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Abstract

Our aim in this paper is to present su�cient conditions for error bounds

in terms of Fréchet and limiting Fréchet subdi�erentials outside of Asplund

spaces. This allows us to develop su�cient conditions in terms of the approx-

imate subdi�erential for systems of the form (x; y) 2 C �D; g(x; y; u) = 0,
where g takes values in an in�nite dimensional space and u plays the role of a

parameter. This symmetric structure o�ers us the choice to impose condtions

either on C or D. We use these results to prove nonemptyness and weak-star

compactness of Fritz-John and Karuch-Kuhn-Tucker multiplier sets, to estab-

lish Lipschitz continuity of the value function and to compute his subdi�eren-

tial and �nally to obtain results on local controllability in control problems of

nonconvex unbounded di�erential inclusions.

1 Introduction

Consider an inequality system

f(x; u) � 0 (1)

where f is a given extended real-valued function. It is a familiar consideration in

mathematics to seek to solve this inequality for x, while viewing u as a parameter.

Typically this is done in a neighbourhood of a given point (�x; �u) for which (1) is

satis�ed, and the important issues are these: For a given u near �u, does there

continue to be at least one value of x for which (1) holds? How does this set S(u)
of solutions vary with u?

One outcome is to consider the following metric inequalities in some neighbourhood

of (�x; �u)
d(x; S(u)) � amax(0; f(x; u))

for some constant a > 0. These inequalities are called error bounds for system (1).

The primary object of this paper is to develop su�cient conditions for error bounds

and to give applications of the results obtained to optimization problems, sensitivity

analysis as well as controllability in control problems of nonconvex unbounded dif-

ferential inclusions. There are several conditions ensuring these error bounds. These

conditions are in general expressed in terms of subdi�erentials or axiomatic subdif-

ferentials (see [12], [2], [3], [14]-[18], [24], [8] and references therein). Some of these

subdi�erentials depend on the data space. For example, Fréchet subdi�erentials

and limiting Fréchet subdi�erentials characterize Asplund Banach spaces. Su�cient

1



conditions given before in terms of these two subdi�erentials are formulated only in

Asplund spaces.

Our aim here is to give su�cient conditions in general Banach spaces for error bounds

in terms of Fréchet and limiting Fréchet subdi�erentials which are the smallest ones

among all subdi�erentials or axiomatic subdi�erentials. This allows us to obtain

su�cient conditions for general systems in terms of the approximate subdi�erential

by Io�e [5]-[6].

The rest of the paper is organized as follows. Section 2 contains basic de�nitions.

Section 3 is devoted to the study of local and global error bounds related to system

(1) and to the system

x 2 C and g(x; u) 2 D

where g takes values in a �nite dimensional space. The conditions presented in

this section are given only in terms of Fréchet and limiting Fréchet subdi�erentials.

Based on the results in section 3, we develop in section 4 su�cient conditions in

terms of the approximate subdi�erentials for error bounds for systems of the form

(x; y) 2 C �D and g(x; y; u) = 0

where g takes values in an in�nite dimensional space. This symetric structure o�ers

us the choice to impose conditions either on C or D to get error bounds for this

system. As a particular case of these systems we consider systems of the form

x 2 C; g(x) 2 D;

since they can be transformed into the form (x; y) 2 C �D; g(x)� y = 0, where
g takes values in a some Banach space. In section 5 we give some applications of

our results. We prove nonemptyness and weak-star compactness of Fritz-John and

Karuch-Kuhn-Tucker multiplier sets, establish Lipschitz continuity of the value func-

tion and compute his subdi�erential and �nally obtain results on local controllability

in control problems of nonconvex unbounded di�erential inclusions.

2 Notation and preliminaries

In order to make the paper as short as possible, some de�nitions and the complete

wording of the results will not be repeated here, and as needed, will be referenced

to [19]-[21] and [5]-[6]. Throughout we shall assume that X, Y and Z are Banach

spaces endowed with some norm denoted by k � k to which we associate the distance

function d(�; C) to a set C. We shall also assume that (U; d) is a metric space.

B(x; r) will refer to the ball centered at x and of radius r.

We write x
f
!xo, and x

S
!xo to express x! x0 with f(x) ! f(x0) and x! x0 with

x 2 S, respectively.
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Let f be an extended-real-valued function on X � U . The partial limiting Fréchet

subdi�erential of f at (x0; u0) in x with respect to u is the set

@Fx f(x0; u0) = w� � seq � lim sup
(x;u)

f
!(x0;u0)

"!0+

@"xf(x; u)

where

@"xf(x; u) = fx� 2 X� : lim inf
h!0

f(x+ h; u)� f(x; u)� hx�; hi

k h k
� �"g

is the partial "�Fréchet subdi�erential of f at (x; u).

