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Abstract. Stochastic systems, phase �ows of which have integral invariants, are con-

sidered. Hamiltonian systems with additive noise being a wide class of such systems

possess the property of preserving symplectic structure. For them, numerical methods

preserving the symplectic structure are constructed. A special attention is paid to sys-

tems with separable Hamiltonians, to second order di�erential equations with additive

noise, and to Hamiltonian systems with small additive noise.

1. Introduction

The problem of preserving integral invariants in numerical integration of deterministic

di�erential equations is of great current interest (see, e.g., [15, 4, 14, 16, 17] and references

therein). The phase �ows of some classes of stochastic systems possess the property of

phase-volume preservation or possess the more strong property of preserving symplectic

structure (symplecticness) [3, 8, 1]. For instance, Hamiltonian equations with additive

noise are a rather wide and important class of systems having these properties. In the

present paper we construct special numerical methods which preserve integral invariants

in such stochastic systems. However some issues are discussed for general systems.

Consider the Cauchy problem for system of stochastic di�erential equations (SDEs) in

the sense of Stratonovich:

(1.1) dX = a(t; X)dt+

mX
r=1

br(t; X) Æ dwr(t); X(t0) = x;

where X; a(t; x1; : : : ; xd); br(t; x
1; : : : ; xd) are d-dimensional column-vectors with the com-

ponents X i; ai; bi
r
; i = 1; : : : ; d; and wr(t); r = 1; : : : ; m; are independent standard Wiener

processes.

We suppose that all the coe�cients of considered systems are su�ciently smooth func-

tions de�ned for (t; x) 2 [t0; t0 + T ]� Rd and they provide the property of extendability

of solutions to the interval [t0; t0 + T ] (some additional conditions on boundedness of

partial derivatives of the coe�cients in connection with considered methods are given in

Section 3.2).

We denote by X(t; t0; x) = X(t; t0; x
1; : : : ; xd); t0 � t � t0+T; the solution of the problem

(1.1). A more detailed notation is X(t; t0; x;!); where ! is an elementary event. It is

known that X(t; t0; x;!) is a phase �ow (di�eomorphism) for almost every !: See its

properties in, e.g. [3, 6, 5, 8].

Let D0 2 Rd be a domain with �nite volume. This domain may be random. We suppose

that D0 = D0(!) is independent of the Wiener processes wr(t); t 2 [t0; t0 + T ]: The
transformation X(t; t0; x;!) maps D0 into the domain Dt = Dt(!): The volume Vt of the
domain Dt is equal to

(1.2) Vt =

Z
Dt

dX1 : : : dXd =

Z
D0

����D(X1; : : : ; Xd)

D(x1; : : : ; xd)

���� dx1 : : : dxd:
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Obviously, the volume-preserving condition consists in the equality

(1.3)

����D(X1; : : : ; Xd)

D(x1; : : : ; xd)

���� = 1:

In Section 2.1, we �nd out a class of stochastic systems satisfying this condition (cf. [8, 1]).

Let us write a system of SDEs of even dimension d = 2n in the form

(1.4) dP = f(t; P;Q)dt+

mX
r=1

�r(t; P;Q) Æ dwr(t); P (t0) = p;

dQ = g(t; P;Q)dt+

mX
r=1


r
(t; P;Q) Æ dwr(t); Q(t0) = q:

Here P; Q; f; g; �r; r are n-dimensional column-vectors.

Introduce the di�erential 2-form

(1.5) !2 = dp ^ dq = dp1 ^ dq1 + � � �+ dpn ^ dqn:

We are interested in systems (1.4) such that the transformation (p; q) 7! (P;Q) preserves
symplectic structure [2]:

(1.6) dP ^ dQ = dp ^ dq;

i.e., when the sum of the oriented areas of projections onto the coordinate planes (p1; q1);
..., (pn; qn) is an integral invariant. As a consequence, all external powers of the 2-form

(!2)l = !2 ^ � � � ^ !2| {z }
l�times

are invariant for such systems as well. The case l = n gives preservation of phase volume.

Phase �ows of deterministic Hamiltonian systems (i.e., when �r = 0; 
r
= 0; r = 1; : : : ; m;

and there is a function H(t; p; q) such that f i = �@H=@qi; gi = @H=@pi; i = 1; : : : ; n)
are known to preserve symplectic structure. It turns out (see [3] and Section 2.2) that if

there are functions H(t; p; q); Hr(t; p; q); r = 1; : : : ; m; such that

(1.7) f i = �@H=@qi; gi = @H=@pi;

�i
r
= �@Hr=@q

i; i
r
= @Hr=@p

i; i = 1; : : : ; n; r = 1; : : : ; m;

then the phase �ow of (1.4) preserves symplectic structure.

Let Xk; k = 0; : : : ; N; tk+1 � tk = hk+1; tN = t0 + T :

X0 = X(t0); Xk+1 = �Xtk;Xk
(tk+1);

be a mean-square method for (1.1) based on the one-step mean-square approximation
�Xt;x(t + h) = �X(t + h; t; x): It is clear that a method preserves phase volume (said to be

Liouvillian) if its one-step approximation satis�es the equality

(1.8)

����D( �X1; : : : ; �Xd)

D(x1; : : : ; xd)

���� = 1:
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Analogously, a method for (1.4) based on the one-step approximation �P = �P (t+h; t; p; q);
�Q = �Q(t + h; t; p; q) preserves symplectic structure if

(1.9) d �P ^ d �Q = dp ^ dq :

For a reader convenience, we give some auxiliary material on Hamiltonian methods for

deterministic systems and on numerical integration of SDEs in Section 3.

In Section 4, we construct some implicit Hamiltonian methods of mean-square order 1

and 3=2 for general Hamiltonian systems with additive noise. We propose more e�ective

methods for systems when the Hamiltonians have a special form. We consider the case

of separable Hamiltonians H(t; p; q) = V (p) + U(t; q) in Section 5 and the case of Hamil-

tonians H(t; p; q) = 1

2
p>M�1p+ U(t; q) with M a constant, symmetric, invertible matrix

in Section 6. Further, we pay a special attention to Hamiltonian systems with small ad-

ditive noise. High-exactness methods for such systems are constructed in Section 7. Let

us underline that all the derived methods are e�cient with respect to simulation of the

used random variables.

In the next paper we plan to propose mean-square Hamiltonian methods for Hamilton-

ian systems with multiplicative noise and to consider Liouvillian methods. We will also

present some numerical experiments.

Here we construct mean-square methods. As is known (see, e.g. [9, 7, 18, 12]), when we

simulate a stochastic system by the Monte Carlo technique, we can use weak approxi-

mations which are in many respects simpler than mean-square ones. Hamiltonian weak

methods will be considered in a later publication.

2. Stochastic systems preserving phase volume and symplectic

structure

2.1. Preservation of phase volume. We are going to �nd out a class of stochastic

systems, which preserve phase volume, i.e., which satisfy the volume-preserving condition

(1.3). To this end, we evaluate the Jacobian from (1.3). For a �xed j; the vector

Z :=
@X

@xj
=

�
@X1

@xj
; � � � ; @X

d

@xj

�
>

obeys the following system of linear SDEs

(2.1) dZi
=

dX
k=1

@ai

@xk
(t; X1; : : : ; Xd)Zkdt+

mX
r=1

dX
k=1

@bi
r

@xk
(t; X1; : : : ; Xd)Zk Æ dwr;

Zi(t0) =
@X i

@xj
(t0) = Æij =

�
1; i = j
0; i 6= j

; i = 1; : : : ; d;

where [X1(t; t0; x); : : : ; X
d(t; t0; x)]

> is a solution to (1.1).
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Introduce the fundamental matrix �(t) of solutions to (2.1) normalized at t = t0 :

�(t) =

2
66664
@X1

@x1
� � � @X

1

@xd
... � � � ...

@Xd

@x1
� � � @X

d

@xd

3
77775 :

This matrix is a solution of the linear system

(2.2) d� = A�dt+

mX
r=1

Br� Æ dwr(t); �(t0) = I:

Here A and Br are matrices with the components
@ai

@xj
(t; X1(t; t0; x); : : : ; X

d(t; t0; x)) and

@bi
r

@xj
(t; X1(t; t0; x); : : : ; X

d(t; t0; x)) correspondingly. They depend on x = (x1; : : : ; xd)> as

on a parameter and depend on the previous behavior of the processes wr(s); t0 � s �
t; r = 1; : : : ; m: We denote by I the d� d unit matrix.

The formula for the determinant of solution to the linear matrix Stratonovich equation

has the form (see, e.g., [8, 1])

(2.3) det �(t) = det�(t0) � exp
(Z

t

t0

trA ds+

Z
t

t0

mX
r=1

trBr Æ dwr(s)

)
:

Since

det �(t) =
D(X1; : : : ; Xd)

D(x1; : : : ; xd)
and det �(t0) = 1;

the formulae (1.2), (2.3) and the condition (1.3) imply the following proposition.

Theorem 2.1. The necessary and su�cient conditions for volume preservation by the
phase �ow of the Stratonovich system (1:1) consist in holding the equalities:

(2.4)
@a1(t; x)

@x1
+ � � �+ @ad(t; x)

@xd
= div a = 0;

(2.5)
@b1

r
(t; x)

@x1
+ � � �+ @bd

r
(t; x)

@xd
= div br = 0; r = 1; : : : ; m:

Corollary 2.2. The necessary and su�cient conditions for volume preservation by the

phase �ow of the Ito system

(2.6) dX = a(t; X)dt+

mX
r=1

br(t; X)dwr(t); X(t0) = x;

consist in holding the equalities

(2.7) div (a� 1

2

mX
r=1

@br

@x
br) = 0:

(2.8) div br = 0; r = 1; : : : ; m;
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where
@br

@x
is the matrix with the components

@bi
r

@xj
(t; x1; : : : ; xd):

Let us recall that in the case of additive noise a system has the same form both in the

sense of Ito and Stratonovich.

Corollary 2.3. If the phase �ow of the deterministic system dX = a(t; X) dt preserves
volume, i.e., div a = 0; then the phase �ow of the stochastic system with additive noise

(2.9) dX = a(t; X)dt+

mX
r=1

br(t)dwr(t); X(t0) = x;

preserves volume as well. In particular, Hamiltonian systems with additive noise preserve

volume.

The Ito system

(2.10)
d2X

dt2
= f(t; X)dt+

mX
r=1

�r(t; X) _wr(t)

gives another example of volume-preserving system. It has the following normal form

(2.11) dX = Y dt

dY = f(t; X) dt+

mX
r=1

�r(t; X) dwr(t);

where X and Y are n-dimensional vectors, i.e., d = 2n:

Since

a = [y1; : : : ; yn; f 1; : : : ; fn]>; br = [0; : : : ; 0; �1
r
; : : : ; �n

r
]>;

and �i
r
are independent of y1; : : : ; yn; we get

div a = 0; div br = 0;
@br

@x
br = 0; r = 1; : : : ; m:

Thus, the phase �ow of the system (2.11) preserves volume for any f and �r: We note

that the system (2.11), which is with multiplicative noise, has the same form in the sense

of Stratonovich.

A more general volume-preserving system has the form

dX = g(t; Y )dt+

mX
r=1

r(t) dwr(t)

dY = f(t; X) dt+

mX
r=1

�r(t; X) dwr(t):
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2.2. Preservation of symplectic structure. Consider the system (1.4). Our urgent

aim is to indicate a class of stochastic systems, which preserve symplectic structure, i.e.,

which satisfy the condition (1.6).

