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SUBOPTIMAL CONTROL OF LASER SURFACE HARDENING
USING PROPER ORTHOGONAL DECOMPOSITION

D. HOMBERG AND S. VOLKWEIN

ABsTRACT. Laser surface hardening of steel is formulated in terms of an opti-
mal control problem, where the state equations are a semilinear heat equation
and an ordinary differential equation, which describes the evolution of the
high temperature phase. The optimal control problem is analyzed and first-
order necessary optimality conditions are derived. An error estimate for POD
(proper orthogonal decomposition) Galerkin methods for the state system is
proved. Finally a strategy to obtain suboptimal controls using POD is devel-
oped and validated by computing some numerical examples.
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1. INTRODUCTION

We consider a control problem that describes the laser surface hardening of steel.
The mode of operation of this process, which becomes more and more important,
especially in automative industry, is depicted in Figure 1.
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Fi1GURE 1.1. Sketch of a laser hardening process.

A laser beam moves along the surface of a workpiece, creating a heated zone
around its trace. The heating process is accompanied by a phase transition, in
which the high temperature phase in steel, called austenite, is produced. Since
the penetration depth of the laser beam is very small, typically not more than
1 mm, the heated zone is rapidly quenched by self-cooling, leading to further phase
transitions and the desired hardening effect.

Since one usually tries to keep the moving velocity of the laser beam constant, the
most important control parameter is the laser energy. Whenever the temperature
in the heated zone exceeds the melting temperature of steel, the work-piece quality
is destroyed. Hence, the decent adjustment of laser energy is an important task,
especially when the laser approaches a work-piece boundary or when there are large
variations in the work-piece thickness.

In [11] the corresponding optimal control problem with pointwise state con-
straints on the temperature is investigated. More details about models for phase
transitions in steel and the simulation of surface heat treatments can be found in
[8]. In [20] a survey of mathematical models for further laser material treatments
is given.

Proper orthogonal decomposition (POD) provides a method for deriving low
order models of dynamical systems. It was successfully used in a variety of fields
including signal analysis and pattern recognition (see e.g. [9]), fluid dynamics and
coherent structures (see e.g. [5, 23]) and more recently in control theory (see e.g.
[1, 2, 14, 21, 22]) and inverse problems (see [4]). Surprisingly good approximation
properties are reported for POD based schemes in several articles, see [7, 13, 19],
for example. Symmetry preserving properties of POD approximations are analyzed
in [3]. Convergence results for POD methods applied to parabolic equations can be
found in [15, 16].

The new contribution of this paper is the development of a suboptimal control
strategy for laser surface hardening. We adopt a penalization approach to the state
constraint problem and approximate the state equations by a semi-implicit POD
Galerkin method. An error estimate for the state system is proved. This extends
the analysis done in [15]. Finally, POD is used to compute suboptimal controls.
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The paper is organized as follows: In Section 2 we analyze the optimal control
problem, prove convergence of the penalized problem to the state constraint one and
derive optimality conditions for the penalized problem. In Section 3 we propose a
POD Galerkin method for the state system, present an error estimate and describe
our suboptimal control strategy. The last section is devoted to numerical results.

2. THE OPTIMAL CONTROL PROBLEM

In this section we specify the optimal control problem that will be considered
in this paper and prove existence of an optimal solution. Moreover, we study the
first-order necessary optimality conditions.

2.1. PROBLEM STATEMENT AND ASSUMPTIONS. Let  C R® with Lipschitz bound-
ary, @ = Q x (0,7) and X = 90 x (0,T). The formation of austenite is described
by the following initial-value problem (cf. [17]):

(2.1a) a; = f(0,a) = %(aeq(ﬂ) — Q) H(aeq(60) - a) in Q,
(2.1b) a(0) =0 in Q,

where a is the volume fraction of austenite. The equilibrium volume fraction a.q4 and
the time constant 7 both depend on the temperature §. Concerning the nonlinearity
f we make the following assumptions:

(A1) aeq(z) €[0,1] for all z € R, ||acq||lca(r) <

(A2) 0 <z < 7(z) < 7forall z € R, ||7||c2(r) < ¢

(A3) H € C%1(R), monotone approximation of the Heaviside function satisfying

H(z) =0 for z < 0.

Since # is a regularized Heaviside function, the term z#H(z) is a regularization

of the positive part function

Thus, with (A3) holding we have a: > 0 a.e. in Q. In other words, we only
model the austenite growth during heating and keep the volume fraction when the
temperature decreases again.

Assuming the density p, the heat capacity ¢, the heat conductivity & and the
latent heat L to be positive constants, we obtain the following heat equation:

pcply — kA0 = —pla; +ua in Q,
00

(2.1c) — =0 on 3,
v

0(0) = 0 in Q.

Since the main cooling effect is the self-cooling of the workpiece, we have assumed
homogeneous Neumann conditions on the boundary. The term —pLa; describes
the consumption of latent heat due to the phase transition. The term u(t)a(z, 1) is
the volumetric heat source due to laser radiation, where the laser energy w(t) will
serve as a control parameter.

In addition to (A1)-(A3) we require the following assumptions:

(A4) 0o € HY(Q), O < 0,, — § a.e. in Q, where the constant ,, > 0 denotes the
melting temperature of the steel and 4 is a positive constant;

(A5) a € L>(0,T; L>(Q));

(A6) u € L?(0,T).



The goal of every heat treatment is to achieve a desired phase distribution, i.e., we
consider the cost functional of tracking type

(2.2) ﬂm:%/W%ﬂ_%@WM+§/mﬁ

Here, o and 3 denote positive constants and a4 is a given desired volume fraction
of austenite satisfying
(A7) ag € L?(Q),0< ag < 1 ae. in Q.
We study the state and control constrained optimal control problem
min J(u)
(CP) :
s.t. (0,a,u) solves (2.1), 0 < 0, a.e. in Q and u € Uy,

where Uyq = {u € L2(0,T) : ||u||z2(0,r) £ M} with some constant M > 0 is the
closed, bounded and convex set of admissible controls.
Introducing the mapping I : L?(0,7T) — [0, 00) by

(2.3) I(u):]/[@—@m]idxdt,

where 6 = 0(u) solves (2.1) for u € L?(0,T), we approximate (CP) for e > 0 by the
control constrained optimal control problem

1
(CP) minJ®(u) = J(u) + % I(u)
s.t. (0,a,u) solves (2.1) and u € Ugq.
Note that I(u) is Fréchet-differentiable and satisfies I(u) > 0 for all u € Uyq and
Hu)=0 <= 0-0,<0 ae inQ.
2.2. ANALYSIS OF THE STATE EQUATIONS. The main result of this subsection is
Theorem 2.1. Suppose that (A1)—(A6) hold. Then (2.1) has a unique solution
(0,a) € HY1(Q) x W (0, T3 (%)),

where HY1(Q) = L2(0,T; HY(Q))NH(0,T; L2(Q)) is a Hilbert space endowed with
the common inner product.

