

Proof. Let K = fu 2 Uad j �(u) � �m a.e. in Qg. We proceed in 3 steps:

a) intK 6= ;: Let u � 0, then u 2 Uad. Moreover, testing (2.1c) with [���0]+,
we obtain from at � 0 a.e. in Q that

1

2

Z



[�(t) � �0]2+dx+ k

tZ
0

Z



jr[�� �0]+j2dx ds = ��L
tZ

0

Z



at[� � �0]+dx ds � 0:

Thus, � � �0 a.e. in Q and in view of (A4) and the stability estimate of

Lemma 2.3 we see that intK 6= ;.
b) (CP") has a solution u": For " > 0 �xed, we take a minimizing sequence

fu"ngn2N� Uad such that limn!1 J"(u"n) = infu2U
ad

J"(u). Since fu"ngn2N
is bounded, there exists a subsequence with u"n ! u" weakly in L2(0; T ).
Applying Lemma 2.5, we obtain

(�"n; a
"
n)! (�"; a") strongly in L2(Q) �C([0; T ];L2(
));

and (�"; a") solve the state system for the control u". Owing to the weak

lower semi-continuity of norms, we can pass to the limit in J"(u), hence
(CP") has a solution u".

c) Passing to the limit with "! 0: Reasoning as before, there exists a subse-

quence fu"g">0 still indicated by ", such that

u" �! u� weakly in L2(0; T )

�" �! �� strongly in L2(Q)

a" �! a� strongly in C([0; T ];L2(
))

and (��; a�) = S(u�). Moreover, we have

J"(u") = J(u") +
1

2"
I(u") � J(û) for all û 2 K

8



and thus

(2.19) I(u") � 2"J(û) + 2"J(u"):

Passing to the limit in (2.19), we obtain I(u�) = 0, i.e., �� � �m a.e. in Q.
Finally, we see

(2.20) J(u") � J(u") +
1

2"
I(u") � J(û) for any û 2 K:

From (2.20) we infer

J(u�) � lim inf
"!0

J(u") � J(û) for any û 2 K

so that u� is a solution to (CP).

�

2.4. First-order optimality conditions. In the following theorem the �rst-

order necessary optimality conditions for (CP") are characterized via the adjoint

equations.

Theorem 2.7. Suppose that (A1)�(A7) hold. Let u 2 Uad be a solution to (CP")

and (�; a) = S(u) be the corresponding solution to the state system. Then there

exists a unique solution (p; q) 2 H1;1(Q)�H1(0; T ;L2(
)) of the adjoint system

��cppt � k�p = f�(�; a)(q � �Lp) +
1

"
[� � �m]+ in Q;(2.21a)

@p

@�
= 0 in �;(2.21b)

p(T ) = 0 in 
;(2.21c)

�qt = fa(�; a)(q � �Lp) in Q;(2.21d)

q(T ) = �(a(T ) � ad) in 
:(2.21e)

Moreover, p satis�es the variational inequality

(2.22)

TZ
0

Z



(�p+ �u)(~u � u)dx dt � 0 for all ~u 2 Uad:

Proof. The existence of a unique solution to (2.21) can be derived similar to the

proof of Theorem 2.1. For brevity we write f� = f�(�; a) and analogously fa =

fa(�; a). To show that (p; q) are the adjoint variables, we test (2.12d), (2.12e) with
q, integrate over Q and use (2.21d), (2.21e) to obtain:

(2.23)

0 =

TZ
0

Z



(wt � f�v � faw)qdx dt

=

TZ
0

Z



�
(�qt � faq)w � f�vq

�
dx dt+

Z



(qw)(T )� (qw)(0) dx

=

TZ
0

Z



�
� �Lfawp� f�vq

�
dxdt+ �

Z



(a(T )� ad)w(T )dx:
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Next, we test (2.12a)�(2.12c) with p and use (2.23):

(2.24)

0 =

TZ
0

Z



(�cpvt � k�v + �Lf�v + �Lfaw � h�)p dx dt

=

TZ
0

Z



�
(��cppt � k�p+ �Lf�p)v + �Lfawp� h�p

�
dxdt

=

TZ
0

Z



�1
"
[� � �m]+v + f�qv + (�Lfaw � h�)p

�
dxdt

=

TZ
0

Z



�1
"
[� � �m]+v � h�p

�
dxdt+

Z



�(a(T ) � ad)w(T ) dx:

For every h 2 L2(0; T ) such that u+ h 2 Uad, we have
J(u) � J(u+ h):

Applying Theorem 2.6 and (2.24) we have

0 � J 0(u)h = �

Z



(a(T )� ad)w dx+
1

"

TZ
0

Z



[� � �m]+v dxdt+ �

TZ
0

uh dt

=

TZ
0

Z



h(�p+ �u) dx dt:

Since Uad is convex, we have derived (2.22), which �nishes the proof. �

3. Suboptimal control utilizing pod

This section is devoted to a discussion of the POD method for the optimal

control problem (CP"). We analyze a semi-implicit POD Galerkin scheme for the

state equations (2.1) and present an error estimate. Moreover, we describe the

reduced-order modeling for (CP") that is used in Section 4.

3.1. The pod method. Let u 2 Uad be arbitrary. Throughout we denote by

(�; a) the unique solution to the state equations (2.1) satisfying (�; a) 2 H1;1(Q)�
C([0; T ];L1(
)).

For given n 2 N let

0 = t0 < t2 < : : : < tn = T

be an equidistant grid in the interval [0; T ] with time step �t = T=n. Suppose that
the snapshots �(tj) of (2.1c) at the given time instances tj, j = 0; : : : ; n, are known.
We set

vj =

(
�(tj) for j = 0; : : : ; n;

@t�(tj�n) for j = n+ 1; : : : ; 2n;

where

@t�(tj ) =
�(tj) � �(tj�1)

�t
;

and introduce the subspace

V = span fv0; : : : ; v2ng:
We refer to V as the ensemble consisting of the snapshots fvjg2nj=0, at least one

of which is assumed to be nonzero. Notice that V � H1(
) by construction.
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Throughout the remainder of this section we denote by X either the space H1(
)

or L2(
) endowed with their common inner products.

