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Abstract. We study a pair of populations in R2 which undergo di�usion and

branching. The system is interactive in that the branching rate of each type

is proportional to the local density of the other type. For a di�usion rate

suÆciently large compared with the branching rate, the model is constructed

as the unique pair of �nite measure-valued processes which satisfy a martingale

problem involving the collision local time of the solutions. The processes are

shown to have densities at �xed times which live on disjoint sets and explode

as they approach the interface of the two populations. In the long-term limit,

global extinction of one type is shown. The process constructed is a rescaled

limit of the corresponding Z2{lattice model studied by Dawson and Perkins

(1998) and resolves the large scale mass-time-space behavior of that model.
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1. Introduction and statement of results

1.1. Background and motivation. In [DP98] solutions to the following system

of stochastic partial di�erential equations were studied:

@

@t
X i

t(x) =
�2

2
�X i

t(x) +

q
 X1

t (x)X
2
t (x)

_W i

t (x);(1)

(t; x) 2 R+ � R; i = 1; 2: Here � is the one-dimensional Laplacian, �;  are

(strictly) positive constants (the migration and collision rate, respectively), and
_W 1; _W 2 are independent standard time-space white noises on R+ �R: Our goal is
to study the same system of equations for x 2 R2 : As we explain below, from one

point of view, existence in two dimensions appears to be counter-intuitive. This

is the reason why six di�erent people were attracted to this question and �nally

combined their e�orts.

Recall that

@

@t
Xt(x) =

�2

2
�Xt(x) +

q
%t(x)Xt(x) _Wt(x) on R+ � R(2)

is the stochastic partial di�erential equation for the density of a one-dimensional

super-Brownian motion (SBM) ([KS88, R89]) with branching rate at time t at x
equal to %t(x) (bounded in t and x): As a measure-valued process it arises as the

large population (N particles), small mass (N�1) per particle limit of a system of

critical binary branching Brownian motions with di�usion rate �2 which branch

at rate N%t(x) at site x at time t: Equivalently each Brownian particle with path

s 7! �s branches according to the additive functional t 7! N
R
t

0
ds %s(�s): Although

the limit exists in higher dimensions as the unique solution of an appropriate mar-

tingale problem, the resulting process takes values in the space of singular measures

and it is easy to use this fact to see that (2) has no solutions in higher dimensions

(see Remark 1.4 of [DP99]). The problem is that in higher dimensions the crit-

ical branching (which tends to cluster the population on a small set) overpowers

the di�usion. This situation is typical of parabolic spde's driven by white noise:

Solutions seem to only exist in one spatial dimension (see [Wal86]).

One way to rectify this situation in the branching context is to replace

(%t(x)dx; t � 0) by a collection of singular measures, i.e., have the branching only

take place on singular sets. Delmas [Del96] showed if the branching takes place on a

Lebesgue null set (the catalyst) independent of time and satisfying a mild regularity

condition guaranteeing that the null set is not polar for Brownian motion (more

precisely, particles branch according to an additive functional with Revuz measure

supported by this null set) then the associated super-Brownian motion (reactant)

has a density at all times with probability one.

A particular time-dependent case was introduced by Dawson and Fleischmann

[DF97a] and di�erent aspects of this model were investigated in [DF97b],[EF98],

[FK98] and [DF98]. In this model the catalyst itself is a super-Brownian motion
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% and the resulting reactant model X% exists and has a nice density in 3 dimen-

sions and less. In higher dimensions an intrinsic Brownian reactant particle's path

will not hit the support of an independent super-Brownian catalyst and hence the

reactant process degenerates into heat ow as there can be no branching. The

construction of such a model poses no diÆculties in principle as one �rst constructs

the super-Brownian catalyst and then builds a super-Brownian motion (reactant)

whose branching rate is governed by this catalyst.

The situation in (1) is quite di�erent as one has a truly interacting system

consisting of two types in which the branching rate of one type is given by the

local density of mass of the other, that is, each type catalyzes the branching of

the other. Let S(�) denote the closed support of a measure �: Assume for the

moment that X = (X1; X2) is a solution to (1) for (t; x) 2 R+ � R2 , where the
_W 1; _W 2 are independent white noises on R+�R2 : Then the singularity of ordinary
(2-dimensional) SBM (or of SBM with a strictly positive branching rate) suggests

that S(X1
t ) \ S(X2

t ) is Lebesgue null, and the requirement in (1) that X i solves

the heat equation away from this null set shows that X i
t
should have a density away

from this null set. In fact this would suggest that X1
t
(x)X2

t
(x) = 0 for almost all x

and so (1) degenerates into a pair of heat ows which of course do not solve (1).

To circumvent this non-existence argument we will work with the following mar-

tingale problem formulation of (1) in two dimensions. We write h�; 'i to denote the
integral of a function ' with respect to a measure �. For �xed constants �;  > 0;
let X =

�
X1; X2

�
be a pair of continuous measure-valued processes such that for

an appropriate class of test functions 'i ,

M i

t
('i) :=



X i

t
; 'i
�
�


�i; 'i

�
�
Z
t

0

ds
D
X i

s
;
�2

2
�'i

E
;(3)

t � 0; i = 1; 2; are orthogonal continuous square integrable martingales starting
from 0 at time t = 0 and with continuous square function



M i('i)
��
t
= 

Z
[0;t]�R2

LX
�
d[s; x]

�
'2
i
(x):(4)

Here LX is the collision local time of X1 and X2; loosely described by

LX
�
d[s; x]

�
= ds X1

s (dx)

Z
R2

X2
s (dy) Æx(y)(5)

(a precise description is given in De�nition 1 below via a smoothing procedure). It

is not hard to see that if a solution to (1) (for 2 dimensions) is locally bounded (in

both space and time) and has the appropriate square integrability properties then

the associated measure-valued processes will satisfy (3) and (4), and so the above

martingale problem is a natural generalization of (1). We will show (see Theorem 11

and 17 below) that under appropriate conditions on the �nite initial measures and

for =�2 suÆciently small, solutions to this martingale problem exist and satisfy

the intuitive description given in the paragraph prior to (3): Each population X i
t

has a density denoted by the same symbol X i
t ; and X1

t (x)X
2
t (x) = 0 for Lebesgue-

a.a. x. Indeed we will give an explicit expression for the joint law of these densities

for �xed values of t and x (see Theorem 17). Evidently these densities cannot be

locally bounded since in that case we can easily show that

LX
�
[0;1)� R2

�
=

Z 1

0

ds

Z
R2

dx X1
s (x)X

2
s (x) = 0 a.s.,(6)
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and again our solutions become a pair of solutions to the heat equation, hence

LX
�
[0;1)� R2

�
> 0 contradicting (6). In fact we will show that each of these

densities becomes unbounded near any point in the interface of the two types given

by the support of the collision local time (Corollary 19). This bad behavior of the

densities near the interface is borne out by simulations of Achim Klenke which you

can �nd on his webpage http://www.mi.uni-erlangen.de/~klenke.

The question of uniqueness of solutions to the above martingale problem is also of

interest. Although there has been some progress recently in establishing uniqueness

for a variety of interactive measure-valued branching processes (e.g. Dawson and

March [DM95], Perkins [Per95], Donnelly and Kurtz [DK99], Athreya and Tribe

[AT00]) this question for interactive branching di�usions in which the branching

rate depends on the present state of the system remains unresolved in general. For

the one-dimensional case (1), Mytnik [Myt98] obtained uniqueness by an exponen-

tial self-duality. It will be more diÆcult to implement this approach here due to

the bad behavior of the densities. Nevertheless, the problem of uniqueness will

be resolved in a companion paper [DFMPX00a] under an additional integrability

condition (IntC) involving the trajectories of X; introduced in De�nition 7 below.

In the latter paper this condition will be veri�ed for the solutions constructed in

Theorem 11 by means of the moment calculations in Section 3 which are carried out

in terms of a function-valued dual. We state the uniqueness result and associated

Markov property as Theorem 11 (b) as it will play an important role in our study

of the longtime behavior of the solutions (Theorem 20) and the proof of segregation

of the two populations (Theorem 17 (b)).

The existence of our solutions will be established by means of rescaling the lat-

tice versions of (1), constructed in [DP98] (in any number of dimensions). We will

use the moment bounds in Sections 3 and 4 (for �nite initial conditions satisfying a

suitable energy condition) to establish tightness of these rescaled processes provid-

ing =�2 is small enough. This restriction on the parameters is needed to ensure

that the higher (speci�cally fourth) moments used in the tightness arguments are

�nite. It is not hard to show that the approximating fourth moments blow up for

=�2 large enough, but we have not tried to �nd the best value of this ratio here.

We conjecture that solutions to (3) and (4) should exist for any positive values of 
and �: This is because 2+Æ moments should suÆce and as Æ ! 0, this should allow

any values of these parameters. The situation in higher dimensions is intriguing

and unresolved.

Many of the results of this paper had been obtained independently and at the

same time by two subgroups of the present authors and others were obtained after

we coalesced.

The present paper is completely restricted to the �nite measure-valued case. For

the in�nite measure case, we refer to our forthcoming paper [DEFMPX00b].

1.2. AMartingale Problem for Mutually Catalytic Branching. We start by

formulating our martingale problem for �nite measures. Let Mf =Mf(R
2 ) denote

the space of �nite measures on the Borel subsets B(R2) of R2 , with the topology

of weak convergence. Cb(R
2 ) is the space of bounded continuous functions on R2

with the supnorm k � k1 topology, and Cnb (R
2 ) is the subspace consisting of those

functions whose partial derivatives of order n or less are also in Cb (n could be a

natural number or 1). We let Ccom = Ccom(R2 ) denote the space of continuous

function on R2 with compact support.  and � are �xed positive constants. Write
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�;�x ; x 2 R2
�
for the Brownian motion in R2 with variance parameter �2;

pt(x; y) :=
1

2��2t
exp

h
� jy � xj2

2�2t

i
; t > 0; x; y 2 R2 ;(7)

for its transition density (j � j denotes the Euclidean norm), and fSt : t � 0g for the
corresponding semigroup. If � is a measure on R2 , set St� (x) :=

R
d�(y) pt(x; y).

De�nition 1 (Collision Local Time). Let X =
�
X1; X2

�
denote an M2

f {valued

continuous process where M2
f =Mf �Mf . The collision local time of X (if it

exists) is a continuous non-decreasing Mf{valued stochastic process t 7! LX(t) =
LX(t; � ) such that


L�;Æ
X
(t); '

�
�!



LX(t); '

�
as Æ # 0 in probability,(8)

for all t > 0 and ' 2 Ccom(R2 ); where

L�;Æ
X
(t; dx) :=

1

Æ

Z Æ

0

dr

Z t

0

ds SrX
1
s (x)SrX

2
s (x) dx; t � 0; Æ > 0:(9)

The collision local time LX will also be considered as a (locally �nite) measure

LX (ds; dx) on R+�R2 : 3

Note that we used an additional smoothing in time in de�ning the collision

local time, compared with other sources, as e.g. [BEP91]. Clearly if it exists as in

[BEP91], it will exist in the above sense and the processes will coincide.

All �ltrations will be assumed to be right-continuous and contain the null sets

at time 0.

De�nition 2 (Martingale Problem (MP)
�;

X0
). A continuous F�{adapted andM2

f (R
2 ){

valued process X = (X1; X2) on some probability space (
;F ;F�; P ) is said to

satisfy the martingale problem (MP)
�;

X0
; if for all 'i 2 C2

b(R
2 ), i = 1; 2;

M i

t ('i) = hX i

t ; 'ii � hX i

0; 'ii �
Z t

0

ds
D
X i

s;
�2

2
�'i

E
; t � 0; i = 1; 2;(10)

are orthogonal continuous L2 F�{martingales such that M i
0('i) = 0 and



M i('i)
��
t
= 



LX(t); '

2
i

�
; t � 0; i = 1; 2:(11) 3

Note that in this de�nition the initial state X0 may be random. To construct

solutions to this martingale problem we will need to impose a bivariate regularity

condition on the initial state.

