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Abstract

This paper is concerned with phase-�eld systems of Penrose-Fife type which

model the dynamics of a phase transition with non-conserved vectorial order

parameter. The main novelty of the model is that the evolution of the order

parameter vector is governed by a system consisting of one partial di�eren-

tial equation and one partial di�erential inclusion, which in the simplest case

may be viewed as a di�usive approximation of the so-called multi-dimensional

stop operator, which is one of the fundamental hysteresis operators. Results

concerning existence, uniqueness and continuous dependence on data are pre-

sented which can be viewed as generalizations of recent results by the authors

to cases where a di�usive hysteresis occurs.

1 Introduction

Let 
 � IRN , 1 � N � 3 , denote an open, bounded domain with smooth boundary

� and unit outer normal �eld n , and let Q := 
 � (0; T ) , � := � � (0; T ) , with

some �nal time T > 0 . We then consider the system of partial di�erential equations

�
� +

1

2
j�j2

�
t

� �

�
�
1

�

�
= f(x; t) in Q ; (1:1)

wt � �w +
�

�
= 0 in Q ; (1:2)

�t � ��� + @IZ(�) + �(�) 3 wt in Q; (1:3)

subject to the boundary conditions

@

@n

�
�
1

�

�
+ n0

�
�
1

�

�
= h(x; t) on � ; (1:4a)

@w

@n
=
@�

@n
= 0 on � (1:4b)

and to the initial conditions

�(�; 0) = �0 ; w(�; 0) = w0 ; �(�; 0) = �0 ; in 
 : (1:5)

Here, the unknown � is a scalar function on Q , w := (w1; � � � ; wM) and � :=

(�1; � � � ; �M) are vector functions on Q for a �xed M 2 IN , and � : IRM
! IRM

is a vector function. Besides, f and h are functions prescribed on Q and � ,

respectively, n0 > 0 is a �xed constant, and  and � are real parameters. In what
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follows, we will always assume that 0 �  � 1 and 0 < � � 1 , even though any

other bounded parameter intervals in [0;+1) could be considered. Finally, Z is

some nonempty, bounded, closed and convex subset of IRM such that 0 2 Z .

The system (1.1)�(1.3) may be interpreted as a phase-�eld system modelling the

dynamics of a phase transition occurring in the container 
 with non-conserved

order parameter vector � . In this connection, � stands for the (positive) absolute

temperature, and w is a quantity related to � . In fact, if  = 0 then w can be

eliminated from the system, and (1.2) , (1.3) reduce to the single inclusion

�t � ��� + @IZ(�) + �(�) +
�

�
3 0 : (1:6)

Note that the system (1.1) , (1.6) is nothing but a phase-�eld model of the Penrose-

Fife type, if � is a scalar function, i. e. M = 1 , and if Z = [�1; 1] . We refer the

reader to [3, 4, 7, 16, 17] for its well-posedness and the asymptotic convergence as

�& 0. We also note that in the case � = 0 , � � 0 , equation (1.3) takes the form

�t + @IZ(�) 3 wt ; (1:7)

and the input-output relation w 7! � is nothing but the stop operator with the

characteristic set Z , which is one of the basic examples for hysteresis operators (for

monographs on hysteresis phenomena and their mathematical treatment, we refer

the reader to [2, 9, 18]). Therefore, (1.3) constitutes a di�usive approximation to the

stop operator, and we may interpret the system (1.2) , (1.3) as a model for a phase

evolution taking both di�usive and hysteresis e�ects into account. In that sense,

the system (1.1)�(1.3) may be viewed as a �rst step to generalize the phase-�eld

systems with hysteresis studied in the recent papers [10, 11, 12, 13, 14, 15] to the

situation when the w 7! � - relation incorporates both hysteresis and di�usion.

In this paper, we study the system (1.1)�(1.5) in a more general setting. In fact,

the functions 1
2
j�j2 and �1

�
will be replaced by more general functions � and

� , respectively. It is the aim to show a well-posedness result and to study the

asymptotic behaviour of the solutions in dependence of the two parameters  and

� . We will be able to treat the case  & 0 , while the dependence on � turns out

to be more di�cult: we will not be able to handle the asymptotics as � & 0 , but

only as � ! �̂ for some �̂ > 0 . Hence, the case (1.7) of the �pure� stop operator

with  > 0 will not be covered by our analysis.

The rest of the paper is organized as follows: In section 2, we give a detailed de-

scription of the considered problem, de�ne our notion of a solution, and state the

main results of the paper. Section 3 is concerned with the continuous dependence

of solutions with respect to the initial and boundary data and to the function f .

The main theorems stated in section 2 are then proved in the subsequent sections 3

to 5.
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2 Statements of main results

Let us consider the following general assumptions:

(A1) � is a nondecreasing function from an open set D(�) into IR , which

is locally Lipschitz continuous on D (�) , and assume that � is a maximal

monotone graph in IR � IR ; we �x a primitive �̂ of � , which is a proper

lower semicontinuous and convex function on IR .

(A2) � is a function of C2 - class on IRM ; we denote by �0 the gradient operator

of � in IRM , i. e. �0(�) = ( @�

@�1
(�); � � � ; @�

@�M
(�)) for � := (�1; � � � ; �M) .

(A3) � is a vector �eld of C1 - class in IRM .

(A4) Z is a nonempty, bounded, closed and convex set in IRM such that 0 2 Z ;

we denote by IZ(�) the indicator function of Z on IRM , namely

IZ(�) :=

8<
:

0 if � 2 Z

+1 otherwise;

and by @IZ(�) its subdi�erential in IRM .