To prove the theorem, we need the following
Lemma 2.2. With (A1)-(A6) holding we have:
a) Let 0 € L*(Q), then (2.1a)-(2.1b) has a unique solution salisfying
(2.4) 0<a(z,t)<1 ae inQ
and
(2.5) ||a‘||W1r°°(0,T;L°°(Q)) <M

with a constant M > 0 independent of 0.
b) Let 01,0, € L?(Q),1 < p < oo, and ay,az the corresponding solutions to
(2.1), then there exists a constant C > 0, such that for all t € [0,T]

t
lla1(t) = a2(t)l|zar(q) < C/ 161(5) = 02(5) |22 (-
0
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c) Let 0 € L?(Q) and let {0k}ren C L2(Q) with limg_, o |0k — 0|lz>(@) = 0.
Then

ar — a  strongly in C([0,T); L*(Q)) N H(0,T; L*(R)),

where ai, and a are the solution to (2.1a)—(2.1b) with the temperature Oy
and 0, respectively.

Proof. a) This is a direct consequence of the theorem of Carathéodory, see e.g.
[26, p. 1044]. Using (A1)-(A3) and the theory of differential inequalities (cf.
[10, Lemma 2.1], we obtain (2.4), whereas (2.5) is a direct consequence of

(A1)-(A3).
b) Let 6; € L*(Q), 1 < p < 00,3 = 1,2 and define § = 6; —0;, then a = a;—az
solves
(2.6) ar = f(01,a1) — f(02,a2).

Due to (A1)-(A3) the function f(6,a) is Lipschitz-continuous in both
variables. Hence, testing (2.6) with a®?~!, 1 < p < oo, we obtain

t t

1
(2.7) Q—/azp(t)dxgcl//|0|-|a|2p_1dxds—|—cz//|a|2pdxds
p
Q Q

Q 0 0

for two constants ¢1,c3 > 0. To estimate the first additive term on the
right-hand side of (2.7), we apply Young’s inequality
g g4

11
cdgc——l——,, where ¢,d > 0 and — +
q q q

¢

=1.

Choosing ¢ = 2p we have ¢’ = 2p/(2p — 1). Hence, we obtain

¢
2p—1
d //|a|2pdxds.
2p
Q

0

t

¢
1
//|6|-|a|2p_1dxds§ 2—//|6|2pdxds—|—
Q P3 a

0

Inserting this bound into (2.7) and applying Gronwall’s lemma, part b)
of the lemma follows.
c) This part is a direct consequence of b) and Lebesgue’s lemma.
O

Proof of Theorem 2.1. To obtain an a-priori estimate for 0, we test (2.1c) with 6,
and apply Young’s inequality, which gives the estimate

t
k
(2.8) %//ﬂfdxds—l—i/WH(tﬂzdx
0 Q Q

¢ ¢
k
SpL//afdmds—l— |Q|||a||Lw(Q)/u2ds—|— §/|V00|2dx
0 Q 0 Q

for all ¢ € (0,7T], where || denotes the Lebesgue measure of Q. From (2.8), we
conclude the estimate

(2.9) 01| 22 (0,752 (Q))n Lo (0,73 H(2)) < €1,

with a constant ¢; depending only on T and the data functions characterized in

(A1)-(A6).



To prove the existence of a local unique solution, we apply the Banach fixed
point theorem.
To this end, we define an operator F : K C L3(Q) — L*(Q), 0 — 0, such that a
is the solution to
a = f(0,a) inQ,
a(0) = 0 in Q,

and 0 is the solution to (2.1c). From Lemma 2.2 we find that a € W1*°(0, T; L>(Q))
is uniquely determined. Since (2.1c) possesses a unique solution, see [18, Theorem
1V.9.1]), we can conclude that F is well-defined.

Let K = {é € L3(Q): ||é||L2(Q) < M and 0(0) = 0o}, then with regard to (2.8)
we have F(K) C K, provided M has been chosen large enough.

Now, we want to show that F is a contraction. Let §; € K, i=1,2, 6; = F(éz)
and 6 = él — 92. Then 6 = 6; — 65 solves

pepls —kAO = —pL(f(01,a1) — f(02,0a2)) in Q,

(2.10) 2 = 0 on X,
Jdv

0(0) = 0 in Q.

We test (2.10) with 6, integrate over 2 and over (0,%), ¢ € (0, 7], and use (A3)-(Ab)
and Lemma 2.2 to obtain

t t t
A 1
% H(t)zdx—i—k//|V6|2dxds§cz//62dxds+5//62dxds.
Q 0 Q 0 Q 0 Q

Using Gronwall’s Lemma it follows that

¢ ¢
//szmds < tc;;//ézdxds.
0 Q 0 Q

Hence, for TT < T small enough, F is a contraction on L2(0,77F; L%(Q2)). Since
F is also a self-mapping on K, we can apply the Banach fixed point theorem to
conclude that F has a unique fixed point 6, which is a local solution to (2.1). In
view of the global a priori estimate (2.9), we can extend the solution to the whole
time interval [0, T] by a standard bootstrap argument. |

A direct consequence of Lemma 2.2 and (2.8) is the following stability estimate,
which will be used later on:

Lemma 2.3. Suppose that (A1)-(A6) hold and let 01,02 be the solutions to (2.1c)
corresponding to uy,uz € L2(0,T). Then there exists a constant C > 0 such that

161 — 62”1—11,1(@) < C luy - “2||L2(0,T)'
In view of Theorem 2.1 and Lemmas 2.2 and 2.3, the solution operator
(2.11) S:L2(0,T) — H"Y(Q) x C([0,T]; L*(R)), u (0,a),

where (0, a) is the solution to the state system (2.1) is well-defined and Lipschitz
continuous. Moreover, we have

Lemma 2.4. Assume that (A1)-(A6) hold. Then S is Fréchet-differentiable and
its derivative

S (u)h = (v, w)



s characterized by the linearized state equations

(2.12a) pepvy — kAv = —pLwy + ha in Q,
3}

(2.12b) % —0 in %,

(2.12¢) v(0) =0 in €,

(2.12d) we = fo(0,a)v + fo(0,a)w in Q,

(2.12€) w(0) =0 in €,

where (0,a) = S(u).

Proof. The existence of a unique solution to the linearized state system (2.12) can
be derived similar to the proof of Theorem 2.1. Let (8", a") be the solution to the
state system (2.1) corresponding to the control u + h. Defining

(2.13) p=0"—0—-v, g=a"—a-w,
it remains to show that
(2.14) 1P )l r22 @y oo, r3z2a)) = OUlRll2o,y)-

Using a first-order Taylor expansion of f (cf. (A1)-(A3)), it follows that (p,q)
satisfies

(2.15a) peppr — kAp = —pLg, in Q,
/)

(2.15b) 5 —0 in ¥,

(2.15¢) p(0)=0 in Q,

(2.15d) g(0) = 0 inQ,

g = f(O",a™) — f(0,a) — f5(0,a)v — f.(0,a)w
(2.15¢) = |fo(6%,0%) — fo(0, a)} (0 —0) + [fa(ﬁg, at) — fo(0,a)|(a" — a)
— fo(0,a)p — fu(0,a)q,

where (6¢,af) = (0 + £(0" — 0),a + £(a® — a)) with some & € (0,1). Recall that
a € L0, T; L> (). Testing (2.15¢) with ¢, integrating over Q; = © x (0,%) and
using (A1)-(A3) as well as Youngts inequality and Lemma 2.2-b) there exists a
constant ¢; > 0 such that

/qz(t)dx < clj/((96—0)4+p2+q2)dxds.

