Weierstraß-Institut für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

The time-varying stabilization of linear discrete control systems

Gennadi A. Leonov ${ }^{1}$

submitted: 12th December 2001

1 Department of Mathematics and Mechanics St.Petersburg University
Bibliotechnaya pl., 2
Petrodvoretz, St.Petersburg, 19890
Russia
E-Mail: leonov@math.spbu.ru

Preprint No. 701
Berlin 2001

[^0] tion.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
D-10117 Berlin
Germany

Fax: $\quad+49302044975$
E-Mail (X.400): $\quad c=d e ; a=d 400-\mathrm{gw} ; \mathrm{p}=$ WIAS-BERLIN; $\mathrm{s}=$ preprint
E-Mail (Internet): preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

Abstract

The Brockett stabilization problem for linear discrete control systems is considered. The method of synthesis of time-varying feedback for stabilization is described.

1 Introduction

In [1] R. Brockett has stated the time-varying stabilization problem for continuous linear systems. We consider the analogue of this problem for discrete systems.
There are given three constant matrices A, B, C. Under what conditions does there exist a time-dependent matrix $K(t)$ such that the system

$$
\begin{equation*}
x(t+1)=A x(t)+B K(t) C x(t), \quad x \in \mathbb{R}^{n}, t \in \mathcal{N} \tag{1}
\end{equation*}
$$

is asymptotically stable?
Here $\mathcal{N}=\{0,1,2, \ldots\}$ is set of nonnegative integer numbers.
In this paper we apply methods developed for continous systems (see [2, 3]) to discrete control systems.

2 The stabilization criteria

Suppose there exist matrices K_{1} and K_{2} such that for $j=1,2$ the system

$$
\begin{equation*}
x(t+1)=\left(A+B K_{j} C\right) x(t) \tag{2}
\end{equation*}
$$

has a stable invariant linear manifold L_{j} and an invariant linear manifold M_{j}. We assume for $j=1,2$
(i)

$$
M_{j} \cap L_{j}=\{0\}, \operatorname{dim} M_{j}+\operatorname{dim} L_{j}=n
$$

(ii) There are positive numbers $\lambda_{j}, \kappa_{j}, \alpha_{j}, \beta_{j}, j=1,2$, such that for $t \in \mathcal{N}, j=$ 1,2 , the inequalities hold

$$
\begin{array}{lll}
|x(t)| \leq \alpha_{j} e^{-\lambda_{j} t}|x(0)| & \text { for } & x(0) \in L_{j} \\
|x(t)| \leq \beta_{j} e^{\kappa_{j} t}|x(0)| & \text { for } & x(0) \in M_{j} \tag{4}
\end{array}
$$

Assume also that to any $t \in \mathcal{N}$ there exists a matrix $U(t)$ and that there is an integer $\tau>0$ such that for the system

$$
\begin{equation*}
y(t+1)=(A+B U(t) C) y(t) \tag{5}
\end{equation*}
$$

the inclusion

$$
\begin{equation*}
Y(\tau) M_{1} \subset L_{2} \tag{6}
\end{equation*}
$$

is valid, where

$$
Y(t+1)=\prod_{j=0}^{t}(A+B U(j) C), \quad Y(0)=I
$$

Theorem 1. If the inequality

$$
\begin{equation*}
\lambda_{1} \lambda_{2}>\kappa_{1} \kappa_{2} \tag{7}
\end{equation*}
$$

holds, then there exists a periodic matrix $K(t)$ such that system (1) is asymptotically stable.

Lemma 1. Suppose the inequality (7) is satisfied. Then for any $T>0$ there exist integers $t_{1}>0$ and $t_{2}>0$ such that

$$
\begin{align*}
& -\lambda_{1} t_{1}+\kappa_{2} t_{2}<-T, \\
& -\lambda_{2} t_{2}+\kappa_{1} t_{1}<-T . \tag{8}
\end{align*}
$$

Proof. Condition (7) implies the validity of the inequalities

$$
\begin{equation*}
\frac{T}{\lambda_{1}}+\frac{\kappa_{2}}{\lambda_{1}} t_{2}<t_{1}<-\frac{T}{\kappa_{1}}+\frac{\lambda_{2}}{\kappa_{1}} t_{2} \tag{9}
\end{equation*}
$$

for sufficiently large integer $t_{2}>0$. Here t_{1} is some positive integer. The inequalities (9) are equivalent to the inequalities (8).