Now, our problem, referred to as (P�) , is of the following form:

(� + �(�))t � ��(�) = f(x; t) in Q ; (2:1)

wt � �w � �(�)�0(�) = 0 in Q ; (2:2)

�t � ��� + @IZ(�) + �(�) 3 wt in Q ; (2:3)

subject to the boundary conditions

@ �(�)

@n
+ n0 �(�) = h(x; t) on � ; (2:4)

@w

@n
=
@�

@n
= 0 on � ; (2:5)

and to the initial conditions

�(�; 0) = �0 ; w(�; 0) = w0 ; �(�; 0) = �0 ; in 
 : (2:6)

In order to describe our results, we use the following simple notations:

(1) H := L2(
) , equipped with the standard norm j � jH and inner product

(�; �)H , and in any product space of H the same notations j � jH and (�; �)H
are often used to indicate the standard norm and inner product, respectively.
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(2) V := H1(
) , equipped with the norm

jvjV :=

�Z


jrvj2 dx + n0

Z
�
jvj2 d�

� 1

2

; 8 v 2 V ;

and its dual space is denoted by V � with dual norm j � jV � . We denote by

h�; �i the duality pairing between V � and V , and by F the duality mapping

from V onto V � ; by de�nition, F is given by the formula

hFv; ui =
Z


rv � ru dx + n0

Z
�
v u d�; 8 v ; u 2 V:

(3) We denote by �0 the Laplace operator in H with homogeneous Neumann

boundary condition, i. e. we have, by de�nition, v = �0w if and only if

w 2 H2(
) ; v 2 H and v = �w a. e. in 
 , with @w
@n

= 0 a. e. on � . In the

product space HM , we denote simply by �0w the vector (�0w1; � � � ;�0wM) ,

for w := (w1; � � � ; wM) .

In what follows, we denote by j � j both the absolute value of reals and the Eu-

clidean norm of vectors in IRM , and also by j
j the Lebesgue measure of 
 in

IRN , N = 1; 2; 3 . With the above notations, we now give a weak formulation for

problem (P�) .

De�nition 2.1 Suppose that data f 2 L2(0; T ;H) , h 2 L2(0; T ;L2(�)) , �0 2

H , and w0 ; �0 2 HM are given. We then call a triple fe; w; �g with e := �+�(�)

a (weak) solution to (P�) for real parameters � > 0 and  � 0, if the following

conditions are satis�ed:

(a) e 2 W 1;2(0; T ;V �)\L2(0; T ;H) , �(�) 2 L2(0; T ;V ) , and w ; � 2 W 1;2(0; T ;

HM) . Moreover, � 2 L2(0; T ;H2(
)M ) and w 2 L2(0; T ;H2(
)M) if  > 0.

(b) Equation (2.1) and the boundary condition (2.4) are satis�ed in the sense

that

e0(t) + F�(�(t)) = f �(t) in V � ; for a. e. t 2 (0; T ); (2:8)

where the prime denotes the time derivative d
dt
, and where f � 2 L2(0; T ;V �)

is de�ned by

hf �(t); zi = (f(t); z)H +
Z
�
h(�; t) z d� 8 z 2 V ; for a. e. t 2 (0; T ) : (2:9)

(c) Equations (2.2), (2.3) and the boundary conditions (2.5) are satis�ed in the

sense that

w0(t)� �0w(t)� �(�(t))�0(�(t)) = 0 in HM ; for a. e. t 2 (0; T ) ; (2:10)

�0(t) � ��0�(t) + @IZ(�(t)) + �(�) 3 w0(t) in HM ; for a. e. t 2 (0; T ) :

(2:11)

If  = 0 , then the term �0w is neglected in (2.10).
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(d) The initial condition (2.6) is satis�ed in the sense that

e(0) = e0 := �0 + �(�0) in V � ; w(0) = w0 in H ; �(0) = �0 in H :

We can now state the main results of this paper. Concerning existence, we have the

following result:

Theorem 2.2 In addition to the conditions (A1) to (A4), suppose that one of

the following (a),(b) and (c) holds:

(a) � � 0 on D(�), and � is a convex function on IRM such that

~� � �0(�) � 0; 8� 2 Z; 8~� 2 @IZ(�): (2:12)

(b) D(�) = IR, and � is Lipschitz continuous on IR.

(c)  = 0.

Further suppose that f 2 L2(0; T ;H) , �0 2 H with �̂(�0) 2 L1(
) , w0 2 V M ,

as well as �0 2 V M with �0(x) 2 Z for a. e. x 2 
 . Also, for the bound-

ary datum h 2 L2(0; T ;L2(�)) assume that h

n0
= �(~h) a. e. on � for some

~h 2 L2(0; T ;L2(�)) . Then, for  2 [0; 1] and � 2 (0; 1] , the problem (P�)

has at least one solution fe; w; �g which satis�es the further regularity proper-

ties e 2 L1(0; T ;H) , and � 2 L1(0; T ;V M) . Moreover, if  > 0 then w 2

L1(0; T ;VM) .

The second theorem is concerned with the convergence of the problems (P�) with

respect to the parameters  and � .

Theorem 2.3 Assume that condition (a) or (b) is satis�ed and that f; h; �0; w0

and �0 are as in Theorem 2.2. Let fng and f�ng be two sequences of strictly pos-

itive numbers such that n ! 0 and �n ! � as n ! +1 , for a positive number

� . Besides, let fen; wn; �ng be solutions to (Pn�n) . Then fen; wn; �ng converges

to the unique solution fe; w; �g to problem (P0�) in the sense that

en ! e strongly in C([0; T ];V �) ; e0n ! e0 weakly in L2(0; T ;V �) ; (2:13)

�(�n)! �(�) weakly in L2(0; T ;V ) ; wn ! w weakly in W 1;2(0; T ;HM) ; (2:14)

�n ! � weakly
�
in L1(0; T ;V M) ; �0n ! �0 weakly in L2(0; T ;HM) ; (2:15)

where �n := en � �(�n) and � := e � �(�) .