Q

In view of Gronwall’s lemma, we obtain

¢ ¢
(2.16) /qz(t) de < cz//(ﬁh —0)* da;d:s—i—cz//p2 dzds
Q 0 Q 0 O

and then, by comparison in (2.15¢)

¢ ¢ t s
(2.17) //qfdmdsgc;a,//(ﬂh—0)4dxds—|—04///p2dxd§.
0 Q 0 Q 00 Q
7



We test (2.15a) with p; and obtain an estimate similar to (2.8), from which we can
infer

t t
(2.18) 1PllEs (g0 < cs//(gh _9)4dmds+c6/||p||iz(o,s;n) ds.
0 Q 0

Invoking Gronwalls’ lemma once again, the continuous embedding H»'(Q;) C
L*(Q;), valid for dim Q < 3, and Lemma 2.3 concludes the proof. O

2.3. EXISTENCE OF OPTIMAL CONTROL. To prove existence of an optimal control
we need

Lemma 2.5. With (A1)—-(A6) holding the solution operator
S: L2(0,T) — L*(Q) x C([0, T}; L*())
is compacl, i.e. for any sequence {untnen C L2(0,T), up — u weakly, we have

(Onyan) — (0,a) strongly in L?(Q) x C([0,T]; L*(Q)), where (0,a) = S(u) is the

solution to (2.1) with respect to the control u.

Proof. Since {un}nen is bounded in L2(0,T), (2.9) applies and there exists a
subsequence {0, }nen still indicated by n satisfying 6, — @ weakly in HL1(Q)
and strongly in L%(Q). Using Lemma 2.2-c) we also have a, — a strongly in
C([0,T]; LA(2)) N HY(0,T; L?(Q)). Hence it is easy to see that we can pass to
the limit in the state equations (2.1). Since their solution is uniquely defined, the
convergence holds for the whole sequence. |

Theorem 2.6. With (A1)~(A7) holding (CP) has an optimal solution u*.

Proof. Let K = {u € Uyq | 0(u) < 0, a.e. in Q}. We proceed in 3 steps:

a) int K # 0: Let u = 0, then u € Uzq. Moreover, testing (2.1c) with [0 —00]4,
we obtain from a; > 0 a.e. in @ that

¢ ¢
% /[o(t) —00)2dz + k // V[0 — 0]+ |>de ds = —pL // as[0 — 0o+ dx ds < 0.
Q 0Q 0Q
Thus, 6 < 6y a.e. in @ and in view of (A4) and the stability estimate of
Lemma 2.3 we see that int K # 0.
b) (CP¢) has a solution u®: For & > 0 fixed, we take a minimizing sequence
{ug }nen C Ugq such that limy, o J®(u8) = infyer,, J¢(u). Since {ul tnen
is bounded, there exists a subsequence with uf, — u® weakly in L%(0,7).
Applying Lemma 2.5, we obtain

(05 ,a5) — (6°,a°) strongly in L3(Q) x C([0,T]; L*(R)),

n'n

and (6¢, a®) solve the state system for the control u®. Owing to the weak
lower semi-continuity of norms, we can pass to the limit in J¢(u), hence
(CP#) has a solution u®.

c) Passing to the limit with ¢ — 0: Reasoning as before, there exists a subse-
quence {u°}e5o0 still indicated by €, such that

u® — u* weakly in L2(0,T)
0 — 0* strongly in L?(Q)
a® — a* strongly in C([0,T]; L3(R))
and (0*,a*) = S(u*). Moreover, we have
1
JE(uf) = J(uf) + 2—I(u5) < J(@w) forallae K
€

8



and thus

(2.19) I(w®) < 2eJ(4) + 2eJ (u®).

Passing to the limit in (2.19), we obtain I(u*) = 0, i.e., * < 0,, a.e. in Q.

Finally, we see

(2.20) J(u) < () + -

From (2.20) we infer

J(u*) < liminfJ(u®) < J(a) for any & € K

ge—0

so that 4* is a solution to (CP).

1
—I(u®) < J(4) for any & € K.

O

2.4. FIRST-ORDER OPTIMALITY CONDITIONS. In the following theorem the first-
order necessary optimality conditions for (CP?) are characterized via the adjoint

equations.

Theorem 2.7. Suppose that (A1)~(AT7) hold. Let u € Uyq be a solution to (CP?)
and (0,a) = S(u) be the corresponding solution to the state system. Then there

exists a unique solution (p,q) € HV1(Q) x H*(0,T; L(Q)) of the adjoint system

1
(2.21a) —peppr — kAp = f3(6,a)(q — pLp) + g[@ — O]+
op
2.21b - =
(2.21b) ”
(2.21¢) p(T) =0
(2.21d) —q: = fa(0,a)(qg — pLp)
(2.21e) q(T) = o(a(T) — aq)
Moreover, p satisfies the variational inequality
T
(2.22) //(ap—l— Bu)(4 — u)dxdt >0 for all & € Ugg.
0 Q

in Q,
m X,
n €2,

m Q,
in €.

Proof. The existence of a unique solution to (2.21) can be derived similar to the
proof of Theorem 2.1. For brevity we write fo = fo(0,a) and analogously f, =
fa(0,a). To show that (p, q) are the adjoint variables, we test (2.12d), (2.12¢) with

g, integrate over @ and use (2.21d), (2.21¢) to obtain:
(wy — fov — fow)qdz dt

(2.23) = (( — faq)w — fqu dm dt—i—/

O O Oy
D D D

9

qw)(0) dz

Q
( pLf.wp— favg dmdt—l—o/ ) —aq)w(T)dz.
Q



Next, we test (2.12a)—(2.12c) with p and use (2.23):

(pepvy — kAv + pLfgv + pLfow — ha)pde dt

((—pcppr — kAp + pLfop)v + pL fowp — hap) dodl
(2.24)

(é [0 — 0] v + foqu+ (pLfow — ha)p) dadt

Sy O S g O S Oy
D D D O

(— [0 — O0m]sv — hap) dzdt + / o(a(T) — ag)w(T) d.

& o

For every h € L%(0,T) such that u + h € Uaq, we have

J(u) < J(u+h).
Applying Theorem 2.6 and (2.24) we have

T T
0 < J'(u)h:o/(a(T)—ad)wda}—i—é//[@—@mhvda}dt—l—,@/uhdt
0 Q 0

Q

T
- O//h(ap—i—ﬂu)dxdt.

Q

Since U,q is convex, we have derived (2.22), which finishes the proof. |

3. SUBOPTIMAL CONTROL UTILIZING POD

This section is devoted to a discussion of the POD method for the optimal
control problem (CP?). We analyze a semi-implicit POD Galerkin scheme for the
state equations (2.1) and present an error estimate. Moreover, we describe the
reduced-order modeling for (CP?) that is used in Section 4.

3.1. THE poD METHOD. Let u € U,q be arbitrary. Throughout we denote by
(0,a) the unique solution to the state equations (2.1) satisfying (6,a) € HY1(Q) x
C([0,7); 1°(9).
For given n € N let
0:t0<t2<...<tn:T

be an equidistant grid in the interval [0, T with time step At = T/n. Suppose that

the snapshots 6(t;) of (2.1c) at the given time instances ¢;, j = 0,...,n, are known.
We set
6(t;) forj=0,...,n,
vi =< _
! 0:0(tj_n) forj=n+1,...,2n,

where
= 0(t;) —06(t;—
ata(t]): (.7) At(] 1)’
and introduce the subspace

V = span {vg, ..., van}
We refer to V as the ensemble consisting of the snapshots {Uj}§207 at least one

of which is assumed to be nonzero. Notice that ¥V C H(Q) by construction.
10



Throughout the remainder of this section we denote by X either the space H'()
or L%(Q) endowed with their common inner products.

