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Abstract

Comparisons of the Q1D against the known Lagrangian stochastic well-mixed

quadratic form models and the moments approximation models are presented. In

the case of modestly large Reynolds numbers turbulence (Re� ' 240) the comparison

of the Q1D model with the DNS data is made. Being in a qualitatively agreemnet

with the DNS data, the Q1D model predicts higher rate of separation. Realizability

of Q1D model extracted from the transport equation with a quadratic form of the

conditional acceleration is shown.

1 Introduction

A turbulent dispersion of a contaminant, for example pollutant dispersion in the atmo-

sphere, is conveniently described in terms of Lagrangian statistics sampled along the paths

of �uid particles. In practice, however, the Eulerian statistics sampled at �xed points in

space are better known from experiments. Therefore, the basic problem of turbulent dis-

persion is to calculate the Lagrangian statistics from given Eulerian statistics. Lagrangian

stochastic models of turbulent dispersion address the problem by statistically characteris-

ing the particle paths from an Eulerian input. The Lagrangian stochastic models simulate

the time evolution of the particle coordinate and velocity in terms of stochastic di�erential

equations. These models are best understood for the description of one-particle statis-

tics, which contain only one-point statistical information. A modelled ensemble of single

particles allows the calculation of mean concentrations, whereas an ensemble of particle

pairs allows the calculation of concentration �uctuations. When we consider the motion

of a pair particles, the modelling can be seen as the superposition of a relative motion

and the motion of a single particle, or particle centeroid (e.g., see Durbin 1980, Thomson

1990, Sabelfeld & Kurbanmuradov 1997). The relative motion re�ects more directly the

internal turbulent structure because of the appearance of an internal lengths (particle

distance), and its description permits the introduction of concepts developed within the

statistical theory of turbulence (Monin & Yaglom 1975).

In this work we suggest comparisons of the Q1D model of relative dispersion of two

particles against the known Lagrangian stochastic well-mixed quadratic form models and

the moments approximation models. Recall that the Q1D model of relative dispersion is

aimed to describe time evolution of the distanse and longitudional component of relative

velocity between two particles. The main problem we deal with is the extraction of

information needed for constructing Lagrangian stochastic models from DNS data in the

case of modestly large Reynolds numbers (Re� ' 240) turbulence.

In section 2, basic assumptions used in the construction of the Lagrangian stochastic

models are formulated. Models satisfying the well-mixed condition are given in section

3. Models based on the moments approximation method are presented in section 4.
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Comparison of di�erent models of relative dispersion for the inertial subrange is given in

section 5. Section 6 presents the comparison of Q1D models with a bi-gaussian Eulerian

pdf against the DNS data for modestly large Reynolds number turbulence.

Let us introduce the notations. The Eulerian velocity �eld is considered as a 3D random

�eld denoted by UE(x; t) = (UE1(x; t); UE2(x; t); UE3(x; t)), whose samples are incom-

pressible: @
@xi
UEi(x; t) = 0. The concentration of a conservative passive scalar scattered

by this �eld is governed by the transport equation

@c(x; t)

@t
+ UEi(x; t)

@c

@xi
= 0; t � 0; c(x; 0) = S(x)

where S(x) is the initial distribution of the concentration. Here and in what follows, we

use the summation convention over the repeated indices.

In practice, the following quantities are of special interest: hc(x; t)i, the mean concentra-

tion, hUEi(x; t)c(x; t)i, the mean �uxes of concentration, and hc(x; t)c(x0; t)i, the concen-
tration covariance. There are two main approaches to evaluate these quantities. The �rst

one is based on the averaging of the transport equation to extract closed equations for

the quantities in question. This is the so-called closure problem which faces well known

di�culties (Monin and Yaglom, 1971).

Second approach is based on the Lagrangian description where the following representa-

tions are used

hc(x; t)i =
Z
dx0 S(x0) p1L(x; t;x0);

hUEi(x; t)c(x; t)i =
Z
dv

Z
dx0 vi S(x0) p1L(v;x; t;x0);

hc(x; t)c(x0; t)i =
Z
dx0

Z
dx0

0
S(x0)S(x

0
0
) p2L(x;x

0; t;x0;x
0
0
) :

Here p1L and p2L are the Lagrangian transition densities:

p1L(x; t;x0) = hÆ(x�X(t;x0))i;

p1L(v;x; t;x0) = hÆ(x�X(t;x0))Æ(v�V(t;x0))i;
p2L(x;x

0; t;x0) = hÆ(x�X(t;x0))Æ(x
0 �X(t;x0))i;

In these formulae, the Lagrangian variables X;V are de�ned through

@X

@t
= V(t;x0) = UE(t;X(t;x0)); X(0;x0) = x0:

In this paper we focus on the two-particle models which describe the motion of two �uid

particles. It is governed by

dX1(t)

dt
= UE(t;X1);

dX2(t)

dt
= UE(t;X2);

where X1(t) = X(t;x0) and X2(t) = X(t;x0
0
).
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It is convenient to rewrite this system as follows

dR

dt
=

1

2

�
UE(R+

r

2
; t) +UE(R� r

2
; t)

�
;

dr

dt
= UE(R+

r

2
; t)�UE(R� r

2
; t); (1.1 )

where

R(t) =
1

2
(X1(t) +X2(t)) ; r(t) = X1(t)�X2(t):

This form clearly illustrates the division of large and small scales of turbulence. Indeed

if the distance between the two particles is much less than the external scale ( r � L ),

then the terms

U(R+
r

2
; t) +U(R� r

2
; t); and U(R+

r

2
; t)�U(R� r

2
; t):

are approximately statistically independent.

