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Abstract. The estimation of linearized drift for stochastic di�erential equations with

equilibrium points is considered. It is proved that the linearized drift matrix can be

estimated e�ciently if the initial condition for the system is chosen close enough to

the equilibrium point. Some bounds for initial conditions providing the asymptotical

e�ciency of estimators are found.

1. Introduction

It is known that solutions of nonlinear stochastic di�erential equations (SDEs) at the

vicinity of equilibrium points can be approximated su�ciently well by solutions of the

linearized equations. In particular (see, e.g., [4]), stability of equilibrium points for a

nonlinear SDE can often be deduced from the stability of the linear approximation. Note

also that the knowledge of parameters of the linearized equation allows to �nd the stability

index (see [1]) and other useful characteristics for nonlinear SDEs. Therefore estimation

of parameters for the linearized SDE is interesting for many applications in mechanics,

biology, etc.

It is well known (see, for instance, discussion in [3]) that a value of the di�usion matrix

at any point x can be evaluated precisely on the basis of observing the solution on an

arbitrary small time interval (t0; t0 + Æ) with X(t0) = x (here and below we denote by

X(t) or Xt the solution of a SDE). So, in the paper we consider the estimation problem

for the matrix f 0(0) only. Here f(x) is a drift vector for the SDE.

The asymptotically e�cient (a.e.) procedures for the drift estimation of linear homoge-

neous SDEs were proposed in [3], [5]. It was shown there that the estimation performance

for linear homogeneous SDEs does not depend on the type of equation and on the choice

of initial conditions: the drift coe�cients can be estimated by the same procedures with

the same rate of convergence of risks for stable, unstable, and neutral equations and with

arbitrary nonzero initial conditions.

In general, there is no consistent estimator for f 0(0), because a trajectory X(t) with an

arbitrary initial condition of even a stable in probability nonlinear SDE may not visit a

su�ciently small neighbourhood of the origin with positive probability (without the loss

of generality we can identify the equilibrium point with the origin).

The aim of this paper is to propose and justify a.e. procedures for the estimation of f 0(0)
in nonlinear SDEs. It is clear from the discussion above that for this type of SDEs a.e.

estimators, as a rule, do not exist if a statistician can not choose the initial conditions

su�ciently close to the origin. The main problems are: (i) to indicate how the initial

conditions must be close to the origin to ensure existence of an a.e. estimator; (ii) to

construct a.e. estimators.

2. One-dimensional equation

Let Xx
t = X

x(t) 2 R1 be a Markov process described by the SDE

(2.1) dXt = f(Xt)dt+ b(Xt)dwt; X
x(0) = x:
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Let f(0) = b(0) = 0, so that x = 0 is an equilibrium point for (2.1). Moreover, we assume

that

(2.2) f(x) = f
0(0)x+O(jxj1+�); b(x) = b

0(0)x +O(jxj1+�); � > 0;

as x! 0.

We consider the estimation problem for � = f
0(0) . It is proved in [3] that for the linear

equation

(2.3) d �Xt = � �Xtdt+ � �Xtdwt;
�X0 = x 6= 0;

the estimator

(2.4) �̂T =
1

T

Z T

0

d �Xx
t

�Xx
t

(i.e., �̂T =
1

T
ln

�Xx
T

x
+

1

2
�
2)

is e�cient in the sense (here and below L(:) is the distribution law of (:)):

L
�pT
�

(�̂T � �)
�
= N (0; 1)

and there is no estimator with uniformly in � smaller risks. Denote b0(0) by � and rewrite

equation (2.1) in the form

(2.5) dXt = (�Xt + '(Xt))dt+ (�Xt +  (Xt))dwt; X0 = x 6= 0:

Consider now some properties of the estimator (2.4) for the process (2.1). We have (along

with notation wt we use w(t))

�̂T =
1

T

Z T

0

dX
x
t

Xx
t

= � +
1

T

Z T

0

'(Xx
t )

Xx
t

dt+ �
w(T )

T
+

1

T

Z T

0

 (Xx
t )

Xx
t

dw(t):

So

(2.6)
p
T (�̂T � �) = �

w(T )p
T

+
1p
T

Z T

0

'(Xx
t )

X
x
t

dt+
1p
T

Z T

0

 (Xx
t )

X
x
t

dw(t)

:= �
w(T )p
T

+ �T + �T :

Below we use the notation x0 for the initial condition X(0) instead of x and consider x0
depending on T : X(0) = x0 = x0(T ):

Theorem 2.1. Suppose the coe�cients of (2.1) satisfy the conditions (2.2) for some

� > 0 and

(2.7) f
0(0) � B

for a known constant B: Let M := B � �
2

2
� 0: Then the estimator

(2.8) �̂T =
1

T

Z T

0

dX
x0
t

X
x0
t
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with x0 = x0(T ) satisfying the condition

(2.9) 0 < jx0j < e
�(M+")T

;

" > 0 is a constant, has the property

(2.10) L(
p
T

�
(�̂T � �))! N (0; 1)

as T !1.

Remark 2.1. It is known (see [4]), that the condition ���2
=2 > 0 provides instability of

the origin for the solution of (2.5). So the solution of (2.1) can be unstable in probability

under the conditions of Theorem 2.1. This is the reason why the asymptotic e�ciency of

the estimator (2.8) can be guaranteed under the very strong restriction (2.9) only. We will

see below that for asymptotically stable SDEs this restriction can be essentially weakened.

