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Abstract

We study properties of the consistent Boltzmann algorithm for dense gases,
using its limiting kinetic equation. First we derive an H-theorem for this
equation. Then, following the classical derivation by Chapman and Cowling,
we find approximations to the equations of continuity, momentum and energy.
The first order correction terms with respect to the particle diameter turn out
to be the same as for the Enskog equation. These results confirm previous
derivations, based on the virial, of the corresponding equation of state.
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1. Introduction

Direct Simulation Monte Carlo (DSMC) is presently the most widely used numerical
algorithm in kinetic theory [4]. In this method, a system of simulation particles

(zi(t),wi(t)), i=1,...,N, t>0,

is used to approximate the behaviour of the real gas. Independent motion (free
flow) of the particles and their pairwise interactions (collisions) are separated using
a splitting procedure. During the free flow step, particles are moved according to
their velocities,

t+ At
mﬁ+Aw:@m+/ vi(s) ds,
t

and boundary conditions are taken into account. During the collision step, particle
pairs (z,v), (y,w) are randomly chosen in small cells of the position space, accord-
ing to the collision probability for the interparticle potential. The post-collision
velocities

v =v+4e(e,w—v), w*=w—e(e,w—v) (1.1)

are determined by randomly selecting a direction vector e from the unit sphere
S?CR3. Here (.,.) and || .|| denote the scalar product and the Euclidean norm in
R?3, respectively. The number of collisions at each time step At is computed from
the local collision frequency.

Recently, the Consistent Boltzmann Algorithm (CBA) was introduced as a sim-
ple variant of DSMC for dense gases [2|. Besides the standard problems in kinetic
theory, CBA has proved useful in the study of granular material [9] and nuclear
physics [10]. Although CBA can be generalized to other potentials [1] here we will
only consider the hard sphere gas with particle diameter o. In CBA the collision
process is as in DSMC with two modifications. First, when a pair collides each
particle is displaced a distance o into the direction e or —e, i.e. (cf. (1.1))

(v* —w*) — (v —w)

[(v* —w*) = (v —w)|’

¥r=z+0 y*:y—0|

—
<
*
|
g
*
SN’
|
N

Second, the dense hard sphere collision frequency is used.
The limiting equation of CBA (as N — co) has been established in [§],

%p(t, z,v)+ (v, V) p(t,z,v) = /723 dw . de B(v,w, e) %X (1.3)
x(e(t, ) p(t, 2%, v%) p(t, 3%, w*) = x(o(t, @) p(t, @, v) p(t, @, w)].
Here

B(v,w,e) = const |(e,w — v)| (1.4)
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is the hard sphere collision kernel, and

o(t,z) = /723 p(t,z,v)dv

denotes the density. The function x is equal to unity for a rarefied gas, and increases
with increasing density, becoming infinity as the gas approaches the state of close-
packing. With the notations

S} =8i(v,w)={e: (e,w—v) >0}, S? ={e: (e,w—v) <0}, (L5)

equation (1.3) takes the form
9 (t,z,v)+ (v, V) p(t,z,v) =2 | dw | deB(v,w,e) (1.6)
6tp ? ? ? T p ? ? - R3 Si ? ? *

x(e(t, 2+ 0 e)pt, 2 + 0 e,v") p(t, @ + o e,w”) — x(o(t, @) P2, 7,v) P(t, 3, ).

Compare this equation with the Enskog equation (cf. |7, Ch.16.3])

%p(t, z,v)+ (v, V) p(t,z,v) = (1.7)

1
2 [ dw [ de B(o,w,€)[x(olt 2 + 5 0 ) plt 2, v7) plt, 0 + 0 e, w)
RS 83_
1
~xle(t,z — 5 o)) p(t,z,v) plt, = ~ o e,w)].