This property can be used to simulate the motion of two particles in small scales according

to

dR

dt
=

1

2

�
~U(R+

r

2
; t) + ~U(R� r

2
; t)

�
;

dri(t) = vi(t) dt; dvi(t) = ai(r;v; t) dt+ bij(r;v; t) dWj(t); i = 1; 2; 3:

Here the large scale velocity �eld is approximated by a �eld marked by the tilde (e.g.,

extracted from DNS or LES methods), while the small scale motion is described as a

di�usion process governed by a Langevin type equation.

Two alternative modelling approaches include Eulerian statistics in Lagrangian stochastic

models: the well-mixed approach of Thomson (1987) and the moments approxima-

tion method of Novikov (1989). The importance of Thomson's approach is that when

the material distribution is uniform, the model does not arti�cally an-mix material.

A one dimensional well-mixed Lagrangian stochastc model of relative dispersion of two

particles has been proposed by Thomson (1986). Three dimensional models based on well

mixed criterion have been considered in Thomson (1990) and Borgas & Sawford (1994).

Gaussian Eulerian statistics are used in this articles. Well-mixed quasi-one-dimensional

(Q1D) models of relative dispersion of two particles in the case of arbitrary Eulerian statis-

tics was considerd in Kurbanmuradov (1995) and Kurbanmuradov & Sabelfeld (1995). A

three dimensional well-mixed model of relative dispersion consistent with arbitrary Eule-

rian statistics was proposed in Kurbanmuradov (1997).

Lagrangian stochstic models of relative dispersion based on the moments approximation

approach has been proposed by Novikov (1989), and has been developed by Pedrizzetti

& Novikov (1984), Heppe (1998), and Pedrizzetti (1999).
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2 Basic assumptions

We deal here with the process of relative dispersion of a pair of �uide particles in a

stationary, spatially isotropic incompressible fully developed turbulent �ow. We introduce

the Eulerian velocity di�erence uE(r) = UE(x + r; t)�UE(x; t) considered at two �xed

points separated by vector r.

Now we formulate the main assumptions underlying the models developed.

2.1 Markov assumption

Let (r(t);v(t)) be the Lagrangian variables for the separation vector and the relative

velocity between two �uid particles at the time t. It is usually assumed (e.g., see Thomson,

1987) that (r(t);v(t)) is a 6D (continuous) Markov process (i.e., given the values of r(t)

and v(t) at time t, the values at time greater than t are independent of the values at times

less than t). Under the Markov assumption for (r(t);v(t)) the most general equation used

to describe the time evolution of (r(t);v(t)) is the Ito type stochastic di�erential equation:

dri = vi dt; dvi = ai(r;v) dt+ bij(r;v) dWj(t) ; i = 1; 2; 3 (2.1 )

The main problem here is the following: how can we determine the functions ai(r;v)

and bij(r;v), (called the drift and di�usion terms, respectively) so that the model ran-

dom process (2.1 ) is in a sense close to the true process (1.1 ). To this end, one uses

two consistency principles: (i) consistency with Kolmogorov's similarity theory and (ii)

consistency with Thomson's well-mixed condition.

2.2 Consistency with the second Kolmogorov similarity hypoth-

esis

Given r, assume that there exists � such that

�� � � � r2=3

�"1=3
: (2.2 )

The consistency with the second Kolmogorov similarity hypothesis requires that

bij(r;v) = (2 C0 �")
1=2

Æij; (2.3 )

where �" is the mean dissipation rate of the kinetic turbulence energy, C0 is the Kolmogorov

constant.

Let us comment this condition.

Denote V1(t) = (V11(t); V12(t); V13(t)); V2(t) = (V21(t); V22(t); V23(t)) the Lagrangian

velocity of the �rst and the second particles, respectively. Then,

��vi(t) � vi(t+ �)� vi(t) =

V2i(t+ �)� V2i(t)� (V1i(t+ �)� V1i(t)) = ��V2i(t)���V1i(t);
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In view of (2.2 ), the quantities

v(t) = V2(t)�V1(t); ��V2(t); ��V1(t)

are approximately mutually independent. Therefore

h��vi(t)��vj(t) j v(t) = v; r(t) = ri
= hf��V2i(t)���V1i(t)g f��V2j(t)���V1j(t)g j v(t) = v; r(t) = ri

' h��V2i(t)��V2j(t)i+ h��V1i(t)��V1j(t)i ' 2 C0 �"Æij �;

which implies (2.3 ).

2.3 Thomson's well mixed condition

The following relation between the true Eulerian and Lagrangian pdf's are known (Novikov,

1969):

pE(v; r; t) =
Z
pL(r;v; t; r0) dr0;

where

pE(v; r; t) = hÆ(v� uE(r))i
pL(r;v; t; r0) = hÆ(r� r(t))Æ(v� v(t))i

The model is considered consistent with Novikov's integral relation if its pdf also satis�es

such a relation. It is well known that this leads to Thomson's well-mixed condition written

in the form (Thomson, 1987):

vi
@pE

@ri
+

@

@vi
(aipE) = C0�"

@2pE

@vi@vi
:

It should be noted that all this does not de�ne the model uniquely (e.g., see Thomson,

1987; Borgas & Sawford, 1994).