If f is an extended-real-valued function on X; we write for any subset S of X

fS(x) =

�
f(x) if x 2 S;

+1 otherwise:

The function

d� f(x; h) = lim inf
u!h

t#0

t�1(f(x+ tu)� f(x))

is the lower Dini directional derivative of f at x and the Dini "-subdi�erential of f

at x is the set

@�" f(x) = fx� 2 X� : hx�; hi � d�f(x; h) + "khk; 8h 2 Xg

for x 2 Domf and @�" f(x) = ; if x =2 Domf; where Domf denotes the e�ective

domain of f: For " = 0 we write @� f(x):

By F(X) we denote the collection of �nite dimensional subspaces of X: The approx-
imate subdi�erentials of f at x0 2 Domf is de�ned by the following expressions (see

Io�e [5]-[6])

@Af(x0) =
\

L2F(X)

lim sup
x
f

!xo

@�fx+L(x) =
\

L2F(X)

lim sup
x
f
!xo

"#0

@�" fx+L(x)

where

lim sup
x
f

!xo

@�fx+L(x) = fx� 2 X� : x� = w� � lim x�i ; x
�

i 2 @�fxi+L(xi); xi
f
!x0g;

that is, the set of w�-limits of all such nets.

The G-normal cone to a closed set C � X at x0 is de�ned by

NG(C; x0) = R+@Ad(C; x0):

Using the remark following Proposition 1.6 and Proposition 2.4 in [11] we obtain

the following result.
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Proposition 2.1 Let v : X 7! R be a function which is locally Lipschitzian at �x
with Lipschitz constant kv. Then the following are equivalent:

i) x� 2 @Av(�x);

ii) (x�;�1) 2 NG(graphf ; (�x; f(�x)));

iii) (x�;�1) 2 (kv + 1)@Ad(graphf ; (�x; f(�x)));

iv) For all L 2 F(X) there are nets x�i ! x�, xi ! �x, "i ! 0+ and ri ! 0+ such

that

kx�i k � (kv + 1)(1 + "i)

v(x)� v(xi)� hx�i ; x� xii+ "ikx� xik � 0 8x 2 B(xi; ri) \ (L+ xi):

Finally we recall that the mapping g : X � U 7! Y is of class C1 at (�x; �u) in x with

respect to u if g and its partial derivative Dxg(x; u) are continuous at (�x; �u).

3 Error bounds using Fréchet subdi�erentials

It is well-known that some Banach spaces may be characterized in terms of some

subdi�erentials. For example the Dini subdi�erential characterizes the Weak Trust-

worthy spaces. The "�Fréchet ( and limiting Fréchet) subdi�erential gives a char-

acterization of Asplund spaces. To give su�cient conditions for error bounds for

systems in terms of the limiting Fréchet subdi�erential, the previous works assume

that the space is Asplund. Our aim here is to obtain these results in general Banach

spaces.

Here we consider the following systems:

f(x; u) � 0 (S1)

and

x 2 C and g(x; u) 2 D (S2)

where f : X � U 7! R [ f+1g is a lower semicontinuous function, C and D are

closed sets in X and Rm and g : X � U 7! R
m is a mapping. Here Rm is endowed

with the euclidean norm which will also be denoted by k � k.

The corresponding parametric solution set is de�ned by the multivalued mapping

S1(u) = fx 2 X : f(x; u) � 0g

and

S2(u) = fx 2 C : g(x; u) 2 Dg:

We begin with system (S1) for which we give a su�cient condition ensuring a local

error bound. We set

Bf((x; u); r) := f(x0; u0) 2 B(x; r)�B(u; r) : jf(x0; u0)� f(x; u)j � rg:
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Theorem 3.1 Suppose f(�x; �u) = 0 and there exists r > 0 such that

8(x; u) 2 Bf ((�x; �u); r); x =2 S1(u); 8" 2]0; r[; 0 =2 @"xf(x; u):

Then there exist constants a > 0 and s > 0 such that

d(x; S1(u)) � ad(f(x; u);R�) 8x 2 B(�x; s)8u 2 B(�u; s):

Proof. Suppose the contrary. Then there exist sequences xn ! �x, and un ! �u
such that

d(xn; S1(un)) > nd(f(xn; un);R�): (2)

Note that xn =2 S1(un) or equivalently f(xn; un) > 0. Set "2n = f(xn; un), �n =

min(n"2n; "n) and sn = "2
n

�n
: It is easy to see that "n; �n; sn ! 0+. Consider the

function h(x) = d(f(x; un);R+). Then

h(xn) � inf
x2X

h(x) + "2n:

By the lower semicontinuity of h, the Ekeland's variational principle ensures the

existence of x0n 2 X satisfying

kx0n � xnk � �n (3)

h(x0n) � h(x) + snkx
0

n � xk 8x 2 X: (4)

Note that, by (2)-(3), x0n =2 S1(un). Since f is lower semicontinous, h(x) coincides
with f(x; un) in a neighbourhood of x

0

n and hence by (4) we get for some subsequence

(x0
m(n)) that f(x

0

m(n); um(n)) ! f(�x; �u) and

0 2 @
sm(n)
x f(x0m(n); um(n))

and this contradicts our assumption. }

We have the following corollary of Theorem 3.1.