The typical example such as mentioned in the introduction satis�es condition (a) of

Theorem 2.2. The proofs of the above theorems will be given in sections 4 and 5.

5



3 Continuous dependence of solutions on the data

In this section, we prove the continuous dependence of solutions to (P�) with

respect to the initial and boundary data and to the function f (which implies the

uniqueness of the solutions) in any of the following three special cases:

(Case 1) N = 1 , and there is a constant K0 > 0 satisfying

(�(�1)��(�2)) (�1��2) �
K0 j�(�1)� �(�2)j

2

j�(�1)�(�2)j + 1
8 �i 2 D(�); i = 1; 2 : (3:1)

(Case 2) D(�) = IR , and � is Lipschitz continuous on IR , say, there is a

constant K0 > 0 satisfying

K0 j�(�1)� �(�2)j � j�1 � �2j 8 �i 2 IR ; i = 1; 2 : (3:2)

(Case 3) It holds  = 0 .

Theorem 3.1 Let fei; wi; �ig be two solutions to (P�) , for  2 [0; 1] ; � 2

(0; 1] , corresponding to the initial data fe0i; w0i; �0ig , to the boundary data hi , and

to the source terms fi , for i = 1; 2 . We then have the following results:

(i) Assume that (Case 1) is given. Then it holds, for all s 2 [0; T ] ,

je1(s)� e2(s)j
2
V � + C1 jw1(s)� w2(s)j

2
H + j�1(s)� �2(s)j

2
H

+C2

(
K0

Z s

0

Z



j�(�1)� �(�2)j
2

j�(�1)�(�2)j+ 1
dx dt

+
Z s

0
(jr(w1 � w2)j

2
H + jr(�1 � �2)j

2
H)(t) dt

�
(3:3)

� exp

�
C3

Z s

0

�
j�(�1(t))j

2
V + j�(�2(t))j

2
V + 1

�
dt

�

�

�
je01 � e02j

2
V � + C1jw01 � w02j

2
H + j�01 � �02j

2
H + C4

Z s

0
jf �1 (t)� f �2 (t)j

2
V � dt

�
;

where f �i 2 L2(0; T ;V �) is determined by hi and fi as in (2.9), and where Ck ,

1 � k � 4 , are positive constants depending on  2 [0; 1]; � 2 (0; 1] , � , and � .

(ii) Assume that (Case 2) is given. Then it holds, for all s 2 [0; T ] ,

je1(s)� e2(s)j
2
V � + C1 jw1(s)� w2(s)j

2
H + j�1(s)� �2(s)j

2
H

+C2

�Z s

0
(K0 j�(�1)� �(�2)j

2
H + jr(w1 � w2)j

2
H + jr(�1 � �2)j

2
H)(t) dt

�
(3:4)

� exp

�
C3

Z s

0

�
j�(�1(t))j

2
V + j�(�2(t))j

2
V + 1

�
dt

�

�

�
je01 � e02j

2
V � + C1jw01 � w02j

2
H + j�01 � �02j

2
H + C4

Z s

0
jf �1 � f �2 j

2
V �(t) dt

�
;
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where f �i , i = 1; 2 , and Ck , 1 � k � 4 , are de�ned as in (i).

(iii) Assume (Case 3) is given. Then it holds, for all s 2 [0; T ] ,

je1(s)� e2(s)j
2
V � + j�1(s)� �2(s)j

2
H + C2

Z s

0
jr(�1 � �2)j

2
H(t) dt

� exp

�
C3

Z s

0

�
j�(�1(t))j

2
V + j�(�2(t))j

2
V + 1

�
dt

�

�

�
je01 � e02j

2
V � + j�01 � �02j

2
H + C4

Z s

0
jf �1 � f �2 j

2
V �(t) dt

�
; (3:5)

where f �i , i = 1; 2 , and Ck , 1 � k � 4 , are de�ned as in (i). Moreover, the

functions wi are determined by

wi(s) = w0i +
Z s

0
�(�i(t))�

0(�i(t)) dt ;

for all s 2 [0; T ] and i = 1; 2 .

Proof. In what follows, we will suppress the argument t for the sake of brevity

whenever this is appropriate and does not lead to confusion. First, we take the dif-

ference of the equalities (2.8) and (2.10), and of the inequalities (2.11), respectively,

for two solutions fei; wi; �ig to obtain, with the abbreviating notations �i := �(�i) ,

�i := �(�i) , �
0
i := �0(�i) , and �i := �(�i) , i = 1; 2 ,

(e1 � e2)
0 + F (�1 � �2) = f �1 � f �2 in V � ; a: e: in (0; T ) ; (3:6)

(w1�w2)
0
� �0(w1�w2) � (�1 �

0
1 � �2 �

0
2) = 0 in HM ; a: e: in (0; T ) ; (3:7)

(�1��2)
0
� ��0(�1��2) + ( ~�1� ~�2) + �1��2 = (w1�w2)

0 in HM ; a: e: in (0; T ) ;

(3:8)

where ~�i 2 @IZ(�i) a. e. in Q for i = 1; 2 .

We now perform the following computations:

(i) Take the inner product in V � between both sides of (3.6) and e1 � e2 .

(ii) Take the inner product in HM between both sides of (3.7) and �1 � �2 .