Notation 3 (Energy Function). Introduce the energy function

g(x1 ; x2) := 1 + log+
1

jx2 � x1j
; x1; x2 2 R2 ;(12)

(recall that j � j denotes the Euclidean norm). 3

De�nition 4 (State Space Versions).

(a) (Energy Condition): Write � = (�1; �2) 2 Mf;e and say � satis�es the

energy condition, i� � 2 M2
f (R

2 ) and

k�kg :=


�1 � �2; g

�
< 1:(13)



6 DAWSON, ETHERIDGE, FLEISCHMANN, MYTNIK, PERKINS, AND XIONG

(b) (Strong Energy Condition): Write � = (�1; �2) 2Mf;se and say � sat-

is�es the strong energy condition, i� � 2M2
f (R

2 ) and for any p 2 (0; 1) there
is a constant c = c(p; �) such that

max
1� i;j� 2



�i � �j ; pr

�
� c r�p; r > 0:(14) 3

Remark 5. (a) Inequality (14) is trivially ful�lled for r � 1; and so we only need

to consider 0 < r < 1. By an elementary interpolation argument it actually suÆces

to consider only r = 2�n and so Mf;e is clearly a Borel subset of M2
f .

(b) An elementary calculation shows that for all T > 0 there are constants cT
and CT such that

cT g � 1 +

Z T

0

dr pr � CT g:(15)

In particular, by (14),

Mf;se � Mf;e :(16) 3

Next we introduce a lattice system of approximating processes we will use to

construct solutions to (MP)
�;

X0
.

Fix a deterministic X0 2 Mf;e and " 2 (0; 1]: Set

X i;"

0 (x) = "�2X i

0

�
"x+ [0; ")2

�
; x = (x1; x2) 2 Z2; i = 1; 2:(17)

Let fW i(x) : x 2 Z2; i = 1; 2g be a collection of independent standard one-

dimensional Brownian motions on (
;F ;F�; P ); and consider the unique (in law)

solution of

X i;"

t (x) = X i;"

0 (x) +

Z t

0

ds
�2

2
1�X i;"

s (x) +

Z t

0

dW i

s(x)

q
 X1;"

s (x)X2;"
s (x);

(18)

i = 1; 2; t � 0; x 2 Z2: See [DP98, Theorems 2.2 and 2.4] for the existence and

uniqueness of these solutions.

Via scaling we pass to processes indexed by "Z2 (instead of Z2) :

"X i

t(x) := X i;"

t"�2(x"
�1); i = 1; 2; t � 0; x 2 "Z2:(19)

Write x �" y if x and y are neighbors in "Z2; and introduce the discrete Laplacian
on "Z2 :

"�'(x) :=
X
y � "x

'(y)� '(x)

"2
; x 2 "Z2:(20)

If `" :=
P
y2"Z2 "

2Æy and d"x denotes integration with respect to `", let "Mf (R
2 )

denote the subspace of Mf(R
2 ) of measures with densities with respect to `". Also

denote by t 7! "X i
t
the "Mf (R

2 )-valued process with densities "X i
t
(x), i.e.,

h"X i

t ; 'i =

Z
"Z2

d"x "Xi

t(x)'(x) =
X
x2"Z2

"X i

t(x)'(x) "
2:(21)

Then "X i
0

�
fxg
�
= X i

0

�
x+ [0; ")2

�
for x 2 "Z2 and so clearly these initial states

satisfy "X i
0 ! X i

0 in Mf(R
2 ) as " # 0: The following lemma can easily be derived.
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Lemma 6 (Martingale Problem (MP)
�;;"

X0
). The process

"X on (
;F ;F�; P )
de�ned via (21), (19), (18), and (17), based on X0 2 Mf;e ; satis�es the following

approximate martingale problem (MP)
�;;"

X0
:

For each pair of bounded functions 'i : "Z
2! R; i = 1; 2;

h"X i

t ; 'ii = h"X i

0 ; 'ii +
Z t

0

ds
D
"Xi

s;
�2

2
"�'i

E
+ "M i

t('i);(22)

where

"M i

t
('i) =

Z
"Z2

d"x 'i(x)

Z
t"
�2

0

dW i

s
(x"�1)

q
X1;"

s (x"�1)X2;"
s (x"�1)(23)

(i = 1; 2) are orthogonal continuous L2 (F�){martingales such that

"
M i('i)

��
t
= 

Z t

0

ds

Z
"Z2

d"x '2i (x)
"X1

s(x)
"X2

s(x) =: 


"L "X(t); '

2
i

�
;(24)

i = 1; 2:

Existence of solutions to (MP)
�;

X0
will later follow by taking a weak limit point

of "X as " # 0. Our proof of uniqueness will require an additional integrability

condition:

De�nition 7 (Integrability Conditions on Path Space). For " > 0 and a pair � =

(�1; �2) of measures in Mf(R
2 ) we write

H"(�) :=

Z
R2

dx

Z
R2

dy

�
1 +

1

jx� yj

�
S"�

1(x)S"�
2(x)S"�

1(y)S"�
2
"
(y):(25)

(Integrability Condition (IntC)): A continuous M2
f {valued process X =

(X1; X2) on a probability space (
;F ;F�; P ) is said to satisfy the integrabil-

ity condition (IntC), if for all 0 < Æ < T <1;

E

�Z
T

Æ

ds H"(Xs)

���� FÆ� is bounded in probability as " # 0:

that is, for all � > 0 there is an M such that

lim
"#0

P

�
E

�Z
T

Æ

ds H"(Xs)

���� FÆ� > M

�
< �:(26)

(Strong Integrability Condition (SIntC): X is said to satisfy the stronger

(and simpler) integrability condition (SIntC) if

lim
"#0

E

Z
T

0

ds H"(Xs) < 1; T > 0:(27) 3

To describe the restriction on =�2, let ("�;�"x ; x 2 "Z2) denote the continuous

time simple symmetric random walk on "Z2 with generator �
2

2
"�. That is, "� jumps

to a nearest neighbor site at rate 2"�2�2. Introduce the corresponding transition

density "pt(x; y) = "�2�x(
"�
t
= y), x; y 2 "Z2 with respect to `", and f"St : t � 0g

the related semigroup.

The following elementary result is proved in Appendix A for the sake of com-

pleteness.
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Lemma 8 (Random Walk Kernel Estimates).

(a) (Local Central Limit Theorem): For all s > 0; with the heat kernel p

from (7),

lim
"!0

sup
x;y2"Z2

��"ps(x; y)� ps(x; y)
�� = 0:(28)

(b) (Uniform Bound): There is a universal constant c8 (independent of �2)
such that

sup
s�0; x;y2"Z2

"ps(x; y)s �
2 = sup

s�0

"ps(0; 0)s �
2 = c8 ;(29)

for all " > 0:

Remark 9 (Size of c8). Statement (a) is of course a standard local central limit

theorem. The value of the constant c8 of (b) enters in Theorem 11 below. To

estimate its value, write ~p instead of "p in the case " = � = 1: Then,

c8 = sup
t�0

t ~pt(0; 0):(30)

Now a direct calculation and exploiting Stirling's Formula (see [Fel68, p.52]) gives

c8 � e1=12=2 < 0:55: On the other hand, c8 � "pt(0; 0)t �
2; and it follows from (a)

that

c8 � t pt(0; 0) = (2�)�1 > 0:15:(31)

Consequently, c8 2 (0:15; 0:55): 3

Notation 10 (Path Space). Let 
Æ := C
�
R+ ;M2

f (R
2 )
�
with the usual topology

of uniform convergence on compact subsets of R+ . 3

Recall the spaces Mf;e and Mf;se introduced in De�nition 4.

Theorem 11 (Mutually Catalytic SBM in R2 ). Assume

=�2 < (3
p
6�c8)

�1(32)

and X0 2 Mf;e.

(a) (Existence): There is a process X on some (
;F ;F�; P ) satisfying the

martingale problem (MP)
�;

X0
and the integrability condition (IntC); and such

that Xt 2 Mf;e for all t � 0 a.s. If moreover X0 2 Mf;se ; then X will

satisfy (SIntC):
(b) (Strong Markov and Uniqueness): There is a (time-homogeneous) Bo-

rel Markov transition kernel P =
�
Pt(�; d�) : t > 0; � 2 Mf;e

	
on Mf;e

such that any process satisfying (MP)
�;

X0
and (IntC) on (
;F ;F�; P ) is (F�)-

strong Markov with transition kernel P. In particular, the law PX0
on 
Æ of

the solution in (a) is unique.

(c) (Lattice Approximation): Let "X denote the lattice system of approx-

imating processes given by (18), (19), with initial conditions (17) and let
"L"X be as de�ned in Lemma 6. As " # 0,

P
�
("X; "L"X) 2 �

�
=) P

�
(X; LX) 2 �

�
(33)

weakly on C
�
R+ ;M3

f (R
2 )
�
, where X satis�es (IntC) and is a solution to the

martingale problem (MP)
�;

X0
with LX as its collision local time.



MUTUALLY CATALYTIC BRANCHING IN R
2 (November 15, 2000) 9

(d) (Scaling Property): Assume that X satis�es (MP)
�;

X0
and (IntC), "; � >

0; z 2 R2 and bX i
t(A) := �X i

"2t
(z + "A), t � 0; A 2 B(R2 ); i = 1; 2. Then

( bX1; bX2) satis�es (MP)�;bX0

and (IntC) and so has law PbX0
.

The proof of (b) will be completed in a companion paper [DFMPX00a], but much

of the groundwork is laid in Section 3 below. The veri�cation of the integrability

conditions (IntC) and (SIntC) is also deferred to [DFMPX00a] as its main use is

the proof of (b) (although (SIntC) is also used in our description of the long term

behavior (Theorem 20)). The main ingredient in the proof of (IntC) is a bound

on its conditional 4th moments in terms of a function-valued dual (Theorem 53

below).

Remark 12. (i) Part (c) remains true for a wider class of lattice approximations

of the initial measure. It suÆces that "X0 approaches X0 weakly and satis�es the

conclusions of Lemmas 35 and 45(a) below.

(ii) Part (a) of Theorem 11 is valid if we only assume =�2 < 2=
p
6. To al-

low for this weaker condition, solutions may be constructed as limits as " # 0 of

smoothed models in R2 in which the branching rate of type i at time t at site x

is dx
R
R2
Xj

t
(dy) p"(x; y) (where j 6= i), instead of Xj

t
(dx): The proof in fact is

simpler than that for our lattice approximation but the latter is in many ways more

natural and is used in [DEFMPX00b] to shed some light on the large mass-time-

space behavior of the lattice systems studied in [DP98]. Part (b) remains valid for

=�2 < 1=
p
6.

(iii) The space Mf;se seems to be needed to get unconditional fourth moment

bounds (see, e.g. Theorem 54) and a simple second moment argument shows that

Xt 2Mf;se a.s. 8t > 0 (see Proposition 24 (a) below). We have not, however, been

able to show Xt 2 Mf;se 8t > 0 a.s. and this leads to an additional conditioning

argument in our construction and the use of the larger Mf;e as our state space. 3

We now state the key self-duality result, Proposition 2.13 from [DFMPX00a]

both because it is used below and because its proof uses our existence results

Theorem 11(a).

Proposition 13. Assume (32), X0 2 Mf;e and ~X0 = (~x10(x); ~x
2
0(x)) where ~xi0 is

bounded, non-negative and continuous. Then

PX0

�
exp

�
�


X1
t +X2

t ; ~x
1
0 + ~x20

�
+ i


X1
t �X2

t ; ~x
1
0 � ~x20

�	�
= lim

"#0
P~X0

�
exp

n
�
D
X1
0 +X2

0 ; S"
~X1
t
+ S" ~X

1
t

E
+ i
D
X1
0 �X2

0 ; S"
~X1
t
� S" ~X

2
t

Eo�
:

In [DFMPX00a] this proposition plays a major role in the proof of uniqueness in

Theorem 11(b) which is assumed implicitly in our notation. The result is therefore

stated there for any solution X of (MP)
�;

X0
and for a particular limit point, ~X from

Theorem 11(a).