Using the formula of change of variables in di�erential forms, we obtain

dP ^ dQ = dP 1 ^ dQ1
+ � � �+ dP n ^ dQn

=

nX
k=1

nX
l=k+1

nX
i=1

�
@P i

@pk
@Qi

@pl
� @P i

@pl
@Qi

@pk

�
dpk ^ dpl

+

nX
k=1

nX
l=k+1

nX
i=1

�
@P i

@qk
@Qi

@ql
� @P i

@ql
@Qi

@qk

�
dqk ^ dql

+

nX
k=1

nX
l=1

nX
i=1

�
@P i

@pk
@Qi

@ql
� @P i

@ql
@Qi

@pk

�
dpk ^ dql:

Hence the phase �ow of (1.4) preserves symplectic structure if and only if

(2.12)

nX
i=1

D(P i; Qi)

D(pk; pl)
= 0; k 6= l;

(2.13)

nX
i=1

D(P i; Qi)

D(qk; ql)
= 0; k 6= l;

and

(2.14)

nX
i=1

D(P i; Qi)

D(pk; ql)
= Ækl; k; l = 1; : : : ; n:

Introduce the notation

P ik

p
=
@P i

@pk
; P ik

q
=
@P i

@qk
; Qik

p
=
@Qi

@pk
; Qik

q
=
@Qi

@qk
:

For a �xed k; we obtain that P ik

p
; Qik

p
obey the following system of SDEs

(2.15)

dP ik

p
=

nX
�=1

�
@f i

@p�
P �k

p
+
@f i

@q�
Q�k

p

�
dt+

mX
r=1

nX
�=1

�
@�i

r

@p�
P �k

p
+
@�i

r

@q�
Q�k

p

�
Æ dwr; P

ik

p
(t0) = Æik;

dQik

p
=

nX
�=1

�
@gi

@p�
P �k

p
+
@gi

@q�
Q�k

p

�
dt+

mX
r=1

nX
�=1

�
@i

r

@p�
P �k

p
+
@i

r

@q�
Q�k

p

�
Æ dwr; Q

ik

p
(t0) = 0;

i = 1; : : : ; n:

Analogously, for a �xed k; P ik

q
; Qik

q
satisfy the system

(2.16)

dP ik

q
=

nX
�=1

�
@f i

@p�
P �k

q
+
@f i

@q�
Q�k

q

�
dt+

mX
r=1

nX
�=1

�
@�i

r

@p�
P �k

q
+
@�i

r

@q�
Q�k

q

�
Æ dwr; P

ik

q
(t0) = 0;

dQik

q
=

nX
�=1

�
@gi

@p�
P �k

q
+
@gi

@q�
Q�k

q

�
dt+

mX
r=1

nX
�=1

�
@i

r

@p�
P �k

q
+
@i

r

@q�
Q�k

q

�
Æ dwr; Q

ik

q
(t0) = Æik;
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i = 1; : : : ; n:

The coe�cients in (2.15) and (2.16) are calculated at (t; P;Q) with P = P (t) = [P 1(t; t0; p;
q); : : : ; P n(t; t0; p; q)]

>; Q = Q(t) = [Q1(t; t0; p; q); : : : ; Q
n(t; t0; p; q)]

> being a solution to

(1.4).

Consider the condition (2.12). Clearly,

D(P i(t0); Q
i(t0))

D(pk; pl)
=
D(pi; qi)

D(pk; pl)
= 0:

Therefore, (2.12) is ful�lled i�

(2.17)

nX
i=1

d
D(P i(t); Qi(t))

D(pk; pl)
= 0:

Due to (2.15), we get

d
@P i

@pk
@Qi

@pl
= dP ik

p
(t)Qil

p
(t)

=

nX
�=1

��
@f i

@p�
P �k

p
+
@f i

@q�
Q�k

p

�
Qil

p
+

�
@gi

@p�
P �l

p
+
@gi

@q�
Q�l

p

�
P ik

p

�
dt

+

mX
r=1

nX
�=1

��
@�i

r

@p�
P �k

p
+
@�i

r

@q�
Q�k

p

�
Qil

p
+

�
@i

r

@p�
P �l

p
+
@i

r

@q�
Q�l

p

�
P ik

p

�
Æ dwr :

Then (2.17) holds i� the following equalities take place:

(2.18)

nX
i=1

nX
�=1

�
@f i

@p�
P �k

p
Qil

p
+
@f i

@q�
Q�k

p
Qil

p
+
@gi

@p�
P �l

p
P ik

p
+
@gi

@q�
Q�l

p
P ik

p

� @f
i

@p�
P �l

p
Qik

p
� @f i

@q�
Q�l

p
Qik

p
� @gi

@p�
P �k

p
P il

p
� @gi

@q�
Q�k

p
P il

p

�
= 0;

(2.19)

nX
i=1

nX
�=1

�
@�i

r

@p�
P �k

p
Qil

p
+
@�i

r

@q�
Q�k

p
Qil

p
+
@i

r

@p�
P �l

p
P ik

p
+
@i

r

@q�
Q�l

p
P ik

p

�@�
i

r

@p�
P �l

p
Qik

p
� @�i

r

@q�
Q�l

p
Qik

p
� @i

r

@p�
P �k

p
P il

p
� @i

r

@q�
Q�k

p
P il

p

�
= 0; r = 1; : : : ; m:

It is not di�cult to check that if the functions f i(t; p; q); gi(t; p; q) are such that

(2.20)
@f i

@p�
+
@g�

@qi
= 0;

@f i

@q�
=
@f�

@qi
;
@gi

@p�
=
@g�

@pi
; i; � = 1; : : : ; n;

then (2.18) holds, and if the functions �i
r
(t; p; q); i

r
(t; p; q); r = 1; : : : ; m; are such that

(2.21)
@�i

r

@p�
+
@�

r

@qi
= 0;

@�i
r

@q�
=
@��

r

@qi
;
@i

r

@p�
=
@�

r

@pi
; i; � = 1; : : : ; n;

then (2.19) holds. Thus, if the relations (2.20)-(2.21) take place, the condition (2.12) is

ful�lled.
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The condition (2.13) also holds when (2.20)-(2.21) are true. This can be proved analo-

gously by using (2.16) instead of (2.15).

Now consider the condition (2.14). Clearly,

nX
i=1

D(P i(t0); Q
i(t0))

D(pk; ql)
=

nX
i=1

D(pi; qi)

D(pk; ql)
= Ækl:

Then the condition (2.14) is ful�lled i�
nP
i=1

d
D(P i(t); Qi(t))

D(pk; ql)
= 0: Using the same argu-

ments again, we prove that the relations (2.20)-(2.21) ensure this condition as well.

Finally, noting that the relations (1.7) imply (2.20)-(2.21), we obtain the following propo-

sition (cf. [3]).

Theorem 2.4. The phase �ow of the system of SDEs

dP i = �@H
@qi

(t; P;Q)dt�
mX
r=1

@Hr

@qi
(t; P;Q) Æ dwr(t)

dQi =
@H

@pi
(t; P;Q)dt+

mX
r=1

@Hr

@pi
(t; P;Q) Æ dwr(t); i = 1; : : : ; n;

with Hamiltonians H(t; p; q); Hr(t; p; q); r = 1; : : : ; m; preserves symplectic structure.

Remark 2.1. It is also possible to prove this theorem using the necessary and su�cient

condition of symplecticness (see [2]) which consists in

(2.22) G>JG = J;

where G = @(P (t); Q(t))=@(p; q) is the Jacobi matrix of the phase �ow and J is the 2n�2n
skew-symmetric matrix

J =

�
0n In
�In 0n

�
;

On and In are zero and unit n� n-matrices correspondingly.

Corollary 2.5. The phase �ow of a Hamiltonian system with additive noise preserves

symplectic structure.

Consider the system with colored noise

(2.23) dP = f(t; P;Q)dt+ F (t; P;Q)Zdt; P (t0) = p;

dQ = g(t; P;Q)dt+G(t; P;Q)Zdt; Q(t0) = q;

dZ = �(t)Zdt+

mX
r=1

�r(t)dwr(t); Z(t0) = z;

where P; Q; f; and g are n-dimensional vectors, Z and �r(t) are l-dimensional vectors,

�(t) is an l � l matrix, and F (t; p; q) and G(t; p; q) are n� l matrices.

It can be proved that the transformation (p; q) 7! (P;Q) de�ned by (2.23) preserves

symplectic structure if there are Hamiltonians H(t; p; q) and Hc(t; p; q; z) such that

(2.24) f i = �@H=@qi; gi = @H=@pi;

(Fz)i = �@Hc=@q
i; (Gz)i = @Hc=@p

i; i = 1; : : : ; n:
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In particular, when the matrices F and G at the colored noise do not depend on p and

q; the phase �ow of (2.23) preserves symplectic structure if f i = �@H=@qi; gi = @H=@pi;
i = 1; : : : ; n:

It is known [10] that speci�c features of a system with colored noise allow to obtain high-

order mean-square methods. But we will not construct special symplectic methods for

the Hamiltonian system with colored noise (2.23)-(2.24) in the present paper. This point

will be considered elsewhere.

3. Auxiliary knowledge on numerical methods

For a reader convenience, we recall here some necessary formulae connected with symplec-

tic numerical methods for ordinary deterministic di�erential equations and with numerical

integration of SDEs, which we use in the next sections. Further details can be �nd in,

e.g., [15] (symplectic methods) and in, e.g., [9, 7] (methods for SDEs).

3.1. Hamiltonian methods for deterministic di�erential equations. Let H =

H(t; p; q); p; q 2 Rn; t 2 [t0; t0 + T ]; be a su�ciently smooth function. Consider the

Hamiltonian system of di�erential equations with Hamiltonian H :

(3.1)
dpi

dt
= �@H

@qi
;
dqi

dt
=
@H

@pi
; i = 1; : : : ; n :

Introduce the n-dimensional vector-functions f and g:

f i = �@H
@qi

; gi =
@H

@pi
; i = 1; : : : ; n :

3.1.1. Symplectic Runge-Kutta methods for general Hamiltonian systems. It is known [15,

14, 17] that in the general case symplectic Runge-Kutta (RK) methods are all implicit.

Two-parametric family of implicit symplectic methods is written as [17]

(3.2) pk+1 = pk + hf(tk + �h; �pk+1 + (1� �)pk; (1� �)qk+1 + �qk);

qk+1 = qk + hg(tk + �h; �pk+1 + (1� �)pk; (1� �)qk+1 + �qk);

where the parameters �; � 2 [0; 1]:

For � = � = 1=2 this method is of order 2; otherwise it is of order 1: For � 6= 1=2; the p
components are integrated by an RK formula and the q components with a di�erent RK

formula. The overall scheme is called a partitioned Runge-Kutta (PRK) method [15].

The one-parametric family of implicit second-order symplectic Runge-Kutta methods has

the form [15, 17]

(3.3) P1 = pk +
�

2
hf(tk +

�

2
h;P1;Q1);

Q1 = qk +
�

2
hg(tk +

�

2
h;P1;Q1);

P2 = pk + �hf(tk +
�

2
h;P1;Q1) +

1� �

2
hf(tk +

1 + �

2
h;P2;Q2);
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Q2 = qk + �hg(tk +
�

2
h;P1;Q1) +

1� �

2
hg(tk +

1 + �

2
h;P2;Q2);

pk+1 = pk + h

�
�f(tk +

�

2
h;P1;Q1) + (1� �)f(tk +

1 + �

2
h;P2;Q2)

�

qk+1 = qk + h

�
�g(tk +

�

2
h;P1;Q1) + (1� �)g(tk +

1 + �

2
h;P2;Q2)

�
:

Note that for � = 1 this method coincides with one from (3.2) with � = � = 1=2:

Some other symplectic Runge-Kutta methods for general Hamiltonian systems are at-

tracted in Section 7.1.

3.1.2. Explicit symplectic Runge-Kutta methods for Hamiltonian systems with separable
Hamiltonians. In comparison to the general case there are PRK methods that are explicit

when the Hamiltonian H(t; p; q) has the form

(3.4) H(t; p; q) = V (p) + U(t; q):

Such Hamiltonians are called separable. We note that it is not di�cult to consider a

slightly more general separable Hamiltonian H(t; p; q) = V (t; p) + U(t; q) but we restrict
ourselves here and in Section 5 to the Hamiltonian (3.4).

The explicit PRK methods of the one-parametric family

(3.5) Q = qk + �hg(pk); P = pk + hf(tk + �h;Q)

qk+1 = Q + (1� �)hg(P); pk+1 = P; k = 0; : : : ; N � 1;

preserve symplectic structure [17, 14, 15]. For � = 1=2; the method is of order 2, otherwise

it is of order 1. For � = 0 and � = 1; this method has the same form as the method

(3.2), applied to a Hamiltonian system with H from (3.4), with � = 1; � = 0 and

� = 0; � = 1 respectively.