Let f igdi=1 denote an orthonormal basis for V with d = dimV. Then each

member of the ensemble can be expressed as

(3.1) vj =

dX
i=1

(vj ;  i)X i for j = 0; : : : ; 2n;

where (� ; �)X denotes the inner product in X. The method of POD consists in

choosing an orthonormal basis such that for every ` 2 f1; : : : ; dg the mean square

error between the snapshots fvjg2nj=0 and the corresponding `-th partial sum of (3.1)

is minimized on average:

(3.2)

8>><
>>:

min
f 

i
g`
i=1

2nX
j=0

�j




vj �X̀
i=1

(vj ;  i)X i




2
X

s.t. ( i;  j)X = Æij for 1 � i � `; 1 � j � i:

Here f�jg2nj=0 are positive weights, which for our purposes are chosen to be

�j =

8<
:

�t

2
if j 2 f0; n; 2ng;

�t otherwise.

A solution f ig`i=1 to (3.2) is called POD basis of rank `. The subspace spanned

by the �rst ` POD basis functions is denoted by V `.

Remark 3.1. Note that

I1n(�) =
nX
j=0

�j




vj � `X
i=1

(vj ;  i)X i




2
X

is the trapezoidal approximation for the integral

I1(�) =
TZ
0




�(t) � `X
i=1

(�(t);  i)X i




2
X
dt:

Moreover, the term

I2n(�) =
2nX

j=n+1

�j




vj �X̀
i=1

(vj ;  i)X i




2
X

can also be interpreted as a trapezoidal approximation for the integral

I2(�) =
TZ
0




�t(t) �X̀
i=1

(�t(t);  i)X i




2
X
dt:

where, in addition, the time derivatives are discretized by di�erence quotients.

Therefore, In = I1n + I2n is an approximation for the integral I = I1 + I2. For

� 2W 2;2(0; T ;X) we have

lim
�t!0

kIn � IkL(X) = 0;

where L(X) denotes the Banach space of all bounded linear operators on X. 3

Using a Lagrangian framework the solution to (3.2) is characterized by the fol-

lowing optimality conditions:

(3.3) R = � ;
11



see [25], where R : X ! X is given by

Rz =
2nX
j=0

�j (z; vj)Xvj for z 2 X:

Note that R is a linear, bounded, self-adjoint and nonnegative operator. Moreover,

since the image of R has �nite dimension, R is also compact. By Hilbert�Schmidt

theory (see e.g. [24, p. 203]) there exist an orthonormal basis f igi2Nfor X and a

sequence f�igi2Nof nonnegative real numbers so that

(3.4) R i = �i i; �1 � : : : � �d > 0 and �i = 0 for i > d;

Moreover, V = span f igdi=1.
Note that R and thus f�igi2Nas well as f igi2Ndepend on n. In what follows

the notation of this dependence is dropped.

The sequence f ig`i=1 solves the optimization problem (3.2). This fact and the

error formula below were proved in [5], for example.

Proposition 3.2. Let �1 � : : : � �d > 0 denote the positive eigenvalues of R with

the associated eigenvectors  1; : : : ;  d 2 X. Then, f ig`i=1 is a POD basis of rank

` � d, and we have the error formula

(3.5)

2nX
j=0

�j




vj � X̀
i=1

(vj;  i)X i




2
X

=

dX
i=`+1

�i:

Remark 3.3. The POD basis of rank ` can be computed as follows: First solve the

eigenvalue problem

(3.6) Kwi = �iwi for i = 1; : : : ; `;

where the positive semide�nite (2n + 1) � (2n + 1)-matrix K has the elements

Kij = (vj+1; vi+1)X and the nonnegative eigenvalues satisfy �1 � : : : � �d. Then

for ` � d we �nd

 i =
1p
�i

2nX
j=0

�jw
j
i vj for i = 1; : : : ; `:

Here wji denotes the j-th component of the eigenvector wi. 3

3.2. A pod galerkin scheme for the state equations. For r 2 N we set

m = rn and introduce the time grid

�j = j�� for j = 0; : : : ;m with �� =
T

m
:

Note that for r = 1 the t- and � -grids coincide. The problem consists in �nding a

sequence f(�j` ; a
j

`)gmj=0 as follows: Solve
(3.7a) a0 = 0 and (�0` ;  )L2(
) = (�0;  )L2(
) for all  2 V `:

Then, for j = 1; : : : ;m compute �j
`
by solving

(3.7b)
�cp(@� �

j

` ;  )L2(
) + k(r�j` ;r )L2(
)
= (u(tj)�(tj) � �Lf(�j�1` ; aj�1` );  )

L2(
)
for all  2 V `;

where @� �
j

` = (�j` � �j�1` )=�� and use �j` to get aj` from

(3.7c) @�a
j

`
= f(�j

`
; aj�1
`

) a.e. in 
:

To prove an error estimate for the scheme (3.7) we need more regularity for �0,
�, and u. Therefore, we replace (A4)�(A6) with

(A4') �0 2 H3(
);

12



(A5') � 2W 1;1(0; T ;L1(
));

(A6') u 2 H1(0; T ).

Theorem 3.4. Suppose that (A1)�(A3) and (A4')�(A6') hold and that the t- and
� -grids coincide. Let (�; a) be the unique solution of (2.1). We assume that (3.7)

has a unique solution f(�j
`
; aj
`
)gnj=0. If �t is su�ciently small, then there exists a

constant C > 0 depending on �, a, T , but independent of ` and n, such that

(3.8)

nX
j=0

�j k�(tj) � �j`k2L2(
) + max
0�j�n

ka(tj)� aj
`
k2L2(
)

� C
�
kSk2

dX
i=`+1

�
j( i; �0)X j

2
+ �i

�
+ (�t)2

�
;

where S denotes the sti�ness matrix given by

(3.9) S = ((Sij)) 2 R`�` with Sij = ( j ;  i)H1(
)

and k � k2 stands for the spectral norm for symmetric matrices.