We now introduce an integrability hypothesis on a possibly random initial state.

Recall the norm k � kg introduced in (13).

De�nition 14 (Random Energy Condition (EnC)). We say a possibly random

initial state X0 2 Mf;e satis�es the random energy condition (EnC) ifX
i=1;2

E


X i

0; 1
�2

+ EkX0kg < 1:(34)
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(If X0 2 Mf;e is deterministic, then (EnC) clearly holds.) 3

Although we will need either a dual process calculation or some explicit di�eren-

tial equation calculations to handle some higher moments, the covariance structure

of the solutions to (MP)
�;

X0
only requires some integrability conditions and (IntC)

is more than enough.

Proposition 15 (First Two Moments). Let X satisfy (MP)
�;

X0
on some �ltered

space (
;F ;F�; P ) for a possibly random X0 satisfying (EnC).

(a) (Expectation): Let ' : R2 ! R+ be a bounded Borel map. Then

EhX i

t
; 'i = EhX i

0; St'i < 1; t � 0; i = 1; 2:(35)

(b) (Correlation): For bounded measurable  : (R2 )2 ! R+ ; t � 0; and

i; j = 1; 2;

E


X i
t �Xj

t ;  
�
� E

Z
R2

dx1 StX
i
0 (x1)

Z
R2

dx2 StX
j

0 (x2) (x1; x2)

+ Æij  E

Z
t

0

ds

Z
R2

dx SsX
1
0 (x)SsX

2
0 (x)

�
Z
R2

dx1 pt�s(x; x1)

Z
R2

dx2 pt�s(x; x2) (x1; x2)

where all expressions are �nite. Moreover, equality holds if i 6= j.

(c) (Expected Collision Local Time): For measurable  : R+ � R2 ! R+ ;
bounded on each [0; T ]� R2 ; T > 0;

E

Z
[0;T ]�R2

dLX  �
Z
T

0

ds

Z
R2

dx  (s; x)ESsX
1
0 (x)SsX

2
0 (x) < 1:(36)

(d) (Identities under (IntC)): If, in addition, X satis�es the integrability

condition (IntC), then equality holds in both (b) and (c).

Note that it follows from (a) that the solution to (MP)
�;

X0
constructed in The-

orem 11 is not deterministic since hX i
t
; 'i � hX i

0; St'i will not satisfy (MP)
�;

X0
.

Alternatively we can see from (d) that the covariance structure of this solution is

not trivial.

We will now be able to state some more interesting properties of the solutions

to (MP)
�;

X0
. We begin by stating the absolute continuity and segregation of types

results mentioned in the introduction.

1.3. Segregated densities.

Notation 16 (Brownian Exit Time). Consider the (planar) Brownian motion � =
(�1; �2) with law �x ; x 2 R2+ ; and introduce its exit time

�ex := inf
�
t : �1t �

2
t = 0

	
;(37)

from the �rst quadrant. 3

Let `(dx) = dx denote Lebesgue measure. Here and elsewhere we will identify

integrable functions X(x) in C+
b with the �nite absolutely continuous measure

X(x)dx.
Here is our segregation result.
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Theorem 17 (Segregated Densities). Fix t > 0.

(a) (Absolute Continuity): If X is a solution to (MP)
�;

X0
on (
;F ;F�; P )

with a possibly random initial condition X0 2 M2
f
(R2 ), then X i

t
� ` a.s.

and so X i
t
(dx) = X i

t
(x)dx a.s. where

X i

t(x) =

8<: lim
n!1

S2�nX
i
t(x) if it exists,

0 otherwise.

(38)

(b) (Local Segregation): Let X0 2 Mf;e be �xed and Xt =
�
X1
t
; X2

t

�
the

functions from (38), and set StX0(x) :=
�
StX

1
0 (x); StX

2
0 (x)

�
: Then the fol-

lowing two statements hold:

(b1): For `{a.a. x;

PX0
(Xt(x) 2 � ) = �StX0(x) (��ex 2 � ) :(39)

(b2): With PX0
{probability one, X1

t
(x)X2

t
(x) = 0 for `{a.a. x; and soZ

R2

dx X1
t (x)X

2
t (x) = 0 PX0

{a.s.(40)

Remark 18 (In�nite Variance). (i) Note that (b1) implies

EX0

�
X i

t(x)
�2

=1 for `{a.a. x 2 R2+ and i = 1; 2;

for any X0 2Mf;e with X
i
0 6= 0, i = 1; 2.

(ii) It follows from (b) that the two populations segregate at each �xed time. The

\interface" between the two types, although Lebesgue null must be rather active

to generate a non-trivial collision local time and we show below (Corollary 19) that

the densities typically explode near it. The particular distribution arising in (b1)

also gave the large time limit for the lattice system (18) starting in constant initial

states. In fact, the counterpart of this latter result for solutions to (MP)
�;

X0
(Theo-

rem 20 below) plays a central role in the proof. Basically a scaling argument shows

that locally the joint densities x 7! Xt(x) relax to an equilibrium state instanta-

neously. In fact, when both types are present, the in�nitely large branching rate

will immediately drive one type to local extinction. The type to die is determined

by the exit distribution of planar Brownian motion from the �rst quadrant. 3

Let (38) de�ne our canonical and jointly measurable densities

X i : R+ � R2 � 
Æ ! [0;1); i = 1; 2:(41)

Let kX ikU denote the essential supremum ofX i (with respect to Lebesgue measure)

on the open set U � R+ � R2 .

Corollary 19 (Explosion at the Interface). If X0 2 Mf;e, then PX0
{a.s. for any

open set U � R+ � R2 ;

LX(U) > 0 implies kX1kU =1 = kX2kU :(42)

Example. Here is a simple time-independent example on the line which shows

how (unbounded) densities with disjoint supports may nonetheless have a non-zero

collision local time. Let 1 > �1; �2 > 0 and set

X1(dx) = u1(x)dx = x��11(x > 0)dx; X2(dx) = u2(x)dx = jxj��21(x < 0)dx:
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Then clearly u1(x)u2(x) � 0 but if �1+�2 = 1, the analogue of collision local time

is (' 2 Ccom(R2 ))

hLX; 'i = lim
"#0

Z
S"X

1(x)S"X
2(x)'(x)dx

= lim
"#0

Z Z Z
'(
p
"w)p1(w � z1)p1(w � z2)z

��1
1 jz2j��21(z2 < 0 < z1)dz1dz2dw

= '(0)

ZZ
p2(z1 � z2)z

��1
1 jz2j��21(z2 < 0 < z1)dz1dz2;

where we have used Dominated Convergence in the last line. Therefore the collision

local time of X is a (non-zero) constant multiple of the Æ0.

1.4. Global Extinction of One Type. The one-dimensional version of the fol-

lowing theorem is proved in [DP98, Theorem 6.6].

Theorem 20 (Global Extinction of One Type). Let X0 2Mf;e. Then�
hX1

t
; 1i; hX2

t
; 1i
�
�!
t"1

(X1
1; X

2
1) PX0

{a.s.,(43)

where

P
�
(X1

1; X
2
1) 2 �

�
= �(hX1

0 ;1i; hX
2
0 ;1i)

(��ex 2 � ):(44)

The a.s. convergence is immediate from the martingale convergence theorem, as

t 7! hX i
t ; 1i are non-negative martingales by (MP)

�;

X0
. The fact that X1

1X
2
1 =

0 a.s. will require a re�nement of the proof for the lattice case given in [DP98,

Theorem 1.2 (b)]. In particular, we need to consider the rate of convergence in that

result.

2. Preliminaries

In this section we prove Proposition 15 and identify the natural state space for

X.

2.1. Green Function Representation. Assume X is a solution of (MP)
�;

X0
on

(
;F ;F�; P ) whereX0 is an F0{measurableM2
f (R

2 ){valued initial state. Let Mloc

denote the space of continuous (F�)-local martingales such that M0 = 0 and, for

T > 0 �xed, M2[0; T ] the space of continuous square integrable (F�){martingales
on [0; T ], where processes which agree o� an evanescent set are identi�ed. Let M2

be the space of continuous square integrable (Ft)-martingales on R+ .
Let P denote the �-�eld of (F�)-predictable sets in R+ �
 and de�ne

L2loc :=

�
 : R+ �
� R2 ! R :  is P � B(R2 ){measurable

and

Z
[0;t]�R2

LX(!)

�
d(s; x)

�
 2(s; !; x) < 1 8t > 0; a.s.

�(45)

By starting with functions  of the form

 (s; !; x) =

kX
m=1

 m�1(!)'m(x)1(tm�1;tm](s)(46)
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for some 'm 2 C2
b(R

2 ),  m�1 2 bFtm�1
(the space of bounded Ftm�1

{measurable

maps), and 0 = t0 < � � � < tk � 1, and de�ning [with M i from the martingale

problem (MP)
�;

X0
]; for i = 1; 2;

M i

t
( ) =

Z
[0;t]�R2

dM i(s; x) (s; x) :=

kX
m=1

 m�1
�
M i

t^tm('j)�M i

t^tj�1
('j)

�
;

(47)

we may uniquely extend M i to linear maps M i : L2loc !Mloc; such that


M i( i);M

j( j)
��
t
=  Æi j

Z
[0;t]�R2

LX
�
d(s; x)

�
 i(s; x) j(s; x)(48)

t � 0 a.s. for all  i 2 L2loc : This may be done as in [Per00, Proposition II.5.4] or

[Wal86, Chapter 2]. The M i are orthogonal martingale measures. If in addition,

 2 L2 :=

�
 2 L2loc : E

Z
[0;t]�R2

dLX  2 <1; 8t > 0

�
;(49)

then M i( ) 2 M2. The martingale problem (MP)
�;

X0
shows that M i(1) belongs

to M2, hence the constant function 1 is in L2 and so

every bounded and P � B(R2 ){measurable  is in L2 and M i( ) 2M2:(50)

We need to extend (MP)
�;

X0
to time-dependent test functions.

Notation 21 (Time-space Test Functions). If T > 0, let DT denote the set of all

bounded Borel maps  : [0; T ]� R2 ! R satisfying:

(a): For any x 2 R2 , the map t 7!  (t; x) is absolutely continuous and _ (t; x) =
@ 

@t
(t; x) is uniformly bounded in (t; x) and continuous in x for each t 2 [0; T ].

(b): For each t in [0; T ], the mapping x 7!  (t; x) belongs to C2
b(R

2 ); and
� (t; � )(x) is uniformly bounded in (t; x). 3

Lemma 22 (Extension of the Martingale Problem (MP)
�;

X0
). If  i 2 DT , i =

1; 2, then

hX i

t ;  i(t)i =


X i

0;  i(0)
�
+

Z t

0

ds

�
X i

s;
_ i(s) +

�2

2
� i(s)

�
+M i

t ( i);(51)

t 2 [0; T ]; where M i( i) belongs to M2; and


M i( i);M

j( j)
��
t
= Æi j 

Z
[0;t]�R2

LX
�
d(s; x)

�
 i(s; x) j(s; x):(52)

Proof. This may be done just as for ordinary superprocesses; see, e.g., [Per00,

Proposition II.5.7]. The argument proceeds by approximating  (s; x) by an appro-

priate sequence of step functions in t.

Corollary 23 (Green Function Representation). Let i = 1; 2: If 'i : R
2 ! R is

bounded and measurable, then for any �xed T > 0,

hX i

t
; ST�t'ii = hX i

0; ST'ii+N i;T

t
('i); 0 � t � T; a.s.;(53)

where

t 7! N i;T

t
('i) =

Z
[0;t]�R2

dM i(r; x)ST�r'i(x) belongs to M2[0; T ];(54)
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and 


N i;T ('i); N

j;T ('j)
��
t
= Æij 

Z
[0;t]�R2

LX
�
d(s; x)

�
ST�s'i(x)ST�s'j(x):(55)

In particular,

hX i

T ; 'ii = hX i

0; ST'ii+N i;T

T
('i) a.s. 8T > 0:(56)

Proof. Let ' 2 C2
b(R

2 ) and  (s; x) = ST�s'(x) for (s; x) 2 [0; T ] � R2 . Then

 2 DT because _ (s; x) = (��2=2)�ST�s'(x) = (��2=2)ST�s�'(x). The result
follows for such ' 2 C2

b(R
2 ) by Lemma 22. Now pass to the bounded pointwise

closure to get the result for all bounded measurable �.