�

Proof. It is clear from (2.6) that it is enough to prove that �T ! 0 and �T ! 0 as

T !1 in probability for x = x0 satisfying (2.9). Due to (2.2), we have for x! 0

(2.11)
'(x)

x
= O(jxj�);  (x)

x
= O(jxj�):

So �T ! 0 in probability for T !1 if

(2.12) lim
T!1

Pf sup
0�t�T

jXx0
t j� >

1

T 1=2+Æ
g = 0;

for some Æ > 0.

Introduce

� = T ^
�
infft > 0 : jXx0

t j� > T
�(1=2+Æ)g

�
:

Since

jXx0
� j� =

1

T 1=2+Æ

for � � T only, we obtain for any � > 0 and 
 > 0

(2.13) Pf sup
0�t�T

jXx0
t j� >

1

T 1=2+Æ
g = Pf� < Tg

= Pfe��
� jXx0
� j
 > e

��
T (
1

T 1=2+Æ
)
=�g

� E(e��
� jXx0
� j
) � e�
T (T 1=2+Æ)
=�:

Consider now the auxiliary function V (t; x) = e
��
tjxj
: Due to the Ito formula, we get

Ee
��
� jXx0

� j
 � jx0j


= E

Z �

0

e
��
t(��
jXx0

t j
 + f(Xx0
t )
jXx0

t j
�1signXx0
t +

1

2
b
2(Xx0

t )
(
 � 1)jXx0
t j
�2)dt

= E

Z �

0

e
��
tjXx0

t j
(��
 + 

f(Xx0

t )

X
x0
t

+
1

2

(
 � 1)

b
2(Xx0

t )

(Xx0
t )2

)dt:
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Due to the fact that jXx0
� j� � 1=T 1=2+Æ for 0 � t � � and due to condition (2.2), the

expression in the brackets is negative for T large enough if � > 0 and 
 > 0 are chosen so

that

(2.14) f
0(0) +

1

2
(
 � 1)�2 � B +

1

2
(
 � 1)�2 � �+ ";

where " is a positive constant.

Therefore, for T large enough we have

Efe��
� jXx0
� j
g � jx0j
:

From this inequality and (2.13) we get

Pf sup
0�t�T

jXx0
t j� >

1

T 1=2+Æ
g � e

�
T jx0j
T (1=2+Æ)
=�
:

So (2.12) holds if x0 satis�es the inequality

0 < jx0j < e
�(�+")T

:

Set � = M; 0 < 
 � 2"=�2: Then (2.14) is valid and �T ! 0 in probability under (2.9).

Thus we have

�T =
1p
T

Z �

0

 (Xx0
t )

X
x0
t

dw(t) +
1p
T

Z T

�

 (Xx0
t )

X
x0
t

dw(t) := �
(1)

T + �
(2)

T :

It is clear that Pf�(2)T 6= 0g ! 0 due to (2.12). Using (2.11), we get

E(�(1)T )2 � 1

T

Z T

0

dt

T 1+2Æ
! 0; T !1: �

Now we consider the systems with stable in probability equilibrium points assuming that

M < 0.

Theorem 2.2. Let the conditions (2.2) and (2.7) be valid. Let M = B � �
2

2
< 0: Then

the estimator (2.8) has the property (2.10) for any x0 satisfying the condition

(2.15) 0 < jx0j < T
�(1=2+�)=�

;

where � is an arbitrary positive constant.

Proof. Denote by L = f(x)
d

dx
+
�
2(x)

2

d
2

dx2
the generator of the process (2.1). Since

M < 0; the function jxj
 with 
 satisfying the bounds

0 < 
 <
�
2 � 2B

�2

has the property

(2.16) L(jxj
) < 0
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in a su�ciently small neighbourhood of the origin, so jXx(t)j
 is a local supermartingale
if x is small enough.

As in the proof of Theorem 2.1, it is su�cient to check that

(2.17) lim
T!1

Pf sup
0�t�T

jXx0
t j� >

1

T 1=2+Æ
g = lim

T!1
Pf� < Tg = 0

for x0 satisfying (2.15).

Making use of the supermartingale property of jXx(t)j
 ; we obtain
jx0j
 � EjXx0

� j
 � T
�(1=2+Æ)
=�

Pf� < Tg;
i.e. (see (2.15))

Pf� < Tg � T
(1=2+Æ)
=�jx0j
 � T

(Æ��)
=�
:

This bound implies (2.17) for � > Æ. As Æ > 0 can be arbitrary small, Theorem 2.2 is

proved. �

Remark 2.2. The estimators from Theorems 2.1 and 2.2 are asymptotically e�cient for

the bounded loss functions in the following sense. For any loss function l(x) with the

properties

(i) l(�x) = l(x) and l(0) = 0;

(ii) l(x2) � l(x1) for x2 > x1 > 0;

(iii) l(x) < K <1;

we have

lim
T!1

El(

p
T

�
(�̂T � �)) = El(�); L(�) = N (0; 1);

and there is no estimator with uniformly in � less risk. The last assertion follows from

the fact that even for linear systems there is no uniformly better estimator (see [3], [5]).