(iii) Take the inner product in HM between both sides of (3.8) and �1 � �2 .

(iv) Take the inner product in HM between both sides of (3.7) and w1 � w2 .

From (i), we obtain that a. e. in (0; T )

1

2

d

dt
je1�e2j

2
V � + (�1��2; �1��2)H + (�1��2; �1��2)H = (f �1�f

�
2 ; e1�e2)V �: (3:9)

Next, prior to performing (ii), we note that

j�(�1)� �(�2)� �0(�1) � (�1 � �2)j � L(�0)j�1 � �2j
2;

7



where L(�0) denotes the (�nite) Lipschitz constant of �0 on Z . Therefore it follows

(cf. [6]) that

(�1�
0
1��2�

0
2)�(�1��2) � (�1��2)(�1��2)+L(�

0) (j�1j+j�2j) j�1��2j
2: (3:10)

Now, on account of (3.10), the second calculation (ii) yields

(w0
1 � w0

2; �1 � �2)H +  (r(w1 � w2);r(�1 � �2))H

� (�1 � �2; �1 � �2)H + L(�0)
Z


(j�1j+ j�2j) j�1 � �2j

2 dx (3:11)

a. e. on (0; T ). The computation (iii) yields, with the (�nite) Lipschitz constant

L(�) of � on Z , that a. e. in (0; T ) it holds

1

2

d

dt
j�1��2j

2
H + � jr(�1��2)j

2
H � L(�) j�1��2j

2
H + (w0

1�w
0
2; �1��2)H : (3:12)

Finally, we have by (iv) that a. e. in (0; T )

1

2

d

dt
jw1 � w2j

2
H +  jr(w1 � w2)j

2
H

� M(�0)
Z


j�1 � �2j jw1 � w2j dx + L(�0)

Z


j�1j j�1 � �2j jw1 � w2j dx ; (3:13)

where M(�0) := sup�2Z j�
0(�)j .

We now have to estimate each of the cases (Case k), k = 1; 2; 3, individually.

(Case 1): Assume that  > 0 (the case  = 0 is treated below in (Case 3)).

Using (3.1), we derive from (3.9) that

1

2

d

dt
je1 � e2j

2
V � + K0

Z



j�1 � �2j
2

j�1 �2j + 1
dx + (�1 � �2; �1 � �2)H

�
1

2
jf �1 � f �2 j

2
V � +

1

2
je1 � e2j

2
V � a:e: on (0; T ) : (3:14)

Since N = 1 , L1(
) is compactly embedded in V , so that there is some c0 > 0

satisfying

jzjL1(
) � c0 jzjV 8 z 2 V :

Hence, the second term in the right-hand side of (3.11) is dominated by the expres-

sion

L(�0) c0 (j�1j
2
V + j�2j

2
V + 1) j�1 � �2j

2
H : (3:15)

Similarly, employing Young's inequality, we �nd that the �rst term on the right-hand

side of (3.13) is dominated by

"M(�0)K0

Z



j�1 � �2j
2

j�1 �2j + 1
dx + c"M(�0) (j�1j

2
V + j�2j

2
V + 1) jw1 � w2j

2
H ; (3:16)

8



while the second term can be estimated by

1

2
c0 L(�

0) j�1jV (j�1 � �2j
2
H + jw1 � w2j

2
H); (3:17)

where " is an arbitrary positive number, and c" is a positive constant depending

only on " . Now, adding (3.11), (3.12), (3.13) multiplied by C1 :=
+1

2�2
, and (3.14),

and using (3.15)�(3.17) with su�ciently small " , we obtain an inequality of the

form

d

dt

n
je1 � e2j

2
V � + C1 jw1 � w2j

2
H + j�1 � �2j

2
H

o

+C2

(
K0

Z



j�1 � �2j
2

j�1 �2j + 1
dx + jr(w1 � w2)j

2
H + jr(�1 � �2)j

2
H

)

� C3 (j�1j
2
V + j�2j

2
V + 1)

n
je1 � e2j

2
V � + C1 jw1 � w2j

2
H + j�1 � �2j

2
H

o
+C4 jf

�
1 � f �2 j

2
V � ; (3:18)

a.e. on (0; T ), where C2 , C3 , C4 can be chosen to be positive constants depending

only on ; �; �, and �. Using Gronwall's lemma, we can conclude (3.3) from (3.18).

(Case 2): As before, we assume that  > 0 . We use the following inequality,

which for N � 3 is easily derived from the standard interpolation inequality:Z


jzj juj jvj dx � " (jruj2H+jrvj2H) + c" jzj

2
V (juj2H+jvj2H) 8 z ; u ; v 2 V; (3:19)

where " is an arbitrary positive number, and where c" is a positive constant de-

pending only on " . If � satis�es (3.2) then inequality (3.14) with K0

R


j�1��2j

2

j�1 �2j+1
dx

replaced by the expression K0 j�1 � �2j
2
H holds. Also, using (3.19), we see that

the second term on the right-hand side of (3.11) is a. e. in (0; T ) dominated by the

expression

" L(�0) jr(�1 � �2)j
2
H + c" L(�

0)(j�1j
2
V + j�2j

2
V ) j�1 � �2j

2
H : (3:20)

Besides, the �rst and second terms on the right-hand side of (3.13) are respectively

dominated by the expressions

"M(�0) j�1 � �2j
2
H + c"M(�0) jw1 � w2j

2
H ; (3:21)

" L(�0) (jr(w1�w2)j
2
H + jr(�1� �2)j

2
H) + c" L(�

0) j�1j
2
V (jw1�w2j

2
H + j�1� �2j

2
H) :

(3:22)

Now, just as in (Case 1), taking (3.20) to (3.22) into account, we see that (3.18), with

the expression K0

R


j�1��2j

2

j�1 �2j+1
dx replaced by K0 j�1 � �2j

2
H , holds. Consequently,

(3.4) is satis�ed.