Corollary 3.2 Suppose that f(�x; �u) = 0 and that

0 =2 @Fx f(�x; �u):

Then the conclusion of Theorem 3.1 holds.

We continue with system (S1) in which we assume that f(x; u) = f(x). We give a

condition for which a global error bound holds. The proof is similar to the previous

one.
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Theorem 3.3 Suppose that the solution set S1 of the system (S1) is nonempty and

there exists r > 0 such that

8x =2 S1 8" 2]0; r[ 0 =2 @"f(x):

Then there exists a constant a > 0 such that

d(x; S1) � ad(f(x);R�) 8x 2 X:

Now we pass to system (S2). The following result is a consequence of Theorem 3.1.

Theorem 3.4 Suppose that

i) (�x; �u) is a solution of the system (S2).

ii) g is of class C1 at (�x; �u) in x with respect to u (with derivative Dxg(�x; �u)).

Then either

�) there exists a > 0 and r > 0 such that

d(x; S2(u)) � ad(g(x; u); D)

for all x 2 C \ B(�x; r) and all u 2 B(�u; r);

or

�) there exists y� 2 NF (D; g(�x; �u)), y
� 6= 0, such that 0 2 y� ÆDxg(�x; �u)+NF (C; �x):

Proof. Consider the function f : X � U 7! R [ f+1g de�ned by

f(x; u) =

�
d(g(x; u); D) if x 2 C;

+1 otherwise:

Then

S2(u) = fx 2 X : f(x; u) � 0g:

Suppose that �) is false. Then, by Theorem 3.1, there are sequences xn ! �x, with
xn 2 C, un ! �u and "n ! 0+ such that

xn =2 S2(un) and 0 2 @"nx f(xn; un): (5)

So there exists rn ! 0+ such that

f(xn; un) � f(x; un) + 2"nkxn � xk 8x 2 B(xn; rn)

or equivalently

d(g(xn; un); D) � d(g(x; un); D) + 2"nkxn � xk 8x 2 B(xn; rn) \ C: (6)
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Let dn 2 D such that

d(g(xn; un); D) = kg(xn; un)� dnk:

Then dn ! g(�x; �u) and by (6) we obtain

kg(xn; un)� dnk � kg(x; un)� dnk+ 2"nkx� xnk 8x 2 B(xn; rn) \ C

and

kg(xn; un)� dnk � kg(xn; un)� yk 8y 2 D:

Set y�n = g(xn;un)�dn
kg(xn;un)�dnk

. Using the euclidean structure of Rm and the fact that g is of

class C1 at (�x; �u) in x with respect to u we get a sequence sn ! 0+ such that

�y�n ÆDxg(xn; un) 2 N sn
F (C; xn)

and

y�n 2 N sn
F (D; dn):

Extracting a subsequence if necessary we may assume that y�n ! y�, with ky�k = 1
(because the space has a �nite dimension). Thus there exists y� 2 NF (D; g(�x; �u)),
y� 6= 0, such that 0 2 y� ÆDxg(�x; �u) +NF (C; �x): }

4 Error bounds using approximate subdi�erentials

Most of the results presented in this section can be obtained in a general framework.

But to avoid technicality and to facilitate the reading of the paper we consider here

systems with di�erentiable data.

In this section we consider parametrized systems of the form

(x; y) 2 C �D and g(x; y; u) = 0 (S3)

where C and D are closed sets in X and Y and g : X � Y � U 7! Z is a mapping.

Our system may be nonlinear with respect to the perturbation u. Let S3(u) be the
set of solutions to the system (S3). Before stating the following theorem, let us

recall the following notion by Borwein and Strojwas [1]. A set S � X is said to be

compactly epi-Lipschitzian at x0 2 S if there exist 
 > 0 and a norm compact set

H � X such that

S \B(x0; 
) +B(0; t
) � S � tH; for all t 2]0; 
[:

Theorem 4.1 Suppose that

i) (�x; �y; �u) is a solution of the system (S3).

ii) g is of class C1 at (�x; �y; �u) in x with respect to (y; u) with surjective partial

derivative Dxg(�x; �y; �u).
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iii) g is of class C1 at (�x; �y; �u) in y with respect to (x; u) with partial derivative

Dyg(�x; �y; �u).

iv) C is compactly epi-Lipschitzian at �x.