2.2. First and Second Moments: Proof of Proposition 15. We proceed in

several steps.

Step 1Æ (Proof of (a)) The equality in (a) is immediate upon taking expectations

in Corollary 23 and using (EnC) (14) for the �niteness of the mean.

Step 2Æ Assume that  = '1 
 '2 with '1; '2 2 bB(R2 ): Corollary 23 shows

that

EhX i

t ; 'iihXj

t ; 'ji = EhX i

0; St'iihXj

0 ; St'ji(57)

+ Æij  E

Z
[0;t]�R2

LX
�
d(s; x)

�
St�s'i(x)St�s'j(x);

since by conditioning on X0 the cross terms vanish.

Step 3Æ (Proof of (c)) Before completing the proof of (b) we will consider (c).

Assume  (s; x) = '(x) with ' 2 C+com(R2 ): By De�nition 1 and Fatou's lemma,

E


LX(T ); '

�
� lim inf

Æ#0
E


L�;Æ
X
(T ); '

�
(58)

= lim inf
Æ#0

E
1

Æ

Z Æ

0

dr

Z T

0

ds

Z
R2

dxSrX
1
s (x)SrX

2
s (x)'(x)(59)

= lim inf
Æ#0

E

Z
R2

X1
0 (dy1)

Z
R2

X2
0 (dy2)(60)

� 1

Æ

Z
Æ

0

dr

Z
T

0

ds

Z
R2

dx pr+s(x; y1) pr+s(x; y2)'(x);(61)

where we used (57) to continue after (59). The term in (61) is bounded by

k'k1
1

Æ

Z Æ

0

dr

Z T

0

ds p2(r+s)(y1; y2) � c k'k1 g(y1; y2);(62)

where in the last step we used (15). But by (EnC) the bound in (62) is integrable

with respect to EX1
0�X2

0 : Hence, the limit inferior can be taken through the three
integrals in (60). It is then easy to let Æ ! 0 in the resulting integrand as we only

need to consider y1 6= y2 by (EnC). This gives

E


LX(T ); '

�
� E

Z T

0

ds

Z
R2

dx SsX
1
0 (x)SsX

2
0 (x)'(x)(63)

� cT k'k1EkX0kg < 1:(64)



MUTUALLY CATALYTIC BRANCHING IN R
2 (November 15, 2000) 15

By an obvious monotone class argument, claim (c) follows for bounded measurable

 on [0; t]� R2 .

Step 4Æ (Proof of (b)) We may apply (c) to (57) to get the claim (b) for the

special functions  used in step 2Æ: A monotone class argument then gives the

desired extension.

Step 5Æ (Proof of (d)) Assume (IntC): First consider again the case  (s; x) =
'(x) with a function ' 2 C+com(R2 ): Fix 0 < " < T: Suppose we can show

E
n

LX(T )� LX("); '

� ��� F"o =

Z
T�"

0

ds

Z
R2

dx '(x)SsX
1
"
(x)SsX

2
"
(x):(65)

Then by (57),

E


LX(T )� LX("); '

�
=

Z T

"

ds

Z
R2

dx '(x)ESsX
1
0 (x)SsX

2
0 (x):(66)

Now let " # 0: By (c), the left hand side of (66) converges to E


LX(T ); '

�
;

whereas by monotone convergence on the right hand side we obtain the required

expression. Provided we have (65), this proves equality in (c) under (IntC) for the

considered special  ; hence for all required  by Dominated Convergence and (c).

By (57), we then also get the equality in (b) under (IntC) for functions  of the

form '1 
 '2 with '1; '2 2 bB(R2 ); thus for all required  :
Step 6Æ To �nish the proof, it remains to show (65). First of all, (56) and (53) in

Corollary 23 give

X i

s
; '
�
�


X i

"
; Ss�"'

�
= N i;s

s
(')�N i;s

"
('); a.s. s � "; i = 1; 2:(67)

Therefore,

E
n

X1
s
; '
� 

X2
s
; '
� ��� F"o =



X1
"
; Ss�"'

� 

X2
"
; Ss�"'

�
; a.s. s � ":(68)

On the other hand, for Æ > 0; by the De�nition (1) of L�;Æ
X
;D

L�;Æ
X
(T )� L�;Æ

X
("); '

E
=

1

Æ

Z
Æ

0

dr

Z
T

"

ds

Z
R2

dx '(x)SrX
1
s
(x)SrX

2
s
(x):(69)

Thus, by (68),

E
nD
L�;Æ
X
(T )� L�;Æ

X
("); '

E ��� F"o
=

1

Æ

Z Æ

0

dr

"Z T

"

ds

Z
R2

dx '(x)Sr+s�"X
1
" (x)Sr+s�"X

2
" (x)

#

=
1

Æ

Z Æ

0

dr

"Z r+T�"

r

ds

Z
R2

dx '(x)SsX
1
" (x)SsX

2
" (x)

#
:(70)

Since r 2 [0; "]; the term in square brackets in (70) can be bounded above byZ
T

0

ds

Z
R2

dx '(x)SsX
1
"
(x)SsX

2
"
(x):(71)

But by (57), the expectation of this can be computed and equalsZ T+"

"

ds

Z
R2

dx '(x)SsX
1
0 (x)SsX

2
0 (x)(72)
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which is �nite by (36). Hence, (71) is �nite a.s. Therefore we may let Æ # 0 in (70)

and conclude that for any sequence Æn # 0;

lim
n"1

E
nD
L�;Æn
X

(T )� L�;Æn
X

("); '
E ��� F"o(73)

=

Z T�"

0

ds

Z
R2

dx '(x)SsX
1
" (x)SsX

2
" (x); a.s.

Thus, to prove (65) it suÆces to show that in probability

E
nD
L�;Æn
X

(T )� L�;Æn
X

("); '
E ��� F"o �!

n"1
E
n
hLX(T )� LX("); 'i

��� F"o :(74)

Note that by the De�nition 1 of the collision local time there is convergence in

probability of the corresponding expressions inside the conditional expectations.

On the other hand, by (69) and Jensen's inequality, we haveD
L�;Æn
X

(T )� L�;Æn
X

("); '
E2

� k'k21
T

Æn

Z
Æn

0

dr

Z
T

"

ds

Z
R2

dx

Z
R2

dy SrX
1
s
(x)SrX

2
s
(x) SrX

1
s
(y)SrX

2
s
(y)

� k'k21
T

Æn

Z Æn

0

dr

Z T

"

ds Hr(Xs)

[recall notation (25)]. Therefore,

E

�D
L�;Æn
X

(T )� L�;Æn
X

("); '
E2 ��� F"�(75)

� k'k21
T

Æn

Z Æn

0

dr

Z T

"

ds E
n
Hr(Xs)

��� F"o
which is bounded in probability as Æn # 0 by our assumption (IntC) (recall De�-

nition 7). A standard uniform integrability argument for conditional expectations

(Lemma 63 in Appendix B) now gives (74), and completes the proof of (d).

2.3. State spaces for X. Recall the state space versions Mf;s and Mf;se from

De�nition 4.

Proposition 24 (State Spaces). Assume X0 is a random initial state in Mf;e

satisfying the random energy condition (EnC) from De�nition 14, and X satis�es

(MP)
�;

X0
. Then:

(a): Xt 2 Mf;se a.s. for each t > 0.

(b): Xt 2 Mf;e for all t � 0 a.s.

Proof. (a) Fix t > 0: By Remark 5, for the veri�cation of (14) it suÆces to

consider 0 < r < 1. By Proposition 15 (b),

E
D
X i

t
�Xj

t ; pr

E
� E

Z
R2

dx1 StX
i

0(x1)

Z
R2

dx2 StX
j

0(x2) pr(x1; x2)

+ Æij  E

Z
t

0

ds

Z
R2

dx SsX
1
0 (x)SsX

2
0 (x)

�
Z
R2

dx1 pt�s(x; x1)

Z
R2

dx2 pt�s(x; x2) pr(x1; x2):
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The right hand side of this inequality can be written as

E
D
X i

0 �Xj

0 ; p2t+r

E
+ Æij  E

Z
t

0

ds pr+2(t�s)(0; 0)E


X1
0 �X2

0 ; p2s
�
:(76)

For the �rst term in (76), use p2t+r(y1; y2) � p2t+r(0; 0) � c(t); to get the

bound c(t)E


X i
0; 1
�

Xj

0 ; 1
�
: In the second term of (76), break the integral at

t=2: For the lower part, apply pr+2(t�s)(0; 0) � c(t); whereas for the second part,

use p2s(y1; y2) � c(t): This gives the bound

c(t)

Z t=2

0

ds E


X1
0 �X2

0 ; p2s
�

(77)

+ c(t)

Z t

t=2

ds pr+2(t�s)(0; 0)E


X1
0 ; 1
�

X2
0 ; 1
�

(78)

for the second term in (76). For (77) use (15) to bound it by c(t) kX0kg , whereas
in (78) the ds{integral can be bounded by c(t)

�
1 + log(1=r)

�
: Altogether,

E
D
X i

t
�Xj

t
; pr

E
(79)

� c(t)
�
1 + log(1=r)

�
E

� X
i=1;2

hX i

0 ; 1i2 + kX0kg
�
= c

�
1 + log(1=r)

�
;

where in the last step we used our assumption (EnC); and the constant c is

independent of r:
Next we want to apply this estimate for special values of r: In fact, if r belongs

to [2�n�1; 2�n); n � 0; then pr � 2 p2�n , and if p 2 (0; 1), then from (79),

E sup
0<r<1

rp
D
X i

t
�Xj

t
; pr

E
� 2 c

1X
n=0

2�np [1 + log 2n] < 1:

This proves Xt 2Mf;se a.s.

(b) We will use a Tanaka formula approach from [BEP91]. To prepare for this, for

�; " � 0; set

g�;"(x1; x2) :=
1

2
e"�=2

Z 1

"

du e��u=2 pu(x1; x2); x1; x2 2 R2 :

Note that

g�;" � e� g�;0; 0 � " � 1; � � 0;(80)

and we have pointwise convergence

lim
"#0

g�;" = g�;0; � � 0:(81)

It is easy to see ([BEP91, (5.6)]) that to each � > 0 there are positive constants

c� and C� such that

c� g � 1 + g�;0 � C� g(82)

[with the energy function g from (12)].

Let Xt = X1
t �X2

t . It follows from (MP)
�;

X0
and a bit of stochastic calculus,

just as in the derivation of (T") in Section 5 of [BEP91], that
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hXt; g�;"i = hX0; g�;"i

(83)

+

Z t

0

ZZ
g�;"(x1; x2)

�
X1
s (dx1)M

2(ds; dx2) +X2
s (dx2)M

1(ds; dx1)
�

+ �

Z t

0

ZZ
g�;"(x1; x2)X

1
s (dx1)X

2
s (dx2)ds� L̂"t (X)

where L̂"t (X) =
R t
0

RR
p"(x1 � x2)X1

s (dx1)X
2
s (dx2)ds: As g�;" is bounded the above

stochastic integral in (83), I"(t), is a continuous local martingale and we may choose
stopping times Tn " 1 a.s. such that sup

t�Tn I
"(t) � n. Then (83) implies

E(hXt^Tn ; g�;"i) � E(hX0; g�;")i+ �

Z t

0

E(hXs^Tn ; g�;"i)ds

� C�E(hX0; g)i+ �

Z
t

0

E(hXs^Tn ; g�;"i)ds (by (80) and (82)).(84)

Note also that (MP)
�;

X0
implies that hXt; 1i =



X1
t
; 1
� 

X2
t
; 1
�
is a martingale (we

also use EnC here) and so

E(hXt^Tn ; g�;"i) � jjg�;"jj1E(hXt^Tn ; 1i) = jjg�;"jj1E(hX0; 1i) <1.