3 Well-mixed Lagrangian stochastic models

Note that in the case of isotropic turbulence the structure of the drift term is de�ned by

two scalar functions. Indeed,

ai(r;v) = '(r; vk; v?)
ri

r
+  (r; vk; v?)

vi

v

where r = (riri)
1=2; vk = viri=r; v? =

�
vi vi � v2

k

�
1=2

It should be noted that if we could �nd an additional relation between the functions �

and  , then the well-mixed condition would provide a unique choice of the drift term.

For instance, this is the case when � � 0 (e.g., see the 1-particle model treated in Monti

& Luezzi 1995), or  � 0 (Kurbanmuradov & Sabelfeld 1995). But generally, since such
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relations are not known, di�erent approaches can be used to extract the unique model.

We present below two such approaches. In the �rst one, the drift term is assumed to

be quadratic in velocity, and the Eulerian pdf pE is Gaussian (Thomson, 1990; Borgas

and Sawford, 1994). The second approach is based on a Markovian character of the

evolution of the 2D process r(t); ur(t) where r(t) is the distance between the two particles,

and ur(t) is the longitudinal component of the relative velocity (Kurbanmuradov 1995;

Kurbanmuradov & Sabelfeld, 1995; Kurbanmuradov, 1997).

3.1 Quadratic-form models

Following (Borgas & Sawford 1994) let us assume that pdf pE is Gaussian:

pE(u; r) =
�1=2

(2�)3=2
exp(�1

2
�ijuiuj)

where

huEi(r)uEj(r)i = ��1

ij (r); � = det(�ij); �ik�
�1

kj = Æij:

uEi(r) = UEi(x+ r)� UEi(x)

Here ��1

ij are the entries of the relevant inverse matrix.

The drift term is seeked in the form:

ai = �i + C0 �"
1

pE

@pE

@ui
;

with

�i = �i + ijk ujuk:

As shown in (Borgas and Sawford, 1994), the well-mixed condition is satis�ed for the

following three cases:

ijk = �1

2
��1

il

@�jk

@rl
; ijk = �1

2
��1

il

@�ik

@rj
=

1

2
�kl

@��1

il

@rj
; ijk = �1

2
��1

il

@�lj

@rk
=

1

2
�jl
@��1

il

@rk
;

where

�i = ��1

ij

 
� 1

2�

@�

@rj
+ kkj + kjk

!
:

Thus this approach gives a speci�c structure of the drift term, but it also does not provide

a unique solution. Let us consider now the second approach.

3.2 Quasi- one-dimensional models

As mentioned above, the motion of two particles is described here by the distance r(t)

and the longitudinal velocity component ur(t):

r(t) = (ri(t)ri(t))
1=2; ur(t) = vi(t)ri(t)=r(t)
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Here vi(t) is the i-th component of the relative velocity v(t), and r(t) is the separation

vector.

Now we fomulate the main assumption:

Assume that (r(t); ur(t)) is a continuous 2D Markov process:

dr = ur dt; dur = a(r; ur) dt+ (2C0�")
1=2dW (t) (3.1 )

In the case of quasi-one dimensional model the well-mixed condition reads (Kurbanmu-

radov & Sabelfeld 1995):

v
@r2p

k

E(v; r)

@r
+ r2

@(X(r; v)p
k

E)

@v
= C0�"r

2
@2p

k

E

@v2
; (3.2 )

where p
k

E(v; r) is the pdf of the longitudinal component of the Eulerian velocity di�erence

uE(r) = UE(x+ r)�UE(x): p
k

E(v; r) = hÆ(v � uEi(r)ri=r)i.
Assuming Xp

k

E jjvj!1= 0 it is easy get

X(r; v) = C0�"
@

@v
ln p

k

E(v; r)�
1

p
k

E(v; r)

Z v

�1

v0

r2
@

@r

�
r2p

k

E(v
0; r)

�
dv0:

In the inertial subrange (� � r � L) this expression can be considerably simpli�ed. In

the inertial subrange the unique external parameter is �", so it is possible to turn to a

dimensionalless density fE(�):

p
k

E(v; r) =
1

(�"r)1=3
fE(

v

(�"r)1=3
):

Consequently,

X(r; v) =
�"2=3

r1=3
~X(

v

(�"r)1=3
); ~X(�) = C0

d ln fE

d�
+
�2

3
�

7

3

�R
�1

�0fE(�
0) d�0

fE(�)
:

It is convenient to deal with the equation in dimensionalless form for �r(t) = ur(t)=(�"r)
1=3:

dr = (�"r)1=3�r dt; d�r = (
�"

r2
)1=3a0(�r)dt+ (

�"

r2
)1=6

q
2C0dW (t);

where

a0(�) = ~X(�)� �2

3
= C0

d ln fE

d�
�

7

3

�R
�1

�0fE(�
0) d�0

fE(�)
:

In the case of Gaussian pdf fE:

fE(�) =
1

(2�C)1=2
exp

 
� �2

2C

!

the coe�cient a0 has the most simple form:

a0(�) = �C0

C
� +

7

3
C ;

where C is the Kolmogorov universal constant in the law of two-thirds.
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3.3 Three dimensional extension of Q1D models

Assume that the turbulence is isotropic and stationary. Let us consider a 3D model of

relative dispersion in the subrange � � r:

dri = vi dt; dvi = ai(r;v) dt+ (C0�")
1=2 dWi(t) ; i = 1; 2; 3

where

ai(r;v) = '(r; vk; v?)
ri

r
+  (r; vk; v?)

vi

v

with unknown ' and  .