(Case 3): Sum up (3.9), (3.11) with  = 0 ; and (3.12), and use (3.19) in order to

estimate the second terms on the right-hand sides of (3.11) and (3.13). As before,

9



we then obtain

d

dt

n
je1 � e2j

2
V � + j�1 � �2j

2
H

o
+ C2 jr(�1 � �2)j

2
H

� C3 (j�1j
2
V + j�2j

2
V + 1)

n
je1 � e2j

2
V � + j�1 � �2j

2
H

o
+ C4 jf

�
1 � f �2 j

2
V �

a.e. on (0; T ) , whence the required inequality (3.5) follows.

4 Approximate solutions and their uniform estimates

In this section, we consider an approximate problem for problem (P�) with pos-

itive ; � . To this end, let �Æ be a Lipschitz continuous, globally bounded and

nondecreasing function on IR with parameter Æ 2 (0; 1] such that �Æ converges to

� on IR � IR in the sense of graphs as Æ ! 0. In this paper, choosing a strictly

decreasing family frÆg and a strictly increasing family fsÆg in IR with respect to

Æ satisfying

rÆ # infD(�) ; sÆ " supD(�) ; as Æ ! 0 ;

we take as �Æ the function

�Æ(r) :=

8>>><
>>>:
�(rÆ) for r � rÆ ;

�(r) for rÆ < r < sÆ ;

�(sÆ) for r � sÆ :

Clearly, the range R(�Æ) of �Æ is bounded. In this case, a primitive �̂Æ of �Æ can

be chosen so that �̂Æ ! �̂ uniformly on each compact subset of D(�) as Æ ! 0 .

Moreover, for the initial and boundary data �0 and ~h smooth approximations �0Æ
and ~hÆ are chosen such that, as Æ ! 0 ,

�0Æ ! �0 in H ; �̂Æ(�0Æ)! �̂(�0) in L1(
) ;

as well as

~hÆ ! ~h in L2(0; T ;L2(�)); hÆ := n0 �Æ(~hÆ)! h in L2(0; T ;L2(�)) :

Also, let f �Æ 2 L2(0; T ;V �) be the function determined from f and hÆ just as f �

in (2.9) of De�nition 2.1. We now refer to (P Æ
�) as the problem (P�) with �0 , f

� ,

� , replaced, respectively, by �0Æ , f
�
Æ , �Æ , in De�nition 2.1. We have the following

result.

Proposition 4.1 Let  > 0 , � > 0 , Æ > 0 . Then problem (P Æ
�) has a

unique solution fe�Æ; w�Æ; ��Æg such that e�Æ 2 W 1;2(0; T ;V �) \ L1(0; T ;H) ,

�Æ(��Æ) 2 W 1;2(0; T ;H) \ L1(0; T ;V ) with ��Æ = e�Æ � �(��Æ) , as well as

w�Æ; ��Æ 2 W 1;2(0; T ;H) \ L1(0; T ;V ) \ L2(0; T ;H2(
)) .
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Proof. The construction of a solution is based on the standard �xed point argu-

ment for continuous operators in compact convex sets. To this end, we consider the

following three Cauchy problems

w0
� �0w = �u�0(��) in HM ; a:e: in (0; T ) ; w(0) = w0 ; (4:1)

�0 � ��0� + @IZ(�) + �(�) 3 w0 in HM ; a:e: in (0; T ) ; �(0) = �0 ; (4:2)

�0 + F�Æ(�) = f �Æ � �(�)0 in V � ; a:e: in (0; T ) ; �(0) = �0 ; (4:3)

for each pair of functions (�u; ��) 2 X , where

X :=

(
(�u; ��);

�u 2 L2(0; T ;H) ; �u 2 R(�Æ) a: e: in Q

�� 2 L2(0; T ;HM) ; �� 2 Z a: e: in Q

)
:

It is well-known that for each (�u; ��) 2 X the problem (4.1) admits a unique solution

w in W 1;2(0; T ;HM) \ L1(0; T ;VM) satisfying the bound

jwjW 1;2(0;T ;HM ) + jwjL1(0;T ;VM ) � A0 (1 + jw0jV ) ; (4:4)

where A0 > 0 is independent of the choice of (�u; ��) 2 X since

sup
(�u;��)2X

j�u�0(��)jL2(0;T ;HM ) � T
1

2 j
j
1

2 sup
r2IR ; p2Z

fj�Æ(r)j j�
0(p)jg < +1 : (4:5)

In fact, (4.4) is easily obtained from testing (4.1) by w0 . Next, for this function w

problem (4.2) has a unique solution � in W 1;2(0; T ;HM)\L1(0; T ;V M) satisfying

the bound

j�jW 1;2(0;T ;HM ) + j�jL1(0;T ;VM ) � A1 (1 + j�0jV + jw0
jL2(0;T ;HM )) ; (4:6)

where A1 > 0 is independent of w0 ; in fact, (4.6) follows from the inequality

obtained by multiplying (4.2) by �0 . Finally, owing to the result in [5; Theorem

1.5], the problem (4.3) has for this function � a unique solution � belonging to

W 1;2(0; T ;V �) \ L1(0; T ;HM) such that �Æ(�) 2 L2(0; T ;V ) , and satisfying the

bound

j�jW 1;2(0;T ;V �) + j�jL1(0;T ;H) + j�Æ(�)jW 1;2(0;T ;H) + j�Æ(�)jL1(0;T ;V )

� A2

n
1 + j�0ÆjV + j�0jL2(0;T ;HM ) + jf jL2(0;T ;H) + j~hÆjW 1;2(0;T ;L2(�))

o
; (4:7)

where A2 > 0 is independent of �0 ; indeed, the bound (4.7) is obtained by multiply-

ing (4.3) by � , �0 ; and d
dt
(�Æ(�)) , and by using the condition that �Æ(~hÆ) = hÆ=n0

on � .

