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Abstract. Stochastic systems with multiplicative noise, phase �ows of which have in-

tegral invariants, are considered. For such systems, numerical methods preserving the

integral invariants are constructed using full implicit schemes of a new type for stochastic

di�erential equations. In these full implicit schemes increments of Wiener processes are

substituted by some truncated random variables. They are important for both theory

and practice of numerical integration of stochastic di�erential equations. A special at-

tention is paid to systems with separable Hamiltonians and to Hamiltonian systems with

small noise. Liouvillian methods for stochastic systems preserving phase volume are also

proposed. Some results of numerical experiments are presented.

1. Introduction

Consider the Cauchy problem for the system of stochastic di�erential equations (SDEs)

in the sense of Stratonovich

(1.1) dP = f(t; P;Q)dt+

mX
r=1

�r(t; P;Q) Æ dwr(t); P (t0) = p;

dQ = g(t; P;Q)dt+

mX
r=1


r(t; P;Q) Æ dwr(t); Q(t0) = q;

where P; Q; f; g; �r; 
r are n-dimensional column-vectors with the components P i; Qi;
f i; gi; �i

r
; 
i

r
; i = 1; : : : ; n; and wr(t); r = 1; : : : ; m; are independent standard Wiener

processes.

We suppose that all the coe�cients of considered systems are su�ciently smooth functions

de�ned for (t; p; q) 2 [t0; t0 + T ] � Rd; d = 2n; and they provide the property of extend-

ability of solutions to the interval [t0; t0 + T ] (additional conditions in connection with

considered methods consist in appropriate behavior of partial derivatives of the coe�cients

on in�nity).

We denote by X(t; t0; x) = (P (t; t0; p; q); Q(t; t0; p; q))
| = (P (t; t0; p

1; : : : ; pn; q1; : : : ; qn);
Q(t; t0; p

1; : : : ; pn; q1; : : : ; qn))|; t0 � t � t0 + T; the solution of the problem (1.1). A

more detailed notation is X(t; t0; x;!); where ! is an elementary event. It is known that

X(t; t0; x;!) is a phase �ow (di�eomorphism) for almost every !: See its properties in,

e.g. [1, 2].

If there are functions Hr(t; p; q); r = 0; : : : ; m; such that (see [1] and [3])

(1.2) f i = �@H0=@q
i; gi = @H0=@p

i;

�i
r
= �@Hr=@q

i; 
i
r
= @Hr=@p

i; i = 1; : : : ; n; r = 1; : : : ; m;

then the phase �ow of (1.1) preserves symplectic structure:

(1.3) dP ^ dQ = dp ^ dq;
i.e., the sum of the oriented areas of projections onto the coordinate planes (p1; q1); : : : ;
(pn; qn) is an integral invariant [4].

Let Pk; Qk; k = 0; : : : ; N; tk+1 � tk = hk+1; tN = t0 + T; be a method for (1.1) based on

the one-step approximation �P = �P (t + h; t; p; q); �Q = �Q(t + h; t; p; q): We say that the

method preserves symplectic structure if

(1.4) d �P ^ d �Q = dp ^ dq :
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The present paper deals with symplectic integration of the Hamiltonian system with

multiplicative noise (1.1), (1.2). It is a continuation of [3], where symplectic methods for

Hamiltonian systems with additive noise were proposed. For symplectic integration of

deterministic Hamiltonian systems see, e.g. [5, 6, 7, 8] and references therein.

As is known [5], in the case of deterministic general Hamiltonian systems symplectic

Runge-Kutta (RK) methods are all implicit. Hence it is natural to expect that to construct

symplectic methods for general Hamiltonian stochastic systems with multiplicative noise,

full implicit methods are needed. The known implicit methods for stochastic systems with

multiplicative noise (see [9, 10]) contain implicitness in deterministic terms only. In [11] an

implicitness is introduced in stochastic terms as well. But the methods of [11] are of a very

special form. In Section 2 a new class of full implicit methods of mean-square order 1=2
for general stochastic systems is proposed. In these implicit schemes increments of Wiener

processes are substituted by some truncated random variables. They are important for

both theory and practice of numerical integration of SDEs. In the commutative case a

full implicit method of mean-square order 1 is also obtained. We use these full implicit

methods in Section 3 to construct symplectic methods for general Hamiltonian systems

with multiplicative noise. Sections 4 and 5 are devoted to special cases of separable

Hamiltonians and systems with small noise respectively. In Section 6 some Liouvillian

methods for stochastic systems preserving phase volume are constructed. Numerical tests

are presented in the last section.

2. Full implicit methods

Construction of implicit methods for stochastic systems with additive noise does not cause

any principal di�culties. However, all is much more intricate in the case of stochastic

systems with multiplicative noise. The known implicit methods for such systems (see

[9, 10]) contain implicitness restricted to deterministic terms, e.g., to the drift terms in

the implicit Euler scheme. In [11], an implicitness is introduced in stochastic terms as well.

But methods of [11] are of a very special form. In this section we construct a su�ciently

large class of full implicit methods of mean-square order 1=2 for general stochastic systems.

2.1. The convergence theorem on mean-square methods from [9]. Let us recall

some formulae of numerical methods for SDEs in the Ito sense

(2.1) dX = a(t; X)dt+

mX
r=1

br(t; X)dwr(t); X(t0) = X0;

where X; a(t; x1; : : : ; xd); br(t; x
1; : : : ; xd) are d-dimensional column-vectors with the com-

ponents X i; ai; bi
r
; i = 1; : : : ; d; and wr(t); r = 1; : : : ; m; are independent standard Wiener

processes.

Consider mean-square approximations of the solution to the system (2.1). A one-step

mean-square approximation �Xt;x(t+h); t0 � t < t+h � t0+T; is constructed depending

on t; x; h; and fw1(#) � w1(t); : : : ; wm(#) � wm(t); t � # � t + hg: Using the one-step

approximation, we recurrently obtain the approximation Xk; k = 0; : : : ; N; tk+1 � tk =

hk+1; tN = t0 + T :

X0 = X(t0); Xk+1 = �Xtk;Xk
(tk+1):

2



For simplicity, we will take tk+1� tk = h = T=N: Note that X0 may be a random variable

which does not depend on the Wiener processes wr(t); t 2 [t0; t0 + T ]:

Suppose the functions a(t; x) and br(t; x) are de�ned and continuous for t 2 [t0; t0 + T ];
x 2 Rd and satisfy a uniform Lipschitz condition: for all t 2 [t0; t0 + T ]; x; y 2 Rd there

is a constant L > 0 such that

(2.2) ja(t; x)� a(t; y)j+
mX
r=1

jbr(t; x)� br(t; y)j � L jx� yj :

Theorem 2.1. (see [9]) Suppose the one-step approximation �Xt;x(t + h) has order of

accuracy p1 for the expectation of the deviation and order of accuracy p2 for the mean-

square deviation; more precisely, for arbitrary t0 � t � t0 + T � h; x 2 Rd
the following

inequalities hold:

(2.3)
��E �Xt;x(t+ h)� �Xt;x(t+ h)

��� � K � (1 + jxj2)1=2hp1;

(2.4)
h
E
��Xt;x(t+ h)� �Xt;x(t+ h)

��2i1=2 � K � (1 + jxj2)1=2hp2:

Also, let

(2.5) p2 �
1

2
; p1 � p2 +

1

2
:

Then for any N and k = 0; : : : ; N the following inequality holds:

(2.6)
h
E
��Xt0;X0

(tk)� �Xt0;X0
(tk)
��2i1=2 � K � (1 + EjX0j2)1=2hp2�1=2;

i.e., the mean-square order of accuracy of the method constructed using the one-step ap-

proximation �Xt;x(t+ h) is p = p2 � 1=2:

We note that all constants K mentioned above, as well as the ones that will appear in

the sequel, depend in the �nal analysis on the system (2.1) and the approximations only

and do not depend on X0 and h:

The following evident lemma will be useful later on.

Lemma 2.1. Let the one-step approximation �Xt;x(t + h) satisfy the conditions of Theo-

rem 2:1. Suppose that ~Xt;x(t+ h) is such that���E � ~Xt;x(t + h)� �Xt;x(t+ h)
���� = O(hp1);(2.7) �

E
��� ~Xt;x(t + h)� �Xt;x(t + h)

���2�1=2 = O(hp2)(2.8)

with the same p1 and p2: Then the method based on the one-step approximation ~Xt;x(t+h)
has the same mean-square order of accuracy as the method based on �Xt;x(t + h), i.e., its
order is equal to p = p2 � 1=2:

2.2. The main idea and an example. Let us start with an example. Consider the Ito

scalar equation

(2.9) dX = �Xdw(t):
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The one-step approximation of the Euler method X̂ is

(2.10) X̂ = x+ �x�w(h):

We can represent this method in the form

X̂ = x + �X̂�w + �(x� X̂)�w = x� �2x(�w)2 + �X̂�w:

As h is small, (�w)2 � h; and we obtain the following �natural� implicit method

(2.11) ~X = x� �2xh + � ~X�w(h):

However, this method cannot be realized since 1 � ��w(h) can vanish for any small h.

Further, for the formal value of ~X from (2.11):

~X =
x(1� �2h)

1� ��w(h)
;

we have Ej ~Xj =1: Clearly, method (2.11) is not suitable. The reason of this is unbound-

edness of the random variable �w(h) for any arbitrarily small h.

Our basic idea consists in replacement of �w(h) = �
p
h; where � is N (0; 1)-distributed

random variable, by another random variable �
p
h = �h

p
h such that �

p
h is bounded

and the Euler-like method

(2.12) �X = x+ �x�
p
h

is of mean-square order 1=2 as well. To achieve this, it is su�cient to require:

(2.13) E( �X � X̂) = O(h3=2); E( �X � X̂)
2

= O(h2):

We take � as symmetric. Then E( �X � X̂) = 0: To satisfy the second equation in (2.13),

the condition E(�h � �)2 = O(h) is su�cient.