We derive from it the Q1D model:

dr = ur dt; dur =

 
airi

r
+
u2?
r

!
dt+ (C0�")

1=2 dW (t);

where u2?(t) = u2(t) � u2r(t). Assuming that Q1D process (r(t); ur(t)) is Markovian we

can write

airi

r
+
v2?
r

= '(r; vk; v?) +
vk

v
 (r; vk; v?) +

v2?
r

= X(r; vk)

From the last relation and the 3D well-mixed condition it follows that (Kurbanmuradov,

1997)

 (r; vk; v?) = C0�"
v

v?

@

@v?
ln pE(vk; v?; r) +

vkv

r

� v

v2?pE(vk; v?; r)

Z v?

0

n @

@vk
(XpE) +

vk

r2
@

@r
r2pE(vk; v

0
?; r)

o
v0? dv

0
?:

'(r; vk; v?) = X(r; vk)�
v2?
r
� vk

v
 (r; vk; v?):

This yields in the case of Gaussian pdf pE, for the inertial subrange (Sabelfeld & Kur-

banmuradov, 1997) � � r� L:

ai(r;v) =
�"2=3

r1=3

h7
3
C � C0

4C

vk

(�"r)1=3
� v2

(�"r)2=3

iri
r

+
�"2=3

r1=3

h4
3

vk

(�"r)1=3
� C0

C 0

i vi

(�"r)1=3
;

where C 0 = 4

3
C.

4 Stochastic Lagrangian models based on the moments

approximation method

The evaluation of the pdf pE(vk; v?; r) is very di�cult problem because it needs to con-

struct a family of solutions to Navier-Stokes equations. Therefore, in practice one uses

8



the method of moments: one constructs an approximation to the Eulerian pdf under the

condition that its �rst several moments coincide with those of the true velocity moments.

The true moments can be found via DNS method solving the Navier-Stokes equation, or

extracted from experiments.

4.1 Moments approximation conditions

In a more general case when the intermittency is taken into account, the model of relative

dispersion has the form:

dri = vi dt; dvi = ai(r;v) dt+ bij(r;v) dWj(t) ; i = 1; 2; 3

The well-mixed condition reads in this case (e.g., see Thomson 1987, Novikov 1989):

vi
@pE

@ri
+

@

@vi
(aipE) =

1

2

@2mijpE

@vi@vj
; (4.1 )

where mij = bikbjk. Multiplying this equation by vj and integrating over v, we get

(Pedrizzetti & Novikov 1994):

@

@ri
huEi(r)uEj(r)i = haj(r; �)i;

i.e. (due to incompressibility)

haj(r; �)i = 0; j = 1; 2; 3:

Myltiplying (4.1 ) by vjvk and integrating over v yields

@

@ri
huEi(r)uEj(r)uEk(r)i

= haj(r; �) uEk(r) + ak(r; �) uEj(r)i+ hmjk(r; �)i; j; k = 1; 2; 3:

Kolmogorov's relation for third order moments in the inertial subrange (e.g., see Monin

& Yaglom 1975, Novikov 1989):

huEi(r)uEj(r)uEk(r)i = � 4

15
�"(riÆjk + rjÆik + rkÆij); � � r� L:

Hence
@

@ri
huEi(r)uEj(r)uEk(r)i = �4

3
�"Æjk; (� � r � L):

Therefore in the inertial subrange the moments approximation conditions have the form:

haj(r; �) uEk(r) + ak(r; �) uEj(r)i+ hmjk(r; �)i = �4

3
�"Æjk;

haj(r; �)i = 0; j; k = 1; 2; 3; (� � r� L): (4.2 )
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4.2 Realizability of Lagrangian stochastic models based on the

moments approximation method

Here we have to analyse if the scheme presented in the previous subsection can be realized

indeed.

The input parametrs of the moments approximation method are

huEi(r)uEj(r)i; huEi(r)uEj(r)uEk(r)i; i; j; k = 1; 2; 3:

Let us assume that the functions ai and bij satisfying the moments approximation condi-

tions (4.2 ) are found.