The explicit fourth-order symplectic Runge-Kutta method is written as [15, p. 109]

(3.6) P1 = pk + h
{

2
f(tk; qk); Q1 = qk + h{g(P1);

P2 = P1 + h
1� {

2
f(tk + {h;Q1); Q2 = Q1 + h(1� 2{)g(P2);

P3 = P2 + h
1� {

2
f(tk + (1� {)h;Q2); Q3 = Q2 + h{g(P3)

P4 = P3 + h
{

2
f(tk + h;Q3);

(3.7) pk+1 = P4; qk+1 = Q3 ;

where { = (2 + 21=3 + 2�1=3)=3:

The method (3.5) is used in Section 5. The method (3.6)-(3.7) is needed for Section 7.2.
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3.1.3. Explicit symplectic Runge-Kutta-Nyström methods. A commonly occurring case of

the separable Hamiltonian has V (p) =
1

2
p|M�1p; with M a constant, symmetric, in-

vertible matrix. A Hamiltonian system with such a Hamiltonian can be rewritten in the

form of a second-order system and can be e�ciently integrated by means of Runge-Kutta-

Nyström (RKN) methods. As is known [16, 17, 15], each explicit, symplectic PRK method

induces an explicit, symplectic RKN method.

The second-order RKN method induced by (3.5) with � = 1=2 is written as [16, 17, 15]:

(3.8) Q = qk +
h

2
M�1pk

pk+1 = pk + hf(tk +
h

2
;Q);

qk+1 = qk + hM�1pk +
h2

2
M�1f(tk +

h

2
;Q); k = 0; : : : ; N � 1:

This scheme is called Störmer-Verlet method.

The explicit third-order RKN method

(3.9) Q1 = qk +
7

24
hM�1pk; P1 = pk +

2

3
hf(tk +

7h

24
;Q1)

Q2 = Q1 +
3

4
hM�1P1; P2 = P1 �

2

3
hf(tk +

25h

24
;Q2)

Q3 = Q2 �
1

24
hM�1P2; P3 = P2 + hf(tk + h;Q3)

(3.10) pk+1 = P3; qk+1 = Q3; k = 0; : : : ; N � 1;

preserves symplectic structure [13, 16, 17, 15].

The methods (3.8) and (3.9)-(3.10) are used in Section 6.

3.2. Mean-square methods for SDEs. In this section we recall some formulae of nu-

merical mean-square methods for SDEs in the Ito sense

(3.11) dX = a(t; X)dt+

mX
r=1

br(t; X)dwr(t); X(t0) = X0:

Note that in the case of additive noise (with which we mainly deal in the present paper)

all the formulae remain true for the Stratonovich SDEs as well.

Consider mean-square approximations of the solution to the Ito system (3.11). A one-

step mean-square approximation �Xt;x(t + h); t0 � t < t + h � t0 + T; is constructed
depending on t; x; h; and fw1(#) � w1(t); : : : ; wm(#) � wm(t); t � # � t + hg: Using
the one-step approximation, we recurrently obtain the approximation Xk; k = 0; : : : ; N;
tk+1 � tk = hk+1; tN = t0 + T :

X0 = X(t0); Xk+1 = �Xtk;Xk
(tk+1):

For simplicity, we will take tk+1 � tk = h = T=N: Note that X0 may be random.

11



Suppose the functions a(t; x) and br(t; x) are de�ned and continuous for t 2 [t0; t0 + T ];
x 2 Rd and satisfy a uniform Lipschitz condition: for all t 2 [t0; t0 + T ]; x; y 2 Rd there

is a constant L > 0 such that

(3.12) ja(t; x)� a(t; y)j+
mX
r=1

jbr(t; x)� br(t; y)j � L jx� yj :

Theorem 3.1. (see [9]) Suppose the one-step approximation �Xt;x(t + h) has order of

accuracy p1 for the mathematical expectation of the deviation and order of accuracy p2 for
the mean-square deviation; more precisely, for arbitrary t0 � t � t0 + T � h; x 2 Rd the
following inequalities hold:

(3.13)
��E �Xt;x(t+ h)� �Xt;x(t+ h)

��� � K � (1 + jxj2)1=2hp1;

(3.14)
h
E
��Xt;x(t+ h)� �Xt;x(t+ h)

��2i1=2 � K � (1 + jxj2)1=2hp2:

Also, let

(3.15) p2 �
1

2
; p1 � p2 +

1

2
:

Then for any N and k = 0; : : : ; N the following inequality holds:

(3.16)
h
E
��Xt0;X0

(tk)� �Xt0;X0
(tk)
��2i1=2 � K � (1 + EjX0j2)1=2hp2�1=2;

i.e., the mean-square order of accuracy of the method constructed using the one-step ap-
proximation �Xt;x(t+ h) is p = p2 � 1=2:

We note that all constants K mentioned above, as well as the ones that will appear in

the sequel, depend in the �nal analysis on the system (1.1) and the approximations only

and do not depend on X0 and h:

Let us assume that, in addition to (3.12), the functions a(t; x) and br(t; x) have partial

derivatives with respect to t that grow at most as a linear function of x as jxj ! 1 and

that the derivatives
@ai

@xj
and

@2ai

@xj@xk
; i; j; k = 1; : : : ; d; are uniformly bounded.

It is known [9, 7] that under these assumptions the mean-square order of the Euler method

is equal to 1=2:

Let us recall the Euler method:

(3.17) X0 = X(t0); Xk+1 = Xk +

mX
r=1

(br)k �kwr(h) + hak; k = 0; : : : ; N � 1;

where ak and (br)k are the coe�cients a and br evaluated at the point (tk; Xk) and

�kwr(h) := wr(tk + h)� wr(tk):

For this method, we have p1 = 2; p2 = 1 in a general case of the system (3.11). In the

case of system with additive noise (2.9) we have p1 = 2; p2 = 3=2; and the method's order

is equal to 1 under the same smoothness and boundedness conditions on the coe�cients.
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The method of the mean-square order 3=2 for system with additive noise (2.9) has the

form

(3.18) X0 = X(t0); Xk+1 = Xk +

mX
r=1

(br)k �kwr(h) + hak

+

mX
r=1

(�ra)k (Ir0)k +

mX
r=1

�
@br

@t

�
k

(I0r)k + h2 (La)
k
=2:

Here

(3.19) �r = (br;
@

@x
); L =

@

@t
+ (a;

@

@x
) +

1

2

mX
r=1

dX
i;j=1

bi
r
bj
r

@2

@xi@xj
;

(3.20) (Ir0)k =

tk+1Z
tk

(wr(#)� wr(tk)) d#; (I0r)k =

tk+1Z
tk

(#� tk) dwr(#):

The formula (3.18) has the random variables �kwr(h); (Ir0)k; (I0r)k joint distribution

of which is Gaussian. They can be simulated at each step by 2m independent N(0; 1)-
distributed random variables �

rk
and �

rk
; r = 0; : : : ; m: As a result, the formula (3.18)

takes the constructive form

(3.21) Xk+1 = Xk + h1=2
mX
r=1

(br)k �rk + hak + h3=2
mX
r=1

(�ra)k �
�
�rk=2 + �rk=

p
12

�

+h3=2
mX
r=1

�
@br

@t

�
k

�
�
�
rk
=2� �

rk
=
p
12

�
+ h2 (La)

k
=2:

A rigorous proof of the theorem about order of convergence for (3.18) rests on the following

assumptions (see [9, 7]): the function a(t; x) and all its �rst- and second-order partial

derivatives, as well as the partial derivatives
@3a

@t@xi@xj
;

@3a

@xi@xj@xk
; and

@4a

@xi@xj@xk@xl
are continuous; the functions br(t) are twice continuously di�erentiable; the �rst order

partial derivatives with respect to x are uniformly bounded (so that a uniform Lipschitz

condition is satis�ed), while its remaining partial derivatives listed above, regarded as

functions of x; grow at most as a linear function of jxj as jxj ! 1:

Note that in the sequel we shall not give analogous conditions on the coe�cients which

ensure corresponding orders of convergence for other methods. They consist in some con-

ditions of smoothness and boundedness and can be restored using the general theory [9, 7].

At the same time we underline that these conditions are not necessary and the considered

methods are applicable more widely. Also let us note that we shall use equalities with

right hand side O(hp) instead of, for example, inequalities (3.13) or (3.14).

The following evident lemma will be useful below.

Lemma 3.1. Let the one-step approximation �Xt;x(t + h) satisfy the conditions of Theo-

rem 3.1. And suppose that ~Xt;x(t+ h) is such that

(3.22)
���E � ~Xt;x(t + h)� �Xt;x(t+ h)

���� = O(hp1);

13



(3.23)

�
E
��� ~Xt;x(t + h)� �Xt;x(t + h)

���2�1=2 = O(hp2)

with the same p1 and p2: Then the method constructed using the one-step approximation
~Xt;x(t+h) has the same mean-square order of accuracy as the method based on �Xt;x(t+h),
i.e., its order is equal to p = p2 � 1=2:

4. Hamiltonian mean-square methods for general Hamiltonian

systems with additive noise

In this section we consider the Hamiltonian system with additive noise (4.1)-(4.2) (recall

once more that in the case of additive noise the Stratonovich form coincides with the Ito

one)

(4.1) dP = f(t; P;Q)dt+

mX
r=1

�r(t)dw(t); P (t0) = p;

dQ = g(t; P;Q)dt+

mX
r=1


r
(t)dw(t); Q(t0) = q;

(4.2) f i = �@H=@qi; gi = @H=@pi; i = 1; : : : ; n;

where P; Q; f; g; �r; r are n-dimensional column-vectors, wr(t); r = 1; : : : ; m; are
independent standard Wiener processes, and H(t; p; q) is a Hamiltonian.

The phase �ow of this system preserves symplectic structure (see Corollary 2.5).

4.1. First-order methods. Consider the two-parametric family of implicit methods

(4.3) P = Pk + hf(tk + �h; �P + (1� �)Pk; (1� �)Q+ �Qk);

Q = Qk + hg(tk + �h; �P + (1� �)Pk; (1� �)Q + �Qk);

(4.4) Pk+1 = P +

mX
r=1

�r(tk)�kwr; Qk+1 = Q+

mX
r=1


r
(tk)�kwr; k = 0; : : : ; N � 1;

where �kwr(h) := wr(tk + h)� wr(tk) and the parameters �; � 2 [0; 1]:

When �r = 0; 
r
= 0; r = 1; : : : ; m; this family coincides with the known family (3.2) of

symplectic methods for deterministic Hamiltonian systems, and it can be considered as a

generalization of (3.2) to the stochastic case.

The unique solvability of (4.3) with respect to P, Q for any Pk; Qk and su�ciently small

h follows from the following lemma.

Lemma 4.1. Let F (x; c; s) be a continuous d-dimensional vector-function depending on
x 2 Rd; c 2 Rd; and s 2 S; where S is a set from an Rl: Suppose F has the �rst partial

derivatives @F i=@xj ; i; j = 1; : : : ; d; which are uniformly bounded in Rd � Rd � S: Then
there is an h0 > 0 such that the equation

(4.5) x = c+ hF (x; c; s) + �
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is uniquely solvable with respect to x for 0 < h � h0 and any c 2 Rd; � 2 Rd; s 2 S. The
solution of equation (4:5) can be found by the method of simple iteration with an arbitrary
initial approximation.

The proof of this lemma is not di�cult and it is omitted.

The following lemma is true for system (4.1) with arbitrary f and g having bounded �rst

derivatives (i.e., f and g may not obey the condition (4.2)).