We shall require a stronger inequality

(2.14) E(�
h
� �)2 � hk; k � 1:

Let for Ah > 0

(2.15) �h =

8<
:

�; j�j � Ah;
Ah; � > Ah;

�Ah; � < �Ah:

Since

E(�h � �)2 =
2p
2�

Z
1

Ah

(x� Ah)
2e�x

2=2dx =
2p
2�
e�A

2

h
=2

Z
1

Ah

y2e�y
2=2e�Ahydy < e�A

2

h
=2;

(2.14) is ful�lled if e�A
2

h
=2 � hk; i.e. A2

h
� 2kj lnhj: Thus, if

Ah =
p

2kj lnhj; k � 1;

then the method based on the one-step approximation (2.12) has the mean-square order

of convergence equal to 1=2.

Lemma 2.2. Let Ah =
p

2kj lnhj; k � 1; and �
h
be de�ned by (2:15). Then the following

inequality holds:

(2.16) 0 � E(�2 � �2
h
) = 1� E�2

h
� (1 + 2

p
2kj lnhj)hk:

4



Proof. We have

1� E�2
h
=

2p
2�

Z
1

Ah

(x2 � A2

h
)e�x

2
=2dx =

2p
2�

Z
1

Ah

�
(x� Ah)

2

+ 2Ah(x� Ah)
�
e�x

2
=2dx

� e�A
2

h
=2

+
4Ahp
2�

Z
1

Ah

xe�x
2
=2dx = e�A

2

h
=2
(1 +

4Ahp
2�

) � (1 + 2Ah)e
�A

2

h
=2;

whence (2.16) follows. �

Now consider the following implicit method (for de�niteness we put k = 1 and Ah =p
2j lnhj) :

(2.17) �X = x� �2xh + � �X�
h

p
h; �X =

x(1� �2h)

1� ��
h

p
h
:

Since j�
h
j �

p
2j lnhj; this method is realizable for all h satisfying the inequality

(2.18) 2hj lnhj < 1

�2
:

Proposition 2.1. Method (2:17) is of mean-square order 1=2.

Proof. Let us compare method (2.17) with the Euler method (2.10). We get

E �X = x(1� �2h)E

1X
m=0

�m�m
h
hm=2

= x(1� �2h)E

1X
m=0

�2m�2m
h
hm:

It is obvious from here that the principal term in the expansion of E( �X � X̂) is equal to

x�2h(E�2
h
� 1): Due to Lemma 2.2, we obtain for all su�ciently small h :

(2.19) jE( �X � X̂)j � Cjxj�2(1 + 2
p

2j lnhj)h2;

where C is a positive constant.

Further

(2.20) E( �X � X̂)2 = E(��2xh + � �X�
h

p
h� �x�

p
h)2

� 2�4x2h2 + 2E(� �X�h
p
h� �x�

p
h)2

= 2�4x2h2 + 2E(� � (x� �2xh+ � �X�h
p
h)�h

p
h� �x�

p
h)2

� 2�4x2h2 + 2�2x2hE(�h � �)2 + C1x
2h2 � C2x

2h2

for all su�ciently small h and some positive constants C1 and C2: The inequalities (2.19)
and (2.20) imply the mean-square convergence of implicit method (2.17) with order 1=2.
�

Introduction of implicitness in the stochastic term leads to appearance of the compen-

sating term ��2xh in (2.17). This can be explained in the following way. Since �X must

be close to x + �x�h
p
h; the expression x + � �X�h

p
h is close to x + �x�h

p
h + �2x�2

h
h:

Consequently, making use of the compensating term results in x + � �X�
h

p
h � �2xh =

x+ �x�
h

p
h+ �2x(�2

h
� 1)h � x + �x�

h

p
h; i.e., we get the correct result.
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Now let us consider the expression �((1� �)x+ � �X)�
h

p
h which introduces implicitness

in the stochastic term with the parameter 0 � � � 1: Clearly, the compensating term in

this case is equal to ��2�xh: Thus, we derive the method:

(2.21) �X = x� �2�xh + �((1� �)x+ � �X)�h
p
h; 0 � � � 1:

The following proposition can be proved analogously to Proposition 2.1.

Proposition 2.2. The method (2:21) is of the mean-square order 1=2 as well as the

methods:

(2.22) �X = x� �2�x�2
h
h+ �((1� �)x + � �X)�

h

p
h; 0 � � � 1;

(2.23) �X = x� �2�((1� �)x + � �X)h+ �((1� �)x + � �X)�
h

p
h; 0 � �; � � 1:

2.3. Convergence theorem. Now we are in position to introduce full implicit methods

for general systems of stochastic di�erential equations. For simplicity in writing we deal

here with the scalar Ito SDE:

(2.24) dX = a(t; X)dt+ b(t; X)dw(t):

We suppose that a(t; x); b(t; x);
@b

@x
(t; x) are continuous for t0 � t � T; x 2 R; and there

exists a positive constant L such that

(2.25) ja(t; y)� a(t; x)j � Ljy � xj; j @b
@x

(t; x)j � L; t0 � t � T; x; y 2 R:

Note that below the same letter L (or K; or C) is used for various constants.

Consider the following natural implicit one-step approximation

(2.26) �X = x+ a(t; �X)h� b(t; x)
@b

@x
(t; x)h + b(t; �X)�h

p
h;

where �
h
is de�ned by (2.15) with Ah =

p
2j lnhj for de�niteness.

Lemma 2.3. There exist constants K > 0 and h0 > 0 such that for any h � h0; t0 �
t � T; x 2 R the equation (2:26) has a unique solution �X which satis�es the inequality

(2.27) j �X � xj � K(1 + jxj)(j�hj
p
h+ h):

The solution �X of equation (2:26) can be found by the method of simple iteration with x
as the initial approximation.

Proof. For any �xed t; x; and h; let us introduce the function

'(z) = x + a(t; z)h� b(t; x)
@b

@x
(t; x)h + b(t; z)�

h

p
h:

Then (2.26) can be written as
�X = '( �X):

There is a positive constant C such that for any z 2 R
j'(z)� xj � ja(t; x)jh+ ja(t; z)� a(t; x)jh+ jb(t; x)jj�hj

p
h+ jb(t; z)� b(t; x)jj�hj

p
h

+jb(t; x) @b
@x

(t; x)jh � C(1 + jxj)(j�hj
p
h + h) + Ljz � xj(j�hj

p
h+ h):
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Further, for any z1; z2 2 R
j'(z2)� '(z1)j � Ljz2 � z1j(j�hj

p
h+ h):

Clearly, there exist positive constants K and h0 such that for any h � h0; x 2 R
L(j�

h
j
p
h+ h) < 1

and if

jz � xj � K(1 + jxj)(j�
h
j
p
h+ h);

then

j'(z)� xj � K(1 + jxj)(j�
h
j
p
h+ h):

Let us note that the constants K in the last two inequalities are the same. Now the lemma

follows from the contraction mapping principle. �

In addition to (2.25) suppose that there exist continuous @a=@t; @b=@t; and @2b=@x2 and

(2.28) j@a
@t

(t; x)j � L(1 + jxj); j@b
@t

(t; x)j � L(1 + jxj); t0 � t � T; x 2 R:

Theorem 2.2. Assume (2:25) and (2:28). Let there exist Æ > 0 such that if jy � xj �
Æ(1 + jxj), the inequality

(2.29) jb(t; x) @
2b

@x2
(t; y)j � L; t0 � t � T;

holds.

Then the implicit method based on the one-step approximation (2:26) converges in mean-

square with order 1=2.

Proof. Let X̂ be the Euler approximation for (2.24):

X̂ = x + a(t; x)h + b(t; x)�w(h):

Using the condition (2.25) only, we get

Ej �X � X̂j2 � Eja(t; �X)h� a(t; x)h + b(t; �X)�h
p
h� b(t; x)�w(h)� b(t; x)

@b

@x
(t; x)hj2

� LEja(t; �X)� a(t; x)j2h2 + LEjb(t; �X)� b(t; x)j2�2
h
h

+Lb2(t; x)E(�
h
� �)2h+ Ljb(t; x) @b

@x
(t; x)j2h2

� LEj �X � xj2h2 + LEj �X � xj2�2
h
h+ L(1 + jxj)2E(�

h
� �)2h+ L(1 + jxj)2h2:

Using Lemma 2.3, the fact that E�4 < E�4 = 3; and (2.14), we obtain from here that

(2.30) Ej �X � X̂j2 � L(1 + jxj)2h2:

Let us proceed now to evaluation of E( �X � X̂): We have

(2.31) jE( �X�X̂)j � jEa(t; �X)�a(t; x)jh+ jE(b(t; �X)�b(t; x))�
h

p
h�b(t; x) @b

@x
(t; x)hj:

Due to Lemma 2.3, Ej �X � xj � K(1 + jxj)(Ej�hj
p
h+ h): Then

(2.32) jEa(t; �X)� a(t; x)jh � C(1 + jxj)h3=2:

7



We have

(2.33) (b(t; �X)� b(t; x))�
h

p
h� b(t; x)

@b

@x
(t; x)h

=
@b

@x
(t; x+ �( �X � x)) � ( �X � x)�

h

p
h� b(t; x)

@b

@x
(t; x)h

=
@b

@x
(t; x+ �( �X � x)) � (a(t; �X)h+ b(t; �X)�

h

p
h� b(t; x)

@b

@x
(t; x)h)�

h

p
h

�b(t; x) @b
@x

(t; x)h

=
@b

@x
(t; x + �( �X � x)) � (a(t; �X)� b(t; x)

@b

@x
(t; x)h)�

h
h3=2

+
@b

@x
(t; x+ �( �X � x)) � b(t; �X)�2

h
h� b(t; x)

@b

@x
(t; x)h;

where 0 � � � 1:

Since j �X�xj � �(1+ jxj); where �! 0 as h! 0; we get j �Xj � jxj+ j �X�xj � K(1+ jxj)
for all su�ciently small h: Therefore

(2.34) jE @b

@x
(t; x + �( �X � x)) � a(t; �X)�hh

3=2j � KEja(t; �X)�hjh3=2

� KE(1 + j �Xj)j�hjh3=2 � K(1 + jxj)h3=2:

Clearly,

jE @b
@x

(t; x+ �( �X � x)) � b(t; x) @b
@x

(t; x)�
h
h3=2j � K(1 + jxj)h3=2:

Let us estimate the last two terms in (2.33). We obtain

@b

@x
(t; x + �( �X � x)) � b(t; �X)�2

h
h� b(t; x)

@b

@x
(t; x)h

= (
@b

@x
(t; x+ �( �X � x))� @b

@x
(t; x))b(t; �X)�2

h
h

+
@b

@x
(t; x)(b(t; �X)� b(t; x))�2

h
h+

@b

@x
(t; x)b(t; x)(�2

h
� 1)h

=
@2b

@x2
(t; x+ �1( �X � x)) � �( �X � x) � b(t; �X)�2

h
h

+
@b

@x
(t; x)

@b

@x
(t; x + �( �X � x)) � ( �X � x)�2

h
h+

@b

@x
(t; x)b(t; x)(�2

h
� 1)h;

where 0 � �; �1 � 1: Due to Lemma 2.3, we get jx + �1( �X � x) � �Xj � j �X � xj �
K(j�hj

p
h + h)(1 + jxj). For all su�ciently small h we have K(j�hj

p
h + h) < Æ and

consequently due to (2.29)

(2.35) j @
2b

@x2
(t; x+ �1( �X � x)) � b(t; �X)j � L:

Now using (2.35), the conditions (2.25), and Lemmas 2.2 and 2.3, we obtain for the last

two terms in (2.33):

(2.36) jE @b

@x
(t; x+ �( �X � x)) � b(t; �X)�2

h
h� b(t; x)

@b

@x
(t; x)hj � K(1 + jxj)h3=2:
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Thus, (2.31)-(2.36) give

jE( �X � X̂)j � K(1 + jxj)h3=2:

Finally, applying Lemma 2.1 we prove this theorem. �

Remark 2.1. The condition (2:29) is satis�ed if, for instance,

(2.37) jb(t; x)j � L; j @
2b

@x2
(t; x)j � L; t0 � t � T; x 2 R;

or

(2.38) j @
2b

@x2
(t; x)j � L

1 + jxj ; t0 � t � T; x 2 R;

holds.

Let us underline that the conditions of Theorem 2:2 are not necessary and the method is

applicable more widely. This is true for other methods proposed in the paper as well.

2.4. General construction. Let

(2.39) dX i = ai(t; X)dt+

mX
r=1

bi
r
(t; X)dwr(t); i = 1; :::; d:

Introduce the one-step approximation:

(2.40) �X i = xi +

lX
k=1

�i
k
ai(t+ �i

k
h; (1� �i

k1
)x1 + �i

k1
�X1; :::; (1� �i

kd
)xd + �i

kd
�Xd)h

+

mX
r=1

lX
k=1

�i
rk
bi
r
(t + �i

rk
h; (1� �i

rk1
)x1 + �i

rk1
�X1; :::; (1� �i

rkd
)xd + �i

rkd
�Xd

)�rh
p
h+ Ai;

where 0 � �; �; � � 1; �; � � 0;
P

l

k=1
�i
k
= 1;

P
l

k=1
�i
rk

= 1; i = 1; :::; d; l is a

positive integer, and Ai are some expressions to be found. Substituting the Euler-like

approximation

X̂j = xj + aj(t; x)h +

mX
s=1

bj
s
(t; x)�

sh

p
h

instead of �Xj; j = 1; :::; d; in bi
r
, we obtain

bi
r
(t + �i

rk
h; (1� �i

rk1
)x1 + �i

rk1
�X1; :::; (1� �i

rkd
)xd + �i

rkd
�Xd)

� bi
r
(t; x) +

dX
j=1

@bi
r

@xj
(t; x)�i

rkj

mX
s=1

bj
s
(t; x)�sh

p
h:

It is clear from here that either

(2.41) Ai = �
mX
r=1

lX
k=1

�i
rk

dX
j=1

@bi
r

@xj
(t; x)�i

rkj

mX
s=1

bj
s
(t; x)�

sh

p
h�

rh

p
h

or

(2.42) Ai = �
mX
r=1

lX
k=1

�i
rk

dX
j=1

@bi
r

@xj
(t; x)�i

rkj
bj
r
(t; x)h

can be put in (2.40).
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Substituting one of these expressions in (2.40), we obtain a multi-parametric family of

implicit methods. It is also possible to introduce implicitness in Ai by changing t; x as it

was done in the terms connecting with ai: Moreover, the family can be extended if some

ai or bi
r
are represented as a sum of terms. In this case for di�erent terms the coe�cients

�; �; �; �; � can di�er.

It can be proved that under appropriate conditions of smoothness and boundedness on

the coe�cients of (2.39) the method based on the one-step approximation (2.40) with Ai

as in (2.41) or (2.42) is of mean-square order 1=2. The proof is analogous to the proof of
Theorem 2.2.

Here and below we will not precisely indicate conditions on the coe�cients a and br
letting that appropriate conditions on the coe�cients hold. These conditions can be

restored using the general theory [9] and Theorem 2.2.

Let us give an example of full implicit methods:

�X = x+ a(t; �X)h�
mX
r=1

dX
j=1

@br

@xj
(t; �X)bj

r
(t; �X)h +

mX
r=1

br(t; �X)�
rh

p
h:

Further, in the case of SDEs in the sense of Stratonovich

(2.43) dX = a(t; X)dt+

mX
r=1

br(t; X) Æ dwr(t)

we construct the derivative-free full-implicit method (midpoint method):

(2.44) Xk+1 = Xk + a(tk +
h

2
;
Xk +Xk+1

2
)h+

mX
r=1

br(tk;
Xk +Xk+1

2
) (�

rh
)
k

p
h:

For bi
r
= 0; this method coincides with the well-known deterministic midpoint scheme,

which has the second order of convergence.

In the general case the method (2.44) is of mean-square order 1=2: In the commutative

case, i.e., when �ibr = �rbi (here the operator �r := (br; @=@x)) or in the case of a system

with one noise (i.e., m = 1) the midpoint method (2.44) has the �rst mean-square order

of convergence which is stated in the next theorem.

Theorem 2.3. Suppose that the commutative conditions �ibr = �rbi; i; r = 1; : : : ; m, are

ful�lled. Let �
rh

be de�ned by (2:15) with Ah =
p

4j lnhj: Then the method (2:44) for the

system (2:43) has the �rst mean-square order of convergence.

Proof. Let ~X be the following approximation of solution to (2.43):

~X = x+ a(t +
h

2
; x)h+

mX
r=1

br(t; x)�wr(h) +

m�1X
i=1

mX
r=i+1

�ibr(t; x)�wi(h)�wr(h)

+
1

2

mX
r=1

�rbr(t; x) (�wr(h))
2

:

It is known [9] that the method based on this one-step approximation has the �rst mean-

square order of convergence under the commutative conditions of this theorem.
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Denote by �X the one-step approximation of the midpoint method (2.44):

�X = x + a(t+
h

2
;
x+ �X

2
)h+

mX
r=1

br(t;
x + �X

2
)�

rh

p
h:

Expanding the right-hand side of �X about x and using the assumption �ibr = �rbi; we
obtain

�X = x + a(t+
h

2
; x)h +

mX
r=1

br(t; x)�rh
p
h+ h

m�1X
i=1

mX
r=i+1

�ibr(t; x)�ih�rh

+
h

2

mX
r=1

�rbr(t; x) (�rh)
2

+ �:

On the same way as in Theorem 2.2 it is possible to show that

jE�j = O(h2); E�2 = O(h3):

We have

R = �X � ~X =

mX
r=1

br(t; x)
�
�rh
p
h��wr(h)

�
+

m�1X
i=1

mX
r=i+1

�ibr(t; x) (�ih�rhh��wi(h)�wr(h))

+

mX
r=1

�rbr(t; x)
�
h (�

rh
)
2 � (�wr(h))

2
�
+ �:

Using Lemma 2.2, we obtain

jERj = O(h2):

Now analyze ER2 :

ER2 � L(1 + jxj2)
"

mX
r=1

E
�
�
rh

p
h��wr(h)

�
2

+

m�1X
i=1

mX
r=i+1

E (�
ih
�
rh
h��wi(h)�wr(h))

2

+

mX
r=1

E
�
h (�rh)

2 � (�wr(h))
2
�2#

+O(h3):

The �rst and the second terms in the square brackets are O(h3) due to (2.14). From the

inequality E(�
rh
� �

r
)4 � 3h2 which is proved analogously to (2.14), it is easy to see that

the third term is also O(h3). So, ER2 = O(h3): Finally applying Lemma 2.1, we prove

the theorem. �

3. Symplectic methods for general Hamiltonian system

Here, using the results of the previous section, we construct symplectic methods for general

Hamiltonian system with multiplicative noise (1.1), (1.2). Its Ito form reads

(3.1) dP i = f idt+
1

2

mX
r=1

nX
j=1

@�i
r

@pj
�j
r
dt+

1

2

mX
r=1

nX
j=1

@�i
r

@qj

j
r
dt+

mX
r=1

�i
r
dwr(t)
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dQi = gidt+
1

2

mX
r=1

nX
j=1

@
i
r

@pj
�j
r
dt+

1

2

mX
r=1

nX
j=1

@
i
r

@qj

j
r
dt+

mX
r=1


i
r
dwr(t):

Introduce the following implicit method:

(3.2) Pk+1 = Pk + fh� 1

2

mX
r=1

nX
j=1

(
@�r

@pj
�j
r
� @�r

@qj

j
r
)h+

mX
r=1

�r � (�rh)k
p
h

Qk+1 = Qk + gh� 1

2

mX
r=1

nX
j=1

(
@


r

@pj
�j
r
� @


r

@qj

j
r
)h+

mX
r=1



r
� (�

rh
)
k

p
h;

where all the functions have t; Pk+1; Qk as their arguments.