The event fX(t) 9 0 for t ! 1g can have positive probability for a nonlinear (even

stable) SDE with any initial condition X(0) 6= 0. Due to this fact, it is impossible to

propose any estimator which is asymptotically e�cient for unbounded loss functions. �

Remark 2.3. Comparing Theorems 2.1 and 2.2, we see that the choices of initial condi-

tions for a.e. and even consistent estimation of f 0(0) are essentially di�erent for stable and
unstable SDEs. For unstable SDEs, we have to choose the initial condition exponentially

close to the origin. Clearly such a choice is also necessary for multidimensional SDEs.

This fact implies the essential di�culties for applications. So below (see Section 4) we

restrict ourselves to consideration of asymptotically stable multidimensional SDEs. �

3. On drift estimation for linear equations

Consider the system of linear SDEs

(3.1) d �Xt = A(�) �Xtdt+

qX
r=1

�r
�Xtdwr(t):

5



Here �Xt 2 R
d
; wr(t); r = 1; :::; q; are independent standard scalar Wiener processes,

�1; :::; �q are real d� d matrices,

(3.2) A(�) = A0 +
kX

j=1

Aj�j;

where the d� d matrices A0; Aj are known and the scalars �j; j = 1; :::; k; are unknown
parameters. The estimation of parameters for a linear SDE of the form (3.1) was consid-

ered in [3], [5]. Recall some facts from [3], [5] which we shall use below. We suppose that

the conditions (C1) - (C4) are ful�lled:

(C1) The matrices A1; :::; Ak are linearly independent.

(C2) Aj 2 span(�1; :::; �q), j = 1; :::; k:

(C3) The weak Hörmander condition for the Markov di�usion process ��(t) = �X(t)=j �X(t)j
with values on the unit sphere Sd�1 � Rd is ful�lled:

dimLAfh0; h1; :::; hqg = d� 1 for all � = x=jxj 2 Sd�1;
where

h0(�) = ~A�� ( ~A�; �)�; ~A = A� 1

2

qX
r=1

�
2
r;

hr(�) = �r�� (�r�; �)�; r = 1; :::; q;

LAfg denotes the Lie algebra generated by the vector �elds which occur in the brackets

(see [2]).

Introduce the di�usion matrix

B(x) =

qX
r=1

�rxx
�
�
�

r

and denote by B+(x) the pseudoinverse of B.

(C4) The matrix B+(�); j�j = 1; is continuous on Sd�1.

Let us also consider the condition

(C5) The di�usion matrix B(x) is non-singular for x 6= 0.

Both the conditions (C3) and (C4) follow from (C5). In the non-singular case the matrix

B(x) is invertible, i.e., B+(x) = B
�1(x); and

(B�1(�)z; z) � Kjzj2; � 2 Sd�1; z 2 Rd
;

where K is a positive constant.

The non-singularity condition (C5) has been assumed in [3]. It sometimes is too restrictive

(see the corresponding discussion in [5]). The authors of [5] eliminate condition (C5) and

consider the estimation problem for linear systems under conditions (C1)-(C3) only. For

6



nonlinear systems, we need the condition (C4) which is essentially less restrictive than

(C5).

The conditions (C2), (C4) imply that the measures P
(T )

� and P
(T )
0 are mutually absolutely

continuous ( [6], Section 7.6). Here P
(T )

� is the probability measure corresponding to the

process Xt generated by the system (3.1) with parameter �. The measure is de�ned on

the space C([0; T ];Rd) of continuous functions of [0; T ] into Rd.

The log-likelihood ratio has the form (we denote by �XT the trajectory of the observation

process �Xt for 0 � t � T )

(3.3) ln
dP

(T )

�

dP
(T )
0

( �XT ) =

Z T

0

(B+( �Xt)
kX

j=1

Aj�j
�Xt; d

�Xt)

�1

2

Z T

0

(B+( �Xt)
kX

j=1

Aj�j
�Xt;

kX
j=1

Aj�j
�Xt + 2A0

�Xt)dt:

It can be seen from (3.3) that the likelihood ratio depends on the process ��(t) = �X(t)=j �X(t)j
only. It is known (see [2]) that (C3) implies the existence of a unique invariant distribution

for the process �� on Sd�1 having smooth density ��(�) > 0 with respect to the surface

measure S(�) on Sd�1.

It is not di�cult to check that the maximum likelihood estimator (MLE) �̂ is de�ned by

the following system of linear algebraic equations

(3.4)
1

2

kX
j=1

Z T

0

((A�iB
+( �Xt)Aj + A

�

jB
+( �Xt)Ai) �Xt;

�Xt)dt � �j

=

Z T

0

(B+( �Xt)Ai
�Xt; d

�Xt � A0
�Xtdt); i = 1; :::; k:

Denote by H( �XT ) the k � k matrix of the system (3.4) divided by T: The elements

Hij( �X
T ) of this self-adjoint matrix are equal to

Hij( �X
T ) =

1

2T

Z T

0

((A�iB
+( �Xt)Aj + A

�

jB
+( �Xt)Ai) �Xt;

�Xt)dt:

Clearly, Hij( �X
T ) = Hij(��

T ). Denote also the right-hand side of (3.4) by V ( �XT ):

Vi( �X
T ) =

Z T

0

(B+( �Xt)Ai
�Xt; d

�Xt � A0
�Xtdt) = Vi(��

T ):

The matrix H( �XT ) and the vector V ( �XT ) were introduced in [5] (they have another form
there). It is known, that under (C1) - (C4) the matrix H( �XT ) is positively de�nite a.s..