Now, let S : X ! X denote the operator that assigns to each (�u; ��) 2 X the pair

of functions (u; �) with u := �Æ(�) which satis�es (4.1) to (4.3). Moreover, put

A3 := A1 [1 + j�0jV + A0 (1 + jw0jV )] ;

A4 := A2

h
1 + j�0ÆjV + A3 + jf jL2(0;T ;H) + j~hÆjW 1;2(0;T ;L2(�))

i
;
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and

X0 :=

(
(�u; ��) 2 X;

j�ujW 1;2(0;T ;H) + j�ujL1(0;T ;V ) � A4 ; �u 2 R(�Æ) a: e: in Q

j��jW 1;2(0;T ;HM ) + j��jL1(0;T ;VM ) � A3 ; �� 2 Z a: e: in Q

)
:

Obviously, X0 is a nonempty, compact and convex subset of L2(0; T ;H)

�L2(0; T ;HM) . Also, it follows from (4.4) to (4.7) that S(X0) � X0 .

Next, we prove that S is continuous in X0 with respect to the topology of

L2(0; T ;H) � L2(0; T ;HM) . To this end, assume that (�un; ��n) 2 X , �un ! �u

in L2(0; T ;H) , and ��n ! �� in L2(0; T ;HM) , and denote by wn; �n , and �n ,

respectively, the solution to (4.1) with (�u; ��) replaced by (�un; ��n) , the solution

to (4.2), and the solution to (4.3), respectively. Then, by (4.7), and owing to the

well-known general results concerning the continuous depencence of the solutions to

the evolution equations (4.1), (4.2), (4.3) (cf. [1, 5]), we can conclude that

wn ! w strongly in W 1;2(0; T ;H) ; �n ! � strongly in L2(0; T ;HM) ;

�0n ! �0 weakly in L2(0; T ;HM) ; �n ! � weakly in L2(0; T ;H) ;

�0n ! �0 weakly in L2(0; T ;V �) ; �Æ(�n)! �Æ(�) strongly in L2(0; T ;H) ;

and the limits w , � , � are solutions to (4.1), (4.2), (4.3), respectively. This shows

that S(�u; ��) = (�Æ(�); �) , which proves the continuity of S in X0 with respect to

the topology of L2(0; T ;H)� L2(0; T ;HM) .

It now follows from Schauder's �xed point theorem that S has at least one �xed

point (u; �) in X0 , which in turn gives a triple fe; w; �g such that u = �Æ(�) , e :=

�+ �(�) , and w is the solution of (4.1) with �u�0(��) = u �0(�) . Consequently, this

triple is a solution to (P Æ
�) . The uniqueness of a solution of (P

Æ
�) is a consequence

of (Case 2) of Theorem 3.1.

In the remainder of this section, we will derive some uniform estimates for the

approximate solutions fe�Æ; w�Æ; ��Æg and ��Æ := e�Æ � �(��Æ) constructed in

Proposition 4.1. For simplicity, �xing the parameters  2 (0; 1] and � 2 (0; 1] , we

denote them by feÆ; wÆ; �Æg , where �Æ := eÆ � �(�Æ) , for each Æ 2 (0; 1] . We then

have

�0Æ + �(�Æ)
0 + F�Æ(�Æ) = f �Æ in V � ; a:e: in (0; T ) ; (4:8)

w0
Æ � �0wÆ = �Æ(�Æ)�

0(�Æ) in HM ; a:e: in (0; T ) ; (4:9)

�0Æ � ��0�Æ + @IZ(�Æ) + �(�Æ) 3 w0
Æ in HM ; a:e: on (0; T ) ; (4:10)

with initial conditions �Æ(0) = �0Æ , wÆ(0) = w0 , and �Æ(0) = �0 .

Proposition 4.2 Assume that the same conditions as in Theorem 2.2 are satis-

�ed. Moreover, for the parameters  and � , assume that 0 <  � L0 � for some

constant L0 > 0 . Then there exist constants ak > 0 , 1 � k � 6 , independent of

all the parameters  ; � ; Æ 2 (0; 1] , such that the function

EÆ(t) :=
Z


�̂Æ(�Æ(t)) dx + a1  jrwÆ(t)j

2
H + a2 � jr�Æ(t)j

2
H + a3 j�Æ(t)j

2
H + j�Æ(t)j

2
H ;
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0 � t � T , satis�es the inequality

d

dt
EÆ + a4

h
j�Æ(�Æ)j

2
V + jw0

Æj
2
H + j�0Æj

2
H

i

� a5EÆ + a6
h
jf j2H + jhÆj

2
L2(�) + j~hÆj

2
L2(�) + 1

i
a:e: in (0; T ) : (4:11)

Proof. We test the functions �Æ := �Æ(�Æ) to (4.8) in V � � V , and �Æ to (4.9)

and (4.10) in HM �HM . It then follows with the help of Young's inequality that

d

dt

Z


�̂Æ(�Æ) dx + (�(�Æ)

0; �Æ)H +
1

2
j�Æj

2
V �

1

2
jf �Æ j

2
V � a: e: in (0; T ) ; (4:12)

(w0
Æ; �Æ)H � "j�Æj

2
V +B1(") +



2
jrwÆj

2
H +



2
jr�Æj

2
H a: e: in (0; T ) ; (4:13)

1

2

d

dt
j�Æj

2
H + � jr�Æj

2
H � (w0

Æ; �Æ)H + B2 a: e: in (0; T ) ; (4:14)

with an arbitrary small positive number " and a positive constant B1(") depending

only on ", where B2 := j
j supq2Zfj�(q)j
2 jqj2g, and where in (4.14) the monotonic-

ity of the subdi�erential @IZ (cf. (A4)) has been used.