Lemma 4.2. The mean-square order of the methods (4:3)� (4:4) for the system (4:1) is
equal to 1:

Proof. Let us compare the one-step approximation of the Euler method (see (3.17))

�P = p+ hf(t; p; q) +

mX
r=1

�r(t)�wr;

�Q = q + hg(t; p; q) +

mX
r=1

r(t)�wr

with the one-step approximation ~P; ~Q corresponding to (4.3)�(4.4)

(4.6) P = p+ hf(t+ �h; �P + (1� �)p; (1� �)Q + �q);

Q = q + hg(t+ �h; �P + (1� �)p; (1� �)Q+ �q);

(4.7) ~P = P +

mX
r=1

�r(t)�wr; ~Q = Q +

mX
r=1


r
(t)�wr :

Clearly, the di�erences ~P � �P and ~Q� �Q are deterministic. And it is not di�cult to show

that ����E
��

~P
~Q

�
�
�

�P
�Q

������ =
����
�

~P � �P
~Q� �Q

����� = O(h2);

 
E

����
�

~P
~Q

�
�
�

�P
�Q

�����
2

!
1=2

=

 ����
�

~P � �P
~Q� �Q

�����
2

!
1=2

= O(h2):

Then recalling that the Euler method has the �rst mean-square order of convergence for

systems with additive noise and applying Lemma 3.1 (in this case the Euler method has

p1 = 2; p2 = 3=2 (see Section 3.2)), we obtain that the method (4.3)�(4.4) is of the �rst

mean-square order. �

As it has been marked in Introduction, the method based on a one-step approximation
~P = ~P (t + h; t; p; q); ~Q = ~Q(t + h; t; p; q) preserves symplectic structure if its one-step

approximation satis�es

d ~P ^ d ~Q = dp ^ dq :

For the one-step approximation (4.6)�(4.7), we have d ~P = dP; d ~Q = dQ: Hence d ~P ^
d ~Q = dP ^ dQ: The relations for P; Q coincide with ones for the one-step approxima-

tion corresponding to the symplectic method (3.2). Therefore, the method (4.3)�(4.4) is

symplectic as well. From here and Lemma 4.2, we get the theorem.
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Theorem 4.1. The method (4:3)�(4:4) for the system (4:1)�(4:2) preserves symplectic
structure and has the �rst mean-square order of convergence.

Remark 4.1. Just as in the deterministic case, for � = 0 and � = 1 and arbitrary � the

method (4:3)�(4:4) contains only one implicit relation.

Now consider another generalization of the family (3.2) to the Hamiltonian system (4.1):

Pk+1 = Pk + hf(tk + �h; �Pk+1 + (1� �)Pk; (1� �)Qk+1 + �Qk)(4.8)

+

mX
r=1

�r(tk)�kwr;

Qk+1 = Qk + hg(tk + �h; �Pk+1 + (1� �)Pk; (1� �)Qk+1 + �Qk)

+

mX
r=1


r
(tk)�kwr; k = 0; : : : ; N � 1;

with the parameters �; � 2 [0; 1]:

For su�ciently small h; the equations (4.8) are uniquely solvable with respect to Pk+1;
Qk+1 due to Lemma 4.1.

Theorem 4.2. The method (4:8) for the system (4:1)�(4:2) preserves symplectic structure

and has the �rst mean-square order of convergence.

Proof. Using Lemma 3.1, one can establish that the mean-square order of the method

(4.8) is equal to 1.

Now we check symplecticness of the method. Let ~P ; ~Q be the one-step approximation

corresponding to the method (4:8): Introduce

p̂ = p+ �

mX
r=1

�r(t)�wr; q̂ = q + (1� �)

mX
r=1

r(t)�wr

and

P̂ = ~P � (1� �)

mX
r=1

�r(t)�wr; Q̂ = ~Q� �

mX
r=1

r(t)�wr :

We have

P̂ = p̂+ hf(t + �h; �P̂ + (1� �)p̂; (1� �)Q̂+ �q̂);

Q̂ = q̂ + hg(t+ �h; �P̂ + (1� �)p̂; (1� �)Q̂ + �q̂):

The relations for P̂ ; Q̂ coincide with the one-step approximation corresponding to the

symplectic method (3.2). Therefore, dP̂ ^ dQ̂ = dp̂ ^ dq̂: Further, it is obvious that

dP̂ ^ dQ̂ = d ~P ^ d ~Q and dp̂ ^ dq̂ = dp ^ dq: Consequently, d ~P ^ d ~Q = dp ^ dq; i.e., the
method (4.8) is symplectic. �

4.2. Methods of order 3/2. The Taylor-type 3=2-order method (3.18) has the terms

with derivatives:
P

m

r=1
(�ra)k (Ir0)k and

h2

4

P
m

r=1

P
d

i;j=1
bi
r
bj
r

@2a

@xi@xj
: This is not appropri-

ate for constructing a symplectic method for (4.1)-(4.2). To avoid using the derivatives,

we will introduce new Runge-Kutta methods for systems with additive noise.
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Consider the relations

(4.9) Pi = p+ h

sX
j=1

�ijf(t+ cjh;Pj;Qj) + 'i;

Qi = q + h

sX
j=1

�ijg(t+ cjh;Pj;Qj) +  
i
; i = 1; : : : ; s;

(4.10) �P = p+ h

sX
i=1

�
i
f(t+ cih;Pi;Qi) + �; �Q = q + h

sX
i=1

�
i
g(t+ cih;Pi;Qi) + �;

where '
i
;  

i
; �; � do not depend on p and q; the parameters �ij and �i satisfy the condition

(4.11) �
i
�ij + �

j
�ji � �

i
�
j
= 0; i; j = 1; : : : ; s;

and ci are arbitrary parameters.

The equations (4.9) are uniquely solvable with respect to Pi; Qi; i = 1; : : : ; s; for any p;
q; 'i;  i; �; � and su�ciently small h due to Lemma 4.1.

For '
i
=  

i
= � = � = 0 the relations (4.9)�(4.10) coincide with a general form of

s-stage Runge-Kutta methods for deterministic di�erential equations. It is known (see,

e.g., Theorem 6.1 in [15]) that the symplectic condition d �P ^d �Q = dp^dq holds for �P ; �Q
from (4.9)�(4.10) with (4.11) and '

i
=  

i
= � = � = 0. Let us check the case of arbitrary

'
i
;  

i
; �; �.

Lemma 4.3. The relations (4:9)� (4:10) with condition (4:11) preserve symplectic struc-
ture, i.e., d �P ^ d �Q = dp ^ dq:

Proof. We generalize the proof of Theorem 6.1 from [15]. Denote for a while: fi =

f(t+cih;Pi;Qi); gi = g(t+cih;Pi;Qi): Di�erentiate (4.9) and form the exterior products:

(4.12) d �P ^ d �Q = dp ^ dq + h

sX
i=1

�
i
dfi ^ dq + h

sX
j=1

�
j
dp ^ dgj + h2

sX
i;j=1

�
i
�
j
dfi ^ dgj;

(4.13) dfi ^ dQi = dfi ^ dq + h

sX
j=1

�ij dfi ^ dgj;

(4.14) dPj ^ dgj = dp ^ dgj + h

sX
i=1

�ji dfi ^ dgj:

Now using (4.13)-(4.14), �nd the expressions for dfi^dq and dp^dgj and substitute them

in (4.12):

(4.15) d �P ^ d �Q = dp ^ dq + h

sX
i=1

�
i
(dfi ^ dQi + dPi ^ dgi)

+h2
sX

i;j=1

�
�i�j � �i�ij � �j�ji

�
dfi ^ dgj:

The last term in the right-hand side vanishes owing to (4.11).
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Consider the second term in the right-hand side of (4.15). We have

dfi ^ dQi + dPi ^ dgi =
nX

k=1

�
dfk

i
^ dQk

i
+ dPk

i
^ dgk

i

�

=

nX
k;l=1

�
@fk

i

@pl
dP l

i
^ dQk

i
+
@fk

i

@ql
dQl

i
^ dQk

i
+
@gk

i

@pl
dPk

i
^ dP l

i
+
@gk

i

@ql
dPk

i
^ dQl

i

�
:

Taking into account the skew-symmetry of the wedge product and that f and g satisfy

the condition (1.7) (see also (2.20)), it is not di�cult to see that this expression vanishes.

Returning to (4.15), we obtain d �P ^ d �Q = dp ^ dq: �
Remark 4.2. To prove this lemma, the condition (2:22) with G = @( �P (t); �Q(t))=@(p; q)
can be used as well (cf. [17]).

The next lemma is used in Theorem 4.3 for the Hamiltonian system (4.1)-(4.2). However

the lemma is of great interest for arbitrary systems with additive noise as well (see Re-

mark 4.3 below). So, we introduce the parametric family of one-step approximations for

the system with additive noise (2.9):

(4.16) X1 = x +
�

2
ha(t +

�

2
h;X1) +

mX
r=1

br(t) (�1Jr0 + �
1
�wr) ;

X2 = x+ �ha(t +
�

2
h;X1) +

1� �

2
ha(t +

1 + �

2
h;X2) +

mX
r=1

br(t) (�2Jr0 + �
2
�wr) ;

�X = x + h

�
�a(t+

�

2
h;X1) + (1� �)a(t+

1 + �

2
h;X2)

�
+

mX
r=1

br(t)�wr +

mX
r=1

b0
r
(t)I0r;

where

�wr := wr(t+ h)� wr(t); I0r :=

t+hZ
t

(#� t) dwr(#); Jr0 :=
1

h

t+hZ
t

(wr(#)� wr(t)) d#;

and the parameters �; �1; �2; �1; �2 are such that

(4.17) ��1 + (1� �)�2 = 1; ��
1
+ (1� �)�

2
= 0;

and

(4.18) �

�
�2
1

3
+ �1�1 + �2

1

�
+ (1� �)

�
�2
2

3
+ �2�2 + �2

2

�
=

1

2
:

For example, the following set of parameters satis�es (4.17)-(4.18):

(4.19) � =
1

2
; �1 = �2 = 1; �

1
= ��

2
=

1p
6
:

Note that the random variables �wr and Jr0 are of the same mean-square order O(h)
(see (4.20)). Their combination helps us to compensate the derivatives indicated at the

beginning of this subsection.
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Lemma 4.4. The method for the system with additive noise (2:9) based on the one-step
approximation (4:16) with conditions (4:17)�(4:18) on its parameters is of the mean-square
order of accuracy 3=2.

Proof. Due to properties of the Wiener process and Ito integrals, we have

(4.20) E�wi = 0; E�wi�wj = Æijh; E�wi�wj�wk = 0; E (�wi)
4

= 3h2;

EJi0 = 0; EJi0Jj0 = Æij
h

3
; EJi0Jj0Jk0 = 0; E (Ji0)

4

=
h2

3
;

E�wiJj0 = Æij
h

2
; E�wi�wjJk0 = 0; E�wiJj0Jk0 = 0:

Let �Xi := Xi � x; i = 1; 2: We have

(4.21) jE�Xij = O(h); E (�Xi)
2l
= O(hl); l = 1; 2; 3; 4; i = 1; 2 ;

��E (�Xi)
3
�� = O(h2):

Expand (4.16):

(4.22) �X1 =
�

2
ha(t; x) +

mX
r=1

br(t) (�1Jr0 + �
1
�wr) + �

1
;

(4.23) �X2 =
1 + �

2
ha(t; x) +

mX
r=1

br(t) (�2Jr0 + �
2
�wr) + �

2
;

(4.24) �X = x +

mX
r=1

br(t)�wr +

mX
r=1

b0
r
(t)I0r + ha(t; x) +

h2

2

@a

@t
(t; x)

+h

dX
i=1

@a

@xi
(t; x) �

�
��Xi

1
+ (1� �)�Xi

2

�

+
h

2

dX
i;j=1

@2a

@xi@xj
(t; x) �

�
��Xi

1
�X

j

1
+ (1� �)�Xi

2
�X

j

2

�
+ ��:

Using (4.20)�(4.21), one can obtain

(4.25) jE�
i
j = O(h2);

��E�l
i
�Xk

i

�� = O(h2); E�2
i
= O(h3)

and

(4.26) jE��j = O(h3); E��2 = O(h5):

Substituting (4.22)�(4.23) in (4.24) and using (4.17), we get

(4.27) �X = x +

mX
r=1

br�wr +

mX
r=1

b0
r
I0r + ha+

h2

2

@a

@t
+
h2

2

dX
i=1

@a

@xi
ai

+h

mX
r=1

dX
i=1

bi
r

@a

@xi
Jr0 +

h2

4

mX
r=1

dX
i;j=1

@2a

@xi@xj
bi
r
bj
r
+R;

R =
h

2

mX
r;l=1

dX
i;j=1

@2a

@xi@xj
bi
r
bj
l
� [� (�1Jr0 + �

1
�wr) (�1Jl0 + �

1
�wl)
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+(1� �) (�2Jr0 + �
2
�wr) (�2Jl0 + �

2
�wl)]�

h2

4

mX
r=1

dX
i;j=1

@2a

@xi@xj
bi
r
bj
r
+ �;

where the coe�cients and their derivatives are calculated at (t; x) and � satis�es the same

relations as �� (see (4.26)).