Therefore

(3.5) �̂ =
1

T
H
�1( �XT )V ( �XT ) =

1

T
H
�1(��T )V (��T ):

7



Due to (3.5) and (3.1), we have

kX
j=1

Hij( �X
T )�̂j =

1

T
Vi( �X

T ) =
1

T

Z T

0

(B+( �Xt)Ai
�Xt;

kX
j=1

Aj
�Xt�j)dt

+
1

T

Z T

0

(B+( �Xt)Ai
�Xt;

qX
r=1

�r
�Xtdwr(t))

=
kX

j=1

Hij( �X
T )�j +

1

T

Z T

0

(B+( �Xt)Ai
�Xt;

qX
r=1

�r
�Xtdwr(t)):

So we have

H( �XT )
p
T (�̂ � �) = ��(T ) = (��1(T ); :::; ��k(T ))

>
;

where

�� i(T ) =
1p
T

Z T

0

(B+( �Xt)Ai
�Xt;

qX
r=1

�r
�Xtdwr(t)):

We get

E��i(T )��j(T ) =
1

T

Z T

0

E((B+( �Xt)Ai
�Xt)

�

qX
r=1

�r
�Xt(�r �Xt)

�
B

+( �Xt)Aj
�Xt)dt

=
1

T

Z T

0

E( �X�

tA
�

iB
+
BB

+
Aj

�Xt)dt =
1

T

Z T

0

E( �X�

t A
�

iB
+( �Xt)Aj

�Xt)dt = EHij( �X
T ):

It is known from [5] that under (C1) - (C4) there exists (a.s.) the limit

(3.6) lim
T!1

Hij( �X
T ) = lim

T!1
Hij(��

T ) = lim
T!1

EHij( �X
T )

=
1

2

Z
Sd�1

((A�iB
+(�)Aj + A

�

jB
+(�)Ai)�; �)��(�)S(d�) := Iij(�)

with k� k matrix I(�) = fIij(�)g being deterministic and positively de�nite. The matrix

TI(�) is the Fisher information matrix.

The estimator (3.5) is asymptotically normal and asymptotically e�cient for a wide class

of the loss functions (see details in [5]).

4. Stable nonlinear systems

Consider the nonlinear SDE

(4.1) dXt = f(Xt)dt+

qX
r=1

br(Xt)dwr(t);

where Xt 2 Rd
; f and br; r = 1; :::; q; are d-dimensional vectors with f(0) = br(0) = 0,

and wr(t) are standard Wiener processes.

8



Assume that the coe�cients of (4.1) are su�ciently smooth at 0 so that for x! 0

(4.2) f(x) = f
0(0)x + '(x);

j'(x)j
jxj = O(jxj�); � > 0;

(4.3) br(x) = �rx+  r(x);
j r(x)j
jxj = O(jxj�); r = 1; :::; q;

where f 0(0) and �r := b
0
r(0) are d � d matrices. We suppose that all br(x) are known

vector-functions (see comments in [3]). The problem is to estimate f 0(0): However some
coe�cients of this matrix can be known (see, e.g. [5] and Section 5). We assume that

f
0(0) is a linear function of the �nite-dimensional parameter � = (�1; :::; �k)

(4.4) f
0(0) = A(�) = A0 +

kX
j=1

Aj�j:

Rewrite the equation (4.1) in the form

(4.5) dXt = A(�)Xtdt+

qX
r=1

�rXtdwr(t) + '(Xt)dt+

qX
r=1

 r(Xt)dwr(t):

and consider the �rst order variation of (4.1)

(4.6) d �Xt = A(�) �Xtdt+

qX
r=1

�r
�Xtdwr(t):

Throughout this section we suppose that the conditions (C1) - (C4) are ful�lled.

Lemma 4.1. Let the trivial solution of (4.6 ) be stable in probability and

(4.7) 0 < jx0(T )j � T
�(1=2+�)=�

;

where � is an arbitrary positive constant. Then

(4.8) lim
T!1

Pf sup
0�t�T

jXx0(T )
t j� > 1

T 1=2+Æ
g = 0:

Proof. Due to the condition of stability, there exists a positively de�nite homogeneous

of some order 
 > 0 function v(x) such that Lv < 0 in a su�ciently small neighbourhood

of the origin. So v(Xx
t ) is a local supermartingale if x is small enough. Since v(x) =

v(�)jxj
; 0 < k1 � v(�) � k2; for some positive constants k1 and k2; we have

k1EjXx0
� j
 � Ev(Xx0

� ) � v(x0) � k2jx0j
 :

Now the statement of the lemma can be easily proved by arguments similar to the ones

which have been used in the proof of Theorem 2.2. �

Recall that ��(t) = �X(t)=j �X(t)j. If �X(0) = x0, we use the notation ��
(x0)
t = �Xx0

t =j �Xx0
t j.

Clearly the initial value for ��
(x0)
t is equal to ��(x0)(0) = x0=jx0j := �0; i.e., ��

(x0)
t = ���0

t :

Introduce �
(x0)
t = X

x0
t =jXx0

t j; �(x0)
t = �

(x0)
t � ��

(x0)
t . Clearly �(x0)(0) = �0; �

(x0)(0) = 0:

9



Now our goal is to prove that for a suitable choice of x0 = x0(T ) ! 0 and Æ(T ) ! 0
as T !1
(4.9) lim

T!1
Pf sup

0�t�T

j�(x0)
t � ��

(x0)
t j � Æ(T )g = 1:

We show in Lemmas 4.2-4.4 that in the case of stable systems the equation (4.9) holds

for a choice of x0(T )! 0 exponentially with an arbitrary small exponent as T !1.