Remark 3.5. a) Note that in case X = H1(
) we have kSk2 = 1 by construc-

tion (cf. (3.2).

b) In [16] non-equidistant time grids, which need not coincide, were considered

for a general equation in �uid dynamic. An analogous analysis for our

semilinear problem can be the focus of a future research.

c) In (3.8) the eigenvalues and eigenfunctions depend on n, i.e., �i = �ni and

 i =  ni . Using spectral theory we can derive bounds that are independent

of n, see [16]. 3.

For the proof we will make use of the following result, which is taken from [15]:

Lemma 3.6. Let the so-called Ritz projection P ` : V ! V `, 1 � ` � d, be given by

(3.10) (P `';  )H1(
) = (';  )H1(
) for all  2 V `;

where ' 2 V . Assume that � 2 H2(0; T ;L2(
)) and de�ne

%j = P `�(tj)� �(tj) and �j = �t(tj) � @tP `�(tj ):

Then, there exists a constant C > 0, independent of ` such that

�t

nX
j=0

k%jk2
L2(
) � CkSk2

dX
i=`+1

�i;

�t

nX
j=0

k�jk2
L2(
) � C

�
(�t)2

TZ
0

k�tt(t)k2L2(
) dt+ kSk2
dX

i=`+1

�i

�
;

where S denotes the sti�ness matrix introduced in (3.9).

Moreover, we need the following technical

Lemma 3.7. Let �i, i 2 N, be nonnegative numbers satisfying the recursion

�0 � B and �i � (1 + Æ)�i�1 +B for i = 1; 2; : : : :

Then

�i �
B

Æ

�
e(i+1)Æ � 1

�
:
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Proof. Summation upon i it follows from �0 � B that

�i � (1 + Æ)�i�1 +B � (1 + Æ)i�0 +B

i�1X
j=0

(1 + Æ)j

� B

iX
j=0

(1 + Æ)j =
B

Æ

�
(1 + Æ)i+1 � 1

�
:

Utilizing the inequality 1 + x � ex the claim follows directly. �

Proof of Theorem 3.4. Due to (A4')�(A6') the right-hand side of (2.1a) belongs to

H1(0; T ;L2(
)). Therefore, we can di�erentiate formally with respect to time:

(3.11) att = f�(�; a)�t + fa(�; a)at in Q:

In view of (2.8) and Lemma 2.2-a), we obtain

(3.12) kattkL2(Q) � c1

for a constant c1 > 0. Now we can also di�erentiate (2.1c) with respect to time,

which results in

�cp�tt � k��t = ��Latt + ut�+ u�t in Q;

@�t

@�
= 0 on �;

�t(0) =
1

�cp

�
k��0 � �Lf(�0 ; 0) + u(0)�(0)

�
in 
:

Note that according to (A4')�(A6') we have �t(0) 2 H1(
), hence we can test with

�tt and �nd that there exists a constant c2 > 0 satisfying

(3.13) �cp

tZ
0

k�ss(s)k2L2(
) ds+
k

2
kr�t(t)k2L2(
) � c2:

In view of (3.13) we have �t 2 C([0; T ];L2(
)). From (3.12) we infer that also

at 2 C([0; T ];L2(
)). Hence, for x 2 
 n O, where O is a set of measure zero, we

can consider a second-order Taylor expansion for a. Using (2.1a) and (3.11) we

obtain

(3.14)

a(tj +�t) = a(tj) + �tat(tj) +
1

2
(�t)2att(tj + �)

= a(tj) + �tf(�(tj ); a(tj)) +
1

2
(�t)2f�(�(tj + �); a(tj + �))�t(tj + �)

+
1

2
(�t)2fa(�(tj + �); a(tj + �))at(tj + �);

for a � 2 (0;�t). Moreover, there exists a constant c3 > 0 satisfying

kf�(�(tj + �); a(tj + �))�t(tj + �) + fa(�(tj + �); a(tj + �))at(tj + �)kL2(
) � 2c3

Now, we de�ne

aj = aj` � a(tj) and �
j
= �j` � �(tj ):

Note that �
0
= a0 = 0 and that the term @t�(tj+1) is bounded because of (3.13).

Thus, in view of (A1)�(A3), we obtain for the di�erence of (3.7c) and (3.14)

kaj+1kL2(
) � kaj`kL2(
) +�t kf(�j+1` ; a
j

`)� f(�(tj ); a(tj))kL2(
)
+ c3(�t)

2(3.15)

� (1 + c4�t) kajkL2(
) + c5�t k�
j+1kL2(
) + c6(�t)

2
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for constants c4; c5; c6 > 0. The term @t�(tj+1) is bounded because of (3.13).

Summing up (3.15) for i = 1; : : : ; j, we infer

(3.16)

kajkL2(
) � c5�t

jX
i=1

(1 + c4�t)
j�ik�ikL2(
)

+ c6(�t)
2

j�1X
i=0

(1 + c4�t)
i = s1 + s2:

Using the inequality 1 + x � ex, there exists a constant c7 > 0 such that

(3.17) s2 � c6(�t)
2 e
c4j�t � 1

c4�t
� c7�t;

and with the help of the Cauchy-Schwarz inequality

(3.18)

s1 � c5�t
� jX
i=1

(1 + c4�t)
2(j�i)

�1=2� jX
i=1

k�ik2L2(
)
�1=2

� c8

�
�t

jX
i=1

k�ik2L2(
)
�1=2

for a constant c8 > 0. Now we employ the decomposition �
j
= #j + %j , where

(3.19) #j = �j` � P `�(tj);

together with (3.15)�(3.18) we conclude that there exists a constant c9 > 0 such

that

(3.20) kajk
L2(
) � c9

�
�t+

�
�t

jX
i=1

k#ik2L2(
)
�1=2

+
�
�t

jX
i=1

k%ik2L2(
)
�1=2�

:

Regarding (3.19), (3.7b) and (2.1c), we see that #j satis�es

�cp(@t#
j;  )

L2(
) + k(#j ;  )
H1(
)

= �cp(@t�
j

`
;  )

L2(
)
+ k(�

j

`
;  )

H1(
)
� �cp(@tP `�(tj );  )L2(
) � k(�(tj );  )H1(
)

= (�cp�
j + k(�

j

`
� �(tj))� �L(f(�

j�1
`

; a
j�1
`

)� f(�(tj ); a(tj)));  )L2(
);

where we have used the abbreviation �j = �t(tj) � @tP
`�(tj ) (cf. Lemma 3.6).