Theorem 3.1. The implicit method (3:2) for the system (3:1) is symplectic and of the

mean-square order 1=2:

Proof. The method (3.2) belongs to the family (2.40) and consequently the assertion

about its order of convergence follows from the previous section. Let us prove symplectic-

ness of the method. It is convenient to write the one-step approximation corresponding

to (3.2) in the form

(3.3) �P i = pi� @H0

@qi
h� 1

2

mX
r=1

nX
j=1

@2Hr

@qi@pj
@Hr

@qj
h� 1

2

mX
r=1

nX
j=1

@2Hr

@qi@qj
@Hr

@pj
h�

mX
r=1

@Hr

@qi
�
rh

p
h

�Qi
= qi +

@H0

@pi
h +

1

2

mX
r=1

nX
j=1

@2Hr

@pi@pj
@Hr

@qj
h+

1

2

mX
r=1

nX
j=1

@2Hr

@pi@qj
@Hr

@pj
h+

mX
r=1

@Hr

@pi
�rh
p
h;

where all the functions have t; �P; q as their arguments.

Introduce the function F (t; p; q) (h; �
rh

are �xed here):

F (t; p; q) = H0(t; p; q)h+
1

2

mX
r=1

nX
j=1

@Hr

@qj
(t; p; q)

@Hr

@pj
(t; p; q)h+

mX
r=1

Hr(t; p; q)�rh
p
h:

Then (3.3) can be written as

(3.4) �P i = pi � @F

@qi
(t; �P; q)

�Qi = qi +
@F

@pi
(t; �P; q):

We have (the arguments everywhere are t; �P; q):

nX
i=1

d �P i ^ d �Qi =

nX
i=1

d �P i ^ (dqi +

nX
j=1

F 00
pipj

d �P j +

nX
j=1

F 00
piqj

dqj)

=

nX
i=1

d �P i ^ dqi +
nX
i=1

nX
j=1

F 00
pipj

d �P i ^ d �P j +

nX
i=1

nX
j=1

F 00
piqj

d �P i ^ dqj:
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Since d �P i ^ d �P j = �d �P j ^ d �P i; we get

(3.5)

nX
i=1

d �P i ^ d �Qi =

nX
i=1

d �P i ^ dqi +
nX
i=1

nX
j=1

F 00
piqj

d �P i ^ dqj

=

nX
i=1

d �P i ^ dqi +
nX
i=1

nX
j=1

F 00
qipj

d �P j ^ dqi:

Further

d �P i = dpi �
nX

j=1

F 00
qipj

d �P j �
nX

j=1

F 00
qiqj

dqj:

Substituting
P

n

j=1
F 00
qipj

d �P j from here in (3.5), we obtain

nX
i=1

d �P i ^ d �Qi
=

nX
i=1

d �P i ^ dqi +
nX
i=1

(dpi � d �P i �
nX

j=1

F 00
qiqj

dqj) ^ dqi

=

nX
i=1

dpi ^ dqi �
nX
i=1

nX
j=1

F 00
qiqj

dqj ^ dqi =
nX
i=1

dpi ^ dqi:

�

A more general symplectic method for the Hamiltonian system (1.1), (1.2) has the form

Pk+1 = Pk + f(tk + �h; �Pk+1 + (1� �)Pk; (1� �)Qk+1 + �Qk)h(3.6)

+ (
1

2
� �)

mX
r=1

nX
j=1

(
@�r

@pj
�j
r
� @�r

@qj

j
r
)h+

mX
r=1

�r � (�rh)k
p
h

Qk+1 = Qk + g(tk + �h; �Pk+1 + (1� �)Pk; (1� �)Qk+1 + �Qk)h

+ (
1

2
� �)

mX
r=1

nX
j=1

(
@
r
@pj

�j
r
� @
r
@qj


j
r
)h +

mX
r=1



r
� (�

rh
)
k

p
h;

where �r; 
r; r = 1; : : : ; m; and their derivatives are calculated at (tk; �Pk+1 + (1 �
�)Pk; (1� �)Qk+1 + �Qk); and �; � 2 [0; 1] are parameters.

Theorem 3.2. The implicit method (3:6) for the system (1:1), (1:2) is symplectic and of

the mean-square order 1=2:

Proof. As in the previous theorem, we need to prove symplecticness of the method only.

Introduce the function

G(t; p; q) = H0(t+ �h; p; q)h+(
1

2
��)

mX
r=1

nX
j=1

�j
r
(t; p; q)
j

r
(t; p; q)h+

mX
r=1

Hr(t; p; q)�rh
p
h:

It is not di�cult to verify that the one-step approximation corresponding to (3.6) can be

written in the form:

(3.7) �P i
= pi � @G

@qi
(t; � �P + (1� �)p; (1� �) �Q+ �q)

�Qi
= qi +

@G

@pi
(t; � �P + (1� �)p; (1� �) �Q+ �q):
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Let � 6= 0: Then (3.7) is equivalent to

~P i = pi � @(�G)

@qi
(t; ~P; ~q)

�Qi = ~qi +
@(�G)

@pi
(t; ~P; ~q);

where ~P = � �P + (1� �)p; ~q = (1� �) �Q+ �q. It follows from the proof of Theorem 3.1

that
P

n

i=1
d ~P i ^ d �Qi =

P
n

i=1
dpi ^ d~qi; whence d �P ^ d �Q = dp ^ dq: The case � = 0 is

proved as Theorem 3.1. �

The method (3.2) is a particular case of (3.6) when � = 1; � = 0: If � = � = 1=2 the

method (3.6) becomes the midpoint method (cf. (2.44)):

Pk+1 = Pk + f(tk +
h

2
;
Pk + Pk+1

2
;
Qk +Qk+1

2
)h(3.8)

+

mX
r=1

�r(tk;
Pk + Pk+1

2
;
Qk +Qk+1

2
) (�

rh
)
k

p
h

Qk+1 = Qk + g(tk +
h

2
;
Pk + Pk+1

2
;
Qk +Qk+1

2
)h

+

mX
r=1



r
(tk;

Pk + Pk+1

2
;
Qk +Qk+1

2
) (�

rh
)
k

p
h:

Remark 3.1. In the commutative case, i.e., when �ibr = �rbi or in the case of a system

with one noise (i.e., m = 1) the symplectic method (3:8) for (1:1), (1:2) has the �rst

mean-square order of convergence.

Remark 3.2. In the case of separable Hamiltonians at noise, i.e., when Hr(t; p; q) =

Ur(t; q) + Vr(t; p); r = 1; : : :m; we can obtain symplectic methods for (1:1), (1:2) which
are explicit in stochastic terms and do not need truncated random variables. For instance,

(3:2) acquires the form

Pk+1 = Pk + f(tk; Pk+1; Qk)h(3.9)

+
h

2

mX
r=1

nX
j=1

@�r

@qj
(tk; Qk) � 
jr(Pk+1) +

mX
r=1

�r(tk; Qk)�kwr;

Qk+1 = Qk + g(tk; Pk+1; Qk)h

� h

2

mX
r=1

nX
j=1

@
r
@pj

(Pk+1) � �jr(tk; Qk) +

mX
r=1



r
(tk; Pk+1)�kwr:

Remark 3.3. It is possible to construct full explicit symplectic methods for the following

partitioned system:

(3.10) dP = f(t; Q)dt+

mX
r=1

�r(t; Q) Æ dwr(t); P (t0) = p;

dQ = g(P )dt+

mX
r=1


r(t)dwr(t); Q(t0) = q;
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with

f i = �@U0=@q
i; gi = @V0=@p

i; �i
r
= �@Ur=@q

i; r = 1; : : :m; i = 1; : : : ; n:

For instance, the explicit partitioned Runge-Kutta method (cf. (4:6)� (4:7))

Q1 = Qk + �hg(Pk);(3.11)

P1 = Pk + hf(tk + �h;Q1) +
h

2

mX
r=1

nX
j=1

@�r

@qj
(tk;Q1) � 
jr(tk);

Q2 = Q1 + (1� �)hg(P1);

Pk+1 = P1 +

mX
r=1

�r(tk;Q2)�kwr;(3.12)

Qk+1 = Q2 +

mX
r=1



r
(tk)�kwr; k = 0; : : : ; N � 1;

with the parameter 0 � � � 1 is symplectic and of the mean-square order 1=2:

A particular case of the system (3:10) is considered in the next section, where explicit

symplectic methods of a higher order are proposed.

4. Explicit symplectic methods in the case of separable

Hamiltonians

Consider a special case of the Hamiltonian system (1.1), (1.2) such that

(4.1) H0(t; p; q) = V0(p) + U0(t; q); Hr(t; p; q) = Ur(t; q); r = 1; : : :m:

In this case we get the following system in the sense of Stratonovich

(4.2) dP = f(t; Q)dt+

mX
r=1

�r(t; Q) Æ dwr(t); P (t0) = p;

dQ = g(P )dt; Q(t0) = q;

with

(4.3) f i = �@U0=@q
i; gi = @V0=@p

i; �i
r
= �@Ur=@q

i; r = 1; : : :m; i = 1; : : : ; n:

We note that it is not di�cult to consider a slightly more general separable Hamiltonian

H0(t; p; q) = V0(t; p) + U0(t; q) but we restrict ourselves to H0 from (4.1).

It is obvious that the system (4.2) has the same form in the sense of Ito.

For V0(p) =
1

2
(M�1p; p) with M a constant, symmetric, invertible matrix, the system

(4.2) takes the form

(4.4) dP = f(t; Q)dt+

mX
r=1

�r(t; Q)dwr(t); P (t0) = p;

dQ = M�1Pdt; Q(t0) = q:
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This system can be written as a second-order di�erential equation with multiplicative

noise

(4.5)
d2Q

dt2
= M�1f(t; Q) +M�1

mX
r=1

�r(t; Q) _wr(t):

Due to speci�c features of the system (4.2), (4.3) we have succeeded in construction of

explicit partitioned Runge-Kutta (PRK) methods of a higher order.

4.1. First-order methods. A PRK method for (4.2) has the form (cf. (3.11)-(3.12)):

Q1 = Qk + �hg(Pk); P1 = Pk + hf(tk + �h;Q1);(4.6)

Q2 = Q1 + (1� �)hg(P1);

(4.7) Pk+1 = P1 +

mX
r=1

�r(tk;Q2)�kwr; Qk+1 = Q2; k = 0; : : : ; N � 1;

where 0 � � � 1 is a parameter.

Theorem 4.1. The explicit method (4:6)� (4:7) for the system (4:2) with (4:3) is sym-

plectic and of the �rst mean-square order.