Now we have to check if there exists a positive solution pE(v; r) to the equation (4.1 )

which satis�es the conditionsZ
IR

3
pE(v; r) dv = 1;

Z
IR

3
vipE(v; r) dv = 0;

Z
IR

3
vivjpE(v; r) dv = huEi(r)uEj(r)i;Z

IR
3
vivjvkpE(v; r) dv = huEi(r)uEj(r)uEk(r)i; i; j; k = 1; 2; 3:

Example (Pedrizzetti & Novikov 1994).

ai = �k
(�"r)1=3

r
(vi + vjnj ni); ni = ri=r; (4.3 )

mij = �"
n
�Æij + (�� �)ninj

o
; (� � 0; � � 0); (4.4 )

where �; �;  and k are dimensionless coe�cients of the model (� � 0; � � 0; k � 0), and

C is Kolmogorov's constant in the law of two-thirds (C ' 2). The moments appraximation

conditions (4.2 ) imply the following relations between these coe�cients (Pedrezotti &

Novikov, 1994):

8Ck = 3� + 4; (6 � 2)Ck = (3�� �):

From � � 0; � � 0 it follows that

Ck � 0:5; (9 + 1)Ck � 2:

Thus for any  and k � 0 satisfying these inequalities the model (4.3 )�(4.4 ) satis�es the

moments approximation conditions (4.2 ). However as shown in Pedrizzetti & Novikov

(1994), the realizability conditions are satis�ed only for a special subrange of the pairs

(; k). Some examples of such pairs are: (1/3,3), (1,2.5), (3,1.3), (5,0.9).

A generalation of the model (4.3 )�(4.4 ) is given in Pedrizzetti (1999) where the drift

term is de�ned by

ai = �k

r

�
(�"r)1=3(vi + vjnj ni) + � vjnj~vi

�
; ~vi = vi � vjnj ni: (4.5 )
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and with di�usion term (4.4 ). In absence of intermittency, the moments approximation

conditions (4.2 ) imply (Pedrizzetti, 1999):

� = �4

3
+ 2k( + 1); � = �4

3
+

8

15
k(5C � �):

Relizability conditions imply that the resting parameters k,  and � are not complitely

free. For example, as shown in Pedrizzetti, in the case of isotropic forsing (� = �)

which implies  = 1=3�4�=15C, and assuming � = 0; 0:25; 1; the corresponding values of

parameter k, for which the relizability conditions are satis�ed, are 3:8, 4:2, 6, respectively.

The examples cited will be used below in the next section when comparing di�erent models

of relative dispersion in the inertial subrange (see Table 1).

5 Comparison of di�erent models of relative dispersion

for the inertial subrange of a fully developed turbu-

lence

5.1 Q1D quadratic-form model of Borgas & Yeung

The exact Eulerian transport equation for the Eulerian velocity pdf pE(v; r) is (e.g., see

Heppe 1998)

vi
@pE

@ri
+

@

@vi
(haijv; ripE) = 0;

where ai(t) =
dvi
dt

is the relative acceleration between two �uid particles, and haijv; ri is
its conditionally averaged value under the condition that v(t) = v; r(t) = r. The Q1D

analog of this equation is the following exact transport equation for p
k

E derived by Borgas

(1998):

ur

r2
@r2p

k

E

@r
+

@

@ur
(harjur; ripkE) = 0; (5.6 )

where

ar(t) =
dvk(t)

dt
=
ai(t)ri(t)

r(t)
+
vi(t)vi(t)� u2r(t)

r

is the longitudinal component of the relative acceleration, and harjur; ri is the conditional
acceleration.

From (3.2 ) and (5.6 ) it follows that

X(r; ur) = C0�"
1

p
k

E

@p
k

E(ur; r)

@ur
+ harjur; ri: (5.7 )

The quadratic-form assumption for the conditional acceleration is

harjur; ri = �(r) + �(r)ur + (r)u2r =
�2

r
(�0 + �0� + 0�

2) ; (5.8 )
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where �2 = hu2ri; � = ur=�. Let S(r) and F (r) are the skewness and �attness of the

Eulerian velocity ur, respectively.

In order to satisfy the moment constraints

hu2ri = �2; hu3ri = S�3; hu4ri = F�4

the coe�cients �; � and  should be choosen from the following equations (see Borgas &

Yeung 1998):
1

r2
d(r2�2)

dr
= � + �2;

1

r2
d(r2S�3)

dr
= 2��2 + 2S�3;

1

r2
d(r2F�4)

dr
= 3��2 + 3�S�3 + 3F�4;

which can be solved for parameters �; � and  to give:

� = �0

�2

r
; � = �0

�

r
;  = 0

1

r
(5.9 )

where the dimensionless parameters �0; �0 and 0 are

�0 = �0 � 2 0 + 2; �0 = �0 �
3

2
S 0 + S +

r

2

dS

dr
;  0 = �rd ln�

dr
;

0 =

�
�6� 3S2 + 2F +  0(6 +

9

2
S2 � 4F )� 3

2
Sr dS

dr
+ r dF

dr

�
3(F � S2 � 1)

: (5.10 )

In the inertial subrange (� � r � L) �2(r) = C(�"r)2=3, S = const, F = const due to

Kolmogorov's second similarity hypothesis (e.g., see Monin & Yaglom 1975) which yields

 0 = �1=3. Therefore (5.10 ) yields

0 =
10

9
F � 3

2
S2 � 8

3

F � S2 � 1
; �0 =

8

3
� 0; �0 =

3

2
S � 0:

In the inertial subrange there exists a dimensionless pdf f(�) such that

p
k

E(ur; r) =
1

�(r)
f

 
ur

�(r)

!
:

Then the equation (5.6 ) in this case can be rewritten as the following ODE

(b0 + b1� + b2�
2)
df(�)

d�
+ (c0 + c1�)f(�) = 0; (5.11 )

where b0; b1; b2; c0; c1 are dimensionless constants

b0 = �0; b1 = �0; b2 = 0 �
1

3
;

c0 = b1; c1 = 2 + 20 �
1

3
:

From (5.7 ), (5.8 ) and (5.11 ) we get

X(r; ur) =
�"2=3

r1=3
~X(

ur

�(r)
); �(r) =

p
C(�"r)1=3;

where

~X(�) = � C0p
C

c0 + c1�

b0 + b1� + b2�2
+ C(�0 + �0� + 0�

2):
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5.2 Comparison of di�erent models in the inertial subrange

In this subsection we study the process of relative dispersion of two particles in the inertial

subrange � � r� L. We �rst consider Q1D models wich are determined by the Eulerian

pdf fE(�) of the dimensionless velosity di�erence �r = ur=(�"r)
1=3. Suppose

fE(�) =
pp
2��1

exp f � (� � �1)
2

2�21
g+ 1� pp

2��2
exp f � (� � �2)

2

2�22
g;

where the unknown parameters p; �1; �2; �1; �2 should be chosen to �t the �rst four

moments of �r:

h�ri = p�1 + (1� p)�2 = 0;

h�2r i = p(�2
1
+ �2

1
) + (1� p)(�2

2
+ �2

2
) = C;

h�3r i = p(�3
1
+ 3�1�

2

1
) + (1� p)(�3

2
+ 3�2�

2

2
) = �4

5

h�4ri = p(�4
1
+ 6�2

1
�2
1
+ 3�4

1
) + (1� p)(�4

2
+ 6�2

2
�2
2
+ 3�4

2
) = 3:4 C2:

Thus we have four equations for �ve unnown parameters p; �1; �2; �1; �2. To �nd these

parameters we need an additional (cloasure) assumption. Further we will use two kind of

cloasure assumptions:

(i) �1 = �2, and

(ii) �1=�1 = ��2=�2.

In the Table 1 we present the Richardson constant g in the cubic law hr2(t) = g�"t3

obtained by di�erent well-mixed models. The same constant obtained by the moments

approximation models is given in Table 2, while Table 3 presents the results obtained by

di�erent theoretical approaches.

Table 1. The universal constant g in the Richardson law hr2(t)i = g"t3 calculated by di�erent

well-mixed Lagrangian stochastic models; the Kolmogorov constant C was taken equal to 2.

Well-mixed models C0 = 4 C0 = 5 C0 = 6 C0 = 7 C0 = 10

Borgas & Sawford 0.75 0.7 0.6 0.5 0.3

(1994)

Thomson (1990) 1.8 1.4 1.1 0.85 0.45

Q1D, pdf of Borgas & 4.8 2.6 1.7 1.1 0.45

Yeung (1998)

Q1D, bigaussian pdf 4.4 2.55 1.67 1.15 0.47

�1 = �2.

Q1D, bigaussian pdf 8.25 4. 2.27 1.4 0.51

�1=�1 = ��2=�2.
Q1D, gaussian pdf 7. 4.7 2.8 1.9 0.75

13



Table 2. The universal constant g evaluated by di�erent moments approximation models.

Model realizability g

Pedrizzetti & Novikov (1994) + 0.50 (k = 3:8; C0 = 9:47)

Pedrizzetti (1999) + 0.35 (� = 0:25; k = 4:2; C0 = 10:25)

+ 0.20 (� = 1; k = 6; C0 = 13:73)

Heppe (1998) unknown 0.44 (C0 = 5:3)

unknown 0.31 (C0 = 9:47)

In the models Pedrizzetti & Novikov (1994), and Pedrizzetti (1999), the isotropic forcing was

considered (� = �, see subsection 4.2)

Table 3. The universal constant g evaluated by other methods.

Method g

LHDI, Kraichnan (1966) 2.42

Modi�ed LHDI, Lundgren (1981) 3.

EDQNM, Larcheveque & Lesieur (1981) 3.5

Thomson's corrected EDQNM, Thomson (1996) 1.4

E�ective Hamiltonian method, Nakao (1991) 3.5

6 Comparison of di�erent Q1D models of relative dis-

persion for Modestely Large Reynolds Number Tur-

bulence (Re� ' 240)

The models noted in the previous section were developed for the case of a turbulece with a

reach inertial subrange. In this case the DNS methods cannot be used since nowdays, the DNS

data are available around Re� ' 240 (Yeung, 2000). Therefore, to make the validation through

comparisons with DNS method, we can do it only for models with modestely large Reynolds

number turbulence.

6.1 Parametrisation of Eulerian statistics.

Here we turn to a not developed turbulent �ow whose characteristic L=� ' 500. In this case the

scales go from the viscous ones, pass through a transitional region and goes to the external one.

But it should be noted that the transitional range can be considered as an analog of the inertial

subrange only in terms of the Eulerian statistical characteristics. For the Lagrangian statistics

however this interval does not show the inertial subrange behaviour (Yeung, 2000).