Inserting  = #j, using �
j

`
��(tj ) = #j+%j , and invoking the inequalities of Hölder

and Young, we observe

(3.21)

k#jk2L2(
) +
2k

�cp
kr#jk2H1(
)

� k#j�1k2L2(
) + c10�t
�
k#jk2L2(
) + k%jk2L2(
) + k�jk2L2(
)

�
+ c10�t kf(�j�1`

; a
j�1
`

)� f(�(tj ); a(tj))k2L2(
)
for a constant c10 > 0. With respect to (A1)�(A3) there exists a constant c11 > 0

such that

(3.22)

kf(�j�1` ; aj�1` )� f(�(tj ); a(tj))k2L2(
)
� c11

�
k�j�1k2L2(
) + (�t)2k@t�(tj )k2L2(
)
+ kaj�1k2

L2(
) + (�t)2k@ta(tj)k2L2(
)
�
:
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Using (3.12), (3.13) and (3.20) we conclude from (3.22) that

kf(�j�1
`

; a
j�1
`

) � f(�(tj ); a(tj))k2L2(
)

� c12

�
k#j�1k2L2(
) + k%j�1k2L2(
) + (�t)2 +�t

j�1X
i=1

�
k#ik2L2(
) + k%ik2L2(
)

��

for a constant c12 > 1. Inserting this into (3.21) yields

(3.23)

(1� c10�t)k#jk2L2(
)
� (1 + c13�t)k#j�1k2L2(
) + c13�t

�
k%j�1k2L2(
) + k%jk2L2(
)

�
+ c13(�t)

2

j�1X
i=1

�
k#ik2L2(
) + k%ik2L2(
)

�
+ c13(�t)

3 + c10�tk�jk2L2(
);

where c13 = c10c12. For �t � 1=(2c10) we �nd

1

1� c10�t
� 1 + 2c10�t:

Setting c14 = max(2c10; c12) we infer from (3.23)

k#jk2L2(
) � (1 + c14�t)
2k#j�1k2

L2(
)

+ c13(1 + c14�t)�t
2

j�1X
i=1

�
k#ik2

L2(
) + k%ik
2

L2(
)

�
+ c12�t(1 + c14�t)

�
k%j�1k2L2(
) + k%jk2L2(
) + (�t)2

�
+ c10�t(1 + c14�t)k�jk

2

L2(
):

Summation upon j yields that there exist constants c15; c16 > 0 depending on

c12; c13; c14 and T such that

nX
j=0

k#jk2
L2(
) � k#0k2

L2(
) + c15�t(1 + c16�t)

n�1X
j=0

k#jk2
L2(
)

+ c15�t(1 + c16�t)

nX
j=0

�
k%jk2

L2(
) + k�jk
2

L2(
)

�
(3.24)

+ c15(1 + c16�t)(�t)
2:

Note that k' � P `'kH1(
) � k' �  kH1(
) for all  2 V `. Moreover, the inverse

inequality

k kH1(
) � kSk2k kL2(
) for all  2 V
holds, see [15, Lemma 2]. From �0` =

P`

i=1(�0;  i)X i and �0 2 V we conclude that

k#0k2L2(
) = k�0` � P `�0k
2

L2(
) � 2k�0` � �0k
2

L2(
) + 2k�0 � P `�0k
2

L2(
)

� 2

dX
i=`+1

j(�0;  i)L2(
)j2 + 2k�0 � �0` k
2

H1(
)

� 2
�
1 + kSk2

� dX
i=`+1

j(�0;  i)L2(
)j2

in case of X = L2(
) and

k#0k2
L2(
) � 4

dX
i=`+1

j(�0;  i)H1(
)j2
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for X = H1(
). Recall that kSk2 = 1 in case of X = H1(
). Thus, from (3.24)

and Lemma 3.6 it follows that

nX
j=0

k#jk2L2(
) � 2
�
1 + kSk2

� dX
i=`+1

j(�0;  i)X j2

+ c17(1 + c16�t)kSk2
dX

i=`+1

�i + c17(�t)
2

+ c15�t(1 + c16�t)

n�1X
j=0

k#jk2
L2(
)

for a c17 > 0 depending on c15, k�ttkL2(Q), and on the constant C, which was

introduced in Lemma 3.6. Suppose that �t � 1=c15. Then there exists a constant

c18 > 0 such that

�n � (1 + c16�t)�n�1 + B;

where

B = c18

�
kSk2

dX
i=`+1

�
j(�0;  i)X j2 + �i

�
+ (�t)2

�
and �i =

iX
j=0

k#jk2L2(
):

We have already shown that �0 = k#0kL2(
) � B. Hence we can apply Lemma 3.7

with Æ = c16�t and obtain

(3.25)

nX
j=0

�j+1k#jk2L2(
) � �t

nX
j=0

k#jk2L2(
) � �t
B

c16�t

�
e(n+1)T=n � 1

�
� c19B;

where c19 = (e2T�1)=c16. In view of the decomposition �
j
= #j+%j and Lemma3.6,

we only have to insert (3.25) into (3.20) to conclude with the proof. �

3.3. Reduced order modeling with pod. The reduced-order approach to op-

timal control problems such as (CP") is based on approximating the nonlinear

dynamics by a Galerkin technique utilizing basis functions that contain character-

istics of the expected �ow. By Theorem 3.4 we have an error estimate for the state

system (2.1) and (2.1c), but (3.8) only holds for a �xed and known laser energy

u(t). Unfortunately, the optimal control is unknown. To the authors' knowledge,

there is no POD error analysis for optimal control problems available. Therefore

we apply a heuristic, which is well tested for other optimal control problems, in

particular for nonlinear boundary control of the heat equation, see [6].