Then either

�) there exist a > 0 and r > 0 such that

d((x; y); S3(u)) � akg(x; y; u)k

for all x 2 C \ B(�x; r), y 2 D \B(�y; r) and u 2 B(�u; r);

or

�) there exists z� 2 Z�
, z� 6= 0, such that

z� ÆDxg(�x; �y; �u) 2 kg@Ad(C; �x); z� ÆDyg(�x; �y; �u) 2 kg@Ad(D; �y)

where kg is a Lipschitz constant of g at (�x; �y; �u).

Proof. Consider the function f : X � Y � U 7! R [ f+1g de�ned by

f(x; y; u) =

�
kg(x; y; u)k if (x; y) 2 C �D;

+1 otherwise:

Then

S3(u) = f(x; y) 2 X � Y : f(x; y; u) � 0g:

Suppose that �) is false. Then, as in the proof of Theorem 3.4 there are sequences

((xn; yn)) � C �D, (un) � U and (rn); (sn) � R+ , with (xn; yn) ! (�x; �y), un ! �u,
rn ! 0+ and sn ! 0+, such that

g(xn; yn; un) 6= 0

and

kg(xn; yn; un)k � kg(x; y; un)k+ snk(x� xn; y � yn)k

for all (x; y) 2 (C �D)\B((xn; yn); rn): Thus, there exists z
�

n 2 Z�, with kz�nk = 1,
such that

z�n ÆDxg(xn; yn; un) 2 (kg + sn)@Ad(xn; C) + snB
�

and

z�n ÆDyg(xn; yn; un) 2 (kg + sn)@Ad(yn; D) + snB
�

Now using the surjectivity of Dxg(�x; �y; �u) and the fact that g is of class C1 there

exists r > 0, not depending on n � n0, such that

kz�n ÆDxg(xn; yn; un)k � r:

Extracting a subnet we may assume that z�n ! z�, with z�ÆDxg(�x; �y; �u) 2 kg@Ad(�x; C)
and z�ÆDyg(�x; �y; �u) 2 kg@Ad(�y;D). Since C is compactly epi-Lipschitzian at �x, then
by Lemma 2.3 in [10] there exist h1; � � � ; hk 2 X, not depending on n, such that

r � max
i=1;���;k

hz�n ÆDxg(xn; yn; un); hii

8



and hence

r � max
i=1;���;k

hz� ÆDxg(�x; �y; �u); hii:

Thus z� 6= 0 and the proof is complete.}

As a particular case of the previous system, we consider systems of the form

(x; y) 2 C �D and g1(x)� g2(y) = 0 (S4)

where C and D are closed sets in X and Y respectively, and g1 : X 7! Z and

g2 : Y 7! Z are mappings. Let S4(z) := f(x; y) 2 C �D : g1(x)� g2(y) = zg.

Corollary 4.2 Suppose that

i) (�x; ; �y) is a solution of the system (S4).

ii) g1 is of class C1 at �x with surjective derivative Dg1(�x).

iii) g2 is of class C1 at �y with derivative Dg2(�y).

iv) C is compactly epi-Lipschitzian at �x.

Then either

�) there exist a > 0 and r > 0 such that

d((x; y); S4(z)) � akg1(x)� g2(y) + zk

for all x 2 C \ B(�x; r), y 2 D \B(�y; r) and z 2 B(0; r);

or

�) there exists z� 2 Z�
, z� 6= 0, such that

�z� ÆDg1(�x) 2 kg@Ad(C; �x); z� ÆDg2(�x) 2 kg@Ad(D; �y)

where kg is a Lipschitz constant of g := g1 � g2 at (�x; �y).

The following corollary generalizes in the di�erentiable case the result by Jourani

and Thibault [10] in which it is assumed that D is compactly epi-Lipschitzian at

g(�x). Our result takes advantage of the symetric role of C and D.

Corollary 4.3 Let g : X 7! Y be a mapping of class C1 at �x and let C and D be

closed sets in X and Y respectively. Consider the system

x 2 C; g(x) 2 D

to which we associate the parametric solution set given by the multivalued mapping

S5(y) = fx 2 C : g(x) + y 2 Dg:

9



Let �x 2 C \ g�1(D). Suppose that either

i) Dg(�x) is surjective and C is compactly epi-Lipschitzian at �x,

or

ii) D is compactly epi-Lipschitzian at g(�x).