We have

j�� ��j =
���� XjXj �

j �Xj � jXj
j �Xj +

Z

j �Xj

���� � 2jZj
j �Xj ;

where Z = Z
(x0)
t := X

x0
t � �Xx0

t :

So (4.9) follows from

lim
T!1

Pf sup
0�t�T

jZ(x0)
t j

j �Xx0
t j

� 1

2
Æ(T )g = 1:

Lemma 4.2. Let the Lyapunov exponent for the �rst order variation equation (4.6) be

equal to �: Then for any " > 0; � > 1 there exist � > 0 and K > 0 such that

(4.10) Pf sup
0�t�T

e
(��")tj �Xx0(T )

t j�1 > jx0(T )j��g � Kjx0(T )j�

for any x0(T ) with jx0(T )j < 1:

Proof. Introduce the variable ~X = e
�(��")t �X. Then

(4.11) d ~Xt = (�� + ") ~Xtdt+ A(�) ~Xtdt+

qX
r=1

�r
~Xtdwr(t):

The Lyapunov exponent for the system is equal to " > 0: Therefore (see [4]) this system
is exponentially q-unstable for all su�ciently small q > 0 and there exists a positively

de�nite homogeneous of order �q function v(x) such that

(4.12) k1jxj�q � v(x) � k2jxj�q; ~Lv(x) � �k3jxj�q;
where k1; k2; k3 are positive constants and ~L is the generator of system (4.11).

Let jx0(T )j < 1; � > 1;

� = T ^ inff0 � t � T : j ~Xx0(T )
t j < jx0(T )j�g:

We have

(4.13) Pf sup
0�t�T

j ~Xx0(T )
t j�1 > jx0(T )j��g = Pf� < Tg

= Pf(j ~Xx0(T )
� j�q > jx0(T )j��q)g

� (Ej ~Xx0(T )
� j�q) � jx0(T )j�q:

10



Due to (4.12), we get

Ej ~Xx0(T )
� j�q � 1

k1
Ev( ~Xx0(T )

� ) � 1

k1
Ev(x0(T )) �

k2

k1
jx0(T )j�q:

This inequality, (4.13), and the change of variables imply inequality (4.10) with

� = (�� 1)q:

�

Lemma 4.3. Let the Lyapunov exponent for the equation (4.6) be equal to � < 0: Then
for any 0 < " < j�j there exist K > 0; � > 1; 0 < q < 1; such that

Pf sup
0�t�T

e
�(�+")tjZ(x0(T ))

t j > jx0(T )j�g � Kjx0(T )jq

for any x0(T )! 0 as T !1:

Proof. Obviously, Z
(x0)
t is the solution of the problem

(4.14) dZt = A(�)Ztdt+

qX
r=1

�rZtdwr(t) + '(Xt)dt+

qX
r=1

 r(Xt)dwr(t); Z0 = 0:

Let us consider the 2d-dimensional system of equations (4.5), (4.14). We denote by

X
x0
t ; Z

x0;z0
t the solution of this system with the initial conditions X(0) = x0; Z(0) = z0;

so that Z
(x0)
t = Z

x0;0
t : Let us change the variables:

(4.15) ~X = e
�(�+")t

X; ~Z =
e
�(�+")t

jx0(T )j�0
Z; 0 < " < ��; 0 < 2�0 < �:

Then we have

(4.16) d ~Xt = �(�+") ~Xtdt+A(�) ~Xtdt+

qX
r=1

�r
~Xtdwr(t)+~'(t; ~Xt)dt+

qX
r=1

~ r(t; ~Xt)dwr(t);

(4.17) d ~Zt = �(� + ") ~Ztdt+ A(�) ~Ztdt+

qX
r=1

�r
~Ztdwr(t)

+
1

jx0(T )j�0
~'(t; ~Xt)dt+

qX
r=1

1

jx0(T )j�0
~ r(t; ~Xt)dwr(t);

(4.18) ~X(0) = X(0) = x0;
~Z(0) = Z(0) = 0:

It follows from (4.2)-(4.3) that for x small enough (recall that � + " < 0)

j~'(t; x)j = e
�(�+")tj'(e(�+")t

x)j � Cjxj1+�
;

j~ r(t; x)j = e
�(�+")tj r(e

(�+")t
x)j � Cjxj1+�

; r = 1; :::; q;

where C is a constant.
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For

jxj � jx0(T )j1=2
we have

(4.19)
1

jx0(T )j�0
j~'(t; x)j � Cjxj1+��2�0 ;

1

jx0(T )j�0
j~ r(t; x)j � Cjxj1+��2�0 :

For �0 < 1; let us introduce

(4.20) � 1 = T ^ inff0 � t � T : j ~Xx0
t j > jx0(T )j1=2g;

� 2 = T ^ inff0 � t � T : j ~Zx0;0
t j > jx0(T )j�0g;

� = � 1 ^ � 2:
We get for any 
 > 0

(4.21) Pf sup
0�t�T

j ~Zx0;0
t j > jx0(T )j�0g = Pf�2 < Tg � Pf� < Tg

= Pf(� 1 < T ) [ (� 2 < T )g = Pf(�1 < T )g+ Pf(�2 < T )n(� 1 < T )g
� Pf� 1 < Tg+ Pfj ~Zx0;0