Thus we have to make the assumption that r(t); ur(t) is a Markov random process governed by

(3.1 ) with the value C0 depending on the distance r such that C0 tends to a constant value as

r=� is getting large.
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Dimensional arguments show that in the case of stationary and isotropic turbulence

p
k

E(v; r) =
1

�(r)
fE(

v

�(r)
; r); (6.12 )

where �(r) = hu2Eri1=2 is r.m.s of the longitudinal component of the Eulerian velocity di�erence

uE(r) = UE(x+ r)�UE(x):

uEr = (uEi(x+ r)� UEi(x))
ri

r
;

and fE(�; r) is a dimensionaless pdf on the dimensionaless velocity �r = uEr=�(r). It follows

from (5.7 ) that

X(r; v) =
�2

r
~X(r;

v

�(r)
);

~X(r; �) = C0(r)
�"r

�3
@ ln fE

@�
�  0(r)�

2 � (2�  0)

�R
�1

�0fE(�
0; r) d�0

fE(�; r)
;

where

 0 =  0(r) = �r d ln�
dr

= �r
2

d lnhu2ri
dr

:

If we pass to the dimensionaless velocity �r(t) = ur(t)=�(r(t)) then Q1D model reads:

dr = �(r)�r dt; d�r =
�(r)

r

n
~X(r; �r) +  0(r)�

2

r

o
+

(C0(r)�")
1=2

�(r)
dW (t): (6.13 )

Now, we have to specify the Eulerian velocity fE(�; r) and the function �(r).

Concerning the density fE(�; r), we assume that the �rst four moments are given by (Borgas &

Yeung, 1998):

h�ri = 0; h�2r i = 1; h�3i = hu3Eri
hu2Eri3=2

; h�4i = hu4Eri
hu2Eri2

where

u2Er(r) = 2�21

 
r2

!2�2 + r2

!
2=3  

r2

�2L2 + r2

!
1=3

;

hu3ri = ��31

�
r

L

�
3
 

L2

!3�2 + r2

! 
L2

�3L2 + r2

!
4

;

hu4ri = 4k�4
1

 
r2

!4�2 + r2

!4=3  
r2

�4L2 + r2

!2=3

:

Here �1 = [UEiUEi]
1=2

is the one-point root-mean-square (rms) velocity �uctuations, L = �3
1
=�",

the dimensionaless constants �; k ; !2; !3; !4;�2;�3;�4 in this parametrizations are

�2 =

�
2

C

�
3

; �3 = 1:; �4 = �2

�
k

Ki

�3=2

; k = 3:; � = �4

5
(�3)

4;

!2 =
164:32p

�2

; !3 = �4

5

!2�
1=2
2

23=2S0
; !4 = !2

�
Ki

K0

�3=4

; K0 = 7:5; S0 = �0:5; Ki = 3:4 :
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6.2 Bi-gaussian pdf.

Here we present comparisons of the Lagrangian statistical characteristics obtained by the model

(6.13 ) with the results obtained by DNS. The pdf fE(�; r) is choosen as the following bi-Gaussian

density with unknown parameters p; �1; �2; �1; �2:

fE(�; r) =
pp
2��1

exp f � (� � �1)
2

2�2
1

g+ 1� pp
2��2

exp f � (� � �2)
2

2�2
2

g:

p�1 + (1� p)�2 = 0; p(�21 + �21) + (1� p)(�22 + �22) = 1;

p(�3
1
+ 3�1�

2

1
) + (1� p)(�3

2
+ 3�2�

2

2
) = S

p(�4
1
+ 6�2

1
�2
1
+ 3�4

1
) + (1� p)(�4

2
+ 6�2

2
�2
2
+ 3�4

2
) = F;

where S = S(r) =
hu3

Er
i

hu2
Er
i3=2

and F = F (r) =
hu4

Er
i

hu2
Er
i2

are the skewness and the �atness of uEr,

respectively.

To determine uniquely the 5 unknown parameters, we use the closure assumption (Luhar et al.

1996) which has proven to be reasonable:

�1

�1
= ��2

�2
= m; (6.14 )

where m = m(r) is the solution to the equation

F =

 
1 +

(1 +m2)3S2

(3 +m2)2m2

!
3 + 6m2 +m4

(1 +m2)2
:

The assumption (6.14 ) allows to obtain the unknown parameters �1 and �2 explicitly:

�1 =

�
1� p

p(1 +m2)

�
1=2

; �2 =

�
p

(1� p)(1 +m2)

�
1=2

;

where

p =
1

2

"
1�

�
a

4 + a

�
1=2
#
; a =

(1 +m2)3S2

(3 +m2)2m2
:

In Fig.1, the dimensionless rms of the relative separation as a function of dimensionless time is

presented. Calculations by the model (6.13 ) were carried out for two initial separations: r0 = 16�

(lower solid curve) and r0 = 64� (upper solid curve). The Kolmogorov constant was chosen as

C = 2:13 while C0(r) is a piecewise linear function: C0(0) = 0; C0(r) = 5 for r � 30�. The

relevant DNS data are shown as the dotted curves. In Fig.2 and Fig.3 the skewness and �atness

factors, respectively are shown as functions of dimensionless time. In these curves, the upper

solid lines correspond to the initial separation r0 = 16�, and the lower solid lines - to r0 = 64�.

The DNS data are also shown as dotted curves, where r0 = 16� and r0 = 64� correspond to

the upper and lower lines, respectively. As the results of Fig.1 show, the model describes the

rms of the separation well for dimensionalless times from 0 to 10. There is some discrepancy

between the model and DNS data for larger times. As to the skewness and �atness factors,

we can only state a qualitative agreement with the DNS data: the model overestimates these

factors, compared to the DNS results, in the time interval intermediate between the viscous and

external ranges.
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Fig.1: The dimensionless rms of the relative separation; LSM indicates the data

obtained by the Lagrangian stochastic model.
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Fig.2: The skewness factor of the relative separation.
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Fig.3: The �atness factor of the relative separation.