Let {¢;}¢, denote an orthonormal basis for V with d = dimV. Then each
member of the ensemble can be expressed as

d
(3.1) v = Z(Uj,¢i)x¢i for 7=0,...,2n,
i=1

where (-,-)x denotes the inner product in X. The method of POD consists in
choosing an orthonormal basis such that for every £ € {1,...,d} the mean square
error between the snapshots {v; ;‘?’;0 and the corresponding ¢-th partial sum of (3.1)
is minimized on average:

2

min Qj

(3-2) Wi
s.t. (¢i,¢j)X:(5ij for 1Si§[, 1S]SZ

X

2
vi — > (v, %i) x i
=1

Here {aj};‘?zo are positive weights, which for our purposes are chosen to be

At
o lf ] c {07 n, 2”}7

At otherwise.

A solution {¥;}f_; to (3.2) is called POD basis of rank £. The subspace spanned
by the first £ POD basis functions is denoted by V4.

Remark 3.1. Note that

n 2 2
Ii(a) = Zaj Uj - Z (Uja ¢’L)X¢’L x
j t=1

j=0 1=

is the trapezoidal approximation for the integral

T L
2
B / Hﬂ(t) B Z (O(2), 1) x ¥ L
0 1=1
Moreover, the term
2n ¢ ,

Iﬁ(@) = Z aj|lvy — Z (Uja¢i)X ; .

j:n+1 7=1

can also be interpreted as a trapezoidal approximation for the integral

T
0) = [ o0 -3 0000w
0

=1
where, in addition, the time derivatives are discretized by difference quotients.
Therefore, Z,, = I} + Z2 is an approximation for the integral Z = Z' + Z2. For
0 € W22(0,T; X) we have

dt.

Alm IZn = Zllg(x) = 0,
where £(X) denotes the Banach space of all bounded linear operators on X. &

Using a Lagrangian framework the solution to (3.2) is characterized by the fol-
lowing optimality conditions:

(3.3) Ry = M,

11



see [25], where R : X — X is given by
Rz = Zaj (2,v5) yv; for z€ X.

Note that R is a linear, bounded, self-adjoint and nonnegative operator. Moreover,
since the image of R has finite dimension, R is also compact. By Hilbert—Schmidt
theory (see e.g. [24, p. 203]) there exist an orthonormal basis {¢;};en for X and a
sequence {\; }ien of nonnegative real numbers so that

(3.4) Rip; = Xz, A1 >...2>2 23>0 and A; =0 for i>d,

Moreover, V = span {¢;}%_,.

Note that R and thus {A;}ien as well as {1;}ieny depend on n. In what follows
the notation of this dependence is dropped.

The sequence {1;}f_; solves the optimization problem (3.2). This fact and the
error formula below were proved in [5], for example.
Proposition 3.2. Let Ay > ...> Az > 0 denole the positive eigenvalues of R with
the associated eigenvectors 1, ...,14 € X. Then, {4;},_; is a POD basis of rank
! <d, and we have the error formula

Z A

(3.5) ZO‘J Y5 _Z(Uja¢z X¢z
=1 1=4+1

Remark 3.3. The POD basis of rank £ can be computed as follows: First solve the
eigenvalue problem
(3.6) Kw; = \w; fori=1,...,¢,

where the positive semidefinite (2n + 1) x (2n + 1)-matrix £ has the elements
Ki; = (vj41,%i+1)x and the nonnegative eigenvalues satisfy A; > ... > Ag. Then
for £ < d we find

2n
1
¥; = _Za]w v; fori=1,...,L
* j=0

Here wf denotes the j-th component of the eigenvector w;. &

3.2. A POD GALERKIN SCHEME FOR THE STATE EQUATIONS. For r € N we set
m = rn and introduce the time grid

T
7, =jAT forj=0,...,m with ATZE.

Note that for r = 1 the ¢- and 7-grids coincide. The problem consists in finding a
sequence {(6;,a})}7L, as follows: Solve

(3.7a) a®=0 and (0g,9)52q) = (B0, ¥) s forally e V=
Then, for j = 1,...,m compute 0{ by solving
Plp (57'027 ¢)L2(Q) + k(vaiv v¢)L2(Q)
= (ulty)a(ty) — pLF(O " a)™"),¥) paqy for all 4 € VY,
where 5,,0{ = (HZ - 05_1)/A7' and use 0{ to get ai from
(3.7¢) g,rai = f(@g,ai_l) a.e. in Q.

To prove an error estimate for the scheme (3.7) we need more regularity for 6o,
«, and u. Therefore, we replace (A4)-(A6) with

(A4") Oy € H3(Q);

(3.7b)

12



(A5") a € WL (0,T; L= (Q));

(A6") uw e H*(0,T).
Theorem 3.4. Suppose that (A1)-(A3) and (A4’)-(A6") hold and that the t- and
T-grids coincide. Let (0,a) be the unique solution of (2.1). We assume that (3.7)

has a unique solution {(6},a}) T_o- If At is sufficiently small, then there exists a
constant C > 0 depending on 0, a, T, but independent of £ and n, such that

Zaj 16(25) — 95”%?(9) T B l|la(t;) — ai”i?(n)
(38 7 .
<c(lsl, 3o (1003000 + X) + (A)?),

1=4+1

where S denotes the stiffness matriz given by

(3.9) S = ((Si;)) € R™* with Sy = (¢, %i) g g
and || - ||2 stands for the spectral norm for symmetric matrices.
Remark 3.5. a) Note that in case X = H(Q) we have ||S||2 = 1 by construc-

tion (cf. (3.2).

b) In [16] non-equidistant time grids, which need not coincide, were considered
for a general equation in fluid dynamic. An analogous analysis for our
semilinear problem can be the focus of a future research.

c) In (3.8) the eigenvalues and eigenfunctions depend on n, i.e., A; = A? and

1p; = Y. Using spectral theory we can derive bounds that are independent
of n, see [16]. .

For the proof we will make use of the following result, which is taken from [15]:

Lemma 3.6. Let the so-called Ritz projection Pt :V — V¢, 1< £ < d, be given by
(3.10) (P, ¢)H1(Q) = (¢, ¢)H1(Q) for all ¥ € V¥,
where ¢ € V. Assume that 0 € H2(0,T; L?(Q)) and define

o = PYO(t;) - 0(t;) and (7 =0,(t;) — 0. PLO(1;).

Then, there exists a constant C > 0, independent of £ such that

n d
22
ALY NNy < Clsll, 3o A
j=0 1=4+1
n T d
22
A ey < C((A0 [ 10a) oyt 4118, D %),
j=0 0 1=4+1

where S denotes the stiffness matriz introduced in (3.9).
Moreover, we need the following technical
Lemma 3.7. Let &;, i1 € N, be nonnegative numbers satisfying the recursion
& <B and &< (1+468)&_1+B fori=1,2,....
Then

B
Eiﬁf(

e(i-l—l)é _ 1) .

13



Proof. Summation upon i it follows from &, < B that
i-1
& < (1+40)&1+B<(1+8)%+BY (1+4)

< BY 67 = St aion).