It therefore follows from (84) that

E(hXt^Tn ; g�;"i) � c(�)E(hX0; gi)e�t; 8 t � 0; n 2 N:(85)

Note also by Proposition 15(b),

E(L̂"t (X)) = E

�Z t

0

ZZ
p"(y1 � y2)SsX

1
0 (y1)SsX

2
0 (y2)dy1dy2ds

�
= E

�Z t

0

ZZ
p"+2s(y1 � y2)X

1
0 (dy1)X

2
0 (dy1)ds

�
� c0(t)E(hX0; gi):(86)

It follows from (83) and the integrability implied by (85) and (86) that

Y nt � hXt^Tn ; g�;"i+ L̂"t^Tn(X) is a non-negative submartingale. Therefore by the

weak maximal inequality for any t;K > 0 �xed

P

�
sup

s�t^Tn
hXs; g�;"i > K

�
� P

�
sup
s�t

Y n
s
> K

�
� K�1E(Y nt )

� K�1 �c(�)e�t + c0(t)
�
E(hX0; gi):

First let n!1 and then "! 0 in the above and use Fatou's Lemma and (81) to

see that

P

�
sup
s�t

hXs; g�;0i > K

�
� K�1 �c(�)e�t + c0(t)

�
E(hX0; gi):

In view of the lower bound in (82), the required result is immediate.
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3. A function-valued dual for higher moments

In this section function-valued duals which are used to compute higher moments

are presented.

3.1. Lattice approximation moment dual V" and self-duality. Since it has

not been explicitly mentioned in [DP98], we start by pointing out that our lattice

approximations have �nite moments of all orders:

Lemma 25 (Moments of all Orders). Let " > 0: Assume
"X satis�es the mar-

tingale problem (MP)
�;;"

X0
of Lemma 6 with deterministic initial condition, X0 2

M2
f
(R2 ). Then for any integer m � 1, and T > 0 there is a constant C =

C
�
"; T;m; hX0; 1i

�
such thatX

i=1;2

E (sup
t�T

h"X i

t
; 1im) � C:(87)

Proof. Clearly we may assume m � 2 and " = 1; and we will suppress the index

" = 1 in our notation. Then, for i 2 f1; 2g �xed, t 7! hX i
t ; 1i � hX i

0; 1i =M i
t (1) is

a continuous L2{martingale such that for T > 0 �xed and t � T ,


M i(1)

��m=2
t

=

�


Z t

0

ds
X
x2Z2

X1
s (x)X

2
s (x)

�m=2

� c

Z
t

0

ds

� X
x2Z2

X1
s
(x)X2

s
(x)

�m=2
� c

Z
t

0

ds
X
i=1;2

hX i

s
; 1im

(where c = cm;;T ): Fix for the moment K � 1; and consider the stopping time

�K := T ^ inf
n
t :
P2

i=1hX i
t ; 1i � K

o
Burkholder's inequality then shows that for

any r 2 [0; T ];

E

0@X
i=1;2

sup
t�r^�K

hX i

t
; 1im

1A(88)

� c
X
i=1;2

hX i

0; 1im + c

Z
r

0

ds E

0@X
i=1;2

hX i

s^�K ; 1i
m

1A ;

with the constant c independent of r (and K): Since the expectation in the

integrand on the right hand side of this inequality can further be bounded from

above by E(
P
i=1;2 supt�s^�K hX i

t ; 1im); Gronwall's Lemma implies

E

0@X
i=1;2

sup
t��K

hX i

t
; 1im

1A � C(89)

where C = C(T;m; hX0; 1i) is independent of K: Letting K " 1 completes the

proof since �K " T:

Although in this paper we only use fourth order moments, we now introduce a

function-valued dual process V" = V";m which will describe moments of arbitrary

but �xed order m � 1 for solutions "X of (MP)
�;;"

X0
, with a �xed " 2 (0; 1]. The

state space of the dual is S" = S";m := C+
b

�
("Z2)m

�
� 2f1;:::;mg (with 2f1;:::;mg

denoting the power set of f1; : : : ;mg ); and elements in S" are denoted by (�; I).
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It is convenient to think of the argument of � as the spatial positions of a system of

m particles. Particles take two types: those corresponding to a coordinate whose

index is in I are of type 1, those corresponding to indices in Ic are of type 2. These
m particles have positions described by x 2 ("Z2)m: We give C+

b

�
("Z2)m

�
the

topology of pointwise convergence, to make S" a separable metric space.

Let "S
(m)
t denote the semigroup on Cb(("Z

2)m) obtained by running m inde-

pendent copies of our simple random walk "� (each with generator �
2

2
"�), and let

�
2

2
"�(m) denote the associated generator.

For 1 � j; j0 � m with j 6= j0; de�ne maps �j;j0 : (R2 )m ! (R2 )m and

fj;j0 : C
+
b

�
("Z2)m

�
! C+

b

�
("Z2)m

�
by

(�j;j0x)i :=

�
xi if i 6= j0;
xj if i = j0;

x = (x1 ; :::; xm) 2 (R2 )m;(90)

and

fj;j0(�) (x) := �(�j;j0x) "
�2 1(xj = xj0 )(91)

= �(�j;j0x)p
"

0(xj ; xj0 ):

De�nition 26 (Dual Process V"). For �xed m � 1; denote by V" = V";m =�
V"
t
: t � 0

	
the Markov process which has sample paths in the Skorohod space

D(R+ ;S"); and evolves as follows:

(a) (jumps): If V" is in the state (�; I); for each (ordered) pair (j; j0) in

I2 satisfying j 6= j0; the process V" jumps to
�
fj;j0(�); Infj0g

�
with rate

=2, and for each (j; j0) 2 (Ic)2 with j 6= j0; it jumps to
�
fj;j0(�); I [ fj0g

�
;

also with rate =2. (In particular, a jumping particle changes its type.) In

these cases we say j0 switches via j.
Let fTj : j � 1g denote the successive jump times, and set T0 = 0.

(b) (between jumps): Between jump times, the component � of V" evolves

according to the semigroup "S(m); whereas the component I is frozen. That

is,

if Tn � t < Tn+1 ; then �t(x) =
"S

(m)

t�Tn�Tn(x); and It = ITn :(92)

Let A" = A";m denote the (weak) in�nitesimal generator of V"; and P̂ "
V"

0
the

law of V" if V" starts in V"
0 (deterministic). 3

De�ne a duality function F : S" �M2
f ("Z

2)! R+ by

F (�; I; �1; �2) :=
Y
i2I

Z
"Z2

�1(dxi)
Y
j2Ic

Z
"Z2

�2(dxj)�(x):(93)

Then, for (�; I; �) 2 S" �M2
f ("Z

2),

A"F (�; �; �)(�; I) = F
��2
2
"�(m)�; I; �

�
(94)

+


2

X
(j;j0)2 I2

j 6=j0

�
F
�
f"j;j0(�); Infj0g; �

�
� F (�; I; �)

�

+


2

X
(j;j0)2 (Ic)2

j 6=j0

�
F
�
f"j;j0(�); I [ fj0g; �

�
� F (�; I; �)

�
:
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Hence, for � 2 M2
f ("Z

2);

F (V"

t ; �)� F (V"

0 ; �)�
Z t

0

ds A"F (V"

s ; �)(95)

is a P̂ "
V"

0
{martingale. [See (97) below for the integrability of F (V"

t ; �) with respect

to P̂ "
V"

0
:]

Let "X be our solution to (MP)
�;;"

X0
from Lemma 6 and denote the underlying

probability by P "
X0
: As usual X0 is a �xed element in Mf;e . If (�; I) 2 S", then

Itô's Lemma and the system of stochastic equations (18) de�ning the process "X

show that

F (�; I; "Xt) = F (�; I; "X0)

+

Z
t

0

ds

�
A"F (�; I;"Xs) + 

��jI j
2

�
+

�jIcj
2

��
F (�; I; "Xs)

�
+ M�;I

t
;

whereM�;I is a continuous L2{martingale which can be explicitly written in terms

of the Brownian motions arising in (18). (Note that the integrals in the duality

function (93) are actually sums.)

On the other hand, if A" is the weak generator of "X, then we have

A"F (�; I; �)(�) = A"F (�; �; �)(�; I) + 

��jI j
2

�
+

�jIcj
2

��
F (�; I; �);(96)

(�; I; �) 2 S" �M2
f
(R2 ).

Proposition 27 (Moment Duality for X"). For any V"
0 2 S", X0 2 Mf;e(R

2 ),

" 2 (0; 1]; and t > 0,

E"X0
F (V"

0;
"Xt) = Ê"V"

0

�
F (V"

t ;
"X0) exp

�


Z t

0

ds

��jIsj
2

�
+

�jIcs j
2

����
<1:

Proof. In view of (96) we only need to check the hypotheses (4.50) and (4.51) of

[EK86, Theorem 4.11] with � = 0 and �(�; I) =
�jIj
2

�
+
�jIcj
2

�
. Note that �(�; I) �

2
�
m

2

�
, so that (4.51) is obvious. Let Ns be the number of jumps of V

" up to time

s. Note that

Ê"
V"

0
�E""X0

�
sup

0�s;t�T
F (�s; Is;

"Xt)

�
� cÊ"

V"

0
("�2NT jj�0jj1)E""X0

�
sup
t�T

h"X1
t
; 1im + sup

t�T
h"X2

t
; 1im

�
<1;(97)

by Lemma 25. Then (4.50) in Theorem 4.11 of [EK86] is a simple consequence of

this.

It is not hard to see that the above moments grow too quickly for the moment

problem to be well-posed and hence do not characterize the law of "X. Mytnik's

exponential self-duality [Myt98] is still required for this. At times we will write "�
for � in V"; but note that we may de�ne "It = It to be independent of ".

A slight modi�cation of the proof of Theorem 2.4 (b) in [DP98] gives the following

self-duality relation for the discrete space processes:
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Lemma 28 (self-duality). Fix 0 < " � 1: Let
"X = ("X1; "X2) and

" eX =

("eX1; "eX2) denote independent mutually catalytic symmetric simple super-random

walks in "Z2 with initial states
"X0 = "� = ("�1; "�2) 2 "M2

f and
" eX0 = "' =

("'1; "'2) 2 (L1(d`"))2; respectively. Then the following duality relation holds for

these
"M2

f {valued processes:

P "� exp
h
�


"X1
t +

"X2
t ;
"'1 + "'2

�
+ i


"X1
t � "X2

t ;
"'1 � "'2

�i
= P "' exp

h
�


"�1 + "�2; "eX1

t +
"eX2
t

�
+ i


"�1 � "�2; "eX1

t � "eX2
t

�i
; t � 0;

(with i =
p
�1), where the terms


"
�j ;"eXk

t ;
�
; j; k = 1; 2; occurring in the exponent

at the right hand side are �nite P "'{a.s.

3.2. Limiting moment dual V. In order to let " # 0 in Proposition 27 we spe-

cialize to m = 4 and introduce the natural candidate for a limiting dual process V.

In order to de�ne the state space we introduce some notation.

Notation 29. For x = (x1; : : : ; xn) 2 (Rd)n; n � 1; we set

jxj := jx1j+ � � �+ jxnj:

We introduce the molli�er

�(x) := c1fjxj<1g exp
�
�1=(1� x2)

�
; x 2 R;

with c the normalizing constant so that
R
dx�(x) = 1. For � 2 R, set

�1�(x) :=

Z
dy e��jyj�(y � x); x 2 R;

and introduce the reference function

�1�(x) := �1�(x1) � � ��1�(xd); x = (x1; : : : xd) 2 Rd :

If ' is a (real-valued) function on Rd ; put

j'j� := sup
x2Rd

j'(x)j=��(x); � 2 R:

For � 2 R, let C� denote the set of all continuous functions such that j'j� is �nite.