Note that, in the case x =1, 0 =0, both equations (1.6) and (1.7) reduce to the
Boltzmann equation

0
Ep(t, z,v)+ (v, V) p(t,z,v) =

[, dw [ deBv,w,e) [plt,,0%) plt, 2, w") ~ p(t,2,0) plt, 2, w)].
RS 82

Here we study some properties of equation (1.6). In Section 2 we derive an H-
theorem. In Section 3, following the classical derivation by Chapman and Cowling
[6], [7], we find approximations to the equations of continuity, momentum and energy.
The first order correction terms with respect to the particle diameter turn out to
be the same as for the Enskog equation. These results confirm previous derivations,
based on the virial, of the corresponding equation of state [2].



2. H-theorem

According to (1.1, the displacements (1.2) take the form
et =z+yY(v,w,e), Y =y—p(v,we),
where the notation
b(v,w,e) = o esign(e, w — v)
1s used. Note that
P(v*,w' e) = —p(v,w, €) = Pp(w,v,¢€) (2.1)

and (cf. (1.4))

B(v,w,e) = B(v*,w",e) = B(w,v,e) = B(v,w,—e). (2.2)

Using (2.1), (2.2), one obtains

/723 dz /723 dv /723 dw /82 de p(z,v) B(v,w,e) x(o(t,z*)) p(¢, z*,v*) p(t, z*, w*)
= /723 dz /723 dv /723 dw /82 dep(z — Y(v,w,e),v) B(v,w,e) x(o(t,z)) p(t, z,v*) p(t, z, w")
= /723 dz /723 dv /723 dw /82 de p(z*,v*) B(v,w, e) x(o(t, z)) p(t, z,v) p(t, z,w).

Thus, the weak form of equation (1.3) is

d
dt Jr3xR3

Ly L L L el )) Bl w,e)[ole,07) = o(e,0)]plt, 2,0) plt, o, w) de do duw da,

o(z,v)p(t,z,v)dzdv = / (v, (Ve p)(z,v)) p(t, z,v) dz dv+

R3xR3

or, equivalently,

d
dt JrR3xR®

%/723 da:/Ra alv/R3 alw/s2 de x(o(t,z)) B(v,w,e) X
#le

ez + 1/)(’0,’11), e)av*) + ‘P(m - 1/)(’0,’11), e)aw*) - ‘P(m:v) - (p(m,’w)}p(t, m,v)p(t, maw) .

o(z,v)p(t,z,v)dzdv = / (v, (Ve p)(z,v)) p(t, z,v) dz dv+ (2.3)

R3xR3

The form (2.3) is convenient for deriving an H-theorem. We consider

o(z,v) = logp(t, z,v)

and
H(t ——/ / t,xz,v)l t,z,v)dvdz.
(1) o Jres p(t,z,v) log p(t,z,v) dvdz
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~/723><R3( 1( ? ? ))1(t7m7l’)dmdv—

=p(1,
/ (v, Vap(t, 2, ))p(t,az,v)dazdv:0.
R3 xR3 p(t,z,v)

Using the elementary inequality
a(logh—loga) <b—a, a,b>0,

one obtains

th( t) = % o dm/mdv/m alw/s2 de x(o(t,z)) B(v,w, e) x
{log [p(t,a: + Y (v,w,e),v*) p(t,z —1/J(v,w,e),w*)}—

log{p(tmv tmw”pt,az,v

)
/723dm/723dv/n3dw SZdeX o(t,z)) B(v,w,e)
[ (t,z + (v, w,e),v") p(t,z —P(v,w,e),w*) — p(t,az,v)p(t,%w)}

= /daz/ dv/ dw/ de x(o(t,z)) B(v,w, e) x
R3 R3

p(t,z —P(v,w,e),v)p(t,z + ¢Y(v,w,e),w) — p(t,z,v) p(t, m,w)}
t).