To utilize the POD method described in Section 3.1 we need the snapshots. Since

we have no chance to get the exact solution for a chosen laser energy at some given

time instances, we compute a discrete solution to (2.1) on a �ne grid. For that

purpose we introduce piecewise linear �nite elements f'1; : : : ; 'Ng � H1(
) and

denote by x1; : : : ; xN 2 
 the �nite element (FE) nodes such that 'j(xi) = Æij for

1 � i; j � N . Analogous to (3.7) the FE solution solution f(�j
N
; aj
N
)gmj=0 to (2.1) is

obtained by a semi-implicit FE Galerkin scheme: Find (�0N ; a
0
N) from

(3.26a) a0N = 0 and (�0N ; 'i)L2(
) = (�0; 'i)L2(
) for i = 1; : : : ; N:

Then, for j = 1; : : : ;m solve

(3.26b)
(@��

j

N ; 'i)L2(
) + (r�jN ;r'i)L2(
)
= (u(tj)�(tj)� �Lf(�j�1N ; a

j�1
N ); 'i)L2(
) for i = 1; : : : ; N;

where @�
j

N = (�jN � �
j�1
N )=�s, and use �jN to compute ajN from

(3.26c) @�a
j

N (xi) = f(�
j

N (xi); a
j�1
N (xi)) for i = 1; : : : ; N:
17



To include information of the optimal control problem, which is under consideration

here, we insert the computed sequences f�jNgmj=0 and fa
j

Ngmj=0 into a semi-implicit

FE Galerkin approximation of the adjoint system (2.21) (i.e., implicit in the heat

operator @t � k� and explicit in the part involving the derivatives f� and fa) and

determine piecewise linear approximations f(pjN ; q
j

N)gmj=0 of the adjoint pair (p; q).
The advantage of this approach is discussed in [6].

Now �x ` and determine the POD basis functions  1; : : : ;  ` by computing the

matrix 	 2 RN�` such that

 j =

NX
i=1

	ij'i for j = 1; : : : ; `;

see Remark 3.3. For more details we refer the reader to [14]. We then approximate

the state variable � by a �nite sum of time dependent modal coe�cients multiplied

by the POD basis elements:

�`(�; t) =
`X
i=1

�`i (t) i:

For the volume fraction of austenite we do not apply a model reduction. However,

its piecewise linear solution depends on ` due to the reduced-order approach for the

temperature so that we write

a`(�; t) =
NX
i=1

a`i(t)'i:

Let us introduce the mass and sti�ness matrices

M = ((Mij)) 2 R`�` with Mij = ( j ;  i)L2(
);

H = ((Hij)) 2 RN�N with Hij = ('j ; 'i)L2(
);

K = ((Kij)) 2 R`�` with Kij = k (r j;r i)L2(
);

the nonlinear mapping F : R`�Rn! R
` given by

F (~�;~a) =
�
f
� `X
j=1

�j j ;

NX
j=1

aj'j

�
;  i

�
L2(
)

2 R`

for ~� = (�1; : : : ; �`); ~a = (a1; : : : ; aN ) 2 RN, the vectors of time dependent modal

coe�cients
~�(t) =

�
�`i (t)

�
2 R`; ~a(t) =

�
a`i(t)

�
2 RN;

and the vectors of the data

~�0 =
�
(�0;  i)L2(
)

�
2 R`; ~�(t) =

�
(�(�; t);  i)L2(
)

�
2 R`; ad = (ad(xi)) 2 RN:

Then the POD Galerkin approximation of the optimal control problem (CP") is

given by

(3.27a)

minJ`(u) =
�

2
(~a(T ) � ~ad)TH (~a(T )� ~ad) +

�

2

Z T

0

u(t)2 dt

+
1

2"

Z T

0

hX̀
i=1

�`i (t) i � �m
i2
+
dt

subject to the ` + N -dimensional system of ordinary di�erential equations

(3.27b)

�cpM~�0(t) +K~�(t) = ��LF (~�(t);~a(t)) + u(t)~�(t)

~a0(t) = f
� `X
j=1

�`j j;

NX
j=1

a`j'j

�
9>=
>; for t 2 (0; T )
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� = 730 � = 830 � = 840 � = 900

aeq(�) 0 0.91 1 1

� (�) 1 0.2 0.18 0.05

Table 4.1. Pointwise data for aeq and � .

with the initial conditions at t = 0

(3.27c) M~�(0) = ~�0 and ~a(0) = 0:

Notice that in case of a FE Galerkin approximation the system of ordinary di�er-

ential equations has dimension 2N . Thus, (3.27) is called a low-dimensional model

for the optimal control problem (CP").

4. Numerical experiments

This section is devoted to present numerical results for the optimal control prob-

lem (CP") utilizing the reduced-order approach described in Section 3.3.

Usually the aim of surface hardening is to achieve a uniform hardening depth.

However, even in such a simple geometrical situation as shown in Figure 1 it is

di�cult to realize this goal. As it will be seen from the numerical simulations in

Section 4.2, when one uses a constant laser energy, the temperature will be too low

to reach the desired volume fraction in the beginning of the laser track, while it will

be too high and possibly reach melting temperature at the end of the workpiece,

since not enough heat can di�use there. This means that one has to increase the

energy during the early stages and to decrease it during the late stages of a laser

heat treatment in order to achieve an approximately uniform hardness penetration

depth. This will be shown in Section 4.3.

For the numerical implementation we use MATLAB version 5.3, executed on

a Pentium III 550 MHz personal computer. For the �nite element matrices the

MATLAB PDE-toolbox is utilized.