The following lemma is obvious.
Lemma 2. Let $D_{i}, i=1, \ldots, 4$, be real matrices. From

$$
\binom{D_{2} w}{0}=\left(\begin{array}{cc}
D_{1} & D_{2} \\
D_{3} & D_{4}
\end{array}\right)\binom{0}{w} \quad \forall w \in \mathbb{R}^{l}
$$

we get $D_{4}=0$.
Proof of Theorem 1. Let T be an arbitrarilly positive number. Under the condition (7) there are positive integers t_{1} and t_{2} satisfying the inequalities (8) (see Lemma 1).
We now define the periodic matrix $K(t)$ in the following way

$$
\begin{array}{lll}
K(t)=K_{1}, & \text { for } & t \in\left[0, t_{1}\right) \\
K(t)=U\left(t-t_{1}\right), & \text { for } & t \in\left[t_{1}, t_{1}+\tau\right] \tag{10}\\
K(t)=K_{2}, & \text { for } & t \in\left(t_{1}+\tau, t_{1}+t_{2}+\tau\right) .
\end{array}
$$

The minimal period of the matrix $K(t)$ is $t_{1}+t_{2}+\tau$. We shall prove that for sufficiently large T system (1) with the matrix $K(t)$ defined in (10) is asymptotically stable.

Let $S_{j}(j=1,2)$ be a nonsingular matrix. Then by (2) we have

$$
\begin{equation*}
S_{j} x_{n+1}=S_{j}\left(A+B K_{j} C\right) x_{n}=S_{j}\left(A+B K_{j} C\right) S_{j}^{-1} S_{j} x_{n} \tag{11}
\end{equation*}
$$

We assume that S_{j} is a matrix such that
(i) $S_{j}\left(A+B K_{j} C\right) S_{j}^{-1}=\left(\begin{array}{cc}Q_{j} & 0 \\ 0 & P_{j}\end{array}\right)$.
(ii) $Q_{j}: L_{j} \rightarrow L_{j}, P_{j}: M_{j} \rightarrow M_{j}$.

Thus, S_{j} defines by (11) the decomposition

$$
\begin{equation*}
S_{j} x=\binom{z_{j}}{w_{j}} \tag{12}
\end{equation*}
$$

and (2) is equivalent to

$$
\begin{gather*}
z_{j}(t+1)=Q_{j} z_{j}(t), \quad \operatorname{dim} z_{j}=\operatorname{dim} L_{j}, \tag{13}\\
w_{j}(t+1)=P_{j} w_{j}(t), \quad \operatorname{dim} w_{j}=\operatorname{dim} M_{j}
\end{gather*}
$$

where without loss of generality we may assume that for $t \in \mathcal{N}$

$$
\begin{align*}
& \left|z_{j}(t)\right| \leq \alpha_{j} e^{-\lambda_{j} t}\left|z_{j}(0)\right|, \\
& \left|w_{j}(t)\right| \leq \beta_{j} e^{\kappa_{j} t}\left|w_{j}(0)\right| . \tag{14}
\end{align*}
$$

From the relations (13) and (14) it follows that

$$
\binom{z_{2}\left(t_{1}+\tau\right)}{w_{2}\left(t_{1}+\tau\right)}=S_{2} Y(\tau) S_{1}^{-1}\binom{z_{1}\left(t_{1}\right)}{w_{2}\left(t_{1}\right)} .
$$

Inclusion (6) implies that the matrix $S_{2} Y(\tau) S_{1}^{-1}$ has the form (see Lemma 2)

$$
S_{2} Y(\tau) S_{1}^{-1}=\left(\begin{array}{cc}
R_{11}(\tau) & R_{12}(\tau) \\
R_{21}(\tau) & 0
\end{array}\right)
$$

Therefore (8), (13) and (14) result in the estimates

$$
\begin{gathered}
\left|z_{2}\left(t_{1}+t_{2}+\tau\right)\right| \leq \alpha_{1} \alpha_{2}\left|R_{11}(\tau)\right| e^{-2 T}|z(0)|+\alpha_{2} \beta_{1}\left|R_{12}(\tau)\right| e^{-T}\left|w_{1}(0)\right| \\
\left|w_{2}\left(t_{1}+t_{2}+\tau\right)\right| \leq \alpha_{1} \beta_{2}\left|R_{21}(\tau)\right| e^{-T}\left|z_{1}(0)\right|
\end{gathered}
$$

Hence, to any $x(0)$ with $|x(0)| \leq 1$ there is a sufficiently large T such that the solution of (1) satisfies

$$
\left\lvert\, x\left(t_{1}+t_{2}+\tau, 0, x(0) \left\lvert\, \leq \frac{1}{2}\right.\right.\right.
$$

This relation and the periodicity of the matrix $K(t)$ imply the asymptotic stability of system (1).