Then either

�) there exist a > 0 and r > 0 such that

d(x; S5(y)) � ad(g(x) + y;D) 8x 2 C \B(�x; r) 8y 2 B(0; r);

or

�) there exists y� 2 Y �
, y� 6= 0, such that

�y� ÆDg(�x) 2 kg@Ad(C; �x); y� 2 kg@Ad(D; g(�x))

where kg is a Lipschitz constant of g at �x.

5 Applications.

The main intention of this section is devoted to applications of our results to the

notion of weak sharp minima, necessary optimality conditions, sensitivity analysis as

well as to local controllability of optimal control problems of unbounded di�erential

inclusions with nonconvex admissible velocity sets.

5.1 Weak sharp minima

We can apply our results to optimization problems, in particular for studying the

notion of weak sharp minima which ensures, for example, the �nite convergence of

some algorithms.

Consider a function g : X 7! R [ f1g. We say that S := argmin g is a set of weak

sharp minima for g with modulus b > 0 if

g(x) � g(u) + bd(x; S); 8x 2 X 8u 2 S:

As we can see that this is equivalent to the error bound

d(x; S) �
1

b
max(0; f(x)); 8x 2 X

where f(x) = g(x) � g(u) for some u 2 S: So this inequality is ensured under the

assumptions of Theorem 3.3.

10



5.2 Necessary optimality conditions

We consider here optimization problems of the form

minff(x; y) : g(x; y) = 0; (x; y) 2 C �Dg (7)

where g : X�Y 7! Z and f : X�Y 7! R are mappings of class C1 at (�x; �y) 2 C�D,

with g(�x; �y) = 0, where C and D are closed sets in X and Y respectively.

A vector (�; z�) 2 R+ � Z� is a Fritz-John multiplier of (5.2) at (�x; �y) if

k(�; z�)k = 1 (8)

��rxf(�x; �y)� z� ÆDxg(�x; �y) 2 2akgkf@Ad(C; �x) (9)

��ryf(�x; �y)� z� ÆDyg(�x; �y) 2 2akgkf@Ad(D; �y): (10)

Here kf and kg denote Lipschitz constants of f and g near (�x; �y) and a is as in the

assertion �) of Theorem 4.1 (with g(x; y) instead of g(x; y; u)). These constants are
assumed to be at least equal to 1.

For a local solution (�x; �y) to (5.2) we denote

� all multipliers (�; z�) satisfying (8)-(10) by FJ(�x; �y) and

� all multipliers z� satisfying (9)-(10), with � = 1, by KKT (�x; �y) (the set of Karush-
Kuhn-Tucker multipliers).

The following result is a direct consequence of Theorem 4.1.

Theorem 5.1 Suppose that (�x; �y) is a local solution to the problem (5.2). Then,

under the assumptions of Theorem 4.1, with g(x; y) instead of g(x; y; u), FJ(�x; �y) is
nonempty and weak-star compact in R�Z�

. If in addition assertion �) of Theorem
4.1 does not hold then KKT (�x; �y) is nonempty and weak-star compact in Z�

.

We have to note that if neither ii) nor iv) in Theorem 4.1 is satis�ed then the

theorem is wrong. To see this let X = Y = l2 be the Hilbert space of square

summable sequences, with (ek) its canonical orthonormal base and let the operator

A : l2 ! l2 be de�ned by

A(
X

xiei) =
X

21�ixiei:

Then A is not surjective and Im(A) is a proper dense subspace of l2. The adjoint

A� is injective but not surjective. So let x� =2 Im(A�) and set f = x�, g = A and

D = f0g. Then 0 is the only feasible point and it is the optimum for this problem.

Moreover there is no (�; y�) 6= (0; 0) satisfying �rf(�x) + y� ÆDg(�x) = 0:
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5.3 Sensitivity analysis

Suppose that an optimization problem (P) is given in the following abstract form :

minff(x; y) : g(x; y) = 0; (x; y) 2 C �Dg:

It often happens that (P) lends itself naturally to parametric perturbation, so that

(P) is embedded in a family of optimization problems (Pu) indexed by a parameter

u

minff(x; y; u) : g(x; y; u) = 0; (x; y) 2 C �Dg

where f : X � Y � U 7! R is a lower semicontinuous function g : X � Y � U 7! Z

is a mapping and C and D are closed sets in X and Y respectively.

The value of the problem (Pu) is denoted v(u), and v is called the value function.

For each u in the domain of v we consider the set of minimizers :

S(u) := f(x; y) 2 C �D : g(x; y; u) = 0; f(x; y; u) = v(u)g:

We proceed to examine a few typical properties of v that have a bearing on (P).