Utilizing the inequality 1 4+ z < e® the claim follows directly. |

Proof of Theorem 3.4. Due to (A4)-(A6’) the right-hand side of (2.1a) belongs to
H(0,T; L*()). Therefore, we can differentiate formally with respect to time:

(3.11) aw = fo(0,a)0; + fo(0,a)a; in Q.
In view of (2.8) and Lemma 2.2-a), we obtain
(3.12) llawellp2(q) < e

for a constant ¢; > 0. Now we can also differentiate (2.1c) with respect to time,
which results in

peplyy — kA0, = —play + uio + uay in Q,
% = 0 on X
v ’
0.0) = ——(kAbo — pLf(00,0) + u(0)a(0)) in €.
Plp

Note that according to (A4’)-(A6’) we have 6,(0) € H(2), hence we can test with
0:; and find that there exists a constant c; > 0 satisfying

t
k
(3.13) per [ 1025y s+ 5 19003y < ca
0

In view of (3.13) we have 6, € C([0,T]; L%(2)). From (3.12) we infer that also
a; € C([0,T]; L%(2)). Hence, for z € Q\ O, where O is a set of measure zero, we
can consider a second-order Taylor expansion for ¢. Using (2.1a) and (3.11) we
obtain

alty + A1) = afty) + Maa(ty) + 5 (A0 au(t; + €)

(3.14) = a(ty) + ALF(0(t;), a(ty)) + 5 (AL o (0(L; + €), alty + €))0:(L; + )

N | —

1
+ (A0 [a(0(t; + €), alty + ))a(l; +£),
for a £ € (0, At). Moreover, there exists a constant ¢g > 0 satisfying

1£6(0(t; +£€), alty +€))0: (5 + &) + [a(0(1; + &), alty + €))as(t; + )|z (@) < 2¢3

Now, we define

@@ = ai —a(t;) and gj = 0{ —0(t;).

Note that 8 = @° = 0 and that the term gtﬂ(tﬂ_l) is bounded because of (3.13).
Thus, in view of (A1)-(A3), we obtain for the difference of (3.7c) and (3.14)

[[@* | 2 a3l Loy + At 11F(07 a3) = F(0(t5), alti)l Lo
(3.15) + cs(At)?

_- —j+1
(1 + calrt) [[@ || 2y + es AL 107 || 2y + c6(AL)?
14
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for constants c4,c5,c6 > 0. The term gtﬂ(tﬂ_l) is bounded because of (3.13).
Summing up (3.15) for i =1,..., j, we infer

||aj||L2(Q) < CSAtZ C4At] ZHH ||L2(n)
(3.16) .

[
|
[

+ Ce(At)z (1 + C4At)i = 81 + 82.

7

1§
=]

Using the inequality 1 + = < €%, there exists a constant ¢7 > 0 such that
6C4jAt -1

(3.17) 59 < cG(At)qu < erAt,

and with the help of the Cauchy-Schwarz inequality

J

csAt(Z(l + caAt)20- Z)) (ZHG ||L2(n))

(3.18) =1

J = /
o (ALY [T ogey)
=1

S1

IN

IN

for a constant cg > 0. Now we employ the decomposition gj =97 + o7, where
(3.19) ¥ =0, — PH(t;),

together with (3.15)—(3.18) we conclude that there exists a constant ¢g > 0 such
that

. i 1/2 i 1/2
(3:20) @ [lgaqay < co (AL+ (AU NFN2aqy)  + (AP N6 aey) -
=1 =1
Regarding (3.19), (3.7b) and (2.1c), we see that ¥’ satisfies
pep (907, 9) 2y + K(9, ¥) g
= pcp(atﬂi, ¢)L2(Q) + k(@i, ¢)H1(Q) - pcp(atPLH(tj), ¢)L2(Q) — k(0(¢;), ¢)H1(Q)
= (pcpcj + k(oi - H(t])) - pL(f(@i_l, ai_l) - f(a(tj)v a(tj)))v ¢)L2(Q)7
where we have used the'abbreviation ¢ = 0:(t;) — gtPLH(tj) (cf. Lemma 3.6).
Inserting ¥ = 97, using 02 —0(t;) = 97 + 07, and invoking the inequalities of Holder
and Young, we observe
. 2% .
197]122q) + p7||V19]||§11(n)
P
(3.21) <1 gy + 108t (197]32c0) + 11613202y + 1€ 1E2(a)
+ e IO @i — FO),at3) agey

for a constant ¢10 > 0. With respect to (A1)—(A3) there exists a constant ¢ > 0
such that

178 ad ™) = F0(5), alt) ()
—7_1 —
(3.22) < ena (107 ey + (AD?19:0()I[Ex (0

82y + (AD[Bea(t)] By )
15



Using (3.12), (3.13) and (3.20) we conclude from (3.22) that
1707 a)™") = £(0(t5): alts) 3oy

j-1
< ez (||19]_1||%2(n) 1107 My + (207 + ALY ([F13 20y + ||QZ||%2(Q)))
1=1

for a constant ¢13 > 1. Inserting this into (3.21) yields
(1 = cr0A8)|[|97]|72(q

< (1 + e At)[|977 Y2y + c1sAt (|| 122 () + 1] 22a))

j—1
+ea(At)? ) ([19°]122() + l1€'1122()) + c13(A8)° + c10AL|¢|IZ (),
:1

K

(3.23)

where ¢13 = ¢10¢12. For At < 1/(2¢19) we find

—— < 1+ 2¢c10At.
1 — c10At — + 210

Setting ¢14 = max(2c1g, c12) we infer from (3.23)
. . 2
19220y < (1+c1at)?[[977 [y

j—1

i)(2 i)2
+e13(1 + craAL) AL Z (Ilv L2y + lle ||L2(n))

=1

+ e AL (1 + e1aA8) (|| Y320y + 117 |22y + (A2)?)

-
+ CloAt(l + 014At)||C]||L2(Q)'

Summation upon j yields that there exist constants ci5,c16 > 0 depending on
€12, €13, 14 and T such that

n—1

O, 2 2
Yo la@y < N19°Naqy + crsA( + e16A8) D 18] 12
j=0 7j=0
= 12 12
(3.24) +e15AL(1 + c16Al) Z (||Q7||L2(n) + ||C]||L2(Q))
7=0

+ 015(1 + CleAt)(At)z.

Note that ||¢ — Plg0||H1(Q) < |l — ¥z () for all ¥ € V4. Moreover, the inverse
inequality

1912 @) S WSIol1Wll Loy  forall g €V
holds, see [15, Lemma 2|. From 69 = 2521(00, ;) x1; and 0g € V we conclude that

2 2 2 2
||’90||L2(Q) = ||9? - PLHOHL?(Q) < 2”9? - 60||L2(Q) + 2||60 - PLHOHL?(Q)
d
2
< 2 Z |(6o, ¢i)L2(Q)|2 + 2[|6o — 9?”1—11(9)
1=4+1
d
< 201+ 11S0) D 100, ¥1) pagey
1=4+1

in case of X = L%(Q) and

d
2
[19° 5y < 4 zz: |00, %1) s oy
=441
16



for X = H(Q). Recall that ||S||2 = 1 in case of X = H'(Q2). Thus, from (3.24)
and Lemma 3.6 it follows that

n d
c2
Dollza@y < 200+ 11Sl,) D 100, i) x I
j=0 1=4+1
d
+err(l+e1At)|[|S]l, D Xi + err(At)?
1=4+1
n—1 -
+e1sAL(1 + c1eAl) > 19711 22(q)
j:O

for a c¢17 > 0 depending on c1s, ||0::]|22(q), and on the constant C, which was
introduced in Lemma 3.6. Suppose that At < 1/e15. Then there exists a constant
c1g > 0 such that