Theorem 2. Suppose $B \in \mathbb{R}^{n}, C^{*} \in \mathbb{R}^{n},(A, B)$ is controllable, $\left(A, C^{*}\right)$ is observable, $M_{1}=M_{2}, L_{1}=L_{2}, \operatorname{dim} M_{1}=1, \operatorname{dim} L_{1}=n-1$. Then there exists a matrix $U_{0} \equiv U(t)$ such that

$$
Y(1) M_{1} \subset L_{2}
$$

Proof. Consider vectors $h \in \mathbb{R}^{n}, q \in \mathbb{R}^{n}$ such that

$$
L_{1}=\left\{h^{*} x=0\right\}, \quad q \in M_{1}, q \neq 0
$$

From the controllability of (A, B) and from the observability of $\left(A, C^{*}\right)$ it follows the controllability of $\left(A+B K_{1} C, B\right)$ and the observability of $\left(A+B K_{1} C, C^{*}\right)$.
Suppose that $h^{*} B=0$. In this case the invariance of L_{1} implies the relations

$$
h^{*} B=0, \quad h^{*}\left(A+B K_{1} C\right) B=0, \ldots, h^{*}\left(A+B K_{1} C\right)^{n-1} B=0 .
$$

From this relations and from the controllability of $\left(A+B K_{1} C, B\right)$ it follows $h=0$. Hence, the assumption $h^{*} B=0$ is incorrect and we have $h^{*} B \neq 0$.
From the relation $C q=0$ and from the invariance of M_{1} it follows

$$
C\left(A+B K_{1} C\right) q=0, \ldots, C\left(A+B K_{1} C\right)^{n-1} q=0
$$

Therefore, the observability of $\left(A+B K_{1} C, C^{*}\right)$ implies $q=0$. Hence, the assumption $C q=0$ is incorrect and we have $C q \neq 0$.

Let us consider system (5) with $y(0)=q$. From

$$
h^{*} y(1)=h^{*} A q+U(0) h^{*} B C q
$$

and from the inequalities $h^{*} B \neq 0, C q \neq 0$ it follows by (6) for $\tau=1$

$$
U(0)=-h^{*} A q /\left(h^{*} B C q\right)
$$

From Theorem 1 and Theorem 2 the following result can be obtained.
Theorem 3. Suppose $B \in \mathbb{R}^{n}, C^{*} \in \mathbb{R}^{n},(A, B)$ is controllable, $\left(A, C^{*}\right)$ is observable, $M_{1}=M_{2}, L_{1}=L_{2}, \lambda_{1}=\lambda_{2}, \kappa_{1}=\kappa_{2}, \operatorname{dim} M_{1}=1, \operatorname{dim} L_{2}=n-1$ and $\lambda_{1}>\kappa_{1}$. Then there exists a periodic function $K(t)$ such that system (1) is asymptotically stable.

Theorem 3 implies the following result.
Theorem 4. Suppose $B \in \mathbb{R}^{n}, C^{*} \in \mathbb{R}^{n},(A, B)$ is controllable, $\left(A, C^{*}\right)$ is observable. There is some number K_{0} such that the eigenvalues $\mu_{j}(j=1, \ldots, n)$ of the matrix $A+K_{0} B C$ satisfy the conditions

$$
\begin{array}{ll}
\left|\mu_{j}\right|<1, & \text { for } j=1, \ldots, n-1, \\
\left|\mu_{n} \mu_{j}\right|<1, & \text { for } j=1, \ldots, n-1 .
\end{array}
$$

Then there exists a periodic function $K(t)$ such that system (1) is asymptotically stable.

3 Two-dimensional linear systems

Let us consider system (1) with $B \in \mathbb{R}^{2}, C^{*}=\mathbb{R}^{2}, n=2$ and with the transfer function

$$
W(p)=C(A-p I)^{-1} B=\frac{\nu p+\gamma}{p^{2}+\alpha p+\beta}
$$

We assume that $\alpha, \beta, \gamma, \nu$ are numbers such that

$$
\gamma^{2}-\alpha \nu+\beta \nu^{2} \neq 0
$$

This inequality is a necessary and sufficient condition for the controllability and observability of system (1) in case $n=2$.
The eigenvalues μ_{1}, μ_{2} of the matrix $A+K_{0} B C$ are the zeroes of the polynomial

$$
p^{2}+\left(\alpha+K_{0} \nu\right) p+\beta+K_{0} \gamma .
$$

Therefore, it holds

$$
\left|\mu_{1} \mu_{2}\right|=\left|\beta+K_{0} \gamma\right|
$$

Hence, all conditions of Theorem 4 are fulfiled if $\gamma \neq 0$ or $|\beta|<1$ and

$$
\gamma^{2}-\alpha \nu+\beta \nu^{2} \neq 0
$$

4 Acknowledgement

The author would like to thank Klaus R. Schneider for many fruitful discussions and comments.

References

[1] Brockett, R. [1999] A stabilization problem. In: „Open Problems in Mathematical Systems and Control Theory". Springer. London, P.75-78.
[2] Leonov, G.A. [2001] Brockett's problem in theory of linear differential equations. Algebra and Analysis, 13 (4), P.134-155.
[3] Leonov, G.A. [2001] Mathematical problems of control theory. World Scientific. Singapore.

[^0]: 2000 Mathematics Subject Classification. 93D15, 93C55.
 Key words and phrases. Stabilization, linear control, discrete system, feedback, transfer func-