We begin by the Lipschitzian property of v. For this we introduce a compactness

assumption which will assure the stability of the parametrized problems (Pu). A

stability assumption (SA) holds if there exists a norm-compact set H such that for

u near 0, S(u) 6= ; and

S(u) � H +B(0; �(u))

where lim
u!0

�(u) = 0:

We have the following properties of the value function v.

Proposition 5.2 Suppose that (SA) holds and that f and g are continuous on

S(0)� f0g and K � f0g, respectively. Then

a) the value function v is lower semicontinuous at 0.

b) the following assertions are equivalent:

i) the multivalued mapping S is upper semicontinuous at 0; i.e.,

8" > 0 9� > 0; S(u) � S(0) +B(0; ") 8u 2 B(0; �);

ii) the value function v is upper semicontinuous at 0.

Proof. a) So suppose the contrary, then there exist " > 0 and a sequence (un)
converging to 0 such that for n large enough

v(0) > v(un) + ":

By (SA), there exists (xn; yn) 2 S(un), which we assume converging to some (�x; �y).
Now from the continuity of f and g we deduce

v(0) � f(�x; �y; 0) + "; (�x; �y) 2 C �D; g(�x; �y; 0) = 0

12



and hence

v(0) � v(0) + "

which leads to a contradiction. So v is lower semicontinuous at 0.

b) Suppose that i) holds. Let (un) be any sequence converging to 0 and for which

lim
n!+1

v(un) exists. We will show that lim
n!+1

v(un) = v(0): By (SA), there exists

(xn; yn) 2 S(un) which we assume converging to (�x; �y) and by i), (�x; �y) 2 S(0).
Thus

v(un) = f(xn; yn; un); (xn; yn) 2 C �D; g(xn; yn; un) = 0

and by the continuity of f and g we get

lim
n!+1

v(un) = f(�x; �y; 0); (�x; �y) 2 C �D; g(�x; �y; 0) = 0:

As (�x; �y) 2 S(0), we obtain lim
n!+1

v(un) = v(0): Now it su�ces to use these argu-

ments to prove that

lim sup
u!0

v(u) = v(0):

Conversely, suppose that v is upper semicontinuous at 0 and that S is not upper

semicontinuous at 0. Then there are " > 0 and sequences (un) and ((xn; yn)) such
that

(xn; yn) 2 S(un) and (xn; yn) =2 S(0) +B(0; "):

We may assume, by (SA), that (xn; yn) ! (�x; �y). Since

v(un) = f(xn; yn; un); (xn; yn) 2 C �D; g(xn; yn; un) = 0

then by the continuity of f and g and the upper semicontinuity of v at 0 we obtain

v(0) � lim sup
n!+1

v(un) = f(�x; �y; 0); (�x; �y) 2 C �D; g(�x; �y; 0) = 0

which is equivalent to say that (�x; �y) 2 S(0). Thus, for n large enough, (xn; yn) 2
S(0) +B(0; ") and this contradiction completes the proof.}

Theorem 5.3 Suppose that

1) For each sequence (un) converging to 0 we have

; 6= lim sup
n!+1

S(un) � S(0):

2) For each (�x; �y) 2 S(0) we have:

i) f , g are locally Lipschitzian near (�x; �y; 0) with Lipschitz constant k(�x; �y).

ii) g is of class C1 at (�x; �y; 0) in (x; y) with respect to u with surjective partial

derivative Dxg(�x; �y; 0);

iii) f is of class C1 at (�x; �y; 0) in (x; y) with respect to u.
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iv) C is compactly epi-Lipschitzian at �x;

v) Assertion �) of Theorem 4.1 does not hold.

Then v is locally Lipschitzian near 0.

Proof. We proceed to show that v is locally Lipschitzian around 0. So suppose

the contrary, then there are sequences un ! 0 and u0n ! 0 such that for n large

enough

jv(un)� v(u0n)j > nd(un; u
0

n):

We may assume that the set I = fn : v(un) � v(u0n) > nd(un; u
0

n)g is in�nite

(because (un) and (u0n) play a symetric role). For all n 2 I there exists, by 1),
((x0n; y

0

n))n2J�I which converges to (�x; �y) 2 S(0) and (x0n; y
0

n) 2 S(u0n), for all n 2 J .