� j
 > jx0(T )j
�0g
� Pf� 1 < Tg+Ej ~Zx0;0

� j
 � 1

jx0(T )j
�0
:

The equations (4.16) and (4.17) have the same linear parts and their Lyapunov exponents

are equal to �" < 0: Therefore, for any 
 < " there exists a positively de�nite homogenous

of order 
 > 0 function V (x; z) such that LV (x; z) < 0: Here L denotes the generator

corresponding to the linear part of system (4.16)-(4.17). It is known [4] that there exist

positive constants k1; k2; k3; k4 such that

(4.22) k1jyj
 � V (x; z) � k2jyj
; LV (x; z) � �k3jyj
;����@V@yi
���� � k4jyj
�1;

���� @
2
V

@yi@yj

���� � k4jyj
�2; i; j = 1; :::; 2d;

where y is the 2d-dimensional vector consisting of the components of the vectors x and z.

Let jx0(T )j ! 0 as T !1. Due to (4.19) and (4.22), we obtain

(4.23) ~LtV (x; z) < 0

for a su�ciently large T if (x; z) is such that

(4.24) jxj � jx0(T )j1=2; jzj � jx0(T )j�0 :

In (4.23) ~Lt is the generator of the di�usion process de�ned by the system (4.16)-(4.17).

Because of (4.23)-(4.24) and the de�nition of � ;

~LtV ( ~Xx0
t ;

~Zx0;0
t ) < 0; 0 � t � � ;

and, consequently, V ( ~Xt;
~Zt) is a local supermartingale.

Therefore we get

(4.25) Ej ~Zx0;0
� j
 � E(j ~Xx0

� j2 + j ~Zx0;0
� j2)
=2 � 1

k1
EV ( ~Xx0

� ;
~Zx0;0
� ) � 1

k1
V ( ~X(0); ~Z(0))
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=
1

k1
V (x0(T ); 0) �

k2

k1
jx0(T )j
:

Hence

Ej ~Zx0;0
� j
 � 1

jx0(T )j
�0
� k2

k1
jx0(T )j
(1��0):

Besides, from (4.20) and (4.25) we have

Pf� 1 < Tg � Ej ~Xx0
� j
 �

1

jx0(T )j
=2
� k2

k1
jx0(T )j
=2:

Now from (4.15) and (4.21) we obtain

(4.26) Pf sup
0�t�T

e
�(�+")tjZ(x0)

t j > jx0(T )j�0+�0g � k2

k1
jx0(T )j
=2 +

k2

k1
jx0(T )j
(1��0):

As �0 and �0 can be chosen so that � := �0 + �0 > 1, the assertion of the lemma follows

from (4.26). �

The following lemma follows from two previous ones.

Lemma 4.4. Let the SDE (4.6) be stable and let Æ be an arbitrary small positive number.

Then for x0 with jx0j = jx0(T )j � exp(�ÆT )

(4.27) Pf lim
T!1

sup
0�t�T

j�(x0)
t � ��

(x0)
t j ! 0g = Pf lim

T!1
sup

0�t�T

jZ(x0)
t j

j �Xx0
t j

! 0g = 1:

Proof. Let us choose � > � > 0. Introduce the events

A =

�
! : sup

0�t�T

e
(��")tj �Xx0

t j�1 � jx0(T )j��
�
; B =

�
! : sup

0�t�T

e
�(�+")tjZ(x0)

t j � jx0(T )j�
�
:

Due to Lemmas 4.2 and 4.3, we get

P (A) � 1�Kjx0(T )j�; P (B) � 1�Kjx0(T )jq:

Thus

P (A\ B) � 1�Kjx0(T )j� �Kjx0(T )jq;
Pf sup

0�t�T

e
�2"tj �Xx0

t j�1jZ(x0)
t j � jx0(T )j���g � 1�Kjx0(T )j� �Kjx0(T )jq;

and

Pfe�2"T sup
0�t�T

j �Xx0
t j�1jZ(x0)

t j � jx0(T )j���g � 1�Kjx0(T )j� �Kjx0(T )jq:

The assertion of the lemma follows from the choice of " satisfying the inequality 2" <
Æ(� � �): �

Remark 4.1. The analysis of a one-dimensional equation is much easier because �
(x0)
t =

��
(x0)
t for d = 1, and we do not need Lemmas 4.2-4.4. Let us also note that the condition

(C3) is essential for the proof of Lemma 4.4 (both the uniqueness of the Lyapunov exponent
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and the ergodicity of ��(t) follow from (C3)). As a clarifying example, let us consider the

following deterministic system with two Lyapunov exponents

_X1 = aX1;
_X2 = bX2 +X

2
1 ; a < b < 0:

Setting x02 = 0; we have

jX � �Xj
j �Xj =

jx01j
j2a� bj je

at � e
(b�a)tj:

It follows from this equation that (4.27) is not valid for x02 = 0: �

Now we will study the properties of the estimator (3.5) for the nonlinear equation (4.1).