The relations (4.20) and (4.18) imply

(4.28) E[� (�1Jr0 + �
1
�wr) (�1Jl0 + �

1
�wl)

+(1� �) (�2Jr0 + �
2
�wr) (�2Jl0 + �

2
�wl)] =

h

2
Ærl :

Using the relations (4.20), (4.25)-(4.26), and (4.28), it is not di�cult to get that

(4.29) jERj = O(h3);
�
ER2

�
1=2

= O(h2):

Now denote by ~X the one-step approximation corresponding to the method (3.18) which

has the mean-square order of accuracy 3=2: Taking into account (4.27) and (4.29), we

obtain ���E � �X � ~X
���� = O(h3);

�
E
��� �X � ~X

���2�1=2 = O(h2):

Then according to Lemma 3.1, the method based on the one-step approximation �X has

the same mean-square order of accuracy as the method (3.18), i.e., its order is equal to

3=2: �

Remark 4.3. Doing in a similar way as the method (3:18) has been obtained, it is not

di�cult to construct new explicit Runge-Kutta methods of mean-square order 3=2 for

an arbitrary system of di�erential equations with additive noise (2:9). For instance, we

obtain the following explicit Runge-Kutta method of order 3=2 for (2:9) :

Xk+1 = Xk +

mX
r=1

br(tk)�kwr +
h

2

"
a(tk; Xk +

mX
r=1

br(tk) � ((Jr0)k +
1p
6
�kwr))

+a(tk + h;Xk + ha(tk; Xk) +

mX
r=1

br(tk) � ((Jr0)k �
1p
6
�kwr))

#

+

mX
r=1

b0
r
(tk)(I0r)k ; k = 0; : : : ; N � 1:

Note that if we apply this method to (4:1)-(4:2) as well as any other explicit Runge-Kutta
method, it will not preserve symplectic structure.

Now consider the parametric family of methods for the Hamiltonian system with additive

noise (4.1):

(4.30) P1 = Pk +
�

2
hf(tk +

�

2
h;P1;Q1) +

mX
r=1

�r(tk) (�1 (Jr0)k + �
1
�kwr) ;

Q1 = Qk +
�

2
hg(tk +

�

2
h;P1;Q1) +

mX
r=1

r(tk) (�1 (Jr0)k + �
1
�kwr) ;
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P2 = Pk + �hf(tk +
�

2
h;P1;Q1) +

1� �

2
hf(tk +

1 + �

2
h;P2;Q2)

+

mX
r=1

�r(tk) (�2 (Jr0)k + �
2
�kwr) ;

Q2 = Qk + �hg(tk +
�

2
h;P1;Q1) +

1� �

2
hg(tk +

1 + �

2
h;P2;Q2)

+

mX
r=1


r
(tk) (�2 (Jr0)k + �

2
�kwr) ;

Pk+1 = Pk + h

�
�f(tk +

�

2
h;P1;Q1) + (1� �)f(tk +

1 + �

2
h;P2;Q2)

�

+

mX
r=1

�r(tk)�kwr +

mX
r=1

�0
r
(tk) (I0r)k ;

Qk+1 = Qk + h

�
�g(tk +

�

2
h;P1;Q1) + (1� �)g(tk +

1 + �

2
h;P2;Q2)

�

+

mX
r=1


r
(tk)�kwr +

mX
r=1

0
r
(tk) (I0r)k ;

where the parameters �; �1; �2; �1; �2 satisfy (4.17)�(4.18).

Let us note that the method (4.30) is reduced under �r � 0; r � 0; r = 1; : : : ; m;
to the well-known second-order symplectic Runge-Kutta method (3.3) for deterministic

Hamiltonian systems (see, e.g., [15, p. 101]). Using the deterministic method (3.3) with

� = 0 (the midpoint rule), another implicit 3=2-order method for Hamiltonian systems

with noise was proposed in [19]. But the method of [19] does not preserve symplectic

structure.

The one-step approximation corresponding to this method is of the form (4.16). Therefore,

due to Lemma 4.4, the method (4.30) is of the mean-square order 3=2:Moreover, this one-

step approximation is of the form (4.9) with s = 2 and

'
1
=

mX
r=1

�r (�1Jr0 + �
1
�wr) ; '2 =

mX
r=1

�r (�2Jr0 + �
2
�wr) ;

 
1
=

mX
r=1


r
(�1Jr0 + �

1
�wr) ;  

2
=

mX
r=1


r
(�2Jr0 + �

2
�wr) ;

� =

mX
r=1

�r�wr +

mX
r=1

�0
r
I0r; � =

mX
r=1


r
�wr +

mX
r=1

0
r
I0r

and

�11 =
�

2
; �12 = 0; �21 = �; �22 =

1� �

2
; �

1
= �; �

2
= 1� �; c1 =

�

2
; c2 =

1 + �

2
:

This set of parameters �ij; �i; i; j = 1; 2; satis�es the conditions (4.11). Then due to

Lemma 4.3, the method (4.30) is symplectic.

Thus we have obtained the following theorem.
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Theorem 4.3. Under conditions (4:17)�(4:18) on the parameters, the method (4:30) for
system (4:1)-(4:2) preserves symplectic structure and has the mean-square order 3=2 of
convergence.

Remark 4.4. The method (4:30) can be rewritten in the constructive form as the formula

(3:21) was obtained from (3:18) in Section 3.2.

Remark 4.5. All the methods in this Section are implicit. This corresponds to the

fact that there are no explicit symplectic Runge-Kutta methods for general deterministic

Hamiltonian systems (see e.g., [15, 14, 17] and also Section 3.1).

5. Hamiltonian mean-square methods in the case of separable

Hamiltonian

In this section we consider the Hamiltonian system with additive noise (4.1), which Hamil-

tonian has the special structure

(5.1) H(t; p; q) = V (p) + U(t; q):

Recall (see Subsection 3.1.2) that it is possible to consider a more general Hamiltonian

H(t; p; q) = V (t; p) + U(t; q): In mechanics V and U usually represent the kinetic and

potential energy respectively. Hamiltonians of this form are called separable. When the

Hamiltonian is separable, the system (4.1) takes the partitioned form

(5.2) dP = f(t; Q)dt+

mX
r=1

�r(t)dwr(t); P (t0) = p;

dQ = g(P )dt+

mX
r=1


r
(t)dwr(t); Q(t0) = q;

where f i = �@U=@qi; gi = @V=@pi; i = 1; : : : ; n.

Obviously, the implicit symplectic methods from the previous section can be applied to

the partitioned system (5.2), and they take a more simple form in this case (we do not

write them down here). We recall that there are no explicit symplectic RK methods for

the system (4.1)-(4.2) with general Hamiltonian. However, for the partitioned system

(5.2) it is possible to construct explicit symplectic methods just as in the deterministic

case [17, 14, 15].

5.1. Explicit �rst-order methods. On the basis of the family of deterministic PRK

methods (3.5), we construct the family of explicit partitioned methods for stochastic

system (5.2)

(5.3) Q = Qk + �hg(Pk)

P = Pk + hf(tk + �h;Q)

Qk+1 = Q+ (1� �)hg(P) +
mX
r=1

r(tk)�kwr

Pk+1 = P +

mX
r=1

�r(tk)�kwr; k = 0; : : : ; N � 1:
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Since the expressions for dPk+1; dQk+1 coincide with the ones corresponding to the deter-

ministic symplectic method (3.5), the method (5.3) is symplectic. Further, by the same

arguments as in the proof of Lemma 4.2, it is not di�cult to show that the method (5.3)

has the �rst mean-square order of accuracy. As a result, we obtain the theorem.

Theorem 5.1. The explicit partitioned method (5:3) for the system (5:2) preserves sym-
plectic structure and has the �rst mean-square order of convergence.

Remark 5.1. For � = 0 and � = 1; the method (5:3) takes the same form as (4:3) with
� = 1; � = 0 and � = 0; � = 1 respectively.

Remark 5.2. By swapping the roles of p and q in the deterministic PRK method (3:5),
we can propose the following symplectic method of the �rst mean-square order for the

system (5:2):

(5.4) P = Pk + �hf(tk; Qk)

Q = Qk + hg(P)

Pk+1 = P + (1� �)hf(tk+1;Q) +

mX
r=1

�r(tk)�kwr

Qk+1 = Q +

mX
r=1

r(tk)�kwr; k = 0; : : : ; N � 1:

For � = 0 and � = 1; this method takes the same form as (5:3) with � = 1 and � = 0

respectively.

Remark 5.3. In the special cases of � = 0 and � = 1 the methods (5:3) and (5:4) take
a more simple form, in these cases they require evaluation of each of the coe�cients f; g
once per step only.

Remark 5.4. It is possible to propose other symplectic �rst-order methods for (5:2) on
the basis of the deterministic PRK methods (3:5): For instance, the method

(5.5) Q = Qk + �hg(Pk) +

mX
r=1

r(tk)�kwr;

P = Pk + hf(tk + �h;Q) +

mX
r=1

�r(tk)�kwr;

Qk+1 = Q + (1� �)hg(P);
Pk+1 = P; k = 0; : : : ; N � 1:

is of the �rst mean-square order and symplectic.

5.2. Explicit methods of order 3=2. On the basis of the deterministic second order

PRK method (the method from the family (3.5) with � = 1=2); we construct the explicit
method for the stochastic system (5.2):

(5.6) P1 = Pk; Q1 = Qk +
h

2
g(P1);

P2 = P1 + hf(tk +
h

2
;Q1); Q2 = Q1 +

h

2
g(P2);
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P3 = P2 +

mX
r=1

nX
i=1

i
r
(tk)

@f

@qi
(tk;Q2)(Ir0)k +

h2

4

mX
r=1

nX
i;j=1

i
r
(tk)

j

r
(tk)

@2f

@qi@qj
(tk;Q2);

Q3 = Q2;

P4 = P3 +

mX
r=1

�r(tk)�kwr +

mX
r=1

�0
r
(tk)(I0r)k;

Q4 = Q3 +

mX
r=1


r
(tk)�kwr +

mX
r=1

0
r
(tk)(I0r)k +

mX
r=1

nX
i=1

�i
r
(tk)

@g

@pi
(P3)(Ir0)k

+
h2

4

mX
r=1

nX
i;j=1

�i
r
(tk)�

j

r
(tk)

@2g

@pi@pj
(P3);

Pk+1 = P4; Qk+1 = Q4; k = 0; : : : ; N � 1;

where (Ir0)k and (I0r)k are due to (3.20).

It is not di�cult to prove that the transformation P = p+F (t; q); Q = q+S(t) preserves
symplectic structure for any S(t) and F (t; q) such that @F i=@qj = @F j=@qi: Analogously
the transformation P = p+S(t); Q = q+G(p) preserves symplectic structure for any S(t)
and G(p) such that @Gi=@pj = @Gj=@pi. Using these facts and that the expressions for

P2 and Q2 coincide with the ones corresponding to the deterministic symplectic method

(the method (3.5) with � = 1=2), it is not di�cult to prove that the method (5.6) is

symplectic.

Comparing the one-step approximation of the method (5.6) with the one-step approxima-

tion of the method (3.18) and applying Lemma 3.1, one can prove that the method (5.6)

is of the mean-square order 3=2:

Thus, we obtain the theorem.

Theorem 5.2. The explicit partitioned method (5:6) for the system (5:2) is of the mean-
square order 3=2 and symplectic.

Remark 5.5. The method (5:6) can be rewritten in the constructive form as the formula

(3:21) was obtained from (3:18) in Section 3.2.