Proof. In the case of the system (4.2) the operators �r take the form �r = (�r; @=@p):
Since �r do not depend on p; we get �i�j = 0: It is known [9] that in such a case the Euler

method has the �rst mean-square order of accuracy. Comparing the method (4.6)�(4.7)

with the Euler method and using Lemma 2.1, it is not di�cult to get that the method

(4.6)�(4.7) is of the �rst mean-square order as well.

Due to (4.3), @�i
r
=@qj = @�j

r
=@qi: Using this, we obtain dPk+1 ^ dQk+1 = dP1 ^ dQ2. It is

easy to prove that dP1^dQ2 = dP1^dQ1 = dPk^dQk: Therefore the method (4.6)�(4.7)

is symplectic. �

Remark 4.1. By swapping the roles of p and q, we can propose the following symplectic

method of the �rst mean-square order for the system (4:2) with (4:3):

(4.8) P = Pk + �hf(tk; Qk); Q = Qk + hg(P)

(4.9) Pk+1 = P +(1��)hf(tk+1;Q)+

mX
r=1

�r(tk;Q)�kwr; Qk+1 = Q; k = 0; : : : ; N � 1:

4.2. Methods of order 3/2. Consider the relations

Pi = p+ h

sX
j=1

�ijf(t+ cjh;Qj) +

sX
j=1

mX
r=1

�r(t+ djh;Qj)
�
�ij'r + �ij r

�
;(4.10)

Qi = q + h

sX
j=1

�̂ijg(Pj); i = 1; : : : ; s;

�P = p+ h

sX
i=1

�
i
f(t+ cih;Qi) +

sX
i=1

mX
r=1

�r(t + dih;Qi) (�i'r
+ {i r

) ;(4.11)

�Q = q + h

sX
i=1

�̂ig(Pi);
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where '
r
;  

r
do not depend on p and q; the parameters �ij; �̂ij; �i; �̂i; �ij; �ij; �i; {i

satisfy the conditions

(4.12) �
i
�̂ij + �̂

j
�ji � �

i
�̂
j
= 0;

�i�̂ij + �̂
j
�ji � �i�̂j = 0; {i�̂ij + �̂

j
�
ji
� {i�̂j = 0; i; j = 1; : : : ; s;

and ci; di are arbitrary parameters.

If �r � 0 the relations (4.10)�(4.11) coincide with a general form of s-stage PRK methods

for deterministic di�erential equations (see, e.g., [5, p. 34]). It is known [8, 5] that the

symplectic condition holds for �P ; �Q from (4.10)�(4.11) with (4.12) in the case of �r � 0.

By a generalization of the proof of Theorem 6.2 from [5], we prove the following lemma

(another generalization is given in [3]).

Lemma 4.1. The relations (4:10) � (4:11) with conditions (4:12) preserve symplectic

structure, i.e., d �P ^ d �Q = dp ^ dq:

Proof. Denote for a while: fi = f(t+ cih;Qi); gi = g(Pi); �ri = �r(t+ dih;Qi): We get

(4.13) d �P ^ d �Q = dp ^ dq + h

sX
j=1

�̂jdp ^ dgj + h

sX
i=1

�idfi ^ dq + h2
sX

i=1

sX
j=1

�i�̂jdfi ^ dgj

+

sX
i=1

mX
r=1

(�i'r + {i r) d�ri ^ dq + h

sX
i=1

sX
j=1

mX
r=1

(�i'r + {i r) �̂jd�ri ^ dgj:

Then we express dp ^ dgi from

dPj ^ dgj = dp ^ dgj + h

sX
i=1

�jidfi ^ dgj +
sX

i=1

mX
r=1

�
�ji'r + �ji r

�
d�ri ^ dgj

and substitute it in (4.13). Analogously, we act with dfi ^ dq and d�ri ^ dq �nding them
from the similar expressions for dfi ^ dQi and d�ri ^ dQi: As a result, using (4.12), we

obtain

d �P ^ d �Q = dp ^ dq + h

sX
i=1

�̂
i
dPi ^ dgi + h

sX
i=1

�
i
dfi ^ dQi

+

sX
i=1

mX
r=1

(�i'r + {i r) d�ri ^ dQi:

Taking into account skew-symmetry of the wedge product and that the vector-functions

f; g; �r are gradients, f; �r do not depend on p; and g does not depend on q, it is not
di�cult to see that each of the terms dPi ^ dgi; dfi ^ dQi; d�ri ^ dQi vanishes. Therefore

d �P ^ d �Q = dp ^ dq: �
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Introduce the 2-stage explicit PRK method for the system (4.2), (4.3):

Q1 = Qk; P1 = Pk +
h

4
f(tk;Q1) +

1

2

mX
r=1

�r(tk;Q1) (3(Jr0)k ��kwr) ;(4.14)

Q2 = Q1 +
2

3
hg(P1);

P2 = P1 +
3

4
hf(tk +

2

3
h;Q2) +

3

2

mX
r=1

�r(tk +
2

3
h;Q2) (�(Jr0)k +�kwr) ;

(4.15) Pk+1 = P2; Qk+1 = Q2 +
h

3
g(P2); k = 0; : : : ; N � 1;

where

(4.16) Jr0 :=
1

h

t+hZ
t

(wr(#)� wr(t)) d#:

Theorem 4.2. The explicit PRK method (4:14)� (4:15) for system (4:2); (4:3) preserves
symplectic structure and has the mean-square order 3=2.

Proof. The method (4.14)-(4.15) has the form of (4.10)-(4.11) and its parameters satisfy

the conditions (4.12). Then, Lemma 4.1 implies that this method preserves symplectic

structure.

Let us now prove mean-square order of convergence of (4.14)-(4.15). To this end, introduce

the one-step approximation for (4.2):

(4.17) ~P = p+

mX
r=1

�r�wr + hf +

mX
r=1

"
@�r

@t
+

nX
i=1

gi
@�r

@qi

#
I0r +

h2

2

"
@f

@t
+

nX
i=1

gi
@f

@qi

#
;

~Q = q + hg +

mX
r=1

nX
i=1

�i
r

@g

@pi
Ir0 +

h2

2

"
nX
i=1

f i
@g

@pi
+

1

2

mX
r=1

nX
i;j=1

�i
r
�j
r

@2g

@pi@pj

#
;

where

(4.18) I0r =

Z
t+h

t

(#� t) dwr(#); Ir0 =

t+hZ
t

(wr(#)� wr(t)) d# = hJr0;

and all the coe�cients are calculated at (t; p; q): We note that

(�wr � Jr0)h = I0r:

Using the general theory of numerical integration of SDEs [9], it is not di�cult to show

that the method based on (4.17) is of the mean-square order 3=2: Our nearest aim is to

prove that the one-step approximation �P; �Q corresponding to the method (4.14)-(4.15) is

such that

(4.19)

����E
�

�P � ~P
�Q� ~Q

����� = O(h3);

 
E

�
�P � ~P
�Q� ~Q

�2!1=2

= O(h2):
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Expanding the right-hand sides of the approximation �P; �Q about (t; p; q); we obtain

�P = p+ hf +
h2

2

@f

@t
+

3

4
h

nX
i=1

�Qi

2

@f

@qi
+

mX
r=1

�r�wr(4.20)

+
3

2

mX
r=1

nX
i=1

�Qi

2

@�r

@qi
(�wr � Jr0) + h

mX
r=1

@�r

@t
(�wr � Jr0) + �

1
;

�Q = q + hg +
h

3

nX
i=1

�
2�P i

1
+�P i

2

� @g
@pi

+
h

6

nX
i;j=1

�
2�P i

1
�Pj

1
+�P i

2
�Pj

2

� @2g

@pi@pj
+ �

2
;

�P1 := P1 � p =
h

4
f +

1

2

mX
r=1

�r (3Jr0 ��wr) ;

�Q2 := Q2 � q =
2

3
hg +

2

3
h

nX
i=1

�P i

1

@g

@pi
+
h

3

nX
i;j=1

�P i

1
�Pj

1

@2g

@pi@pj
+ r1;

�P2 := P2 � p = hf +

mX
r=1

�r�wr + r2;

where all the coe�cients are calculated at (t; p; q):

Due to properties of the Wiener process and Ito integrals, we have

(4.21) E�wi = 0; E�wi�wj = Æijh; E�wi�wj�wk = 0; E (�wi)
4

= 3h2;

EJi0 = 0; EJi0Jj0 = Æij
h

3
; EJi0Jj0Jk0 = 0; E (Ji0)

4

=
h2

3
;

E�wiJj0 = Æij
h

2
; E�wi�wjJk0 = 0; E�wiJj0Jk0 = 0:

Then, under appropriate conditions on smoothness and boundedness of the coe�cients of

(4.2), we get

(4.22) jE�ij = O(h3); E (�i)
2

= O(h5); i = 1; 2;

jEr1j = O(h3); E (r1)
2

= O(h5); jEr2j = O(h2); E (r2)
2

= O(h3):

In addition to (4.21) we note that

(4.23) E (�wr � Jr0) (3Jr0 ��wr) = 0; E (3Jr0 ��wr)
2

= h:

Using (4.21)-(4.23), we obtain form (4.20):

�P = p+

mX
r=1

�r�wr + hf +

mX
r=1

"
@�r

@t
+

nX
i=1

gi
@�r

@qi

#
I0r +

h2

2

"
@f

@t
+

nX
i=1

gi
@f

@qi

#
+R1;

�Q = q + hg +

mX
r=1

nX
i=1

�i
r

@g

@pi
Ir0 +

h2

2

"
nX
i=1

f i
@g

@pi
+

1

2

mX
r=1

nX
i;j=1

�i
r
�j
r

@2g

@pi@pj

#
+R2

with Ri; i = 1; 2; such that

jERij = O(h3); E (Ri)
2

= O(h4); i = 1; 2:

This implies (4.19). It follows from (4.19) and Lemma 2.1 that the method (4.14)-(4.15)

is of the mean-square order 3=2. �
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Remark 4.2. The random variables �kwr(h); (Jr0)k have a Gaussian joint distribution,

and they can be simulated at each step by 2m independent N (0; 1)-distributed random

variables �
rk

and �
rk
; r = 0; : : : ; m :

�kwr(h) = �
rk

p
h; (Jr0)k =

�
�
rk
=2 + �

rk
=
p
12

�p
h :

As a result, the method (4:14)-(4:15) takes the constructive form.