Now, by Theorem 4.1, for n 2 J large enough

d((x0n; y
0

n); S3(un)) � akg(x0n; y
0

n; un)k

and hence there exists (xn; yn) 2 S3(un), such that

k(x0n; y
0

n)� (xn; yn)k � akg(x0n; y
0

n; un)k

and since g is locally Lipschitzian near 0 uniformly in (x0n; y
0

n), with constant kg =
kg(�x; �y)

k(x0n; y
0

n)� (xn; yn)k � akg(x0n; y
0

n; un)� g(x0n; y
0

n; u
0

n)k � ak(�x; �y)d(un; u
0

n):

Then for all n 2 I su�ciently large

nd(un; u
0

n) < f(xn; yn; un)� f(x0n; y
0

n; u
0

n) � k(�x; �y)(1 + ak(�x; �y))d(un; u
0

n)

and this contradiction completes the proof.}

Corollary 5.4 The result of Theorem 5.3 remains valid if we replace 1) by the

following assumption:

10) (SA) holds and that S is upper semicontinuous at 0.

Let KKT (�x; �y) denotes the set of Karush-Kuhn-Tucker multipliers of (P0) at (�x; �y),
that is, the set of z� 2 Z� satisfying

�rxf(�x; �y; 0)� z� ÆDxg(�x; �y; 0) 2 6(1 + akg)(kv + kf)@Ad(C; �x)

�ryf(�x; �y; 0)� z� ÆDyg(�x; �y; 0) 2 6(1 + akg)(kv + kf)@Ad(D; �y):

Here kv, kf and kg denote Lipschitz constants of v near 0 and f and g near (�x; �y; 0)
and a is as in the assertion �) of Theorem 4.1. These constants are assumed to be

at least equal to 1.

Then we have the following estimate of the subdi�erential of v.
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Theorem 5.5 Suppose in addition to the assumptions of Theorem 5.3 that f and

g are of class C1 at (�x; �y; 0) for each (�x; �y) 2 S(0) and that the perturbation set U is

a Banach space. Then

@Av(0) �
[

(�x;�y)2S(0)

fruf(�x; �y; 0) + z� ÆDug(�x; �y; 0) : z� 2 KKT (�x; �y)g:

Proof. The proof is similar to that in [7]. Let kv be a Lipschitz constant of v

around 0 (which is possible since, by Theorem 5.3, v is locally Lipschitzian near 0).
Let u� 2 @Av(0). Then, by Proposition 2.1, we have for all L 2 F(U), there exist
nets ui ! 0, "i ! 0+, u�i ! u�, with ku�ik � kv(1 + "i), and ri ! 0+ such that for

all u 2 B(ui; ri)

v(u)� v(ui)� hu�i ; u� uii+ "iku� uik+ 2(kv + "i)d(u; ui + L) � 0:

>From the assumption 1) in Theorem 5.3 there exist (�x; �y) 2 S(0) and (xi; yi) 2
S(ui), with (xi; yi) ! (�x; �y), such that for all (x; y; u) 2 C�D�B(ui; ri), g(x; y; u) =
0, we have

f(x; y; u)� f(xi; yi; ui)� hu�i ; u� uii+ "iku� uik+ 2(kv + "i)d(u; ui + L) � 0:

Using Theorem 4.1 we obtain

3a(kf + kv)kg(x; y; u)k+ f(x; y; u)� f(xi; yi; ui)� hu�i ; u� uii+

"iku� uik+ (kv + "i)d(u; ui + L) � 0

for all (x; y; u) 2 C \ B(xi; ri)�D \ B(yi; ri)� B(ui; ri): Thus the function

(x; y; u) 7! 6(1 + akg)(kf + kv)[d(x; C) + d(y;D)] + 2a(kf + kv)kg(x; y; u)k

+f(x; y; u)� f(xi; yi; ui)� hu�i ; u� uii+ "iku� uik+ 3kvd(u; ui + L)

attains its local minimum at (xi; yi; ui). We conclude by using subdi�erential calcu-

lus and by passing to the limit.}

In the case where f and g are not depending on the perturbation u and g = g1� g2,

where g1 : X 7! Z and g2 : Y 7! Z, then we get the following result which is a direct

consequence of the previous one.

Corollary 5.6 Under the assumptions of Theorem 5.5 we have

i) for all (�x; �y) 2 S(0), @Cv(0) \KKT (�x; �y) 6= ; and

ii)

@Av(0) �
[

(�x;�y)2S(0)

KKT (�x; �y):

Here @C denotes Clarke's subdi�erential.
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Proof. It su�ces to prove the �rst part. Let (�x; �y) 2 S(0). Then

f(�x; �y)� v(0) = 0 � f(x; y)� v(u)

for all (x; y; u) near (�x; �y; 0), with (x; y) 2 S3(u). By Theorem 4.1 there exists

constant a > 0 such that

d((x; y); S(u)) � kg1(x) + u� g2(y)k

for all (x; y; u) near (�x; �y; 0), with (x; y) 2 C�D. So that (�x; �y; 0) is a local solution
of the function