Because we are not con�dent in the existence of the inverse matrix H�1(XT ) a.s., we will
use the pseudoinverse matrix H+ in (3.5). Thus we consider the estimator

(4.28) �̂ =
1

T
H

+(XT )V (XT ) =
1

T
H

+(�T )V (�T ):

Introduce the notation

ÆHij = Hij(X
T )�Hij( �X

T ) = Hij(�
T )�Hij(��

T );

ÆH = H(XT )�H( �XT ) = H(�T )�H(��T ):

Then ( below we use the more detailed notation H(Xx0;T ) for H(XT ) et al. if X(0) =
x0 = x0(T ))

(4.29) H(Xx0;T ) = H( �Xx0;T ) + ÆH = H( �Xx0;T )[E +H
�1( �Xx0;T )ÆH]:

A su�cient condition for existence of the inverse matrix [E +H
�1( �Xx0;T )ÆH]�1 consists

in the inequality

(4.30) jjH�1( �Xx0;T )ÆHjj � q < 1

which is ful�lled with some probability depending on T and x0. Under (4.30) we get from

(4.29):

(4.31) H
�1(Xx0;T ) = H

�1( �Xx0;T ) +
1X
k=1

[H�1( �Xx0;T )ÆH]kH�1( �Xx0;T )

and therefore the norm of

(4.32) Æ(H�1) :=
1X
k=1

[H�1( �Xx0;T )ÆH]kH�1( �Xx0;T )

is small enough if kH�1( �Xx0;T )k is bounded and kÆHk is small enough. We emphasize

that (4.31) and (4.32) take place if (4.30) is valid.

Let jjI�1(�)jj = K (we recall that the matrix I(�) is deterministic and positively de�nite).
If we take x0(T ) = jx0(T )j�0 with a �xed vector �0; then due to (3.6), we get

(4.33) lim
T!1

PfjjH�1( �Xx0;T )jj � 2Kg = lim
T!1

PfjjH�1(���0;T )jj � 2Kg = 1:
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Introduce the notation

Æ�t = �x0
t � ���0

t ; ÆB
+
t = B

+(�x0
t )�B

+(���0
t ):

According to Lemma 4.4 and condition (C4), the following equations hold for jx0(T )j �
exp(�ÆT ):
(4.34) Pf lim

T!1
sup

0�t�T

jÆ�tj ! 0g = 1; Pf lim
T!1

sup
0�t�T

jÆB+
t j ! 0g = 1:

Thus

(4.35) ÆHij = Hij(�
x0;T )�Hij(��

�0;T )

=
1

2T

Z T

0

((A�iB
+(�x0

t )Aj + A
�

jB
+(�x0

t )Ai)�
x0
t ;�

x0
t )dt

� 1

2T

Z T

0

((A�iB
+(���0

t )Aj + A
�

jB
+(���0

t )Ai)��
�0
t ;

���0
t )dt

=
1

2T

Z T

0

((A�i ÆB
+
t Aj + A

�

jÆB
+
t Ai)�

x0
t ;�

x0
t )dt

+
1

2T

Z T

0

((A�iB
+(���0

t )Aj + A
�

jB
+(���0

t )Ai)(�
x0
t + ���0

t ); Æ�t)dt:

Making use of (4.32)-(4.35), we obtain the following result.

Lemma 4.5. Let the SDE (4.6) be stable, Æ be an arbitrary small positive number, and

jx0(T )j � e
�ÆT

:

Then

(4.36)

Pf lim
T!1

jjÆHjj = 0g = 1; Pf lim
T!1

H(Xx0;T ) = I(�)g = 1; Pf lim
T!1

jjÆ(H�1)jj = 0g = 1:

In particular

lim
T!1

PfH+(Xx0;T ) = H
�1(Xx0;T )g = 1:

Let us return to the formula (4.28). We have

kX
j=1

Hij(X
x0;T )�̂j =

1

T

Z T

0

(B+(Xt)AiXt; dXt � A0Xtdt)

=
1

T

Z T

0

(B+(Xt)AiXt;

kX
j=1

Aj�jXtdt+ '(Xt)dt+

qX
r=1

�rXtdwr(t) +

qX
r=1

 r(Xt)dwr(t))

=
kX

j=1

Hij(X
x0;T )�j +

1

T

Z T

0

(B+(Xt)AiXt;

qX
r=1

�rXtdwr(t))
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+
1

T

Z T

0

(B+(Xt)AiXt; '(Xt)dt+

qX
r=1

 r(Xt)dwr(t)):

Thus p
TH(Xx0;T )(�̂ � �) = �(T ) + �(T );

where

� i(T ) =
1p
T

Z T

0

(B+(Xt)AiXt;

qX
r=1

�rXtdwr(t));

�i(T ) =
1p
T

Z T

0

(B+(Xt)AiXt; '(Xt)dt+

qX
r=1

 r(Xt)dwr(t)); i = 1; :::; k:

Due to Lemma 4.1, �(T ) ! 0 in probability as T ! 1 (the proof is the same as in the

one-dimensional case).

Further we have

E�(T )�>(T ) = EH(Xx0;T ):

According to Lemma 4.5, H(Xx0;T ) ! I(�) as T ! 1: These facts and results from [5]

imply the following theorem.

Theorem 4.1. Let the conditions (C1)-(C4) hold. Let the equation of �rst order variation

(4.6) be stable and Æ be an arbitrary small positive number. Then the estimator

�̂ =
1

T
H

+(Xx0(T );T )V (Xx0(T );T )

with X(0) = x0(T ) satisfying the condition

(4.37) jx0(T )j � e
�ÆT

has the property

L(
p
TI

1=2(�)(�̂ � �))!N (0; 1k) as T !1;

where 1k is the unit k � k matrix and I(�) is de�ned by (3.6).