4.1. Physical data. Let us choose the two-dimensional domain 
 = (0; 5) �
(�1; 0). This corresponds to the grey shaded vertical cross-section through the

workpiece depicted in Figure 1. The physical parameters for the heat equations are

given by

�cp = 1:17

�
cal

cm3K

�
; k = 0:153

�
cal

cmKs

�
; and �L = 150:0

�
cal

cm3

�
:

For further details concerning physical data we refer to [8]. The equilibrium volume

fraction aeq and the function � are cubic spline functions interpolating the pointwise
data presented in Table 4.1. Thus, (A1) and (A2) are satis�ed. For the monotone

regularization of the Heaviside function we take

H(s) =

8><
>:

1 for s � Æ;

10
�s
Æ

�6
� 24

�s
Æ

�5
+ 15

�s
Æ

�4
for Æ > s � 0;

0 for s < 0

with Æ = 0:15. In particular, (A3) holds. The initial condition for the �-variable
is the room temperature, i.e., �0 = 20, and we choose �m = 1400 the melting

temperature of steel. Notice that (A4') is satis�ed.
We take a 2.8 kW laser, and the shape function � = �(x; y; t) is given by

�(x; y; t) =
4�A

�D2
exp

�
� 2(x� vt)2

D2

�
exp(�y);
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Figure 4.1. Triangular mesh and FE snapshot for the tempera-

ture at time t = T=4 with laser energy u = 480.
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Figure 4.2. FE snapshot for the temperature at time instances

t = T=2 and t = 3T=4 with laser energy u = 480.

where D = 0:47 [cm], � = 60 [1=cm], A = 0:3, and v = 1:15 [cm=s]. Notice that �
satis�es (A5').

The admissible set Uad for the controls is given by

Uad = fu 2 L2(0; T ) : ua � u � ub in (0; T )g
with ua = 0 and ub = 698.

The terminal time T is chosen in such a way that T = argmax f�(x; y; t) :

(x; y) = (5; 0); t 2 [0;1)g. It follows that T = 5=v � 4:3478.

4.2. Numerical solution of the state equations. The FE triangulation of


 is done by a nonuniform mesh with N = 861 degrees of freedom, see Figure 4.1

(left). For the time grids we take n = 70 and l = 4. Then we obtain m = 280,

�� � 0:0155 and �t = 4�� � 0:0621. Choosing the laser energy u = 480 2 Uad
we compute the �nite element (FE) solution of (3.26), where we use a Cholesky

factorization for the linear system (3.26b) at each time level. The needed CPU time

is 18 seconds. In Figure 4.1�4.3 the FE solution for the temperature (left) as well as

for the volume fraction of austenite (right) at di�erent time instances are plotted.

From the FE snapshots of the temperature we can see the movement of the laser

beam along the x-axis. We observe that the temperature �
j

N increases at the end

of the time interval. In particular, for u = 480, we �nd that the FE solution �j
N

is

lower that the melting temperature for tj 2 (0; 4:1], but �mN � 1625 > �m.
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Figure 4.3. FE snapshot for the temperature and the volume

fraction of austenite at time t = T with laser energy u = 480.
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Figure 4.4. FE snapshot for the temperature and the volume

fraction of austenite at time t = T with laser energy u = 400.

4.3. Reduced-order modeling. To determine the POD basis we proceed as de-

scribed in Section 3.3. We compute the FE solution of the state equation with

u = 400. Then the FE temperature is lower than the melting temperature. In

Figure 4.4 the discrete solutions at the terminal time are presented. Next we solve

the adjoint equation (2.21) by a semi-implicit FE Galerkin method. The needed

CPU time is found to be 27 seconds. We compare two di�erent snapshot sets. The

�rst one (POD 1) is given by

V1 = span f�0N ; �4N ; : : : ; �280N ; @t�
4
N ; @t�

8
N ; : : : ; @t�

280
N ; �0N ; �

4
N ; : : : ; �

276
N g;

whereas the second one (POD 2) does not contains the di�erence quotients, i.e.,

V2 = span f�0N ; �4N ; : : : ; �280N ; @t�
4
N ; �

0
N ; �

4
N ; : : : ; �

276
N g:

Choosing X = L2(
) and ` = 15, we solve the eigenvalue problem (3.6) for each

of the snapshot ensemble by utilizing the MATLAB routine eigs and compute the

reduced-order model described in Section 3.3. The needed CPU time is about 8

seconds.

Using scheme (3.7) we obtain the POD solution for the choice u = 400. The

discrete solution for the temperature at the terminal time t = T is plotted in

Figure 4.5. When we compare the POD snapshot for the temperature at t = T
with the FE solution shown in Figure 4.4 (left), then it turns out that the inclusion

of the di�erence quotients (POD 1) leads to a signi�cantly better result, whereas the
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Figure 4.5. POD solution for u = 400 at time t = T in case

that the di�erence quotients are included in the snapshot ensemble

(POD 1) or not (POD 2).

Computation of the FE matrices 0.2 seconds

FE solve for the state system (2.1) 17.8 seconds

FE solve for the adjoint system (2.21) 24.4 seconds

Computation of the POD basis (POD 1) 7.1 seconds

Computation of the POD basis (POD 2) 3.5 seconds

Computation of the POD matrices (POD 1) 2.2 seconds

Computation of the POD matrices (POD 2) 2.1 seconds

POD solve for the state system (2.1) (POD 1) 5.1 seconds

POD solve for the state system (2.1) (POD 2) 5.2 seconds

Table 4.2. CPU times in seconds for X = L2(
) and ` = 15.

snapshot ensemble V2 yields a POD solution with a smaller scale and a di�erent

shape. For the needed CPU times we refer to Table 4.2. To measure the error

between the FE and the POD solutions let us introduce the relative quantities

	1
L1 =

max
0�j�m

k�j` � �
j

NkL1(
)

max
0�j�m

k�jNkL1(
)

and

	1
L2 =

 mP
j=0

k�j` � �
j

Nk2L2(
)
mP
j=0

k�jNk2L2(
)