Introduce the space

Crap = Crap(Rd ) := [�>0C�
of rapidly decreasing continuous functions. Let Mtem = Mtem(R

d ) denote the

subset of all measures � on Rd such that h�; ��i <1 for all � > 0. We topologize

the set of tempered measures Mtem by the metric

dtem(�; �) := d0(�; �) +

1X
n=1

2�n(j�� �j1=n ^ 1); �; � 2Mtem.

Here d0 is a complete metric on the space of Radon measures on Rd inducing the

vague topology, and j� � �j� is an abbreviation for j h�; ��i � h�; ��i j: Note that

(Mtem; dtem) is a Polish space and that �n ! � in Mtem if and only if h�n; 'i !
h�; 'i for all ' 2 Crap.
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The state space for this dual V will be S =Mtem((R
2 )4) � 2f1;:::;4g, although

our starting point V0 will be in

C+
b ((R

2 )4)� 2f1;:::;4g =: S0 :(98)

As before, we will identify functions �0 in C+
b with the �nite measure �0(x)dx in

Mtem. We abuse our earlier notation slightly and de�ne F : S �M2
f (R

2 ) 7! R+ by

F (�; I; �) =

� R
�(x1; : : : ; x4)

Q
i2I �

1(dxi)
Q
j =2I �

2(dxj), if (�; I) 2 S0
0; otherwise

and de�ne �j;j0 : (R
2 )4 7! (R2 )4 for 1 � j; j0 � 4 as before. If 1 � j; j0 � 4, then

fj;j0 : C
+
b ((R

2 )4) 7! Mtem((R
2 )4) is given by fj;j0(�) = � Æ �j;j0Æxj�xj0 , that is

fj;j0(�)(A) =

Z
A

dx1 : : : dx4 �(�j;j0x) Æxj�xj0 (x):(99)

It is easy to check this measure is in Mtem.

De�nition 30 (Dual Process V).

Let St be the 8-dimensional Brownian semigroup with variance parameter �2,

let �
2�
2

denote its generator and pt(x; y) the associated transition function. The

dynamics of the dual process V = Vm = (��; I�) 2 D(R+ ;S) are as follows:

(a) For each (j; j0) 2 I2
t
; j 6= j0; with rate =2,

(�t�; It�) jumps to (fj;j0(�t�); It�nfj0g), and for each (j; j0) 2 (Ict )
2; j 6= j0; with

rate =2, (�t�; It�) jumps to (fj;j0(�t�); It� [ fj0g).
Let 0 = T0 < T1 < T2 < : : : be the successive jump times.

(b) For Tn � t < Tn+1, Vt = (St�Tn�Tn ; ITn). 3

Remark 31. To ensure that this does de�ne a process Vt we need to check that

�Tn� 2 C+
b
((R2 )4) for all n � 1 a.s. so that fj;j0(�Tn�) is well-de�ned. For this

we will use induction to show if Tn < Tn+1 for all n � 0, then

On [Tn; Tn+1); �� is a continuous Mtem-valued process taking values in(100)

C+
b
(R8 ) for t 2 (Tn; Tn+1); and �Tn+1� = STn+1�Tn�Tn 2 C+

b
(R8 ).

For n = 0 this is clear as �0 2 C+
b
. Assume (100) for n�1 and consider n. Then

�Tn = fj;j0(�Tn�) 2Mtem and for t 2 [Tn; Tn+1)

�t(x) = St�Tn�Tn(x) =

Z
pt�Tn(x; y)�Tn(dy):

It is easy to see that if f 2 Crap, then hSt�Tn�Tn ; fi = h�Tn ;St�Tnfi is continuous
in t (e.g., use Dominated Convergence and Lemma 6.2(ii) of [Shig94]) and so �t
is continuous on [Tn; Tn+1) and �Tn+1� = STn+1�Tn�Tn . For t > Tn use the bound

pt�Tn(x; y) � ce�jxje��jyj (c; � may depend on (t; Tn)) and Dominated Convergence

to conclude that �t(�) is continuous for all t 2 (Tn; Tn+1) and the same is true for

�Tn+1�(�). For boundedness use the induction hypothesis to see that
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�Tn � k�Tn�k1Æxj�xj0 dx and so (take j = 1 and j0 = 2 for de�niteness)

�t(x) � k�Tn�k1
Z
pt�Tn(x; y1; y1; y3; y4)dy1dy3dy4

� k�Tn�k1p2(t�Tn)(x1; x2)
� c(t� Tn)

�1k�Tn�k1 <1:

The same reasoning shows that �Tn+1� is bounded. This completes the inductive

proof of (100).

It is clear from (100) that V� has sample paths in D(R+ ;S) a.s. Let P̂V0
denote

the law of V on D(R+ ;S).
Theorem 32 (Limiting Moment Dual V). Assume =�2 < (c8�

p
6)�1, X0 2Mf;e

where c8 is given by (30) and
"X is the solution to (MP)

�;;"

X0
of Lemma 6. Let

 :M2
f (R

2 )! R+ be a bounded continuous map and let f"mgm�1 be a sequence of

positive numbers with "m # 0. Assume either

(a) 0 = Æ < t and X0 2Mf;se, or

(b) 0 < Æ < t, f 6= 0g � f(�1; �2) : �1(R2 ) + �2(R2 ) � Kg for some K and the

law of
"mXÆ converges weakly in M2

f (R
2 ) as m!1 to a law PX0

(XÆ 2 � ).
Then for any �0 2 C+

b (R
8 ), I0 � f1; : : : ; 4g,

lim
m!1

E"mX0
F (V0 ;

"mXt) (
"mXÆ)

= ÊV0
�EX0

 
F (Vt�Æ ;XÆ) (XÆ) exp

"


Z
t�Æ

0

ds

��jIsj
2

�
+

�jIc
s
j

2

��#!
<1:

Remark 33. The proof (given below) is independent of the uniqueness results in

Theorem 11and will in fact be used in the derivation of uniqueness in [DFMPX00a].

By (100), �t�Æ 2 C+
b (R

8) a.s. and so on the right-hand side of the above,

F (�t�Æ ; It�Æ ;XÆ) =

Z
�t�Æ(x1; : : : ; x4)

Y
i2It�Æ

X1
Æ
(dxi)

Y
j =2It�Æ

X2
Æ
(dxj) a:s:(101)

The proof requires the following bound on "p which is proved in Appendix A.

Lemma 34. If r 2 (0; 1), then

sup
n
"ps(x; y) : 0 < s; 0 < "; jy � xj > sr=2 + "r

o
=: c34 < 1:(102)

If p; " > 0, de�ne

E";p("Xt) := sup
s>0

sp


"X1

t
� "X2

t
; "ps

�
(103)

and

Ep(Xt) := sup
s>0

sp


X1
t
�X2

t
; ps
�
+


X1
t
; 1
� 

X2
t
; 1
�
:(104)

The proof of case (a) also uses the following result which is a simple consequence

of the previous Lemma.

Lemma 35. If X0 2 Mf;se, then for any 0 < p0 < p < 1 there is a c35 =

c35(p; p
0; �) so that

sup
0<"

E";p("X0) � c35Ep0(X0) <1:(105)
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Proof. By Lemma 8 and the de�nition of "ps(x) we have

"ps(x) � c0(�)(s
�1 ^ "�2):(106)

If " > 0 and p0 2 (0; 1), thenZ
R2

X1
0 (dx1)

Z
R2

X2
0 (dx2)1(jx1 � x2j � ")

� c1(�)"
2


X1
0 �X2

0 ; p"2
�
� c1"

2(1�p0)Ep0(X0):

(107)

If p; r 2 (0; 1), then (106) and (107) show that

sp
Z Z

1(jx1 � x2j � sr=2 + "r) "ps(x1; x2)
"X1

0 (dx1)
"X2

0 (dx2)

� spc0(�)(s
�1 ^ "�2)

Z Z
1(jx1 � x2j � 4(sr=2 + "r))X1

0 (dx1)X
2
0 (dx2)

� spc0(�)(s
�1 ^ "�2)

Z Z
1(jx1 � x2j � 8(sr=2 _ "r))X1

0 (dx1)X
2
0 (dx2)

� c2Ep0(X0)s
p(s _ "2)r(1�p0)�1

� 2c2Ep0(X0)(s _"2)p�1+r(1�p
0):

Let 0 < p0 < p < 1 and choose r = r(p0; p) suÆciently close to 1 so that the

exponent of s in the above is positive. Use the above to bound s � 1 and Lemma

8(b) to handle s > 1 and conclude that

sup
0<";s

sp
Z Z

1(jx1 � x2j � sr=2 + "r) "ps(x1; x2)
"X1

0 (dx1)
"X2

0 (dx2)

� 2c2Ep0(X0) + c8�
�2hX1

0 ; 1ihX2
0 ; 1i:(108)

Combine this with Lemma 34 and (107) to see that

sup
0<"

E";p("X0) � 2c2Ep0(X0) + (c34 + c8�
�2)hX1

0 ; 1ihX2
0 ; 1i:(109)

The result follows.

The proof of case (b) of Theorem 32 will use

Lemma 36. Let 0 < p < 1 and Æ > 0.

(a) There is a c36 = c36(�; p) so that for any " > 0; � 2 (0; 1] there is a random

variable Z("; �; p; Æ) satisfying

E";p("XÆ) � c36�
p�1 h"X1

Æ ; 1i h"X2
Æ ; 1i+ Z("; �; p; Æ);

and E(Z("; �; p; Æ)) � c36Æ
�1�p=2hX1

0 ; 1ihX2
0 ; 1i:

(b) sup0<"E(E";p("XÆ)) � c36(1 + Æ�1)hX1
0 ; 1ihX2

0 ; 1i:

Proof. (a) Lemma 8 implies that "ps � c1(s
�1 ^ "�2). This, together with Lemma

34, implies for " > 0, and r = 1� p

2
,

E";p("XÆ) � c1 h"X1
Æ ; 1i h"X2

Æ ; 1i+sup
s�1

sp
Z

"ps(x1; x2)
"X1

Æ (dx1)
"X2

Æ (dx2)

� (c1 + c34) h"X1
Æ
; 1i h"X2

Æ
; 1i

+ sup
s�1

c1s
p(s�1 ^ "�2)

Z
1(jx1 � x2j � (sr=2 + "r)) "X1

Æ (dx1)
"X2

Æ (dx2):(110)
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The second term in (110) is bounded by

sup
s�1

c1(s _ "2)p(s _ "2)�1
Z
1(jx1 � x2j � 2(s _ "2)r=2) "X1

Æ
(dx1)

"X2
Æ
(dx2)

� c1�
p�1 h"X1

Æ
; 1i h"X2

Æ
; 1i

+c1 sup
"2�s��

sp�1
Z
1(jx1 � x2j � 2sr=2) "X1

Æ
(dx1)

"X2
Æ
(dx2);(111)

where the second term is de�ned to be 0 if "2 > �. If s 2 [2�k�1; 2�k], then

sp�1
Z
1(jx1 � x2j � 2sr=2) "X1

Æ (dx1)
"X2

Æ (dx2)

� 21�p2�k(p�1)
Z
1(jx1 � x2j � 21�rk=2)"X1

Æ
(dx1)

"X2
Æ
(dx2):

Use this in (111) and then (110) to see that

E";p("XÆ) � c2(�; p)�
p�1 h"X1

Æ
; 1i h"X2

Æ
; 1i+ Z("; �; p; Æ);(112)

where

Z("; �; p; Æ) = c2
X

2�k�2�

2k(1�p)
Z
1(jx1 � x2j � 21�rk=2) "X1

Æ (dx1)
"X2

Æ (dx2):

Proposition 15 (b) shows that

E(Z("; �; p; Æ)) = c2
X

2�k�2�

2k(1�p)
Z Z Z Z

1(jx1 � x2j � 21�rk=2)

"pÆ(x1; y1)
"pÆ(x2; y2)d

"x1 d
"x2

"X1
0 (dy1)

"X2
0 (dy2)

� c2c8�
�2Æ�1

X
2�k�2�

2k(1�p)�22�rkhX1
0 ; 1ihX2

0 ; 1i

� c3(p; �)Æ
�1hX1

0 ; 1ihX2
0 ; 1i

X
2�k�2�

2�kp=2

� c4(p; �)Æ
�1hX1

0 ; 1ihX2
0 ; 1i�p=2:

(112) therefore implies (a). To derive (b), take � = 1 in (a) and note that

E(h"X1
Æ
; 1i h"X2

Æ
; 1i) = hX1

0 ; 1ihX2
0 ; 1i by Proposition 15 (b) .