Next, test w0
Æ and �0Æ to (4.9) and (4.10), respectively, in HM � HM , to get by

Young's inequality

jw0
Æj
2
H +



2

d

dt
jrwÆj

2
H = (�Æ�

0(�Æ); w
0
Æ)H a: e: in (0; T ) ; (4:15)

as well as

1

4
j�0Æj

2
H +

�

2

d

dt
jr�Æj

2
H �

1

2
jw0

Æj
2
H + B2 a: e: in (0; T ): (4:16)

Also, test �Æ�
0(�Æ) to (4.10) in HM �HM to get

(�(�Æ)
0; �Æ)H � (�Æ�

0(�Æ); w
0
Æ)H

= ��(r�Æ;r(�Æ�
0(�Æ)))H � (~�Æ; �Æ�

0(�Æ))H � (�(�Æ); �Æ�
0(�Æ))H ; (4:17)

where ~�Æ is a function in L2(0; T ;HM) satisfying ~�Æ 2 @IZ(�Æ) a.e. on (0; T ).

Moreover, by testing formally �Æ to (4.8) in H �H, we see that

1

2

d

dt
j�Æj

2
H + (�(�Æ)

0; �Æ)H + (r�Æ;r�Æ)H

+ n0

Z
�
(�Æ � �Æ(~hÆ)) �Æ d� = (f; �Æ)H a:e: in (0; T ) : (4:18)

Besides, by the monotonicity of the function �Æ(�) , and owing to the conditions on
~hÆ , we have

(r�Æ;r�Æ)H � 0; n0

Z
�
(�Æ � �Æ(~hÆ)) �Æ d� � n0

Z
�
(�Æ � �Æ(~hÆ)) ~hÆ d� : (4:19)
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Therefore, it follows from (4.18) and (4.19) that

d

dt
j�Æj

2
H �

1

8
j�Æj

2
V + "j�0Æj

2
H +B3(")j�Æj

2
H (4:20)

+ B4 (jf j
2
H + jhÆj

2
L2(�) + j~hÆj

2
L2(�) + 1) a:e: in (0; T ) ;

where B3(") is a positive constant depending only on any small positive number "

and B4 > 0 is a positive constant independent of all the parameters  ; � ; Æ ; ".

Note here that (4.18) to (4.20) are just formal computations because of the lack of

regularity properties of �Æ , but (4.20) can be rigorously veri�ed via an appropriate

further regularization of problem (4.10).

Now, consider the case when condition (a) is satis�ed. In this case, note from the

non-positiveness of � and (2.12) that (~�Æ; �Æ�
0(�Æ))H � 0. Hence, by (4.17) we have

(�(�Æ)
0; �Æ)H � (�Æ�

0(�Æ); w
0
Æ)H � �"j�Æj

2
V �B5(")(�

2
jr�Æj

2
H + 1); (4:21)

where " is an arbitrary positive number and B5(") is a positive constant depending

only on ". Now, add the inequalities (4.12)�(4.16), (4.20) and use (4.21). We then

�nd that a. e. in (0; T ) it holds

d

dt

�Z


�̂Æ(�Æ) dx +



2
jrwÆj

2
H +

�

2
jr�Æj

2
H +

1

2
j�Æj

2
H + j�Æj

2
H

�

+

�
3

8
� 2"

�
j�Æj

2
V +

1

2
jw0

Æj
2
H +

�
1

4
� "

�
j�0Æj

2
H

�

�
L0�

2
+B5(")�

2

�
jr�Æj

2
H +



2
jrwÆj

2
H +B3(") j�Æj

2
H +

1

2
jf �Æ j

2
V �

+B4

�
jf j2H + jhÆj

2
L2(�)) + j~hÆj

2
L2(�) + 1

�
+ B1(") + 2B2 +B5("): (4:22)

Therefore, we can easily derive an inequality of the form (4.11) from (4.22) by a

suitable choice of the ak; 1 � k � 6, with su�ciently small " > 0.

Secondly, consider the case when condition (b) is satis�ed. In this case, by the

Lipschitz continuity of � we see that

j(�(�Æ)
0; �Æ)H j � "j�0Æj

2
H +B6(")(j�Æj

2
H + 1)

and

j(�Æ�
0(�Æ); w

0
Æ)H j � "jw0

Æj
2
H +B6(")(j�Æj

2
H + 1);

where " is an arbitrary positive number and B6(") is a positive constant depending

only on ". Summing up (4.12)�(4.16) and (4.20), and using the above two inequali-

ties, we obtain an inequality similar to the form (4.22).

Finally, when condition (c) is satis�ed, we have

(w0
Æ; �

0
Æ)H = (�(�Æ)

0; �Æ)H (4:23)

and
1

2
j�0Æj

2
H +

�

2
jr�Æj

2
H � (w0

Æ; �
0
Æ)H +

1

2
B2; (4:24)
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a.e. on (0; T ), which are derived by multiplying (4.9) and (4.10) by �0Æ. Summing

up (4.12)�(4.14), (4.20), (4.23) and (4.24), we again obtain an inequality of the form

(4.22).