(x; y; u) 7! f(x; y)� v(u) + a(kf + kv)kg1(x) + u� g2(y)k+

2a(kf + kv)[d(x; C) + d(y;D]:

So the conclusion follows by using the subdi�erential calculus.}

5.4 Local controllability

We consider here systems of the form

_x(t) 2 F (t; x(t)) a:e: t 2 [a; b]; (x(a); x(b)) 2 S (11)

where F : [a; b] � R
n 7! R

n is a multivalued mapping which is measurable in the

�rst variable t 2 [a; b] and S � R
n � R

n is a nonempty closed set. The domain over

which the study of system (11) occurs is typically one of the functionsW 1;p([a; b];Rn)
(abbreviated W 1;p) consisting of all absolutely continuous functions x: [a; b] 7! R

n

for which j _xj is in the functional space Lp([a; b];Rn) (abbreviated Lp) ( _x denotes the

derivative (almost everywhere) of x). The space W 1;p is endowed with the norm

kxk = jx(a)j+ k _xkLp

where j � j denotes the euclidean norm of Rn . Here we assume that p � 1.

Consider the multivalued mapping G:Rn 7!W 1;p de�ned by

G(y) = fx 2 W 1;p: _x(t) 2 F (t; x(t)) a:e:; (x(a); x(b) + y) 2 Sg (12)

The distance function on W 1;p or Rn � R
n will be denoted by d(� ; � ).

Let z be a solution of system (11). This system is said to be locally controllable at

z if there exist � > 0 and r > 0 such that

G(y) \ B(z; �jyj) 6= ; 8y 2 B(0; r):

Let S = Ca � Cb and C be the solution set of the system

x(a) 2 Ca; _x(t) 2 F (t; x(t)) a:e: t 2 [a; b]:

Consider the linear continuous mapping w(x) = x(b) and let w� denotes its adjoint

mapping.
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Theorem 5.7 The system is locally controllable at z provided that C is closed

(which is the case when the multivalued mapping x 7! F (t; x) has closed graph for

almost all t) and

w�(NF (Cb; z(b)) \ �NF (C; z) = f0g: (13)

As a consequence of this theorem we obtain the following result.

Corollary 5.8 Let p = 1. Assume that F is closed-valued and measurably Lips-

chitzian at z and bounded by a summable function (in L1
) around z(t) a.e. in [a; b].

Suppose that if

( _v(t); v(t)) 2 @Cd(F (t; �); �)(z(t); _z(t)) a:e:; (14)

and

v(a) 2 @Fd(z(a); Ca); v(b) 2 @Fd(z(b); Cb) then v(b) = 0:

Then the conclusion of Theorem 5.7 holds.

Here @C refers to the Clarke's subdi�erential [4].

Proof. It su�ces to show that (13) holds and to apply Theorem 5.7. Indeed

consider (as in Thibault [23]) the mappings � : Rn � L1 ! Rn � Rn and � :
Rn � L1 ! L1 � L1 de�ned by

�(x(0); _x) = (x(a); x(b)); ; �(x(a); _x) = (x; _x):

Let cb 2 NF (Cb; z(b)), with �w�(cb) 2 NF (S; z). By Proposition 6.3 in [8] there

exist K > 0, ca 2 K@Fd(z(a); Ca) and (u; v) 2 K@AIL(z; _z) such that

���(ca; cb) = ��(u; v)

where IL(x; y) =

Z b

a

d(y(t); F (t; x(t)))dt. Thus (see Thibault [23])

cb = �v(b); ca = v(a); and u(t) = _v(t); a:e:

and hence cb = 0 and the proof is complete.}

This corollary has extended in [9] to the more general class of multivalued map-

pings, namely the sub-Lipschitzian multivalued mappings in the sense of Loewen-

Rockafellar [13]. In the paper [9], condition (14) is replaced by the following weaker

one

_p(t) 2 coD�

FF (t; z(t); _z(t))(�p(t)) a:e: t 2 [a; b] (15)

whereD�

FF (t; �)means the coderivative ([19]-[21]) of F (t; �) in x at the point (z(t); _z(t))
and �coÿtands for convex hull.
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Now let C be the solution set of the di�erential inclusion

_x(t) 2 F (t; x(t)) a:e: t 2 [a; b]:

Consider the linear continuous mapping w(x) = (x(a); x(b)) and let w� denotes its

adjoint mapping.

Theorem 3.4 gives us the following result.

Theorem 5.9 The system is locally controllable at z provided that C is closed

(which is the case when the multivalued mapping x 7! F (t; x) has closed graph for

almost all t) and

w�(NF (S; (z(a); z(b))) \ �NF (C; z) = f0g:
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