!1=2

; 	1
H1 =

 mP
j=0

k�j` � �
j

Nk2H1(
)

mP
j=0

k�jNk2H1(
)

!1=2

for the POD basis obtained from the snapshot set V1. Analogously, 	2
L1 , 	

2
L2

and 	2
H1 are de�ned for the snapshot set V2. The relative L2-error is presented

as a function of time in Figure 4.6. In Table 4.3 the relative error is presented

for di�erent values of `. It turns out that the inclusion of the di�erence quotients

reduces the error signi�cantly. Next we discuss the choice X = H1(
). As we have

observed in the case X = L2(
), the inclusion of the di�erence quotients into the

snapshot sets leads to a signi�cant reduction of the relative L1- and H1-errors,

compare Table 4.4. The same also holds for the relative L2-error provided ` � 10

is satis�ed. Since H1-norm includes both the L2-norm and the gradient norm, the

decay of the eigenvalues is not as fast as in the case X = L2(
). Let us introduce
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Figure 4.6. Relative L2-error between the FE and the POD so-

lution for the temperature and the volume fraction of austenite.

	1
L1 	2

L1 	1
L2

	2
L2

	1
H1 	2

H1

` = 10 24.1% 40.6% 11.3% 12.1% 25.7% 38.2%

` = 15 7.9% 38.4% 3.4% 6.8% 10.3% 27.4%

` = 20 6.0% 35.3% 1.8% 4.3% 5.5% 20.6%

` = 25 1.6% 26.9% 0.6% 2.9% 2.8% 10.4%

Table 4.3. Relative errors for X = L2(
).

	1
L1 	2

L1 	1
L2

	2
L2

	1
H1 	2

H1

` = 10 21.0% 40.1% 22.9% 11.8% 28.8% 37.5%

` = 15 16.2% 37.8% 4.4% 6.7% 13.1% 27.0%

` = 20 13.5% 34.3% 2.2% 4.3% 8.1% 20.5%

` = 25 4.0% 24.6% 1.2% 2.9% 4.6% 14.8%

Table 4.4. Relative errors for X = H1(
).

` = 5 ` = 10 ` = 15 ` = 20 ` = 25 ` = 30

E(`), X = L2(
) 79.6 94.3 98.4 99.5 99.8 99.9

E(`), X = H1(
) 53.0 77.7 87.4 92.5 95.7 97.6

Table 4.5. E(`) for POD 1 and di�erent `.

the relative quantity

E(`) =
X̀
i=1

�i

. dX
i=1

�i:

Then we �nd the results presented in Table 4.5. In (3.8) the factor kSk2
Pd

i=`+1 �i
arrises on the right-hand side of the error estimate. For the choice X = H1(
) we

have kSk2 = 1. In Table 4.6 the norm of the sti�ness matrix S is presented for

X = H1(
) and for di�erent `. FromTables 4.5�4.6 we conclude that the advantage

of kSk2 = 1 for X = H1(
) is balanced by the disadvantage that for given ` the

sum
Pd

i=`+1 �i is larger than for the choice X = L2(
). However, when we choose

` in such a way that E(`) is lower than a given threshold, then the relative errors
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` = 5 ` = 10 ` = 15 ` = 20 ` = 25 ` = 30

kSk2 13.9 53.2 144.2 257.5 629.9 940.9

Table 4.6. Spectral norm of the sti�ness matrix for X = L2(
).

X = L2(
) X = H1(
)

` 	1
L1 	1

L2
	1
H1 ` 	1

L1 	1
L2

	1
H1

E(`) = 84:4% 6 26.7% 23.6% 42.8% 13 21.2% 6.0% 17.0%

E(`) = 92:5% 9 29.7% 14.5% 30.0% 20 13.5% 8.1% 3.3%

E(`) = 97:5% 13 14.7% 4.8% 14.5% 30 2.7% 1.0% 3.3%

Table 4.7. Relative errors for X = L2(
) and X = H1(
).
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Figure 4.7. Run 4.1: Desired state ad and optimal control u�.

for X = H1(
) are smaller than for X = L2(
), see Table 4.7. Let us mention that

in practice the number ` is often chosen in this manner.

4.4. Numerical tests for the optimal control problem. In the following

we present two test runs for the optimal control problem (CP"), which is solved by

the gradient projection algorithm, see e.g. [12].

Run 4.1. We choose � = 3500, � = 0:001, " = 0:0001. The desired volume fraction

of austenite is shown in Figure 4.7 (left). As the �rst iterate for the control we take

u0 = 380. Let us denote by a0 the FE solution for the volume fraction of austenite

corresponding to the laser intensity u = u0. The gradient projection algorithm

stops after 50 iterations and needs 1091 seconds CPU time. The optimal control

u� is presented in Figure 4.7 (right). In Figure 4.8 (left) the discrete POD solution

for the temperature at the time instance t = T is plotted. Inserting the computed

suboptimal control into the �nite element solver of the state equations we compute

the solution denoted by (��` ; a
�

`). In Figure 4.8 (right) the solution ��` at time t = T
is presented. As we can see FE solve cancels out the small oscillations occurring

in the POD solution. We observe that k��` kL1(
) = 1391:15. In Figure 4.9 the

di�erences a�` (T )�ad and a0(T )�ad are plotted. Using the optimal control we get

a signi�cant reduction of the residuum. We �nd that ka0(T ) � adkL2(
) = 0:285
and ka�`(T ) � adkL2(
) = 0:085.

Run 4.2. We choose � = 17500, � = 0:001, " = 0:0001. In contrast to Run4.1 it is

possible to enlarge � signi�cantly without any bad in�uence on gradient projection

method. The desired volume fraction of austenite is shown in Figure 4.10 (left).
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Figure 4.8. Run 4.1: Optimal POD snapshots for the tempera-

ture at time t = T (left) and FE snapshot for the temperature at

time t = T using u = u� (right).
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Figure 4.9. Run 4.1: Di�erence a(T ) � ad for the �rst iterate

a = a0 of the gradient projection method and for the optimal state
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Figure 4.10. Run 4.2: Desired state ad and optimal control u�.