(2)

With the notations (1.5), the correction functional takes the form

I(t) = /723da:/R3dv/R3dw/82 o) de x(o(t,z)) B(v,w,e) X
[ (t,z —¢(v,w,e),v) p(t,z + ¢ (v,w,e), w)—p(t,m,v)p(t,m,w)}

= /723da:/R3dv/R3dw/82 o) de x(o(t,z)) B(v,w,e) X
{p(t, z —P(v,w,e),v)p(t,z+ ¢Y(v,w,e),w) —p(t,z,v) p(t, m,w)}

= /723 da:/Ra alv/R3 dw/si(v,w) de x(o(t,z)) B(v,w,e) X

{p(t, z—oev)p(t,z+ oe,w)— p(t,z,v)p(t, m,w)}.

p(t, z,w)

IN

N

In analogy with [3], one may introduce the functional

for which

Note that, in the Boltzmann case o = 0, one obtains I(t) = 0.
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3. Equations of continuity, momentum and energy

We follow [7, Ch. 16] (cf. also [6, Ch.16], [5, Ch.V.6]). Adapted to the notations of
[7], equation (1.6) takes the form

lgt te- %]f://dkdclaz(cl—c)-k[f'(r+ak)f;(r+ak)—f(r)fl(r)}, (3.1)

where f = np. Here n denotes the number density, and integration dk is over
82 (¢, c1) (cf. (1.5)). For simplicity we set x = 1.

The uniform steady state is

3 2
(0) _ L) _mle—ol®
fo=n (27rkT exp ( 2k T ): (3.2)

A first approximation to the solution of equation (3.1) is f = f(©), a second approx-
imation is

FO = O (1 4 30 (3.3)

where ®(1) is a linear function of the first derivatives of n, T and the mass velocity
o - In the following derivations we neglect all products of derivatives and derivatives

of higher order.

3.1. Left-hand side of the kinetic equation

Consider the left-hand side of equation (3.1):
[Q te- ﬂ] O = [g te- g] O = 700 [g te- g] log f©@ .
r

Ot Or Ot or Ot 0
Note that
10 3 0 m 0 s,  m 0
8l = ain e T Tapma g Ll el g (e me) 50
and

0 10 3 0 m 0 , m [0
o 8 = g o, T aprag Ll coH*ﬁ(WO)“‘CO”

Multiplying with ¢ = 1 and integrating with respect to ¢, one obtains

0 3n 0 3n 0
] de s 1°gf “a" 2Tl 2T el
and
/dc c- —logf
0 3n 0 mn 0 _3kT
Cor=—n———=¢c=—1T+—=co- — + ndiv(e)

or 27T or 2k T2 or m

0 )
= co-gn—l—ndlv(co).



Finally,

0 0 D
| 2 L (0 — 7 ;
/dcf L% +c o ] log f Di n + ndiv(e) (3.4)

where

D 0 0

Multiplying with 1 = ¢ — ¢ and integrating with respect to ¢, one obtains (cf.
(A.2))

(9 0
/dc(c — co) 8t logf ngco

and (cf. (A.2), (A.4), (A.3))

/dc(c—co)f( c- glogf k—Tgn—?)k—ngT—l—

o
/dc(c— o) /@ (e = co) - - T lle — ol +

m
2kT?

7 [ de(e—co) FO (e o) (%c()) (e~ co) + 7 [ de(c— o) fOc (%%) (c— co)

_k_Tg _3kn8T+m5 k_ngT_l_kan g
N marn 2m Or 2kT2n m or kT m co 8rc0

3
Note that £ ¢o is a matrix, (2 o) = and
or > \Or; 5 2,7=1

(o N e Oy 0 B (0
or Co i—Co,l (97‘1 Co,i T Cp,2 (97‘2 Co,i T €C0,3 87'3 Coi = | Co or Co .

Finally one obtains (cf. (3.5))

0 0
_ 9 =
/dc(c co) f L% +c- o ]logf (3.6)
0 kT & nk O D 1 8
”acﬁ”(%‘a)%*—awaaT n ot g BT

Multiplying with ¥ = ||c — ¢o||? and integrating with respect to ¢, one obtains
(cf. (A.5))

o 3kT 3 & _ 3kT m 0 ET\?
[ delle= el £ 5 108 10 = Zn 20— B S n S g s T 15 (?)
3T 9 9kn O 15kn 0 3T 0 3kn 0

= — — — = — — — T
m 8tn 2m Ot t om om Ot m 8tn+ m Ot
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and (cf. (A.5), (A.6))