€n < (1 +c16At)én—1 + B,

where
d [t
B=cis(|ISl, 30 (100, 9k +X) + (A02) and & =3[9y
1=£+1 7j=0

We have already shown that & = ||190||L2(Q) < B. Hence we can apply Lemma 3.7
with § = e16A¢ and obtaln

3.25 1|93 20y < At 99112000 < Ab——e—(eMHIT/7 _ 1) < ¢16B
(3.25) ]Z:;)aj+1|| IZ2gay < ;H lIZ2(0) < oAl (e ) < 1B,

where 19 = (€2T —1)/c16. In view of the decomposition gj = 74’ and Lemma 3.6,
we only have to insert (3.25) into (3.20) to conclude with the proof. O

3.3. REDUCED ORDER MODELING WITH POD. The reduced-order approach to op-
timal control problems such as (CP¢) is based on approximating the nonlinear
dynamics by a Galerkin technique utilizing basis functions that contain character-
istics of the expected flow. By Theorem 3.4 we have an error estimate for the state
system (2.1) and (2.1c), but (3.8) only holds for a fixed and known laser energy
u(t). Unfortunately, the optimal control is unknown. To the authors’ knowledge,
there is no POD error analysis for optimal control problems available. Therefore
we apply a heuristic, which is well tested for other optimal control problems, in
particular for nonlinear boundary control of the heat equation, see [6].

To utilize the POD method described in Section 3.1 we need the snapshots. Since
we have no chance to get the exact solution for a chosen laser energy at some given
time instances, we compute a discrete solution to (2.1) on a fine grid. For that
purpose we introduce piecewise linear finite elements {¢1,...,on} C H(Q) and
denote by z1,...,zxy € Q the finite element (FE) nodes such that ¢;(z;) = d;; for
1 <14,j < N. Analogous to (3.7) the FE solution solution {(Hgv, agv) T oto(2.1)is
obtained by a semi-implicit FE Galerkin scheme: Find (6%, a%;) from

(3.26a) a% =0 and (6%, goi)LE(Q) = (0o, goi)LE(Q) fore=1,...,N.
Then, for j = 1,...,m solve
(5705\[7 Soi)Lz(Q) + (V%, Vﬂoi)Lz(Q)

= (u(ty)a(ty) — pLF(O " aly ), @) pagqy fori=1,...,N,
where 50;, = (05\, - 0;,_1)/As, and use Hgv to compute agv from

(3.26¢) Byl (2:) = (B (2:),aly H(ws)) fori=1,...,N.
17
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To include information of the optimal control problem, which is under consideration
here, we insert the computed sequences {0%,};-”:0 and {agv};-”zo into a semi-implicit
FE Galerkin approximation of the adjoint system (2.21) (i.e., implicit in the heat
operator d; — kA and explicit in the part involving the derivatives fs and f,) and
determine piecewise linear approximations {(pJN, qgv) T o of the adjoint pair (p, g).
The advantage of this approach is discussed in [6].

Now fix £ and determine the POD basis functions 1, ..., %; by computing the
matrix ¥ € R¥*4 such that

N
¢]:Z\II'L]SO'L forj:l,...,é,
=1
see Remark 3.3. For more details we refer the reader to [14]. We then approximate

the state variable 8 by a finite sum of time dependent modal coefficients multiplied
by the POD basis elements:

£
0[('7 t) = Zazl(t)¢z
i=1
For the volume fraction of austenite we do not apply a model reduction. However,

its piecewise linear solution depends on £ due to the reduced-order approach for the
temperature so that we write

ag(-t) = Zaf(t)%-

Let us introduce the mass and stiffness matrices

M = ((M’L])) € RLXL with M’L] = (¢j7¢i)L2(Q),
K = ((Ki)eRY  with Ky = k (Vi Vihi)aq)

the nonlinear mapping F : R* x R™ — R¢ given by
£ N
) &) — Cohrs oy . L
F(0,d) = (f(;:l: 0]¢Jaj§:1: aJ¢J)a¢z) L2(@) eR

for § = (01,...,0,), @= (as,..., ay) € R¥, the vectors of time dependent modal
coeflicients .
o(t) = (6;(1)) e RY,  a(t) = (af(1)) € RY,
and the vectors of the data
50 = ((00, ¢’L)L2(Q)) € }Rl’ &(t) = ((a(-’t), ¢’L)L2(Q)) € }Rl’ aqg = (ad(xz)) € }RN.
Then the POD Galerkin approximation of the optimal control problem (CP¢) is
given by

minJy(u) = %(d’(T)—d’d)TH(d’(T)—d’d)—i—g/ u(t)? dt
(3.27a) 1 (Tt 2 ’
+o5 /. [;of(t)im—odet

subject to the £ + N-dimensional system of ordinary differential equations

pep MO (1) + KO(t)

a'(t)

—

~pLF00),a(0) + r)a)

18
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| [0=730]0=2830]60=2840] 0 =900 ]
aeq(0) 0 0.91 1 1
() 1 0.2 0.18 0.05

TABLE 4.1. Pointwise data for a.q and .

with the initial conditions at ¢t = 0
(3.27¢) MO(0) =0, and &(0) = 0.

Notice that in case of a FE Galerkin approximation the system of ordinary differ-
ential equations has dimension 2N. Thus, (3.27) is called a low-dimensional model
for the optimal control problem (CP¢).

4. NUMERICAL EXPERIMENTS

This section is devoted to present numerical results for the optimal control prob-
lem (CP?) utilizing the reduced-order approach described in Section 3.3.

Usually the aim of surface hardening is to achieve a uniform hardening depth.
However, even in such a simple geometrical situation as shown in Figure 1 it is
difficult to realize this goal. As it will be seen from the numerical simulations in
Section 4.2, when one uses a constant laser energy, the temperature will be too low
to reach the desired volume fraction in the beginning of the laser track, while it will
be too high and possibly reach melting temperature at the end of the workpiece,
since not enough heat can diffuse there. This means that one has to increase the
energy during the early stages and to decrease it during the late stages of a laser
heat treatment in order to achieve an approximately uniform hardness penetration
depth. This will be shown in Section 4.3.

For the numerical implementation we use MATLAB version 5.3, executed on
a Pentium III 550 MHz personal computer. For the finite element matrices the
MATLAB PDE-toolbox is utilized.

4.1. PHYSICAL DATA. Let us choose the two-dimensional domain @ = (0,5) x
(—1,0). This corresponds to the grey shaded vertical cross-section through the
workpiece depicted in Figure 1. The physical parameters for the heat equations are
given by

cal

] , and pL = 150.0 [—] .

emB

cal cal

emBK

pep = 1.17 [ ] , k=0.153 [

emK s
For further details concerning physical data we refer to [8]. The equilibrium volume
fraction a., and the function 7 are cubic spline functions interpolating the pointwise
data presented in Table 4.1. Thus, (A1) and (A2) are satisfied. For the monotone
regularization of the Heaviside function we take

1 for s > 4,
H(s) =< 10 (%)6 — 24 (%)5 15 (%)4 for § > s> 0,
0 for s < 0

with § = 0.15. In particular, (A3) holds. The initial condition for the #-variable
is the room temperature, i.e., 8o = 20, and we choose 8,, = 1400 the melting
temperature of steel. Notice that (A4") is satisfied.