Remark 4.3. It is very unusual that the direct expansion of (4:14)-(4:15) does not contain

the habitual term
h2

4

P
m

r=1

P
n

i;j=1

@2g

@pi@pj
�i
r
�j
r
: The similar term in the expansion contains

some combinations of �wr and Jr0 instead of h. This is necessary for a method conserving

symplectic structure. At the same time this new reception allows to construct new Runge-

Kutta methods for general (not only Hamiltonian) stochastic systems with additive noise

(see a similar remark in [3]).

Remark 4.4. In the case of �r = 0; r = 1; : : : ; m; the method (4:14)-(4:15) coincides
with the well-known deterministic symplectic PRK method of the second order. Attract-

ing other explicit deterministic second-order PRK methods from [5, 8], it is possible to

construct other explicit symplectic methods of the order 3=2 for the system (4:2); (4:3):

5. Symplectic methods for Hamiltonian systems with small

multiplicative noise

Here, using ideas of [12], we propose speci�c methods adapted to the Hamiltonian system

with small multiplicative noise:

dP = f(t; P;Q)dt+ "

mX
r=1

�r(t; P;Q) Æ dwr(t); P (t0) = p;(5.1)

dQ = g(t; P;Q)dt+ "

mX
r=1


r(t; P;Q) Æ dwr(t); Q(t0) = q;

(5.2) f i = �@H0=@q
i; gi = @H0=@p

i;

�i
r
= �@Hr=@q

i; 
i
r
= @Hr=@p

i; r = 1; : : : ; m; i = 1; : : : ; n;

where " > 0 is a small parameter.

The errors of mean-square methods adapted to systems with small noise are estimated in

terms of products hi"j; where h is the step-size of discretization and " is a small parameter

at noise [12]. Usually, global error has the form O(hj + "khl) with j > l; k > 0: Thanks
to the fact that the accuracy order of such methods is equal to a comparatively small l;
they are not too complicated, while due to the large j and the small factor "k at hl, their
errors are fairly low. This allows us to construct e�ective mean-square methods.

5.1. Systems with Hamiltonians of the general form. First we note that in appli-

cation to the system with small noise (5.1)-(5.2) the method (3.6) is of the mean-square

order O(h + "2h1=2) and the midpoint method (3.8) is of the order O(h2 + "h + "2h1=2)
(cf. [12]). In the commutative case or in the case of one noise the error of method (3.8)

is estimated as O(h2 + "h):
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Let us now obtain a symplectic method of order O(h4 + : : :): To this end, introduce the

full implicit method

(5.3) P1 = Pk + h
{

2
f(tk +

{

2
h;P1;Q1);

Q1 = Qk + h
{

2
g(tk +

{

2
h;P1;Q1);

P2 = Pk + h[{f(tk +
{

2
h;P1;Q1) +

1� 2{

2
f(tk +

h

2
;P2;Q2)];

Q2 = Qk + h[{g(tk +
{

2
h;P1;Q1) +

1� 2{

2
g(tk +

h

2
;P2;Q2)];

P3 = Pk + h[{f(tk +
{

2
h;P1;Q1)+ (1� 2{)f(tk+

h

2
;P2;Q2)+

{

2
f(tk +

2� {
2

h;P3;Q3)];

Q3 = Qk +h[{g(tk +
{

2
h;P1;Q1)+ (1� 2{)g(tk +

h

2
;P2;Q2)+

{

2
g(tk +

2� {
2

h;P3;Q3)];

P4 = Pk + h[{f(tk +
{

2
h;P1;Q1) + (1� 2{)f(tk +

h

2
;P2;Q2)+{f(tk +

2� {
2

h;P3;Q3)];

Q4 = Qk + h[{g(tk +
{

2
h;P1;Q1) + (1� 2{)g(tk +

h

2
;P2;Q2) +{g(tk +

2� {
2

h;P3;Q3)];

(5.4) Pk+1 = P4 + "

mX
r=1

�r(tk;
P4 + Pk+1

2
;
Q4 +Qk+1

2
) (�rh)k ;

Qk+1 = Q4 + "

mX
r=1


r(tk;
P4 + Pk+1

2
;
Q4 +Qk+1

2
) (�rh)k ;

where �rh is de�ned in (2.15) with Ah =
p

2j lnhj and the number { is equal to

(5.5) { =
1

3
(2 + 21=3 + 2�1=3):

Let us note that the method (5.3)-(5.5) is reduced under �r � 0; 

r
� 0; r = 1; : : : ; m; to

the well-known fourth-order symplectic RK method for deterministic Hamiltonian systems

(see, e.g., [5, p. 101]).

Theorem 5.1. The implicit method (5:3) � (5:5) for system (5:1) � (5:2) is symplectic

and its mean-square error is estimated as O(h4 + "h+ "2h1=2).

Proof. The fact that the error of (5.3)-(5.5) is estimated as O(h4 + "h + "2h1=2) follows
from a standard routine error analysis and from the mean-square theorem of [12]. Further,

taking into account (5.2), we obtain that dPk+1 ^ dQk+1 = dP4 ^ dQ4 (for proving this

fact it su�ces to put in (3.8) f = g = 0): Since P4; Q4 correspond to the symplectic

deterministic method [5, p. 101], we have dP4 ^ dQ4 = dp ^ dq: Thus, the method

(5.3)-(5.5) is symplectic. �

Remark 5.1. By other deterministic fourth-order symplectic methods (see, e.g. [8, 5]);

other symplectic methods with the error O(h4 + "h+ "2h1=2) for the system (5:1)� (5:2)

can be constructed. It is possible to get a symplectic method of the order O(h4 + "2h1=2)
as well.
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5.2. Systems with separable Hamiltonians. Consider the special case of system

(5.1)-(5.2) (cf. (4.2)-(4.3))

(5.6) dP = f(t; Q)dt+ "

mX
r=1

�r(t; Q) Æ dwr(t); P (t0) = p;

dQ = g(P )dt; Q(t0) = q;

where f i = �@U0=@q
i; gi = @V0=@p

i; and �i
r
= �@Ur=@q

i; r = 1; : : :m; i = 1; : : : ; n:

An important particular case of (5.6) is a second-order di�erential equation with small

multiplicative noise (cf. (4.5)).

The method (4.14)-(4.15) applied to (5.6) is of the order O(h2 + "2h3=2):

On the basis of the fourth-order deterministic PRK method from [5, p. 109], we construct

the following method for the system (5.6):

Q1 = Qk;(5.7)

P1 = Pk + h
{

2
f(tk;Q1) + "

mX
r=1

�r(tk;Q1)((1� �)(Jr0)k +
�

2
�kwr);

Q2 = Q1 + h{g(P1);

P2 = P1 + h
1� {

2
f(tk + {h;Q2) + "

mX
r=1

�r(tk + {h;Q2)(�(Jr0)k �
�

2
�kwr);

Q3 = Q2 + h(1� 2{)g(P2);

P3 = P2 + h
1� {

2
f(tk + (1� {)h;Q3) + "

mX
r=1

�r(tk + (1� {)h;Q3)(�(Jr0)k �
�

2
�kwr);

Q4 = Q3 + h{g(P3);

Pk+1 = P3 + h
{

2
f(tk + h;Q4) + "

mX
r=1

�r(tk + h;Q4)(�(1 + �)(Jr0)k + (1 +
�

2
)�kwr);

(5.8)

Qk+1 = Q4; k = 0; : : : ; N � 1;

where

(5.9) { = (2 + 21=3 + 2�1=3)=3 and � = �1=
p
{;

and Jr0 is as in (4.16).

Theorem 5.2. The explicit method (5:7) � (5:9) for the system (5:6) is symplectic and

its mean-square error is estimated as O(h4 + "h2 + "2h3=2).

Proof. The method (5.7)-(5.9) has the form of (4.10)-(4.11) and its parameters satisfy

the conditions (4.12). Then Lemma 4.1 implies that this method preserves symplectic

structure. Alternatively, this fact can be proved directly by using the evident chain of

equalities:

dPk+1 ^ dQk+1 = dP3 ^ dQ4 = dP3 ^ dQ3 = dP2 ^ dQ3 = dP2 ^ dQ2

= dP1 ^ dQ2 = dP1 ^ dQ1 = dPk ^ dQk :
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Using ideas of the proof of Theorem 4.2 and the mean-square theorem of [12], we establish

that the method (5.7)-(5.9) is of order O(h4 + "h2 + "2h3=2) (of course, the corresponding
calculations require much routine work). �

6. Liouvillian methods for stochastic systems preserving phase

volume

In the previous sections we constructed some Hamiltonian methods for stochastic Hamil-

tonian systems. These systems (as well as the methods) preserve the symplectic structure

and, consequently, preserve the phase volume. In this section we deal with a more general

class of systems which preserve the phase volume but may not preserve the symplectic

structure.

Let us start with the deterministic d-dimensional system

(6.1)
dX

dt
= a(t; X); X(t0) = x;

the phase �ow X(t; t0; x) of which preserves the phase volume. Note that the dimension

d may be odd.

Let D0 2 Rd be a domain with �nite volume. The transformation X(t; t0; x) maps D0

into the domain Dt. The volume Vt of the domain Dt is equal to

Vt =

Z
Dt

dX1 : : : dXd
=

Z
D0

����D(X1; : : : ; Xd)

D(x1; : : : ; xd)

���� dx1 : : : dxd:
Then, the volume-preserving condition consists in the equality

(6.2)

����D(X1(t); : : : ; Xd(t))

D(x1; : : : ; xd)

���� = 1

or, equivalently, it consists in preservation of the d-form dX1 ^ dX2 ^ : : : ^ dXd:

According to the Liouville theorem (see, e.g., [4]), the phase �ow of (6.1) preserves phase

volume if and only if

(6.3)
@a1(t; x)

@x1
+ � � �+ @ad(t; x)

@xd
= div a = 0:

Numerical methods preserving the phase volume are called Liouvillian [13, 14]. Due to our

best knowledge, there are no constructive Liouvillian methods for the deterministic system

(6.1), (6.3) of a general form (see [13, 14, 15, 16] and references therein). Some constructive

Liouvillian methods for particular cases of (6.1), (6.3) can be found in [13, 14, 15, 16]. It

was shown in [14] that certain methods known to be symplectic are also phase volume

preserving. However, it was also demonstrated that in general the relation between these

two properties is rather delicate: neither of them implies the other.