Remark 5.6. By swapping the roles of p and q in the deterministic method (3:5) with
� = 1=2, we obtain the following 3=2-order symplectic method for the system (5:2) :

(5.7) Q1 = Qk; P1 = Pk +
h

2
f(tk;Q1);

Q2 = Q1 + hg(P1); P2 = P1 +
h

2
f(tk+1;Q2);

Q3 = Q2;

P3 = P2 +

mX
r=1

nX
i=1

i
r
(tk)

@f

@qi
(tk;Q2)(Ir0)k +

h2

4

mX
r=1

nX
i;j=1

i
r
(tk)

j

r
(tk)

@2f

@qi@qj
(tk;Q2);

Q4 = Q3 +

mX
r=1


r
(tk)�kwr +

mX
r=1

0
r
(tk)(I0r)k +

mX
r=1

nX
i=1

�i
r
(tk)

@g

@pi
(P3)(Ir0)k

+
h2

4

mX
r=1

nX
i;j=1

�i
r
(tk)�

j

r
(tk)

@2g

@pi@pj
(P3);
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P4 = P3 +

mX
r=1

�r(tk)�kwr +

mX
r=1

�0
r
(tk)(I0r)k;

Pk+1 = P4; Qk+1 = Q4; k = 0; : : : ; N � 1:

In Section 4.2 we propose the 3=2-order symplectic implicit Runge-Kutta method (4.30)

for the general Hamiltonian system with additive noise (4.1)-(4.2). Of course, this implicit

method can be applied to the system with separable Hamiltonian (5.2). In this section,

using speci�city of the system (5.2), we have obtained the 3=2-order symplectic explicit

method (5.6), but it is not of a Runge-Kutta form. Our nearest aim is to construct a

3=2-order symplectic explicit Runge-Kutta method for (5.2).

To this end introduce the relations (cf. (4.9)�(4.10))

(5.8) Pi = p+ h

sX
j=1

�ijf(t+ cjh;Qj) + '
i
;

Qi = q + h

sX
j=1

�̂ijg(Pj) +  i; i = 1; : : : ; s;

(5.9) �P = p+ h

sX
i=1

�
i
f(t+ cih;Qi) + �; �Q = q + h

sX
i=1

�̂
i
g(Pi) + �;

where 'i;  i; �; � do not depend on p and q; the parameters �ij; �̂ij; �i and �̂i satisfy
the condition

(5.10) �i�̂ij + �̂j�ji � �i�̂j = 0; i; j = 1; : : : ; s;

and ci are arbitrary parameters.

If 'i =  i = � = � = 0; the relations (5.8)�(5.9) coincide with a general form of s-
stage partitioned Runge-Kutta (PRK) methods for deterministic di�erential equations

(see, e.g., [15, p. 34]). It is known [17, 15] that the symplectic condition holds for �P ; �Q
from (5.8)�(5.9) with (5.10) in the case of '

i
=  

i
= � = � = 0. By a generalization of

the proof of Theorem 6.2 from [15] (see also Lemma 4.3 of this paper), it is not di�cult

to get the following lemma.

Lemma 5.1. The relations (5:8)� (5:9) with condition (5:10) preserve symplectic struc-
ture, i.e., d �P ^ d �Q = dp ^ dq:

Introduce the parametric family of 2-stage explicit PRK methods for the system (5.2):

(5.11) Q1 = Qk +

mX
r=1


r
(tk)

�
�̂1(Jr0)k + �̂

1
�kwr

�

P1 = Pk + h�
1
f(tk + c1h;Q1) +

mX
r=1

�r(tk) (�1(Jr0)k + �
1
�kwr) ;

Q2 = Qk + h�̂
1
g(P1) +

mX
r=1

r(tk)
�
�̂2(Jr0)k + �̂

2
�kwr

�
;

25



P2 = Pk + h

2X
i=1

�
i
f(tk + cih;Qi) +

mX
r=1

�r(tk) (�2(Jr0)k + �
2
�kwr) ;

(5.12) Pk+1 = Pk +

mX
r=1

�r(tk)�kwr +

mX
r=1

�0
r
(tk)(I0r)k + h

2X
i=1

�if(tk + cih;Qi);

Qk+1 = Qk +

mX
r=1


r
(tk)�kwr +

mX
r=1

0
r
(tk)(I0r)k + h

2X
i=1

�̂
i
g(Pi);

where the parameters �
i
; �̂

i
; ci; �i; �̂i; �i; �̂i; i = 1; 2; satisfy the conditions

(5.13) �
1
+ �

2
= 1; �̂

1
+ �̂

2
= 1; �

2
�̂
1
= 1=2; c1 = 0; c2 = �̂

1
;

and

(5.14) �
1
�̂
1
+ �

2
�̂
2
= 0; �̂

1
�
1
+ �̂

2
�
2
= 0;

�
1
�̂1 + �

2
�̂2 = 1; �̂

1
�1 + �̂

2
�2 = 1;

�
1

 
�̂
2

1

3
+ �̂1�̂1 + �̂2

1

!
+ �

2

 
�̂
2

2

3
+ �̂2�̂2 + �̂2

2

!
=

1

2
;

�̂
1

�
�2
1

3
+ �1�1 + �2

1

�
+ �̂

2

�
�2
2

3
+ �2�2 + �2

2

�
=

1

2
;

and �wr; I0r; Jr0 are the same as ones de�ned after (4.16).

For example, the following set of parameters satis�es (5.13)-(5.14):

(5.15) �
1
=

1

4
; �

2
=

3

4
; �̂

1
=

2

3
; �̂

2
=

1

3
;

�1 = �2 = �̂1 = �̂2 = 1; �
1
=

1

2
p
3
; �

2
= � 1p

3
; �̂

1
=

1p
2
; �̂

2
= � 1

3
p
2
:

Note that in the deterministic case (i.e., when �r = 0 and r = 0; r = 1; : : : ; m) the

family of methods (5.11)-(5.12) with conditions (5.13) on the parameters coincides with

the family of 2-stage second-order deterministic PRK methods [15].

It is not di�cult to see that the method (5.11)-(5.12) has the form of (5.8)-(5.9) and

its parameters satisfy the condition (5.10). Then, Lemma 5.1 implies that this method

preserves symplectic structure. Using ideas of the proof of Lemma 4.4, we establish that

the method (5.11)-(5.12) with (5.13)-(5.14) is of the mean-square order 3=2. As a result,
we get the following theorem.

Theorem 5.3. Under conditions (5:13) � (5:14) on the parameters, the explicit PRK

method (5:11)� (5:12) for system (5:2) preserves symplectic structure and has the mean-
square order 3=2 of convergence.

The method (5.11)-(5.12) can be rewritten in the constructive form as the formula (3.21)

was obtained from (3.18) in Section 3.2.

Remark 5.7. Attracting other explicit deterministic second-order PRK methods from

[15, 17], it is possible to construct other explicit symplectic methods of the order 3=2 for the
system (5:2): For instance, by swapping the roles of p and q in the method (5:11)� (5:12),
we can obtain another 3=2-order symplectic PRK method.
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6. Hamiltonian methods in the case of additive noise and

H(t; p; q) =
1

2
p>M�1p+ U(t; q)

Here we propose symplectic methods for the Hamiltonian system (5.2), when 
r
(t) = 0

and the separable Hamiltonian has the special form

(6.1) H(t; p; q) =
1

2
p>M�1p+ U(t; q);

with M a constant, symmetric, invertible matrix (i.e., the kinetic energy V (p) in (5.1) is

equal to
1

2
p>M�1p). In this case the system (5.2) reads (cf. (2.11)):

(6.2) dP = f(t; Q)dt+

mX
r=1

�r(t)dwr(t); P (t0) = p;

dQ =M�1Pdt; Q(t0) = q;

with

(6.3) f i = �@U=@qi; i = 1; : : : ; n:

This system can be written as a second-order di�erential equation with additive noise (cf.

(2.10)):

(6.4)
d2Q

dt2
=M�1f(t; Q) +M�1

mX
r=1

�r(t) _wr(t):

Clearly, the symplectic methods from Sections 4 and 5 can be applied to (6.2). Due

to speci�c features of the system (6.2), these methods have a more simple form here.

Moreover, one can prove that the methods (5.6) and (5.7) in application to (6.2)�(6.3)

are of the mean-square order 2 (recall that these methods are of order 3=2 in the case

of the more general system (5.2)). Besides, it turns out that it is possible to obtain a

constructive method of the third accuracy order in the case of the system (6.2). In this

section we restrict ourselves to explicit methods of orders 2 and 3.

6.1. Explicit methods of order 2. On the basis of the deterministic second-order sym-

plectic RKN method (3.8), we construct the method for the system (6.2)�(6.3):

(6.5) Q = Qk +
h

2
M�1Pk;

Pk+1 = Pk +

mX
r=1

�r(tk)�kwr + hf(tk +
h

2
;Q) +

mX
r=1

�0
r
(tk)(I0r)k

Qk+1 = Qk + hM�1Pk +

mX
r=1

M�1�r(tk)(Ir0)k +
h2

2
M�1f(tk +

h

2
;Q); k = 0; : : : ; N � 1:

Theorem 6.1. The explicit method (6:5) for the system (6:2)�(6:3) is of the mean-square
order 2 and symplectic.
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Proof. Since the expressions for dPk+1; dQk+1 coincide with the ones corresponding to

the deterministic symplectic RKN method (3.8), the method (6.5) is symplectic.

Now consider the mean-square order of convergence of the method (6.5). Denote by �P;
�Q the one-step approximation corresponding to this method. We have

(6.6) �P = p+

mX
r=1

�r(t)�wr + hf(t; q) +

mX
r=1

�0
r
(t)I0r

+
h2

2
(
@f

@t
(t; q) +

nX
i=1

(M�1p)i
@f

@qi
(t; q)) + �

1
;

�Q = q + hM�1p+

mX
r=1

M�1�r(t)Ir0 +
h2

2
M�1f(t; q) + �

2
;

where �
1
and �

2
are deterministic and such that

(6.7) j�
i
j = O(h3); i = 1; 2:

In the case of the system (6.2) the operators �r and L (see (3.19)) take the form

(6.8) �r = (�r;
@

@p
); L = L1 + L2;

L1 :=
@

@t
+ (f;

@

@p
) + (M�1p;

@

@q
); L2 :=

1

2

mX
r=1

nX
i;j=1

�i
r
�j
r

@2

@pi@pj
:

Due to speci�c features of the system (6.2), we get in particular that

(6.9) �rf = 0; �rg =M�1�r; L�r =
d�r

dt
; Lf = L1f; Lg =M�1f;

�i�jg = 0; L�rg =M�1
d�r

dt
; L2�r =

d2�r

dt2
; �rLf = �rL1f; �rLg = 0;

L2f = L2

1
f; L2g = L1

�
M�1f

�
;

where g =M�1p.

Let P (s) = P (s; t; p; q); Q(s) = Q(s; t; p; q); s � t; be a solution to (6.2). Using the

Wagner-Platen expansion [9, 7] and (6.9), it is not di�cult to obtain

R1 := P (t+ h)� �P =

mX
r=1

t+hZ
t

s1Z
t

s2Z
t

�rL1f(s3; Q(s3))dwr(s3)ds2ds1

+

mX
r=1

t+hZ
t

s1Z
t

s2Z
t

�00
r
(s3)ds3ds2dwr(s1) +

t+hZ
t

s1Z
t

s2Z
t

L2

1
f(s3; Q(s3))ds3ds2ds1 � �

1
;

R2 := Q(t + h)� �Q =

mX
r=1

t+hZ
t

s1Z
t

s2Z
t

M�1�0
r
(s3)ds3dwr(s2)ds1
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+

t+hZ
t

s1Z
t

s2Z
t

L2

1
M�1P (s3)ds3ds2ds1 � �

2
:

By the properties of Ito integrals and (6.7), we get

jERij = O(h3); (ER2

i
)
1=2

= O(h5=2); i = 1; 2:

Then, Theorem 3.1 implies that the method (6:5) is of the second mean-square order. �

Remark 6.1. It is possible to simulate the normally distributed random vectorZ
tk+1

tk

�r(s)dwr(s) instead of
P

m

r=1
�r(tk)�kwr +

P
m

r=1
�0
r
(tk) � (I0r)k in (3:8):

Remark 6.2. By swapping the roles of p and q in the RKN method (3:8), we analogously
construct another symplectic method of the mean-square order 2 for the system (6:2)�(6:3)
(cf. (5:6)):

(6.10) P =Pk +
h

2
f(tk; Qk); Q = Qk + hM�1P;

Pk+1 = Pk +

mX
r=1

�r(tk)�kwr +
h

2
[f(tk; Qk) + f(tk+1;Q)] +

mX
r=1

�0
r
(tk) � (I0r)k

Qk+1 = Qk + hM�1P +

mX
r=1

M�1�r(tk)(Ir0)k; k = 0; : : : ; N � 1:

Remark 6.3. The methods (6:5) and (6:10) can be rewritten in the constructive form as

the formula (3:21) was obtained from (3:18) in Section 3.2.