It should be noted that our calculations with the bi-gaussian pdf with other types of closure

assumptions show qulitatively the same picture. We conclude thus that the bi-gaussian pdf is

not the right choice. Therefore we try another class of densities, based on the quadratic-form

approximation of the conditional acceleration. These densities have a di�erent tail behaviour

which might have a large impact on the skewness and �atness factors. Such indications were

reported recently by M. Borgas (Borgas, 2000).

6.3 Q1D quadratic-form model

Let us show that realizability condition will be satis�ed if there exists a positive solution p
k

E to

the equation (5.6 ) with the quadratic-form of the conditional acceleration (5.8 ) which is a pdf

of the variable ur: Z 1

�1

p
k

E(ur; r) dur = 1; 8r � 0: (6.15 )

and there exists a point r0 such that

ur(r0) = 0; u2r(r0) = �2(r0); u3r(r0) = �(r0); u4r(r0) = #(r0): (6.16 )

Here and below we denote by overbar the average over this pdf. In order to proove this assertion

let us integrate the equation (5.6 ) on ur to get r2ur = const which yields ur(r) = 0 since

ur(r0) = 0.

Further multipying the equation (5.6 ) by ur and then integrating over ur we get

1

r2
dr2u2r
dr

= �+ u2r:

This yields u2r(r) = �2(r) since the functions u2r and �2(r) satis�e the same equations and the

common initial conditions at r = r0 (see (6.16 )).

Multiplying the equation (5.6 ) by u2r and u
3
r , and integrating over ur we �nd that the functions
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u3r and u4r satisfy the same equations as the functions �(r) and #(r), respectively. From these

and the conditions (6.16 ) it follows that

u3r(r) = �(r); u4r(r) = #(r);

i.e., the realizability condition is established.

Let fE(�; r) be a dimensionless pdf de�ned by (6.12 ). Then the transport equation (5.6 ) can

be rewritten in the form:

�r
@f(�; r)

@r
+ (b0 + b1� + b2�

2)
@f(�; r)

@�
+ (c0 + c1�)f(�; r) = 0; (6.17 )

where b0; b1; b2; c0; c1 are dimensionless functions depending on r:

b0(r) = �0(r); b1(r) = �0(r); b2(r) = 0(r) +  0(r);

c0(r) = b1(r); c1(r) = 2 + 20(r) +  0(r);

and �0(r), �0(r), 0(r) and  0(r) are determined in (5.10 ).

Remark. If we assume that for some �; r1 and r2 the following conditions are valid

hu2ri
r�

= const; S(r) = const; F (r) = const; r1 � r � r2 : (6.18 )

then from (5.10 ) and (6.18 ) it follows that the coe�cients b0; b1; b2; c0; c1 are constants, say,

~b0;~b1;~b2; ~c0; ~c1 in the subrange r1 � r � r2. For example in the far-viscous subrange r � �,

in the inertial subrange � � r � L and in the external subrange r � L these conditions are

ful�lled.

This property can be used to de�ne the boundary conditions to the transport equation for the

function f(�; r). Indeed, let f0(�) be a solution to the following ODE:

(~b0 +~b1� +~b2�
2)
df0(�)

d�
+ (~c0 + ~c1�)f0(�) = 0

satisfying the condition Z 1

�1

f0(�) d� = 1:

We can consider the pdf f0(�) as an approximation to the pdf f(�; r) in the subrange r1 � r� r2.

Choosing r0 in the interval r1 � r0 � r2 we put the following boundary condition for the

equation (6.17 ):

f(�; r = r0) = f0(�); (6.19 )

and the condition (6.15 ) rewritten in the form:

Z 1

�1

f(�; r) d� = 1; 8 r � 0: (6.20 )

It should be noted that the problem of existense of the solution to (6.17 ) with boundary condition

(6.19 ) and normalization (6.20 ) requires a special attention and is currently studied by the

authors.
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7 Conclusion

Comparisons of the Q1D against the known Lagrangian stochastic well-mixed quadratic form

models and the moments approximation models are presented. The comparison is made in the

inertial sub-range of turbulence, where g, the Richardson constant in the cubic law of relative

di�usion is calculated. The Q1D models give some overestimation of the Richardson constant,

compared to the two mentioned models. The discrepance is larger for the Q1D model with the

gaussian pdf pE , while the Q1D models with nongaussian pdf lead to smaller di�erence. Agreem-

net of Q1D model with other theoretical models (presented in Table 3) is more pronounced.

In the case of modestly large Reynolds numbers (Re� ' 240) turbulence the comparison of

the Q1D model (with a bi-gaussian pE) with the DNS data is made. Being in a qualitatively

agreemnet with the DNS data, the Q1D model predicts higher rate of separation. The higher

moments (e.g., skewnws and �atness of separation) show a larger discrepancy. This suggests a

need to develope the Q1D model with a non bi-gaussian pdf, for instance, extracted from the

transport equation with a quadratic form of the conditional acceleration. A realizable model of

such type is mentioned in the last section.
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