Notation 37. Let c37(�
2) = c8�

�2
. Then Lemma 8 implies

"pt(x) � c37t
�1 8 " > 0; t > 0 x 2 "Z2:(113)

Let Un = Tn � Tn�1 (n � 1) be the inter-jump times for the dual process (V"
t
; It).

Lemma 38. Let �0 2 C+
b
(R8 ); I0 � f1; 2; 3; 4g and n0 2 Z+. Assume there are

distinct random indices fi1; i2g � f1; 2; 3; 4g and a measurable map f : R+ � 
 !
R+ such that t! f(t; !) is continuous P̂ "

�0;I0
�a.s. and

�"t (y1; y2; y3; y4) � f(t; !)"p2(t�Tn0 )(yi1 � yi2); i1 2 It; i2 =2 It(114)

for Tn0 � t < Tn0+1; P̂
"

�0;I0
a.s.
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Let

�f
n0
(s) =

(
f(Tn0+1)

�Q
n

k=n0+2

�
c37

Uk�1+Uk

��
c37

Un+s�Tn
if Tn � s < Tn+1; n > n0

f(s) if Tn0 � s < Tn0+1:

Then there are random indices fin1 ; in2 : n � n0g � f1; 2; 3; 4g such that

�"s(y) � �fn0(s)
"p2(s�Tn)(yin1 � yin2 ); in1 2 Is; in2 2 Ics ; Tn � s < Tn+1; 8 n � n0;

P̂ "�0;I0 � a.s.

Proof. We proceed by induction on n � n0: If n = n0, the required result is our

hypothesis (114). Assume the result holds for n� 1 (n� 1 � n0) and consider n.
Then

�"
Tn�(y) � �f

n0
(Tn�) "p2Un(yin�1

1
� y

i
n�1
2

); in�11 2 ITn�; in�12 =2 ITn�:
We consider several cases in analyzing the jump at Tn: We will write (i1; i2) for

(in�11 ; in�12 ) and use i3; i4 to denote the distinct indices in f1; 2; 3; 4g� fi1; i2g.
Case 1. i1 switches via i3 2 ITn�:
�"Tn(y) � �fn0(Tn�)"p2Un(yi3 � yi2)

"p0(yi1 � yi3); ITn � fi3g; IcTn � fi1; i2g:
Case 2. i2 switches via i3 2 IcTn�:
�"Tn(y) � �fn0(Tn�)"p2Un(yi1 � yi3)

"p0(yi2 � yi3); ITn � fi1; i2g; IcTn � fi3g:
Case 3. i3 2 ITn� switches via i1:

�"Tn(y) � �fn0(Tn�)"p2Un(yi1 � yi2)
"p0(yi3 � yi1); ITn � fi1g; IcTn � fi2; i3g:

Case 4. i3 2 IcTn� switches via i2:

�"
Tn
(y) � �f

n0
(Tn�)"p2Un(yi1 � yi2)

"p0(yi3 � yi2); ITn � fi1; i3g; IcTn � fi2g:
Case 5. i3 2 ITn� switches via i4 2 ITn�:
�"
Tn
(y) � �f

n0
(Tn�)"p2Un(yi1 � yi2)

"p0(yi3 � yi4); ITn = fi1; i4g; IcTn = fi2; i3g:
Case 6. i3 2 IcTn� switches via i4 2 IcTn�:
�"
Tn
(y) � �f

n0
(Tn�)"p2Un(yi1 � yi2)

"p0(yi3 � yi4); ITn = fi1; i3g; IcTn = fi2; i4g:
We can now introduce new random indices f{̂j : j � 4g = f1; 2; 3; 4g and reduce

these 6 cases to essentially 2 cases.

Case A.

�"
Tn
(y) � �f

n0
(Tn�) "p2Un(y{̂1 � y{̂3)

"p0(y{̂1 � y{̂2); {̂1 2ITn ; f{̂2; {̂3g � Ic
Tn

or {̂1 2 IcTn ; f{̂2; {̂3g � ITn :

Case B.

�"Tn(y) � �fn0(Tn�) "p2Un(y{̂3 � y{̂4)
"p0(y{̂1 � y{̂2); ITn = f{̂1; {̂3g; IcTn = f{̂2; {̂4g

For Case A use (113) to see that for Tn � t < Tn+1,

�"
t
� �f

n0
(Tn�)

Z
"p2Un+t�Tn(z{̂1 � y{̂3)

"pt�Tn(z{̂1 � y{̂2)
"pt�Tn(z{̂1 � y{̂1)d

"z{̂1

� �f
n0
(Tn�)c37(2Un + t� Tn)

�1 "p2(t�Tn)(y{̂2 � y{̂1)

� �f
n0
(t) "p2(t�Tn)(y{̂2 � y{̂1);

where {̂1 2 It; {̂2 2 Ict or conversely.
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For Case B we use (113) to see that for Tn � t < Tn+1;

�"
t
� �f

n0
(Tn�) "p2Un+t�Tn(y{̂3 � y{̂4)

"p2(t�Tn)(y{̂2 � y{̂1)

� �f
n0
(Tn�)c37(Un + t� Tn)

�1"p2(t�Tn)(y{̂2 � y{̂1)

� �f
n0
(t) "p2(t�Tn)(y{̂2 � y{̂1);

where {̂1 2 It and {̂2 2 Ict :
In either case it is clear how to de�ne in

j
so that the required result holds on

Tn � t < Tn+1; P̂
"

�0;T0
�a.s. This completes the inductive proof.

Notation 39. Write �n0(s) for �
f
n0
(s) when f � 1.

Corollary 40. Let �0 2 C+
b
((R2 )4) and I0 � f1; 2; 3; 4g: There are random indices

fin1 ; in2 : n � 1g � f1; 2; 3; 4g such that P̂ "
�0;I0

�a.s. 8 n � 1

in1 2 Is; in2 2 Ics if Tn � s < Tn+1

and

�"
s
(y) � jj�0jj1

"
1(s < T1) +

1X
n=1

1(Tn � s < Tn+1)�1(s)
"p2(s�Tn)(yin1 � yin2 )

#(115)

� jj�0jj1
"
1(s < T1) +

1X
n=1

1(Tn � s < Tn+1)�1(s) c37(s� Tn)
�1

#
(116)

� ��(s):

Proof. We check (114) of the previous lemma for n0 = 1 and f � jj�0jj1.

Clearly �"
T1

= limt"T1
"S(4)t�0 � jj�0jj1. Therefore the de�nition of �"

t
shows

that �"
T1
(y) � jj�0jj1 "p0(yi1 � yi2) for some i1 2 IT1 ; i2 =2 IT1 : It follows that for

T1 � t < T2; i1 2 It; i2 =2 It, and

�"t (y) � jj�0jj1
Z

"ps�T1(z � yi1)
"ps�T1(z � yi2)d

"z = jj�0jj1 "p2(s�T1)(yi1 � yi2).

This veri�es (114) and (115) follows from Lemma 38, as this inequality is trivial for

s < T1. The second inequality is then clear by (113).

Lemma 41. Let "St denote the semigroup of the nearest neighbor continuous time

random walk �"t on "Zd which jumps to a nearest neighbor at rate d"�2�2 and

let St denote the semigroup of the d-dimensional Brownian motion with variance

parameter �2. Let f" : "Zd ! R; f : Rd ! R satisfy sup">0 jjf"jj1 < 1 and

lim"#0 f"(x") = f(x) whenever lim"#0 x" = x (x" 2 "Zd). Then jjf jj1 <1 and

lim
"#0

"Stf
"(x") = Stf(x):

Proof. The �rst assertion is obvious. Let "n # 0. By Skorohod's theorem we may

assume �"nt ! Bt a.s. where �
"n
0 = B0 = 0: Then x"n + �"nt ! x+Bt a.s. and the

result follows by Dominated Convergence.

Notation 42. If x 2 R, let [x]" = ["�1x]" for each " > 0. If x = (x1; : : : ; xd), let

[x]" = ([x1]"; : : : ; [xd]") 2 ("Z)
d
.
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Lemma 43. If �0 2 C+
b
(R8 ) and I0 � f1; 2; 3; 4g, then for each t > 0;

(a) sup">0 supx2"Z8 �
"
t
(x) <1 P̂�0;I0�a.s.

(b) lim"#0 supx2"Z8;jxj�K j�"t (x)� �t(x)j = 0 8 K > 0 P̂�0;I0�a.s.

Proof. (a) follows from Corollary 40 since ��(t) < 1 for t =2 fTn : n � 1g which

holds P̂�0;I0�a.s.
For (b), it suÆces to show that for a �xed sequence "k # 0,

lim
k!1

�"k
t
(xk) = �t(x) P̂�0;I0 � a.s. whenever xk 2 "kZ8; x 2 R8(117)

are random points satisfying lim
k!1

xk = x P̂�0;I0 � a.s.

This in turn will follow by establishing

(118)

(a)(117) holds a.s. on f! : Tn < t < Tn+1g for fxkg; x as above, and(118n)

(b) lim
k!1

�"k
Tn+1�(xk) = �Tn+1�(x) for fxkg; x as above, for all n 2 Z+:(118n)

Clearly (118n)(a) 8 n � 0 suÆces but (b) helps in our inductive proof. On

ft < T1g, �"kt (xk) = S"kt �0(xk), �t(x) = St�0(x) and so Lemma 41 implies

(1180)(a). Since �"k
T1�(xk) = "kST1�0(xk) and �T1�(xk) = ST1(xk), the same

result also gives (1180)(b). Assume (118m) for m < n. Consider
fTn < t < Tn+1g \ fj switches via j0 at Tng. On this event

�"k
t
(xk) =

Z
�"k
Tn�([�j;j0y]"k)

"kpt�Tn([yj ]"k � (xk)j0 )
Y
i6=j0

"kpt�Tn([yi]"k � (xk)i)dŷ
j
0

(119)

and

�t(x) =

Z
�Tn�(�j;j0y)pt�Tn(yj � xj0 )

Y
i6=j0

pt�Tn(yi � xi)dŷ
j
0

;(120)

where dŷj
0

is the 3-dimensional Lebesgue integral with the yj0 variable omitted and

we write (xk)j for the jth component of xk 2 "kZ8. By (118n�1) (b) and Lemma

8 if (yk
i
)i6=j0 ! (yi)i6=j0 as k ! 1 when (yk

i
)i6=j0 2 ("kZ

2)3 and (yi)i6=j0 2 (R2 )3,

then

lim
k!1

�"k
Tn�([�j;j0y

k]"k )
"kpt�Tn([y

k

j
]"k � (xk)j0 ) = �Tn�(�j;j0y)pt�Tn(yj � xj0 ).

Moreover (a) and Lemma 8(a) show that

sup"k;y �
"k

Tn�([�j;j0y]"k )
"kpt�Tn([yj ]� (xk)j0 ) <1 P̂�0;I0�a.s. Now apply Lemma

41 to the 6-dimensional random walks with transition functionQ
i6=j0

"kpt�Tn([yi]"k � (xk)i) to see that limk!1 �"k
t
(xk) = �t(x) on

fTn < t < Tn+1g \ fj switches via j0 at Tng. The same reasoning also proves

(118n)(b). This completes the induction and hence the proof of (b).