We take a 2.8 kW laser, and the shape function e = a(x, y,1) is given by

4k A ( 2(z — vt)?
exp | — ————

7D? D? ) exp(ry),

a(z,y,t) =
19



Domain Q and triangular mesh FE solution 8 at time t=T/4
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FiGURE 4.1. Triangular mesh and FE snapshot for the tempera-
ture at time ¢ = T'/4 with laser energy u = 480.
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FiGure 4.2. FE snapshot for the temperature at time instances
t =T/2 and ¢ = 3T /4 with laser energy u = 480.

where D = 0.47[em], k = 60[1/cm], A = 0.3, and v = 1.15[em/s]. Notice that «
satisfies (AB’).
The admissible set U, 4 for the controls is given by

Upa ={u € L*(0,T) : ug <u < upin (0,7}

with u, = 0 and up = 698.
The terminal time 7" is chosen in such a way that T = argmax {a(z,y,1)
(z,y) = (5,0), t € [0,00)}. Tt follows that T =5/v =~ 4.3478.

4.2. NUMERICAL SOLUTION OF THE STATE EQUATIONS. The FE triangulation of
Q is done by a nonuniform mesh with N = 861 degrees of freedom, see Figure 4.1
(left). For the time grids we take n = 70 and [ = 4. Then we obtain m = 280,
A7 & 0.0155 and At = 4A7 & 0.0621. Choosing the laser energy u = 480 € U,y
we compute the finite element (FE) solution of (3.26), where we use a Cholesky
factorization for the linear system (3.26b) at each time level. The needed CPU time
is 18 seconds. In Figure 4.1-4.3 the FE solution for the temperature (left) as well as
for the volume fraction of austenite (right) at different time instances are plotted.
From the FE snapshots of the temperature we can see the movement of the laser
beam along the z-axis. We observe that the temperature 6% increases at the end
of the time interval. In particular, for u = 480, we find that the FE solution Hgv is
lower that the melting temperature for ¢t; € (0,4.1], but 6% ~ 1625 > 6,,.
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FE solution 6 at time t=T FE solution a at time t=T
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Ficure 4.3. FE snapshot for the temperature and the volume
fraction of austenite at time ¢ = T with laser energy u = 480.
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Ficure 4.4. FE snapshot for the temperature and the volume
fraction of austenite at time ¢ = T with laser energy u = 400.

4.3. REDUCED-ORDER MODELING. To determine the POD basis we proceed as de-
scribed in Section 3.3. We compute the FE solution of the state equation with
u = 400. Then the FE temperature is lower than the melting temperature. In
Figure 4.4 the discrete solutions at the terminal time are presented. Next we solve
the adjoint equation (2.21) by a semi-implicit FE Galerkin method. The needed
CPU time is found to be 27 seconds. We compare two different snapshot sets. The
first one (POD 1) is given by

V' = span {03, 0%, ..., 050, 005, 0:0%, ..., 0:0%°, A%, Aavs - - - AV T,
whereas the second one (POD 2) does not contains the difference quotients, i.e.,
V2 = span {05, 0. .., 08, Bl AY ANy - -, ARC

Choosing X = L?(Q) and £ = 15, we solve the eigenvalue problem (3.6) for each
of the snapshot ensemble by utilizing the MATLAB routine eigs and compute the
reduced-order model described in Section 3.3. The needed CPU time is about 8
seconds.

Using scheme (3.7) we obtain the POD solution for the choice 4 = 400. The
discrete solution for the temperature at the terminal time ¢ = T is plotted in
Figure 4.5. When we compare the POD snapshot for the temperature at ¢ = T
with the FE solution shown in Figure 4.4 (left), then it turns out that the inclusion
of the difference quotients (POD 1) leads to a significantly better result, whereas the
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POD 1 solution 8 at time t=T
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POD 2 solution 8 at time t=T
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FiGUrRE 4.5. POD solution for 4 = 400 at time { = T in case
that the difference quotients are included in the snapshot ensemble

(POD 1) or not (POD 2).

Computation of the FE matrices 0.2 seconds
FE solve for the state system (2.1) 17.8 seconds
FE solve for the adjoint system (2.21) 24.4 seconds
Computation of the POD basis (POD 1) 7.1 seconds
Computation of the POD basis (POD 2) 3.5 seconds
Computation of the POD matrices (POD 1) 2.2 seconds
Computation of the POD matrices (POD 2) 2.1 seconds
POD solve for the state system (2.1) (POD 1) || 5.1 seconds
POD solve for the state system (2.1) (POD 2) || 5.2 seconds

TABLE 4.2. CPU times in seconds for X = L?(Q) and ¢ = 15.

snapshot ensemble V? yields a POD solution with a smaller scale and a different
shape. For the needed CPU times we refer to Table 4.2. To measure the error
between the FE and the POD solutions let us introduce the relative quantities

1 _
WLDQ—

and

107 = O || Lo ()

max [|0 ||

> 1167 — 0l3agay 172
7=0

\11}12 = m .
5 1163 g0
j=0

1
\IIHl —

L=(Q)

> 165 - Hﬁllfnp(n) 1/2
7=0

3 104 sy
j=0

for the POD basis obtained from the snapshot set V. Analogously, ¥2.., \Ilz2
and \Ilf_p are defined for the snapshot set V2. The relative L2-error is presented
as a function of time in Figure 4.6. In Table 4.3 the relative error is presented
for different values of £. It turns out that the inclusion of the difference quotients
reduces the error significantly. Next we discuss the choice X = H!(). As we have
observed in the case X = L%(Q), the inclusion of the difference quotients into the
snapshot sets leads to a significant reduction of the relative L®°- and H'-errors,
compare Table 4.4. The same also holds for the relative L2-error provided £ > 10
is satisfied. Since H'-norm includes both the L?-norm and the gradient norm, the
decay of the eigenvalues is not as fast as in the case X = L%(f). Let us introduce
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FIGURE 4.6. Relative L?-error between the FE and the POD so-
lution for the temperature and the volume fraction of austenite.

| [ Vi | Wi [ Wjo| Wi Wi [ W |
T=10 || 24.1% | 40.6% | 11.3% | 12.1% | 25.7% | 38.2%
T=15| 7.9% | 38.4% | 3.4% | 6.8% | 10.3% | 27.4%
7=20 || 6.0% | 35.3% | 1.8% | 4.3% | 5.5% | 20.6%
T=125 | 1.6% | 26.9% | 0.6% | 2.9% | 2.8% | 10.4%

TABLE 4.3. Relative errors for X = L2((Q).

| [ Vi | Wi [ Wjo| Wi Wi [ W |
7= 10 21.0% | 40.1% | 22.9% | 11.8% | 28.8% | 37.5%
T=15 || 16.2% | 37.8% | 4.4% | 6.7% | 13.1% | 27.0%
7=20 || 13.5% | 34.3% | 2.2% | 4.3% | 8.1% | 20.5%
T=25 || 4.0% | 24.6% | 1.2% | 2.9% | 4.6% | 14.8%

TABLE 4.4. Relative errors for X = H(Q).

| [£=5[£=10[£=15]£=20]£=25]£=30]
EW), X =1%Q) || 79.6 | 943 | 98.4 [ 995 | 99.8 | 99.9
), X=H'"Q) | 53.0 | 77.7 | 87.4 [ 925 | 95.7 | 97.6

TABLE 4.5. £(£) for POD 1 and different 4.

the relative quantity

Z d
() = 2/\/2/\

Then we find the results presented in Table 4.5. In (3.8) the factor ||S]|2 Zj:t+1 A
arrises on the right-hand side of the error estimate. For the choice X = H(Q2) we
have ||S||]2 = 1. In Table 4.6 the norm of the stiffness matrix S is presented for
X = H(Q) and for different £. From Tables 4.5-4.6 we conclude that the advantage
of ||S||2 = 1 for X = H(Q) is balanced by the disadvantage that for given £ the
sum ijt+1 A; is larger than for the choice X = L%(2). However, when we choose
£ in such a way that £(¢) is lower than a given threshold, then the relative errors
23



| [£=5]£=10]£=15[£=20]£=25]£=30 ]
[ISH, ] 13.9 | 53.2 [ 144.2 | 257.5 | 629.9 | 940.9 |

TABLE 4.6. Spectral norm of the stiffness matrix for X = L?(Q).