6.2. Explicit methods of order 3. Along with the integrals (I0r)k and (Ir0)k (see (3.20)
we introduce the Ito integrals

(6.11) (I00r)k :=
1

2

tk+1Z
tk

(#� tk)
2

dwr(#); (I0r0)k :=

tk+1Z
tk

#1Z
tk

(#2 � tk) dwr(#2)d#1;

(Ir00)k :=

tk+1Z
tk

#1Z
tk

(wr(#2)� wr(tk)) d#2d#1; (Jr)k =

Z
tk+1

tk

(#� tk)(wr(#)� wr(tk))d#:

Joint distribution of the random variables �kwr(h); (I0r)k; (Ir0)k; (I0r0)k; (Ir00)k; (I00r)k
is Gaussian. They can be simulated at each step by 3m independent N(0; 1)-distributed
random variables �rk; �rk; and �rk; r = 0; : : : ; m :

(6.12) �kwr = h1=2�rk; (Ir0)k = h3=2(�rk=
p
3 + �rk)=2; (I0r)k = h�kwr � (Ir0)k;

(Jr)k = h5=2(�rk=3 + �rk=(4
p
3) + �rk=(12

p
5));

(Ir00)k = h(Ir0)k � (Jr)k; (I0r0)k = 2(Jr)k � h(Ir0)k; (I00r)k = h2�kwr=2� (Jr)k:

Clearly, for �r = 0; r = 1; : : : ; m; the stochastic system (6.2) is reduced to the determin-

istic system

(6.13)
dq

dt
=M�1p;

dp

dt
= f(t; q):
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The following lemma is true for system (6.2) with an arbitrary f (i.e., f may not obey

the condition (6.3)).

Lemma 6.1. Let �q = q + G(t; p; q; h); �p = p + F (t; p; q; h) be a one-step approxima-

tion of the third-order explicit method for the deterministic system (6:13): Suppose an
n-dimensional (deterministic) variable Q = Q(t; p; q; h) is such that

jQ � qj = O(h):

Then, the following method for the system (6:2)

(6.14) Pk+1 = Pk + F (t; Pk; Qk; h) +

mX
r=1

�r(tk)�kwr +

mX
r=1

�0
r
(tk)(I0r)k

+

mX
r=1

�00
r
(tk)(I00r)k +

mX
r=1

nX
i=1

(M�1�r(tk))
i
@f

@qi
(tk;Qk)(Ir00)k

Qk+1 = Qk +G(t; Pk; Qk; h) +

mX
r=1

M�1�r(tk)(Ir0)k +

mX
r=1

M�1�0
r
(tk)(I0r0)k

is of the mean-square order 3.

Proof. Due to the assumption of the lemma, the functions F and G can be presented as

(recall that the operator L1 is de�ned in (6.8)):

(6.15) F (t; p; q; h) = hf(t; q) +
h2

2
L1f(t; p; q) +

h3

6
L2

1
f(t; p; q) + �

1
;

G(t; p; q; h) = hM�1p+
h2

2
M�1f(t; q) +

h3

6
M�1L1f(t; p; q) + �

2
;

where �i are deterministic and

(6.16) j�ij = O(h4); i = 1; 2:

Using the assumption on Q; we obtain

(6.17)

mX
r=1

nX
i=1

(M�1�r)
i
@f

@qi
(t;Q)Ir00 =

mX
r=1

nX
i=1

(M�1�r)
i
@f

@qi
(t; q)Ir00 +�;

where � is such that

(6.18) jE�j = 0;
�
E�2

�
1=2

= O(h7=2):

To continue the proof, one can use the Wagner-Platen expansion. However due to the

speci�c form of system (6.2), it is more convenient to derive the corresponding expansion

directly.

By the Ito formula we get for any su�ciently smooth function � :

(6.19) �(s; P (s); Q(s)) = �(t; p; q) +

sZ
t

 
@�

@s
+

nX
i=1

@�

@pi
f i +

nX
i=1

@�

@qi
(M�1P )i

+
1

2

mX
r=1

nX
i;j=1

@2�

@pi@pj
�i
r
�j
r
)

!
ds1 +

sZ
t

mX
r=1

nX
i=1

@�

@pi
�i
r
dwr(s1);
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where P (s) = P (s; t; p; q); Q(s) = Q(s; t; p; q); s � t; is the solution of (6.2) and the full

notation for, e.g., @�=@s is
@�

@s
(s1; P (s1); Q(s1)).

We have

Q(t + h) = q +

t+hZ
t

M�1P (s1)ds1;

P (t+ h) = p+

t+hZ
t

f(s1; Q(s1))ds1 +

t+hZ
t

mX
r=1

�r(s1)dwr(s1):

Applying (6.19) to the integrands M�1P and f(s;Q) in the above formula, we obtain

(6.20)

Q(t+ h) = q + hM�1p+

t+hZ
t

s1Z
t

M�1f(s2; Q(s2))ds2ds1 +

t+hZ
t

s1Z
t

mX
r=1

M�1�r(s2)dwr(s2)ds1;

P (t+ h) = p+ hf(t; q) +

t+hZ
t

s1Z
t

(
@f

@s
+

nX
i=1

@f

@qi
(M�1P )i)ds2ds1 +

t+hZ
t

mX
r=1

�r(s1)dwr(s1):

Here applying (6.19) to the integrands M�1f and @f=@s+
P

n

i=1
@f=@qi(M�1P )i; we get

(6.21) Q(t + h) = q + hM�1p+
h2

2
M�1f(t; q)

+

t+hZ
t

s1Z
t

s2Z
t

(M�1
@f

@s
+

nX
i=1

M�1
@f

@qi
(M�1P )i)ds3ds2ds1 +

t+hZ
t

s1Z
t

mX
r=1

M�1�r(s2)dwr(s2)ds1;

P (t+ h) = p+ hf(t; q) +
h2

2
(
@f

@s
(t; q) +

nX
i=1

@f

@qi
(t; q)(M�1p)i) +

t+hZ
t

s1Z
t

s2Z
t

(
@2f

@s2

+2

nX
i=1

@2f

@s@qi
(M�1P )i +

nX
i=1

@f

@qi
(M�1f)i +

nX
i;j=1

@2f

@qi@qj
(M�1P )i(M�1P )j)ds3ds2ds1

+

t+hZ
t

s1Z
t

s2Z
t

mX
r=1

nX
i=1

@f

@qi
(M�1�r)

idwr(s3)ds2ds1 +

t+hZ
t

mX
r=1

�r(s1)dwr(s1):

Expanding again the integrands in (6.21) according to (6.19) and using the properties of

Ito integrals, we obtain

(6.22) Q(t + h) = q + hM�1p+
h2

2
M�1f(t; q) +

h3

6
M�1L1f(t; p; q)

+

t+hZ
t

sZ
t

mX
r=1

M�1�r(s1)dwr(s1)ds+R2;
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P (t+ h) = p+ hf(t; q) +
h2

2
L1f(t; p; q) +

h3

6
L2

1
f(t; p; q)

+

mX
r=1

nX
i=1

@f

@qi
(t; q)(M�1�r(t))

iIr00 +

t+hZ
t

mX
r=1

�r(s)dwr(s) +R1;

where

(6.23) jERij = O(h4);
�
ER2

i

�
1=2

= O(h7=2); i = 1; 2:

Denote by �P; �Q the one-step approximation corresponding to the method (6.14). Taking

into account (6.15), (6.17), and (6.22), it is not di�cult to get that

�R1 := P (t+ h)� �P ; �R2 := Q(t + h)� �Q

satisfy the relations (see (6.16), (6.18), and (6.23))��E �Ri

�� = O(h4);
�
E �R2

i

�
1=2

= O(h7=2); i = 1; 2:

Then Theorem 3.1 implies that the method (6:5) is of the third mean-square order. �

Remark 6.4. Lemma 6.1 can be generalized to the system

d2Q

dt2
=M�1f(t; Q) + �

dQ

dt
+M�1

mX
r=1

�r(t) _wr(t);

where � is a constant matrix.

Using the deterministic third-order symplectic method (3.9)�(3.10), we obtain the follow-

ing method for the system (6.2)�(6.3):

(6.24) Q1 = Qk +
7

24
hM�1Pk; P1 = Pk +

2

3
hf(tk +

7h

24
;Q1)

Q2 = Q1 +
3

4
hM�1P1; P2 = P1 �

2

3
hf(tk +

25h

24
;Q2)

Q3 = Q2 �
1

24
hM�1P2; P3 = P2 + hf(tk + h;Q3)

(6.25) Pk+1 = P3 +

mX
r=1

�r(tk)�kwr +

mX
r=1

�0
r
(tk)(I0r)k

+

mX
r=1

�00
r
(tk)(I00r)k +

mX
r=1

nX
i=1

(M�1�r(tk))
i
@f

@qi
(tk;Q3)(Ir00)k;

Qk+1 = Q3 +

mX
r=1

M�1�r(tk)(Ir0)k +

mX
r=1

M�1�0
r
(tk)(I0r0)k; k = 0; : : : ; N � 1:

Theorem 6.2. The explicit method (6:24)�(6:25) for the system (6:2)�(6:3) is symplectic
and of the mean-square order 3.

Proof. It is not di�cult to check that dPk+1^dQk+1 = dP3^dQ3: The expression for dP3^
dQ3 coincides with the one corresponding to the deterministic symplectic RKN method

(3.9)�(3.10). This implies that the method (6.24)�(6.25) is symplectic. By Lemma 6.1 we

get that the method has the mean-square order 3. �
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Remark 6.5. Using the formulae (6:12), the method (6:24)� (6:25) can be rewritten in

the constructive form.

Remark 6.6. By other deterministic third-order symplectic methods (see, e.g. [16, 17,

15]); other symplectic methods of the mean-square order 3 for the system (6:2) � (6:3)
can be constructed. For instance, by swapping the roles of p and q in the RKN method

(3:9) � (3:10) or by using the adjoint of (3:9) � (3:10) [15, p. 108], the corresponding

symplectic methods for (6:2)� (6:3) can easily be written down.

Remark 6.7. If the property of symplecticness is not required, it is possible to propose

a more simple third-order method in comparison to (6:24)� (6:25). This can be done by

taking a standard deterministic third-order Runge-Kutta method and putting Qk = Qk

in (6:14).

7. Hamiltonian methods for Hamiltonian systems with small

additive noise

An important instance of a stochastic system is given by a stochastic di�erential equation

with small noise, since often �uctuations, which a�ect a dynamical system are su�ciently

small. It was shown in [11] that mean-square methods adapted to systems with small noise

can be more e�cient than general methods. The errors of these methods are estimated in

terms of products hi"j; where h is the step-size of discretization and " is a small parameter

at noise. Usually, global error has the form O(hj + "khl); where j > l; k > 0: Thanks
to the fact that the accuracy order of such methods is equal to a comparatively small l;
they are not too complicated, while due to the large j and the small factor "k at hl, their
errors are fairly low. This allows us to construct e�ective (high-exactness) mean-square

methods with low time-step order but which nevertheless have small errors.

In this section we apply the ideas of [11] to the Hamiltonian system with small additive

noise (cf. (4.1)-(4.2)):

(7.1) dP = f(t; P;Q)dt+ "

mX
r=1

�r(t)dwr(t); P (t0) = p;

dQ = g(t; P;Q)dt+ "

mX
r=1

r(t)dwr(t); Q(t0) = q;

(7.2) f i = �@H=@qi; gi = @H=@pi; i = 1; : : : ; n;

where " > 0 is a small parameter, P; Q; f; g; �r; r are n-dimensional column-vectors,

wr(t); r = 1; : : : ; m; are independent standard Wiener processes, and H(t; p; q) is a Hamil-

tonian. The phase �ow of this system preserves symplectic structure (see Corollary 2.5).