/d0||c—Co||2f(°)c- 9 log f©) =
Or
3kT 0 9%kn 0 m 0 (kT>2

— - =—n——¢c-— 1T o — 1T 1bn

m or 2m or 2k T2 c or

m

0
i [ dele= P 10 e~ (o) (e— e

3kT 8  9%n 0, 15nk 0 m kT\"
== WCO'ETL—RCO'ET—F om COET—Fﬁ&)’L (;) le(Co)

3kT 0 3kn 0 S5nkT

e WCO'ETL—F?CO'ET—I— m le(Co).
Finally one obtains (cf. (3.5))
0 0 3kT D 3kn D SnkT
— 2 O [ 2 i (0 _ 2% ont 2 ;
/dc llc — col|” f L% +c 87’] log f D" + Dy T+ — div(eo).  (3.7)

3.2. Right-hand side of the kinetic equation

Consider the term in brackets at the right-hand side of equation (3.1). Expanding
fi, f1 by Taylor’s theorem, and retaining only the first derivatives, gives

0 0
(7 f-f Ry ok (£ o fpf). 35)

Substituting from (3.3) into the first term on the right of (3.8) (neglecting terms
as before) gives

FO O (a4 2V — 20 — a() (3.9)
since
FO R = O R,

The second term on the right of (3.8) involves space-derivatives. Thus we may
write £ in place of f®) and obtain

7O £ D goq o 4 g0 pior Oy o — o) (00 Dy 1000 pror]
Yoo ! ! Or ' oor !
and
0 PRy 2 0 3 0
“ O 22, 2“7
Or 8 [fl f } n 8rn T Or +
m 0 ' 2 ' 2 m (0 ' '
2572 57 L (||01 — col|” + || — <o ) toT ECO> ((01 —co) +(c' — CO))

m 0 ) ) m [0
= . 5z, L la -l —|—||c—c0||)—|—ﬁ<5co> (1 = co) + (¢ — <o)




The integral on the right-hand side of the equation gives

I //Uk ( glog £ )'f(o)’D o (c1 — ¢) - kdkdey
= ;U"’f(o)/fl(o)/k-En(cl—c)-kdkdcl
—303 (0)/f(°)/k-3T (c1 — ¢) - kdk de,
s £O [ 10 [ 2 (s = col? + o= olP) (e — ) - o de
—I-—O' f /fl /k (—c()) c1—co)—l—(c—co))(cl—c)-kdkdcl(B.l())

According to [6, formula 16.8,2] we have

21
/k (c1 —c¢) - kdk = — 3 (c1 —c).

Thus, (3.10) implies

21 2

0 27 3 0
I = ?;Ugf(O)/fl(O)(Cl_C)'Endcl —?Tas (0)/f1(0)(cl—c)'ETdC1

2 m o
+ 3 opr2 7 “”/fl“’) (=) 5T (les = coll” + fle = col ) dex

27rm

3 =T ° /f1 (1 —¢) (—cc)) ((cl—co)—l—(c—co))dcl_ (3.11)

Note that (cf. (3.2))

0
J 19— o) 27 (er ol + e = el der =0,

J 7O e=e) o (s = ol + e = ol ey
= tema) ot [E e a],
(cf. (A1)
JRRICEE (%c()) ((e1 = o) + (e — €0))des
= [P e (a% c0> (c1 — co)des = m " div(co)
and

JRICEES) (%%) ((e1 — co) + (¢ — co))der = n(c — co) - (%%) (¢ — co)



Thus, (3.11) implies

21 2 0 27 3 0

I = -5 -0 fOn(c—c) 5 nt T 50 fOn(c—e) 5T
o o 10 —e 2 [BL o]
-|-2?7r % o () ln k;Tdiv(co) —n(c—co)- (% Co) (c— CO)]
_ _%”ms <o>3(c_co).6%n
—2?%”03 (0)(0—00)'5%T 2T ' 2k T2

3 m
5+ s lle = ol
2—7rn03 ©) |div(c —ﬁc—c . gc c—c

+5ne? 10 aiv(en) -~ le— o)+ (o) (e )]

When multiplying with ¢ =1, ¢—co, ||c— co||* and integrating with respect to
¢, many terms vanish. One obtains (cf. (A.1))