This ends the proof of the proposition.

Corollary 4.3 There is a constant N0 > 0 , independent of all the parameters

 ; � ; Æ 2 (0; 1] , such that

j�Æj
2
W 1;2(0;T ;V �) + j�Æj

2
L1(0;T ;H) + j�Æ(�Æ)j

2
L2(0;T ;V ) + � jr�Æj

2
L1(0;T ;HM )

+ j�0Æj
2
L2(0;T ;HM ) +  jrwÆj

2
L1(0;T ;HM ) + jw0

Æj
2
L2(0;T ;HM ) (4:25)

� N0

h
jf j2L2(0;T ;H) + jhÆj

2
L2(0;T ;L2(�)) + j~hÆj

2
L2(0;T ;L2(�))

+ j�̂Æ(�0Æ)jL1(
) + j�0Æj
2
H + j�0j

2
V + jw0j

2
V + 1

i
:

Proof. Applying Gronwall's Lemma to inequality (4.11) in Proposition 4.2,

we immediately obtain a uniform estimate of the form (4.25), except the one for

j�ÆjW 1;2(0;T ;V �) . The estimate for j�ÆjW 1;2(0;T ;V �) follows from the relation �0Æ =

�F�Æ �
d
dt
�(�Æ) + f �Æ .

5 Proofs of the existence results

We �rst prove Theorem 2.2.

Proof of Theorem 2.2. Consider the case when � > 0 and Æ > 0 , and let

feÆ; wÆ; �Æg with �Æ := eÆ � �(�Æ) be the family of approximate solutions for (P�)

constructed in the previous section. Then, according to Corollary 4.3, invoking

some standard compactness results, we can claim that there are a sequence fÆng

with Æn ! 0 as n ! +1 , as well as functions � 2 W 1;2(0; T ;V �) \ L1(0; T ;H) ,

�� 2 L2(0; T ;V ) , w 2 W 1;2(0; T ;HM) \ L1(0; T ;VM) , and � 2 W 1;2(0; T ;HM) \

L1(0; T ;VM) , such that

�n := �Æn ! � strongly in C([0; T ];V �) and weakly� in L1(0; T ;H) ; (5:1)

�n := �Æn(�n)! �� weakly in L2(0; T ;V ) ; (5:2)

wn := wÆn ! w ; �n := �Æn ! � ; both strongly in C([0; T ];HM)

and weakly in L2(0; T ;VM) , (5.3)

w0
n ! w0; �0n ! �0 ; both weakly in L2(0; T ;HM) : (5:4)
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Hence, � 2 Z a: e: in Q , and

�(�n)! �(�) both strongly in C([0; T ];H) and weakly in W 1;2(0; T ;H) ; (5:5)

as well as

�0(�n)! �0(�); �(�n)! �(�) ; both strongly in C([0; T ];HM) : (5:6)

Now, take Æ = Æn in (4.8) to (4.10), and pass to the limit as n ! +1 . Then, by

the convergences (5.1) to (5.6), we have

�0 + �(�)0 + F�� = f � in V � ; a: e: in (0; T ) ; (5:7)

w0
� �0w = �� �0(�) in HM ; a: e: in (0; T ) ; (5:8)

�0 � ��0� + @IZ(�) + �(�) 3 w0 in HM ; a: e: in (0; T ) : (5:9)

Therefore, in order to complete our proof it su�ces to show that �� = �(�) . This

is shown as follows. By (5.1) and (5.2), we have that

Z T

0
hF�n; F

�1(�n � �)i dt! 0 as n! +1 ;

so that

lim
n!+1

Z T

0
(�n; �n)H dt =

Z T

0
(��; �)H dt: (5:10)

Since �n ! � in H in the sense of graphs, it follows from (5.10) that �� = �(�)

a. e. in Q . Thus, fe; w; �g with e := � + �(�) is a solution to our system (P�) .

In the case  = 0 and � > 0 the proof is only a slight modi�cation of the above,

so we may omit the details.

Proof of Theorem 2.3. Let fng and f�ng be as in the statement of The-

orem 2.3, and denote by fen; wn; �ng , with �n := en � �(�n) , the sequence of

solutions of (Pn�n) . Then, from (4.25) in Corollary 4.1, we may assume, by taking

subsequences if necessary, that the following convergences hold for some functions

� 2 W 1;2(0; T ;V �) \ L1(0; T ;H), �� 2 L2(0; T ;V ) , w 2 W 1;2(0; T ;HM) and

� 2 W 1;2(0; T ;HM) \ L1(0; T ;VM) , with � 2 Z a. e. in Q :

�n ! � both strongly in C([0; T ];V �) and weakly� in L1(0; T ;H) ; (5:11)

�n := �(�n)! �� weakly in L2(0; T ;V ) ; (5:12)

wn ! w weakly in W 1;2(0; T ;HM) ; (5:13)

�n ! � strongly in C([0; T ];HM) and weakly in W 1;2(0; T ;HM) \ L2(0; T ;VM) :

(5:14)

Just as in the proof of Theorem 2.1, it follows from the convergences (5.11) to (5.14)

that �� = �(�) a. e. in Q , and fe; w; �g , with e := �+�(�) , is a solution to (P0�) ,
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since the sequence fn�0wn (= w0
n � �(�n)�(�n))g is bounded in L2(0; T ;HM)

and converges weakly to 0 in L2(0; T ;HM) . Moreover, by the uniqueness result for

(P0�) (cf. (Case 3) in Theorem 3.1) we can conclude that the above convergences

hold for the entire sequences fng and f�ng , and (2.12) to (2.14) hold. This ends

the proof of the theorem.
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