7.1. Systems with Hamiltonians of the general form. First we note that the method

(4.30) in application to the system with small noise (7.1)-(7.2) is of the order O(h2+"2h3=2)
(cf. [11]). We can simplify (4.30) and obtain the following one-parametric family of

methods for system (7.1)-(7.2):

(7.3) P1 = Pk +
�

2
hf(tk +

�

2
h;P1;Q1);
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Q1 = Qk +
�

2
hg(tk +

�

2
h;P1;Q1)

P2 = Pk + �hf(tk +
�

2
h;P1;Q1) +

1� �

2
hf(tk +

1 + �

2
h;P2;Q2);

Q2 = Qk + �hg(tk +
�

2
h;P1;Q1) +

1� �

2
hg(tk +

1 + �

2
h;P2;Q2);

Pk+1 = Pk + "

mX
r=1

�r(tk)�kwr + h[�f(tk +
�

2
h;P1;Q1) + (1� �)f(tk +

1 + �

2
h;P2;Q2)];

Qk+1 = Qk + "

mX
r=1


r
(tk)�kwr + h[�g(tk +

�

2
h;P1;Q1) + (1� �)g(tk +

1 + �

2
h;P2;Q2)]:

Using [11], it is not di�cult to prove the following theorem.

Theorem 7.1. The implicit method (7:3) for system (7:1) � (7:2) is symplectic and its
mean-square error is estimated as O(h2 + "h).

Now we are going to obtain a more accurate symplectic method for the system (7.1)-(7.2).

To this end consider the implicit method

(7.4) P1 = Pk + h
{

2
f(tk +

{

2
h;P1;Q1) + "

mX
r=1

�r(tk) (�1(Jr0)k + ��kwr) ;

Q1 = Qk + h
{

2
g(tk +

{

2
h;P1;Q1) + "

mX
r=1


r
(tk) (�1(Jr0)k + ��kwr) ;

P2 = Pk + h[{f(tk +
{

2
h;P1;Q1) +

1� 2{

2
f(tk +

h

2
;P2;Q2)];

Q2 = Qk + h[{g(tk +
{

2
h;P1;Q1) +

1� 2{

2
g(tk +

h

2
;P2;Q2)];

P3 = Pk + h[{f(tk +
{

2
h;P1;Q1) + (1� 2{)f(tk +

h

2
;P2;Q2) +

{

2
f(tk +

2� {

2
h;P3;Q3)]

+"

mX
r=1

�r(tk) (�2(Jr0)k � ��kwr) ;

Q3 = Qk + h[{g(tk +
{

2
h;P1;Q1) + (1� 2{)g(tk +

h

2
;P2;Q2) +

{

2
g(tk +

2� {

2
h;P3;Q3)]

+"

mX
r=1


r
(tk) (�2(Jr0)k � ��kwr) ;

(7.5) Pk+1 = Pk + "

mX
r=1

�r(tk)�kwr + "

mX
r=1

�0
r
(tk)(I0r)k

+h

�
{f(tk +

{

2
h;P1;Q1) + (1� 2{)f(tk +

h

2
;P2;Q2) + {f(tk +

2� {

2
h;P3;Q3)

�
;

Qk+1 = Qk + "

mX
r=1

r(tk)�kwr + "

mX
r=1

0
r
(tk)(I0r)k

+h

�
{g(tk +

{

2
h;P1;Q1) + (1� 2{)g(tk +

h

2
;P2;Q2) + {g(tk +

2� {
2

h;P3;Q3)

�
;
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where �wr; I0r; Jr0 are de�ned after (4.16), the number { is equal to

{ =
1

3
(2 + 21=3 + 2�1=3);

and the parameters �1; �2; � satisfy

(7.6) {(�1 + �2) = 1;

{

�
�2
1
+ �2

2

3
+ �1�� �2�+ 2�2

�
=

1

2
:

For example, the following set of parameters satis�es (7.6)

(7.7) �1 = �2 =
1

2{
; � =

p
3{ � 1p
12{

:

For su�ciently small h; the equations (7:4) are uniquely solvable due to Lemma 4.1.

Let us note that the method (7:4)� (7:5) is reduced under �r � 0; 
r
� 0; r = 1; : : : ; m;

to the well-known fourth-order symplectic Runge-Kutta method for deterministic Hamil-

tonian systems (see, e.g., [15, p. 101]).

Theorem 7.2. Under conditions (7:6) on the parameters, the implicit method (7:4)�(7:5)
for system (7:1) � (7:2) is symplectic and its mean-square error is estimated as O(h4 +

"h2 + "2h3=2).

Proof. The fact that the error of (7.4)-(7.5) is estimated as O(h4 + "h2 + "2h3=2) follows
from the arguments similar to the ones in the proof of Lemma 4.4 and a mean-square

theorem from [11]. Further, this one-step approximation is of the form (4.9) with s = 3

and

'
1
= "

mX
r=1

�r (�1Jr0 + ��wr) ; '2 = 0; '
3
= "

mX
r=1

�r (�2Jr0 � ��wr) ;

 
1
= "

mX
r=1

r (�1Jr0 + ��wr) ;  2
= 0;  

3
= "

mX
r=1

r (�2Jr0 � ��wr) ;

� = "

mX
r=1

�r�wr + "

mX
r=1

�0
r
I0r; � = "

mX
r=1

r�wr + "

mX
r=1

0
r
I0r

and

�11 =
{

2
; �12 = 0; �13 = 0; �21 = {; �22 =

1� 2{

2
; �23 = 0;

�31 = {; �32 = 1� 2{; �33 =
{

2
;

�
1
= {; �

2
= 1� 2{; �

3
= {; c1 =

{

2
; c2 =

1

2
; c3 =

2� {

2
:

This set of parameters �ij; �i; i; j = 1; 2; 3; satis�es the conditions (4.11). Then due to

Lemma 4.3, the method (7.4)-(7.5) is symplectic. �

Remark 7.1. Using the formulae (6:12), the method (7:4)� (7:5) can be rewritten in the

constructive form with respect to simulation of the used random variables.
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Remark 7.2. By other deterministic fourth-order symplectic methods (see, e.g. [16,

17, 15]); other symplectic methods with the error O(h4 + "h2 + "2h3=2) for the system

(7:1)� (7:2) can be constructed.

7.2. Systems with separable Hamiltonians. Consider the system (7.1)-(7.2) with

separable Hamiltonian (cf. (5.2))

(7.8) dP = f(t; Q)dt+ "

mX
r=1

�r(t)dwr(t); P (t0) = p;

dQ = g(P )dt+ "

mX
r=1


r
(t)dwr(t); Q(t0) = q;

where f i = �@U=@qi; gi = @V=@pi; i = 1; : : : ; n.

Obviously, the implicit methods of Section 7.1 can be used for solution of (7.8). Besides, we

can propose explicit symplectic methods for the system (7.8) using methods of Section 5.

For instance, the explicit methods (5.6), (5.7), and (5.11)-(5.12) in application to (7.8)

have the order O(h2 + "2h3=2): Further, we can simplify these methods as we simpli�ed

(4.30) to obtain (7.3) above. As a result, we will get the explicit PRK methods of order

O(h2 + "h) for system (7.8) (cf. Theorem 7.1).

To construct a high-exactness symplectic method, consider the parametric family of ex-

plicit PRK methods

(7.9) Q1 = Qk + "

mX
r=1


r
(tk)

�
�̂1(Jr0)k + �̂�kwr

�
;

P1 = Pk + h
{

2
f(tk;Q1) + "

mX
r=1

�r(tk) (�1(Jr0)k + ��kwr) ;

Q2 = Qk + h{g(P1);

P2 = Pk + h
{

2
f(tk;Q1) + h

1� {

2
f(tk + {h;Q2);

Q3 = Q2 + h(1� 2{)g(P2);

P3 = P2 + h
1� {

2
f(tk + (1� {)h;Q3) + "

mX
r=1

�r(tk) (�2(Jr0)k � ��kwr) ;

Q4 = Q3 + h{g(P3) + "

mX
r=1


r
(tk)

�
�̂2(Jr0)k � �̂�kwr

�
;

(7.10) Pk+1 = P2 + "

mX
r=1

�r(tk)�kwr + "

mX
r=1

�0
r
(tk)(I0r)k

+h
1� {

2
f(tk + (1� {)h;Q3) + h

{

2
f(tk + h;Q4);

Qk+1 = Q3 + "

mX
r=1

r(tk)�kwr + "

mX
r=1

0
r
(tk)(I0r)k + h{g(P3); k = 0; : : : ; N � 1;
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where { = (2 + 21=3 + 2�1=3)=3 and the parameters �; �̂; �; �̂ satisfy the conditions

(7.11)
{

2
(�̂1 + �̂2) = 1; {(�1 + �2) = 1;

{

2

 
�̂
2

1
+ �̂

2

2

3
+ �̂1�̂� �̂2�̂+ 2�̂2

!
=

1

2
;

{

�
�2
1
+ �2

2

3
+ �1�� �2�+ 2�2

�
=

1

2

(see the de�nition of �wr; I0r; Jr0 in (4.16)).

For example, the following set of parameters satis�es (7.11):

(7.12) �1 = �2 =
1

2{
; �̂1 = �̂2 =

1

{

;

� =

p
3{ � 1p
12{

; �̂ =

p
3{ � 2p
6{

:

Note that the method (7.9)-(7.10) is a generalization of the deterministic fourth-order

symplectic PRK method (3.6)-(3.7) from [15, p. 109] to the stochastic case.

It is not di�cult to see that the method (7.9)-(7.10) has the form of (5.8)-(5.9) and

its parameters satisfy the condition (5.10). Then, Lemma 5.1 implies that this method

preserves symplectic structure. Analogously to the proof of Theorem 7.2, we establish

that the method (5.11)-(5.12) with (5.13)-(5.14) is of order O(h4 + "h2 + "2h3=2). As a

result, we get the theorem.

Theorem 7.3. Under conditions (7:11) on the parameters, the explicit PRK method
(7:9) � (7:10) for system (7:8) is symplectic and its mean-square error is estimated as

O(h4 + "h2 + "2h3=2).

Using the formulae (6.12), the method (7.9)-(7.10) can be rewritten in the constructive

form with respect to simulation of the used random variables.

7.3. Systems with Hamiltonians H(t; p; q) =
1

2
p>M�1p+U(t; q). Consider the special

case of system (7.8) (cf. (6.2) and (6.4)):

(7.13) dP = f(t; Q)dt+ "

mX
r=1

�r(t)dwr(t); P (t0) = p;

dQ =M�1Pdt; Q(t0) = q;

with f i = �@U=@qi; i = 1; : : : ; n:

On the basis of the fourth-order deterministic PRK method (3.6)-(3.7), we construct the

following method for the system (7.13):

(7.14) P1 = Pk + h
{

2
f(tk; Qk); Q1 = Qk + h{M�1P1;

P2 = P1 + h
1� {

2
f(tk + {h;Q1); Q2 = Q1 + h(1� 2{)M�1P2;

P3 = P2 + h
1� {

2
f(tk + (1� {)h;Q2); Q3 = Q2 + h{M�1P3;
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P4 = P3 + h
{

2
f(tk + h;Q3);

(7.15) Pk+1 = P4 + "

mX
r=1

�r(tk)�kwr + "

mX
r=1

�0
r
(tk)(I0r)k

+"

mX
r=1

�00
r
(tk)(I00r)k + "

mX
r=1

nX
i=1

(M�1�r(tk))
i
@f

@qi
(tk;Q3)(Ir00)k;

Qk+1 = Q3 + "

mX
r=1

M�1�r(tk)(Ir0)k + "

mX
r=1

M�1�0
r
(tk)(I0r0)k; k = 0; : : : ; N � 1;

where { = (2 + 21=3 + 2�1=3)=3.

Theorem 7.4. The explicit method (7:14)�(7:15) for the system (7:13) is symplectic and
its mean-square error is estimated as O(h4 + "h3).

Proof. It is not di�cult to check that dPk+1 ^ dQk+1 = dP4 ^ dQ3: The expression for

dP4 ^ dQ3 coincides with the one corresponding to the deterministic symplectic method

(3.6)-(3.7). This implies that the method (7.14)-(7.15) is symplectic. Using arguments

similar to ones used in the proof of Lemma 6.1 and a mean-square convergence theorem

from [11], we get that the method is of the mean-square order O(h4 + "h3). �

Using the formulae (6.12), the method (7.14)-(7.15) can be rewritten in the constructive

form with respect to simulation of the used random variables.
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