2 . m kTn
/dc[ = ?nae’ [ndlv(co) iy

div(co)] =0, (3.12)

(cf. (A.2), (A4), (A.3))

2m 2 kTn 0O
/dC(C—Co)I: —?TLO':;;?ETL
2 3 3 kTn 0 2r 5 m kT\? 8
— —_— T - — ——bn|— | =—T
—|—3n0 2T m Or 3n0 2k T? n(m) Or
2r 32T 0O 2 5, 0 3kn  bkn
= —no*——n+—no’ =T |—— —
3 m Or 3 Or 2m  2m
2r . 2kT 0O 2r . kn 0O 2r 0
_ _m el 0 am sk O 2T 3 0 ey (31
377 Tmoor" 3"7 mor 3m08r(n ) (313)
and (cf. (A.6))
27 3kTn 27 m ET\? .
/dc||c—c0||2I: —n o’ div(e) e ?nae’ﬁ n (;) div(eo)
2 ) 3kTn b5kTn 2 ) 2kTn
= ?nae’ div(eo) l T ] = —?nae’ div(eo) . (3.14)
Note that the corresponding integrals of the term (3.9) are zero.
3.3. Comparison of both sides
From (3.4), (3.12) one obtains
D
—n+ndiv(e) =0. (3.15)

Dt
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This equation is identical with |7, (16.33,3)].
From (3.6), (3.13) one obtains

D 1 0 2r 5 0 )

or

D 1 0 2 4
nECO—I_EE [knT{l—l—?U nH =0. (3.16)

Introducing (cf. |7, (16.33,2)])
2
pozknT[l—l—?ﬂ—U?’n}, (3.17)

and up to some notations, equation (3.16) is identical with [7, formula 16.33,4]. This
equation of state is in agreement with that obtained from the virial [2].

From (3.7), (3.14) one obtains

3kT D 3kn D SnkT . 27 3 1. 2kTn
Wﬁn—l—ﬁﬁT—l— dlv(co)—l—?na div(eo) =0
or, using (3.13),
3kn D . 2n 2 3
WET—FICTCIIV(C())E |:]_ —|— ?’)’LU :| = 0,
l.e.
D 2 2
5 T+ 5 Tdiv(co) [1—|—?7rn03] = 0. (3.18)

Taking into account (3.17), this equation is identical with |7, formula 16.33,5].

Equations (3.15), (3.16), (3.18) are the first order approximations to the equa-
tions of continuity, momentum and energy. These are the Euler equations with the
hydrostatic pressure given by (3.17) and they are identical to those obtained for the
Enskog equation (recall that for simplicity x was taken as unity). For future work,
the Chapman-Enskog analysis may be continued to evaluate the transport coeffi-
cients by computing the collisional transfer of momentum, energy, and for CBA,
mass. We anticipate that, as with the Enskog equation, the resulting viscosity, ther-
mal conductivity, and self-diffusion coefficient will be in good agreement with the
results already obtained by Green-Kubo analysis (cf. 2] and [11]).
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grant from the European Commision DG 12 (PSS*1045) and was performed, in part,
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Appendix: Moments of a Gaussian variable

Let ¢ = c—¢y. Then

[defO¢- g~ [dese ijajkfk_

kTn

kT
[defOee-b=[defOetn == ",

[defOee-ae= [defO&Y &ante=0,
1.k

kT
J et Ae= [defO 6D bt = 0= TN bas,

[def@ece-blel® = [ defOE bl = nt, (%T) 11143,

Jaer@ter = faeroe + & + &5 = 1on (1)

JdefO NP AE = [derO el Tt st = [defO €Y & a
Dk g 3

ET\?

m

[@11+ a2z + azs),

(A1)

(A.2)

(A.3)

(A4)

(A.5)

= n <—> [Bai1+ az2+aszs+ a1 +3az2+azz+ars+axz+ 3asg]

ET\?
= 5n |— | [a11+ @22+ ass).
m

(A.6)

These formulas follow from elementary properties of one-dimensional Gaussian

random variables, in particular, En* = 3 (En?)?, i.e.

L Lo et =3 [% [aeso e)e] =3 (%T)
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