Consider the Cauchy problem for the d-dimensional system of SDEs in the sense of Ito:

(6.4) dX = a(t; X)dt+

mX
r=1

br(t; X)dwr(t); X(t0) = x;

the phase �ow X(t; t0; x;!) of which preserves phase volume, i.e., for which the condition

(6.2) holds.
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It is known (see [17, 18] and also [3]) that the phase �ow of (6.4) preserves phase volume

if and only if

(6.5) div (a� 1

2

mX
r=1

@br

@x
br) = 0; div br = 0; r = 1; : : : ; m:

Let Xk; k = 0; : : : ; N; tk+1 � tk = hk+1; tN = t0 + T :

X0 = X(t0); Xk+1 = �Xtk;Xk
(tk+1);

be a mean-square method for (6.4) based on the one-step approximation �Xt;x(t + h) =
�X(t+h; t; x): It is clear that a method preserves phase volume if its one-step approximation

satis�es the equality

(6.6)

����D( �X1; : : : ; �Xd)

D(x1; : : : ; xd)

���� = 1

or equivalently

(6.7) d �X1 ^ : : : ^ d �Xd = dx1 ^ : : : ^ dxd:

Taking into account that there are no constructive Liouvillian methods for a general

deterministic Liouvillian system, we restrict ourselves here to some particular cases of the

stochastic system (6.4), (6.5).

6.1. Liouvillian methods for partitioned systems with multiplicative noise.

Consider the particular case of (6.4):

dX = f(t; Y )dt+

mX
r=1

�r(t; Y )dwr(t); X(t0) = x;(6.8)

dY = g(t; X)dt+

mX
r=1



r
(t)dwr(t); Y (t0) = y;

where X; f; �r are l-dimensional column vectors and Y; g; 

r
are n-dimensional column

vectors.

It is not di�cult to check that the coe�cients of (6.8) satisfy (6.5), i.e., the phase �ow of

system (6.8) preserves phase volume. Note that if l = n and there are Ur; r = 0; : : :m; and
V0 such that f i = �@U0=@y

i; gi = @V0=@x
i; and �r = �@Ur=@y

i; r = 1; : : :m; i = 1; : : : ; l;
then the system (6.8) possesses the symplectic property (cf. (3.10), we pay attention that

the system (3.10) is in the sense of Stratonovich).

Introduce the PRK method for (6.8) (cf. (3.11)-(3.12)):

Y1 = Yk + �hg(tk; Xk);(6.9)

X1 = Xk + hf(tk + �h;Y1);

Y2 = Y1 + (1� �)hg(tk+1;X1);

Xk+1 = X1 +

mX
r=1

�r(tk;Y2)�kwr;(6.10)

Yk+1 = Y2 +

mX
r=1



r
(tk)�kwr; k = 0; : : : ; N � 1;
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with the parameter 0 � � � 1:

If �r = 

r
= 0; r = 1; : : : ; m; this method coincides with the deterministic Liouvillian

method [13, 14, 16].

Theorem 6.1. The method (6:9)-(6:10) for system (6:8) is Liouvillian and of the mean-

square order 1=2:

Proof. Let us check that the one-step approximation �X; �Y corresponding to (6.9)-(6.10)

satis�es (6.7). Using properties of exterior products, we obtain

d �X1 ^ : : : ^ d �X l ^ d �Y 1 : : : ^ d �Y n
= (dX1

1
+

mX
r=1

nX
j=1

@�1
r

@yj
dY

j

2
) ^ : : :(6.11)

^(dXl�1

1
+

mX
r=1

nX
j=1

@�l�1
r

@yj
dY

j

2
) ^ (dXl

1
+

mX
r=1

nX
j=1

@�l
r

@yj
dY

j

2
) ^ dY1

2
^ : : : ^ dYn

2

= (dX1
1
+

mX
r=1

nX
j=1

@�1
r

@yj
dY

j

2
) ^ : : : ^ (dXl�1

1
+

mX
r=1

nX
j=1

@�l�1
r

@yj
dY

j

2
)

^ (dXl

1
^ dY1

2
^ : : : ^ dYn

2
+

mX
r=1

nX
j=1

@�l
r

@yj
dYj

2
^ dY1

2
^ : : : ^ dYn

2
)

= (dX1
1
+

mX
r=1

nX
j=1

@�1
r

@yj
dY

j

2
) ^ : : : ^ (dXl�1

1
+

mX
r=1

nX
j=1

@�l�1
r

@yj
dY

j

2
) ^ dXl

1
^ dY1

2
^ : : : ^ dYn

2

= � � � = dX1
1
^ : : : ^ dXl

1
^ dY1

2
^ dY2

2
^ : : : ^ dYn

2
:

Since (6.9) corresponds to the deterministic Liouvillian method, it follows from (6.11)

that the method (6.9)-(6.10) is Liouvillian.

To prove the mean-square order of (6.9)-(6.10), we compare it with the Euler method and

apply Lemma 2.1 as usual. �

Now put 

r
= 0; r = 1; : : : ; m; in (6.8) (cf. (4.2)):

(6.12) dX = f(t; Y )dt+

mX
r=1

�r(t; Y )dwr(t); X(t0) = x;

dY = g(t; X)dt; Y (t0) = y:

The Liouvillian method (6.9)-(6.10) in application to (6.12) is of the �rst mean-square

order (cf. Theorem 4.1).
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Introduce the PRK method for (6.12):

Y1 = Yk; X1 = Xk +
h

4
f(tk;Y1) +

1

2

mX
r=1

�r(tk;Y1) (3(Jr0)k ��kwr) ;(6.13)

Y2 = Y1 +
2

3
hg(tk +

h

4
;X1);

X2 = X1 +
3

4
hf(tk +

2

3
h;Y2) +

3

2

mX
r=1

�r(tk +
2

3
h;Y2) (�(Jr0)k +�kwr) ;

(6.14) Xk+1 = X2; Yk+1 = Y2 +
h

3
g(tk+1;X2); k = 0; : : : ; N � 1:

This method applied to (4.2) gives the symplectic method (4.14)-(4.15).

Theorem 6.2. The method (6:13)-(6:14) for the system (6:12) is Liouvillian and of the

mean-square order 3=2:

Proof. By the arguments similar to ones used to obtain (6.11) in Theorem 6.1, we

prove that the one-step approximation corresponding to (6.13)-(6.14) satis�es the volume-

preserving condition (6.7). For a proof of the mean-square order see Theorem 4.2. �

6.2. Liouvillian methods for a volume-preserving system with additive noise.

The d-dimensional system with additive noise

(6.15) dX = a(t; X)dt+

mX
r=1

br(t)dwr(t); X(t0) = x;

possesses the volume-preserving property if and only if the condition (6.3) holds.

Theorem 6.3. Let �X = X + A(t; X; �X; h) be a one-step approximation corresponding

to the �rst-order Liouvillian method for the deterministic system (6:1), (6:3). Then the

method for the stochastic system (6:15), (6:3):

(6.16) Xk+1 = Xk + A(tk; Xk; Xk+1; h) +

mX
r=1

br(tk)�kwr

is Liouvillian and of the �rst mean-square order.

Proof. We have for the one-step approximation �X corresponding to (6.16): d �X i =

dxi+dAi; i = 1; : : : ; d: Since these expressions coincide with the ones for the deterministic

Liouvillian method, the approximation �X satis�es (6.7) and the method is Liouvillian.

The mean-square order of (6.16) easily follows from the general theory [9]. �

Due to this theorem, construction of �rst-order Liouvillianmethods for Liouvillian systems

with additive noise reduces to construction of such methods for deterministic Liouvillian

systems. For instance, consider the following Liouvillian system

(6.17)

dX i = ai(t; X1; : : : ; X i�1; X i+1; : : : ; Xd)dt+

mX
r=1

bi
r
(t)dwr(t); X(t0) = x; i = 1; : : : ; d:
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In [16] an explicit �rst-order Liouvillian method for the deterministic system (6.1) with

a(t; x) as in (6.17) was proposed. Using it, we obtain

X i

k+1
= X i

k
+ hai(tk; X

1

k+1
; : : : ; X i�1

k+1
; X i+1

k
; : : : ; Xd

k
) +

mX
r=1

bi
r
(tk)�kwr;(6.18)

i = 1; : : : ; d; k = 0; : : : ; N � 1:

Corollary 6.1. The method (6:18) for (6:17) is Liouvillian and of the �rst mean-square

order.

Note that the Liouvillian method (6.9)-(6.10) for the system (6.8) with �r(t; y) = �r(t);
r = 1; : : : ; m; (the partitioned system with additive noise) is of the �rst mean-square

order. Further, for the partitioned system (6.8) with �r(t; y) = �r(t); r = 1; : : : ; m;
a parametric family of 2-stage explicit Liouvillian PRK methods of mean-square 3=2 is

derived. The form of these methods coincide with the symplectic method (5.11)-(5.14)

from [3]. Let us also note that for the particular case of system (6.12) with �r(t; y) = �r(t)
and g(t; x) = M�1x where M is a constant, symmetric, invertible matrix, we succeed in

construction of a Liouvillian method of the third mean-square order. The form of this

method coincides with the third-order symplectic method (6.24)-(6.25) from [3].

7. Numerical tests

We test symplectic methods proposed in the previous sections on systems of linear sto-

chastic equations. It turns out that it is possible to construct speci�c symplectic methods

for linear systems and we start this section with consideration of such methods.