Due to the desired state we take

u0(tj) =

�
0 for 0 � j � 40;
330 otherwise
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Figure 4.11. Run 4.2: Di�erence a(T ) � ad for the �rst iterate

a = a0 of the gradient projection method and for the optimal state

a = a�` .

as the �rst iterate of the gradient projection method. The method needs 29 itera-

tions and 666 seconds CPU time. By a0 we denote the FE solution corresponding to

the laser intensity u = u0. We insert the computed suboptimal control into the �nite

element solver of the state equations and denote its solution by (��` ; a
�

` ). We observe

that k��` kL1(
) = 1398. In Figure 4.11 the di�erences a�` (T )�ad and a0(T )�ad are
plotted. Using the optimal control we get a signi�cant reduction of the residuum.

We �nd that ka0(T )� adkL2(
) = 0:423 and ka�` (T )� adkL2(
) = 0:029.

References

[1] K. Afanasiev and M.Hinze. Adaptive control of a wake �ow using proper orthogonal de-

composition. In Shape Optimization & Optimal Design, Lecture Notes in Pure and Applied

Mathematics. Marcel Dekker, 2001.

[2] J. A. Atwell and B. B. King. Reduced order controllers for spatially distributed systems via

proper orthogonal decomposition. SIAM Journal Scienti�c Computation, to appear.

[3] N. Aubry, W.-Y. Lian and E. S. Titi. Preserving symmetries in the proper orthogonal de-

composition. SIAM J. Sci. Comp., 14(1993), 483�505.

[4] H. T. Banks, M. L. Joyner, B. Winchesky, and W. P. Winfree. Nondestructive evaluation

using a reduced-order computational methodology. Inverse Problems 16(2000), 1�17.

[5] G. Berkooz, P. Holmes, and J. L. Lumley. Turbulence, Coherent Structures, Dynamical Sys-

tems and Symmetry. Cambridge Monographs on Mechanics. Cambridge University Press,

1996.

[6] F. Diwoky and S. Volkwein. Nonlinear boundary control for the heat equation utilizing proper

orthogonal decomposition. Proceedings of the workshop Fast Solution of Discretized Opti-

mization Problems, WIAS, Berlin, 2000.

[7] M. Fahl. Computation of POD basis functions for �uid �ows with Lanczos methods.Mathe-

matical and Computer Modelling, to appear.

[8] J. Fuhrmann and D. Hömberg. Numerical simulation of surface heat treatments.Num. Meth.

Heat & Fluid Flow, 9 (1999), 705�724.

[9] K. Fukunaga. Introduction to Statistical Recognition. Academic Press, New York, 1990.

[10] D. Hömberg. A mathematical model for the phase transitions in eutectoid carbon steel. IMA

J. Appl. Math., 54 (1995), 31�57.

[11] D. Hömberg and J. Sokolowski. Optimal control of laser hardening. Adv. Math. Sci. Appl., 8

(1998), 911�928.

[12] C. T. Kelley. Iterative Methods for Optimization. Frontiers in Applied Mathematics, SIAM,

Philadelphia, 1999.

[13] G. M. Kepler, H. T. Tran, and H. T. Banks. Compensator control for chemical vapor deposi-

tion �lm growth used reduced order designmodels. Preprint, North Carolina State University,

CRSC-TR99-41.

[14] K. Kunisch and S. Volkwein. Control of Burgers' equation by a reduced order approach using

proper orthogonal decomposition. JOTA, 102 (1999), 345�371.

26



[15] K. Kunisch and S. Volkwein. Galerkin proper orthogonaldecompositionmethods for parabolic

problems. Numerische Mathematik, to appear.

[16] K. Kunisch and S. Volkwein. Galerkin proper orthogonaldecompositionmethods for a general

equation in �uid dynamics. Submitted, 2000.

[17] J.-B. Leblond and J. Devaux. A new kinetic model for anisothermal metallurgical transfor-

mations in steels including e�ect of austenite grain size. Acta Met. 32 (1984), 137�146.

[18] O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'ceva. Linear and quasilinear equations

of parabolic type. Amer. Math. Soc. Transl., Vol. 23, Providence, 1968.

[19] M. Manhart. Umströmung einer Halbkugel in turbulenter Grenzschicht, VDI-Verlag, Düssel-

dorf, 1996.

[20] V. I. Mazhukin and A. A. Samarskii. Mathematical modeling in the technology of laser

treatments of materials. Surveys Math. Indust., 4 (1994), 85�149.

[21] H. V. Ly and H. T. Tran. Proper orthogonal decomposition for �ow calculations and optimal

control in a horizontal CVD reactor. Quarterly of Applied Mathematics, to appear.

[22] S. Y. Shvartsman and Y. Kevrikidis. Nonlinear model reduction for control of distributed

parameter systems: a computer-assisted study. AIChE Journal, 44 (1998), 1579�1595.

[23] L. Sirovich. Turbulence and the dynamics of coherent structures, parts I-III. Quarterly of

Applied Mathematics, XLV, 561�590, 1987.

[24] M. Reed and B. Simon. Methods of Modern Mathematical Physics I: Functional Analysis.

Academic Press, New York, 1980.

[25] S. Volkwein. Optimal control of a phase-�eldmodel using the proper ortogonal decomposition.

Zeitschrift für Angewandte Mathematik und Mechanik, 81:83�97, 2001.

[26] E. Zeidler.Nonlinear Functional Analysis and its Applications, Vol. II. Springer-Verlag, New

York, 1990.

D. Hömberg, Weierstrass Institute for Applied Analysis and Stochastics, Mohren-

straÿe 39, D-10117 Berlin, Germany

E-mail address: hoemberg@wias-berlin.de

S. Volkwein, Institut für Mathematik, Karl-Franzens-Universität Graz, Heinrich-

strasse 36, A-8010 Graz, Austria

E-mail address: stefan.volkwein@uni-graz.at

27