Remark 4.2. Theorem 4.1 allows to propose an �almost� asymptotically e�cient esti-

mator if the initial condition x0 = x0(T ) satis�es the condition

(4.38) x0(T )! 0 as T !1;

which is essentially weaker than (4.37).

Let the system (4.6) be stable. Then there exists a homogeneous of order p > 0, positive
for x 6= 0 function V (x) such that for some c > 0; � > 0 the inequality LV � �cV is

valid for jxj � �, where L is the generator of the nonlinear SDE (4.1). Let jx0(T )j < �

and � = �
x0(T ) be an exit time of Xx0(T ) from the ball jxj � �. Clearly, ~V (t; Xx0(T )(t)) :=

e
ct
V (Xx0(T )(t)) is a local supermartingale.

We have for some K > 0 and any t � 0

(4.39) PfjXx0(t)jpect � Kg = Pf(jXx0(t)jpect � K) \ (� < t)g
+Pf(jXx0(t)jpect � K) \ (� � t)g = P (A) + P (B):
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Let k1jxjp � V (x) � k2jxjp: We get

(4.40) P (A) � P (�x0(T ) < t) = Pf sup
0�s�t

jXx0(T )(s)j � �g

� 1

k1�
p
EV (Xx0(T )(� ^ t)) � 1

k1�
p
V (x0(T )):

Further

(4.41) P (B) � PfjXx0(T )(� ^ t)jpec(�^t) � Kg � PfV (Xx0(T )(� ^ t))ec(�^t) � k2Kg

� 1

k2K
EV (Xx0(T )(� ^ t))ec(�^t) � 1

k2K
V (x0(T )):

From (4.39)-(4.41) we obtain that for x0(T ) satisfying (4.38), 0 < 
 < c; and N > 1

lim
T!1

PfjXx0(T )(T=N)j < e
�
Tg = 1:

Now we can use the estimator of Theorem 4.1 on the time interval [T=N; T ]: Thus, the
following result is valid.

Proposition 4.1. Let the initial condition for the nonlinear SDE (4.1) satisfy the con-

dition (4.38) and T be an observation time. For arbitrary N > 1; denote by �̂[T=N;T ] the

estimator based on the solution of (4.1) on the interval [T=N; T ] with the initial condition

X(T=N) = X
x0(T )(T=N) and de�ned by

�̂[T=N;T ] =
1

T (1� 1=N)
H

+(XX(T=N);[T=N;T ])V (XX(T=N);[T=N;T ]):

Then

L(
p
T (1� 1=N)I1=2(�)(�̂ � �))!N (0; 1k) as T !1:

It means that for T ! 1 the asymptotic e�ciency of estimator �̂[T=N;T ] with respect to

the quadratic loss function is (N � 1)=N .

5. Example. Stochastic oscillator

Consider the estimation problem of parameter � in the system

(5.1) dX1 = X2dt

dX2 = �(a2 sinX1 + �X2)dt+ �1X1dw1(t) + �2X2dw2(t):

The equation of the �rst order variation for (5.1) has the form

(5.2) d �X1 = �X2dt

d �X2 = �(a2 �X1 + � �X2)dt+ �1
�X1dw1(t) + �2

�X2dw2(t):

We assume that �1 6= 0; �2 6= 0: The matrix B+(�) is equal to

B
+(�) =

�
0 0
0 (�2

1�
2
1 + �

2
2�

2
2)
�1

�
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and all the conditions (C1)-(C4) are ful�lled (while the condition (C5) is not valid).

We have

(5.3) �̂ = �
�Z T

0

X
2
2

�2
1X

2
1 + �2

2X
2
2

dt

��1
�
�Z T

0

a
2
X1X2

�2
1X

2
1 + �2

2X
2
2

dt+

Z T

0

X2dX2

�2
1X

2
1 + �2

2X
2
2

�
:

If it is known that � � �0 > 0 and �1; �2 are comparatively small, then the trivial solution

of the system (5.2) is stable in probability. Due to Lemma 4.1 and Theorem 4.1, the

initial data X(0) = x0(T ) can be chosen as (here � = 1)

0 < jx0(T )j � e
�Æt
;

where Æ > 0 is an arbitrary constant.

Remark 5.1. Consider a model of physical pendulum with unknown damping � subject

to a random perturbation by the white Gaussian noise of intensity �. The equation of

motion for this model has the form

(5.4) �X + a
2 sinX + (� + � _w) _X = 0

It is natural to treat this equation as an Ito SDE in the form (5.1) with X = x1; x2 = _X
and �1 = 0. The only nonzero element of the matrix B+(�) is equal to ��22 �

�2
2 if �2 6= 0,

and it is equal to 0 if �2 = 0. Thus the condition (C4) is not valid. The expression for �̂

has the form

(5.5) �̂ = � 1

T

Z T

0

a
2
X1dt+ dX2

X2

:

It is easy to see that the integral in (5.5) does not converge and therefore the estimator

(5.5) has no sense. But the nonlinear estimator

�̂ = � 1

T

Z T

0

a
2 sinX1dt+ dX2

X2

:

has sense because a2 sinX1dt+ dX2 = ��X2dt+ �2X2dw2(t) .

Moreover, as

�̂ = � � �2

T
w(T );

this estimator is asymptotically e�cient. So we see that sometimes it is possible to create

the e�cient estimator even in a situation when the condition (C4) is not valid.
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