7.1. Explicit symplectic methods for a general second-order system of linear

Ito SDEs. Consider the two-dimensional linear system

(7.1) dX1 = (a11X
1 + a12X

2)dt+ (b11X
1 + b12X

2)dw(t)

dX2 = (a21X
1 + a22X

2)dt+ (b21X
1 + b22X

2)dw(t);

with conditions providing the preservation of phase area:

b11 + b22 = 0; a11 + a22 � (b2
11

+ b12b21) = 0:

Of course, implicit methods of Section 3 can be applied to this system. Here we derive

explicit area-preserving methods for (7.1) using ideas of the method of fractional steps.

Linearity of the right-hand sides of (7.1) allows us to present them as a sum of simple

terms such that it is easy to construct a phase-area preserving method for each of the

terms. A superposition of these partial methods gives a phase-area preserving method

for (7.1). On this way we obtain the explicit method based on the following one-step

approximation, �X = ( �X1; �X2)> :

(7.2) �X = S4S3S2S1x;

where

S1 =

�
1 b12�w

b21�w 1 + b12b21(�w)
2

�
;

S2 =

�
1 + b11�w + 1

2
b2
11
(�w)2 �1

2
b2
11
(�w)2

�1

2
b2
11
(�w)2 1� b11�w + 1

2
b2
11
(�w)2

�
;
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S3 =

�
1 c12h
c21h 1 + c12c21h

2

�
; S4 =

�
1 + c11h+ 1

2
c2
11
h2 �1

2
c2
11
h2

�1

2
c2
11
h2 1� c11h+ 1

2
c2
11
h2

�
;

and

c11 = a11 �
1

2
b2
11
; c12 = a12 � b11b12 +

1

2
b2
11
; c21 = a21 � b11b21 +

1

2
b2
11
:

The method (7.2) preserves phase area (one can see that the determinants of Si; i =

1; : : : ; 4; are equal to 1). It is also not di�cult to prove that this method is of the mean-

square order 1=2:

By swapping the roles of x1 and x2 in (7.2), we get another method. Moreover, methods

obtained by any rearrangement of matrices S1; S2; S3; S4 preserve phase area and have

the mean-square order 1=2 as well. It is easy to construct similar area-preserving methods

for the two-dimensional system, the right-hand sides of which are the same as in (7.1)

except they have the drift coe�cients aij(x
j); j 6= i; instead of aijx

j. They can also be

generalized to linear systems with multiplicative noise of an arbitrary dimension both in

the symplectic version for the Hamiltonian systems and in the phase-volume preserving

version for the Liouvillian systems.

7.2. Example 1. The system of SDEs in the sense of Stratonovich (Kubo oscillator)

(7.3) dX1 = �aX2dt� �X2 Æ dw(t); X1(0) = x1;

dX2 = aX1dt+ �X1 Æ dw(t); X2(0) = x2;

is often used for testing numerical methods (see, e.g., [19]). Here a and � are constants

and w(t) is a one-dimensional standard Wiener process.

The phase �ow of this system preserves symplectic structure. Moreover, the quantity

H(x1; x2) = (x1)
2

+ (x2)
2

is conservative for this system, i.e.

H(X1(t); X2(t)) = H(x1; x2) for t � 0:

This means that a phase trajectory of (7.3) belongs to the circle with center at the origin

and with the radius
p
H(x1; x2):

We test here four methods. In application to (7.3) the symplectic PRK method (3.9)

takes the form:

(7.4) X1

k+1
= X1

k
� aX2

k
h� �2

2
X1

k+1
h� �X2

k
�kw;

X2

k+1
= X2

k
+ aX1

k+1
h+

�2

2
X2

k
h+ �X1

k+1
�kw:

This method is implicit in the deterministic part only.

The midpoint method (3.8) applied to the system with one noise (7.3) reads

(7.5) X1

k+1
= X1

k
� a

X2

k
+X2

k+1

2
h� �

X2

k
+X2

k+1

2
(�h)k

p
h;

X2

k+1
= X2

k
+ a

X1

k
+X1

k+1

2
h + �

X1

k
+X1

k+1

2
(�h)k

p
h:

This is a full implicit method. Note that due to speci�c features of the system (7.3), the

formula (7.5) is valid (solvable) not only in the case of the truncated random variable �h
but also if we put �kw instead of (�

h
)
k

p
h.
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The explicit method (7.2) (we pay attention that (7.2) is given for the Ito system) is

written in the case of (7.3) as

(7.6)

�
X1

k+1

X2

k+1

�
=

0
B@ 1� �2

2
h+

�4

8
h2 ��

4

8
h2

��
4

8
h2 1 +

�2

2
h+

�4

8
h2

1
CA
�

1 �ah
ah 1� a2h2

�

�
�

1 ���kw
��kw 1� �2(�kw)

2

��
X1

k

X2

k

�
:

The method (7.5) has the �rst mean-square method of convergence. The methods (7.4)

and (7.6) are of mean-square order 1=2 as well as the Euler method:

(7.7) X1

k+1
= X1

k
� aX2

k
h� �2

2
X1

k
h� �X2

k
�kw;

X2

k+1
= X2

k
+ aX1

k
h� �2

2
X2

k
h + �X1

k
�kw;

which, of course, is not symplectic.

Figure 1 gives a sample phase trajectory of (7.3) simulated by the symplectic methods

(7.4), (7.5), and (7.6) and by the Euler method (7.7). The initial condition is x1 = 1;
x2 = 0: Then, the corresponding exact phase trajectory belongs to the circle with center

at the origin and with the unit radius.

We see that the Euler method is not appropriate for simulation of the oscillator (7.3) on

long time intervals while the symplectic methods preserve conservative properties of the

Kubo oscillator.

These experiments also demonstrate that the midpoint method is much more accurate

than the other methods applied. It is not di�cult to check that H(x1; x2) is conserved
by the midpoint method (7.5) but it is not conserved by the other symplectic methods:

PRK method (7.4) and method (7.6). This is similar to the deterministic case. Indeed,

it is known [7, 5] that symplectic deterministic RK methods (e.g., the midpoint scheme)

conserve all quadratic functions that are conserved by the Hamiltonian system being

integrated, while deterministic PRK methods do not possess this property.

7.3. Example 2. Consider the system of Ito equations

(7.8) dX1 = bX2dt

dX2 = aX1dt+ �X1dw(t);

where a; b; and � are some constants. Note that if b = 1 and a < 0; (7.8) is a linear

oscillator with multiplicative noise.

This system is of the form (4.2). In application to (7.8) the Euler method reads

(7.9) X1

k+1
= X1

k
+ hbX2

k

X2

k+1
= X2

k
+X1

k
� (ha+ ��kw) :

and the explicit PRK method (4.6)-(4.7) with � = 1 has the form (we note that X1; X2

here correspond to Q; P in (4.2)):

(7.10) X1

k+1
= X1

k
+ hbX2

k

X2

k+1
= X2

k
+X1

k+1
� (ha+ ��kw) :
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Figure 1. A sample phase trajectory of (7.3) with X1(0) = 1, X2(0) = 0

obtained by the symplectic method (7.4) (top left), the midpoint method

(7.5) (top right), the explicit method (7.6) (bottom left) and by the Euler

method (7.7) (bottom right) for a = 2, � = 0:3, h = 0:02 on the time

interval t � 200.

Both methods are of the �rst mean-square order.

Figure 2 presents evolution of domains in the phase plane of system (7.8). The initial

domain is the circle with center at (1; 0) and with the radius 0:1: In our experiments we

take a = �1; b = 1; � = 0:2, and h = 0:02: For these a and b; the period of free oscillations
of (7.8) is equal to 2�:

The left part of Figure 2 corresponds to the symplectic method (7.10) and the right one

to the Euler method (7.9). The each part contains three series of images of the initial

domain. The �st series has 6 images, including the initial one, and presents the evolution

on the time interval [0; 5]: So, all these images belong to the �rst period of the oscillator

(7.8). The images are plotted once per 50 time steps and the last image in the �rst

series corresponds to t = 5: The second and third series (each of 6 images again) for
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Figure 2. The evolution of domains in the phase plane of system (7.8)

for a = �1, b = 1, � = 0:2, and h = 0:02. Images of the initial circle are

obtained at various time moments by the mapping in the case of symplectic

method (7.10) (left) and by the mapping in the case of the Euler method

(7.9) (right).

0.03

0.06

0.09

0 10 20 30 40 50 t

S
k

Figure 3. A typical behavior of the phase area Sk in the case of the Euler

method (7.9) (solid line). Dashed line corresponds to preservation of the

phase area by the system (7.8) and the symplectic method (7.10). The

parameters are as in Fig. 2.

the symplectic method (left �gure) are given on the 8th and 13th periods of oscillations

respectively while these series for the Euler method (right �gure) correspond to 5th and 7th

periods. This di�erence is caused by the fact that the amplitude of oscillations simulated
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Figure 4. A sample trajectory of (7.8) with the parameters as in Fig. 2.

Solid line � the symplectic method (7.10), dashed line � the Euler method

(7.9).

by the Euler method grows essentially faster than the amplitude in simulations by the

symplectic method. We note that the symplectic method with the taken h and time

interval is quite accurate (see below). We also observe preservation of domains areas in

the case of symplectic method (7.10) and growth of the areas in the case of the Euler

method (7.9).

The phase area Sk in the case of the Euler method (7.9) changes at a one-step as Sk+1 =
Sk � (1 � hb (ha + ��kw)): A typical behavior of Sk is given on Fig. 3. It is easy to

get that the mean ESk � S0 exp(�abhtk) and for h3tk � 1 the standard deviation

(E(Sk � ESk)
2)
1=2 � S0 exp(�abhtk)(exp(b2�2h2tk)� 1)1=2:

A sample trajectory of (7.8) simulated by the symplectic method (7.10) and the Euler

method (7.9) is plotted on Fig. 4. The trajectory obtained by the symplectic method

with h = 0:02 (solid line) visually coincides with the one obtained with a smaller step, e.g.

with h = 0:002 using the same sample path for the Wiener process, i.e., this trajectory

visually coincides with the exact solution of (7.8). This �gure clearly demonstrates that

the Euler method is unacceptable for simulation of the solution to (7.8) on a long time

interval while the symplectic method (7.10) produces quite accurate results despite both

methods have the same mean-square order of accuracy.
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