X =L%Q) X = HY(Q)
] Wiw | VI ] UL, [ 0] Vi [ Vi.[ Vi,
£(0) = 84.4% 26.7% | 23.6% | 42.8% [ 13 [ 21.2% | 6.0% | 17.0%
EW0)=925% || 9 [29.7% | 14.5% | 30.0% | 20 | 13.5% | 8.1% | 3.3%
EW0)=975% || 13 | 14.7% | 4.8% | 145% [ 30| 2.7% | 1.0% | 3.3%

TABLE 4.7. Relative errors for X = L?(Q) and X = H}(Q).

Desired state

Optimal control u‘(!)
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FiGure 4.7. Run 4.1: Desired state a4 and optimal control u*.

for X = H(Q) are smaller than for X = L?(Q), see Table 4.7. Let us mention that
in practice the number £ is often chosen in this manner.

4.4. NUMERICAL TESTS FOR THE OPTIMAL CONTROL PROBLEM. In the following
we present two test runs for the optimal control problem (CP¢), which is solved by
the gradient projection algorithm, see e.g. [12].

Run 4.1. We choose o = 3500, 3 = 0.001, £ = 0.0001. The desired volume fraction
of austenite is shown in Figure 4.7 (left). As the first iterate for the control we take
u® = 380. Let us denote by a® the FE solution for the volume fraction of austenite
corresponding to the laser intensity v = u®. The gradient projection algorithm
stops after 50 iterations and needs 1091 seconds CPU time. The optimal control
u* is presented in Figure 4.7 (right). In Figure 4.8 (left) the discrete POD solution
for the temperature at the time instance ¢ = T is plotted. Inserting the computed
suboptimal control into the finite element solver of the state equations we compute
the solution denoted by (67, ;). In Figure 4.8 (right) the solution 8 at time¢ =T
is presented. As we can see FE solve cancels out the small oscillations occurring
in the POD solution. We observe that ||0;|[ze(q) = 1391.15. In Figure 4.9 the
differences a} (7)) —agq and a®(T) —aq are plotted. Using the optimal control we get
a significant reduction of the residuum. We find that [|a®(T) — adl|lL2(q) = 0.285
and ||a;(T) — aql|z2(q) = 0.085.

Run 4.2. We choose o = 17500, 8 = 0.001, ¢ = 0.0001. In contrast to Run4.1 it is
possible to enlarge o significantly without any bad influence on gradient projection
method. The desired volume fraction of austenite is shown in Figure 4.10 (left).

24



=T

Optimal FE state 6 at time t:

=T

Optimal POD state 6 at time t:

7
TN
.
)
)
7
)
7
)
2
BN
BB
SRRRRAITBIINNGN N
SRR
NS
R 00
Nesssd
Q00
R,
iivivint «ws«v««v«««»«\

T
==
eSS S SN
ESCNTK
VAV AVAYATD "

e VAV AV AVAYATA I YA
SRS
S
LS E,

Zra,

7
A AT
oo

XX

A

7
OO

Nl vaTa g,

N
NSt

AKX
ﬁl\\\\\»\\\ﬁ«\\

7
T
BN

w0

fa

N

R
N

N

7

A

KX
Y

%
2,

X%

A

=3
=1
@

R
s
R,
SRR,
XA
BB

Rl

RN
S,

X
s

X
XY

VXY

s
AN
N7

%

200

N
N\

N
N

N

§
AR
KX

o

7
o
Ho,

NS

N

N\
\\\\\\\\\\\\\\\\\\
N
N\

NN

N
Sae
S

=
S
xS

=

=
N

X
N
S

N

N

N

=

N

D

S

N

=

N
N

N

N
S

=

N
=

N
s

S

N
S

N

N

N

N

N
=
S

S

S
N
o

N

R

S
S

20

I

~

NN

=
R

7
i

-0.5

N
SSS

N

e

x-axis

y-axis

y-axis

| POD snapshots for the tempera-

1ma.

Opt
T (left) and FE snapshot for the temperature at

time ¢ = T using u = uv* (right).

FIGURE 4.8. Run 4.1

ture at time ¢

Difference a (T)—ad

Difference aO(T)—a 4

S

=

=

S
S
S

=
N

™

N

N

N

=Y

S

N
=

X
N

=N

NS

N

S

IR
S

=

SN
N

S

7
7

Y

S
RS
\

=N
iy

S
N

S

S
SN
N8

N

3

PAS

S
S

X
=
X

S

S

N
=

N
N

=

N

=
S

=

S

N

<
N

N
N

N
S

N
S

R

S
N
=

oSS
N
S

RS

=
D

N

/

RS
B
S

i

’g

|

x-axis

y-axis

y-axis

Difference a(T) — aq for the first iterate

a = a® of the gradient projection method and for the optimal state

— g%
a_al.

FIGURE 4.9. Run 4.1

Optimal control u (t)

Desired state

L
=)
=]
re}

450

400

350

300+

250

200

150

100r

N
TNSS

N
T
NN
S

X
i

R
T
SIS
SN

50+

=

S

R

N
N

AN

=

\\\
\\‘\\\\\\\
R

S

\\\\\\\\

S
\\\\“

N

35

25

t-axis

15

0.5

x-axis

| control u*.

1ma.

d state ag and opti

1re

Des

FIGURE 4.10. Run 4.2

Due to the desired state we take

< 40,

J
1se

for 0 <

0

330 otherw

u®(t5)

25



Difference aO(T)—ad Difference a‘(T)—ad

X
RN

S \\“§\\\\\

RSN AR S AN

T ERSTRTrreTe)sTTsR::

—_TlllheihaiesSs
NssSs
NSSS 0.5

S o

D
NS

RN

RN

S

SN
iR

SIS ST,

SRR \\\'R}\\\\\\\

S

X
D N
O i hihinaaasassSs

Y

N
RN IR TS
SRS SRS
—rrrrRsrmmrerererersmeIEEEeTS=Sss
RIS
RS

RS

x-axis x-axis

FIGURE 4.11. Run 4.2: Difference a(T) — a4 for the first iterate
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as the first iterate of the gradient projection method. The method needs 29 itera-
tions and 666 seconds CPU time. By a® we denote the FE solution corresponding to
the laser intensity u = u®. We insert the computed suboptimal control into the finite
element solver of the state equations and denote its solution by (6;,a;). We observe
that ||607 || Leo(q) = 1398. In Figure 4.11 the differences aj (T') —aq and a®(T)—agq are
plotted. Using the optimal control we get a significant reduction of the residuum.
We find that ||a®(T) — adl|L2(q) = 0.423 and ||a; (T') — a4||L>() = 0.029.
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