Proof of Theorem 32. Use the Markov property of "mX at t = Æ � 0 and

Proposition 27 to see that it suÆces to prove

lim
m!1

Ê"m
�0;I0

�E"m"mX0
(F (�"m

t�Æ ; It�Æ ;
"mXÆ) (

"mXÆ)Et�Æ)(121)

= Ê�0;I0 �EX0
(F (�t�Æ ; It�Æ ;XÆ) (XÆ)Et�Æ),
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where

Et�Æ = exp

(


Z
t�Æ

0

�
jIsj
2

�
+

�
jIcs j
2

�
ds

)
:

By Skorohod's theorem we may assume f"mXÆg and XÆ are de�ned on a common

(
;F ;P) such that "mXÆ ! XÆ P�a.s. and replace the expectations E"mX0
and

EX0
in (121) with E. We now claim that

lim
m!1

F (�"m
t�Æ ; It�Æ ;

"mXÆ) (
"mXÆ) = F (�t�Æ ; It�Æ ;XÆ) (XÆ) P̂�0;I0 � P � a.s.

(122)

As  is continuous we only need focus on the \F terms". Since "mXÆ ! XÆ in

M2
f
(R)2 a.s., f"mXÆ : m 2 Ng are a.s. tight. This together with Lemma 43(b), the

fact that �t�Æ 2 C+
b
(R8 ) P̂�0;I0�a.s. (recall (100)) and "mXÆ ! XÆ a.s. allow

one to prove (122) by an elementary weak convergence argument.

To prove (121) it now suÆces to show

fF (�"m
t�Æ; It�Æ ;

"mXÆ) (
"mXÆ) : m 2 Ng is uniformly integrable(123)

with respect to Ê�0;I0 �E.

Bound �0 by k�k1 and hence verify (114) with n0 = 1 and f = k�0k1 through

a short calculation. Lemma 38 shows (recall �n0 = �1n0) that if M = Mm;Æ(!) =
"mX1

Æ
(R2 ) + "mX2

Æ
(R2 ) and p 2 (0; 1

2
), then P̂�0;I0 � P�a.s.

F (�"m
t�Æ ; It�Æ;

"mXÆ)

(124)

� jj�0jj1
�
1(t� Æ < T1)((

"mX1
Æ
(R2 ))4 + ("mX2

Æ
(R2 ))4)

+

1X
n=1

1(Tn � t� Æ < Tn+1)�1(t� Æ)(2(t� Æ � Tn))
�pE"m;p("mXÆ)

� (("mX1
Æ
(R2 ))2 + ("mX2

Æ
(R2 ))2)

�
� jj�0jj1(M4 +M2)

�
1(t� Æ < T1) +

�
1(T1 � t� Æ < T2)(t� Æ � T1)

�p

+

1X
n=2

1(Tn � t� Æ < Tn+1)c
n�1
37

 
nY
k=3

(Uk�1 + Uk)
�1

!
(Un + t� Æ � Tn)

�1(t� Æ � Tn)
�p
�

� E"m;p("mXÆ)

�
:
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Now for n � 2, either Un is exponential with rate 2 and Un+1 is exponential with
rate 3 or conversely. Therefore if �n is the rate of Un we have

Ê�0;I0(1(Tn � s < Tn+1)

 
nY
k=3

(Uk�1 + Uk)
�1

!
(Un + s� Tn)

�1(s� Tn)
�p)

=

Z 1

0

du1� � �
Z 1

0

dun 1(

nX
1

ui � s)e��n+1(s�
P

n

1 uj )e�
P

n

1 �juj

�
nY
1

�j

 
nY
k=3

(uk�1 + uk)
�1

!
(s�

n�1X
1

ui)
�1(s�

nX
1

ui)
�p

� �16
n

2 n�1
Z 1

0

du1� � �
Z 1

0

dun 1(

nX
1

ui � s)

�
 
n�1Y
k=2

(uk+1 + uk)
�1

!
(s�

n�1X
1

ui)
�1(s�

nX
1

ui)
�p:(125)

Now change variables and set vk = uk+1; 1 � k � n� 1; vn =
Pn

1 ui: Note also
�1 � 6 as the largest jump rate occurs when I0 = ; or Ic0 = ;. If Jn(s; T ) is as
in Corollary 61 in Appendix B, then (125) is at most

n61+
n

2

Z s

0

(s� vn)
�p

�
"Z
R
n�1
+

1(

n�1X
1

vi � vn)

n�2Y
i=1

(vi + vi+1)
�1(s� vn + vn�1)

�1dv1 : : : dvn�1

#
dvn

� n61+
n

2

Z s

0

(s� vn)
�pJn�1(s� vn; vn)dvn

� c61
n61+

n

2 �n�2
Z
s

0

(s� vn)
�p(vn)

1
2 (s� vn)

�1=2dvn;

where we have used Corollary 61 with p = 1
2
in the last line. A simple change of

variables shows that if we use the above to bound (125) we arrive at

Ê�0;I0(1(Tn � s < Tn+1)

 
nY
k=3

(Uk�1 + Uk)
�1

!
(Un + s� Tn)

�1(s� Tn)
�p)

(126)

� c61(1=2)
n61+

n

2 �n�2
Z 1

0

w
1
2 (1� w)�

1
2
�pdw s1�p

� c126(p)(
p
6�)ns1�p:

We �rst establish (123) in case (a). As Æ = 0; M = X1
0 (R

2 ) + X2
0 (R

2 ) is a

constant. Lemma 35 and (124) imply that if p0 2 (0; p); and

W (s) = 1+1(T1 � s < T2)(s� T1)
�p

+

1X
n=2

1(Tn � s < Tn+1)c
n�1
37

nY
k=3

(Uk�1 + Uk)
�1 � (Un + s� Tn)

�1(s� Tn)
�p;
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then

F (�"m
t
; It;

"mX0) � jj�0jj1(M4 +M2)(1 + c35Ep0(X0))W (t):(127)

Our assumption on ��2 implies c37
p
6� < 1 and (126) easily implies

Ê�0I0(W (s)) <1 8 s > 0:(128)

As the upper bound in (127) is P̂�0;I0�integrable and independent of m, and  
is bounded, the required uniform integrability in (123) follows and the proof is

complete in case (a).

Consider the case (b) and write (!̂; !) for our sample points under P̂�0;I0 � P .
Note that W (t� Æ) �W (t� Æ; !̂). Our hypothesis on  and (124) imply for some

0 < c( ) <1;

 ("mXÆ)F (�
"m

t�ÆIt�Æ ;
"mXÆ) � c( )W (t � Æ; !̂)(1 + E"m;p("mXÆ(!)):(129)

Fix � > 0: By Lemma 36 there are random variables Z("m; �; p; Æ) � Zm(!) such
that

E"m;p("mXÆ(!)) � c36�
p�1X1

Æ
(R2 )X2

Æ
(R2 )(!) + Zm(!)(130)

E(Zm) � c36Æ
�1�p=2X1

0 (R
2 )X2

0 (R
2 ):

By (128) and Proposition 15(b) we may choose " > 0 so that P̂�0;I0 � P (A) < "
implies

Ê�0;I0 �E(1AW (t� Æ)(1 +X1
Æ
(R2 )X2

Æ
(R2 ))) < �(1 + c36�

p�1)�1. Then (129) and

(130) imply for A as above,

Ê�0;I0 �E(1AF (�
"m

t�Æ ; It�Æ;
"mXÆ) (

"mXÆ))

� c( )(1 + c36�
p�1)Ê�0;I0 �E(1AW (t� Æ)(1 +X1

Æ
(R2 )X2

Æ
(R2 ))

+ c( )Ê�0;I0(W (t� Æ))E(Zm)

� c( )� + c( )Ê�0;I0(W (t� Æ))c36Æ
�1X1

0 (R
2 )X2

0 (R
2 )�p=2:

This goes to zero as � # 0, independently of m and so (123) holds and the proof is

complete in case (b).

4. Construction of a Solution

In this section we prove Theorem 11(a),(c). Recall that [x]" = (y1; y2) 2 "Z2 i�

x 2
2Q
i=1

[yi; yi+") � C" ((y1; y2)). In Section 1.2 we �xedX0 2Mf;e and constructed

a solution "X to the approximate martingale problem (MP)
�;;"

X0
starting at

"X i

0(fxg) = X i

0 (C"(x)) ; x 2 "Z2:

We assume (32) throughout this Section. We use this stronger condition in the

proof of a ket L2 estimate in Proposition 46. The following elementary bound is

proved in Appendix A.

Lemma 44. There is a constant c44 = c44(�
2) such thatZ Æ

0

"ps(x)ds � c44

" p
Æ

kxk

!
^ 1 + log+

 p
Æ

kxk

!#
8x 2 "Z2 8Æ; " > 0:
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Lemma 45. (a) lim
Æ#0

sup
">0

Z hR
Æ

0
"ps(x1 � x2)ds

i
"X1

0 (dx1)
"X2

0(dx2) = 0

(b) sup
">0

Z hR T
0
"ps(x1 � x2)ds

i
"X1

0(dx1)
"X2

0(dx2) = c45(T ) <1 8T > 0.

Proof. De�ne

G"(X0) =

Z
1(kx1 � x2k <

p
2")g(x1 � x2)X

1
0 (dx1)X

2
0 (dx2):

Note that if [x1]" 6= [x2]", then k[x1]" � [x2]"k � " and so

k[x1]" � [x2]"k
kx1 � x2k

� k[x1]" � [x2]"k
k[x1]" � [x2]"k+ 2

p
2"

� (1 + 2
p
2)�1 � c0:(131)

We have "ps(0) � c1(s
�1 ^ "�2) by Lemma 8, and so by Lemma 44,ZZ "Z

Æ

0

"ps(x1 � x2)ds

#
"X1

0 (dx1)
"X2

0 (dx2)

=

ZZ
"ps([x1]" � [x2]")X

1
0 (dx1)X

2
0 (dx2)

�
ZZ "Z Æ

0

c1(s
�1 ^ "�2)ds

#
1([x1]" = [x2]")X

1
0 (dx1)X

2
0 (dx2)

+

ZZ
c44

"
1 ^

 p
Æ

jj[x1]" � [x2]"jj

!
+ log+

 p
Æ

jj[x1]" � [x2]"jj

!#
� 1([x1]" 6= [x2]")X

1
0 (dx1)X

2
0 (dx2)

� c1

�
"2 ^ Æ
"2

+ log+
Æ

"2

��
1 + log+

1p
2"

��1
G"(X0)

+ c44

ZZ "
1 ^

 p
Æ

c0jjx1 � x2jj

!
+ log+

 p
Æ

c0jjx1 � x2jj

!#
dX1

0 (x1)dX
2
0 (x2):(132)

We have used (131) in the last line. The second term approaches 0 as Æ # 0 by

Dominated Convergence since X0 2 Mf;e. This also implies lim
"#0

G"(X0) = 0 and

so the �rst term in (132) clearly approaches 0 uniformly in Æ 2 (0; 1] as " # 0. As
G"(X0) is uniformly bounded in ", it then follows easily that the �rst term in (132)

approaches 0 uniformly in " > 0 as Æ # 0. This proves (a). (b) is immediate from
(a).

Tightness of "X will be proved using bounds on its moments. First and second

moments for " = 1 are easy to derive from (18) and were given in Theorem 2.2 (b)

(iii) of [DP98]. Using our de�nition of "X i

t
, we then easily get for �i : "Z

2 ! R+ ,

i = 1; 2,

(i) E(


"X i

t
; �i
�
) =



"X i

0;
" St�i

�
(133)

(ii) E(


"X1

t
; �1
� 


"X2
t
; �2
�
) =



"X1

0 ;
"St�1

� 

"X2

0 ;
"St�2

�
Our key L2-bound is on the increments of

hL"(t); �i � hL""X(t); �i =
Z
t

0

Z
�(x) "X1

s
(x)"X2

s
(x)d"xds:
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Recall that d"x denotes integration with respect to `" =
P

y2"Z2
"2Æy. Recall the

notation E";p ("X0) from Lemma 34 and let

E";p ("X0) = E";p ("X0)

��
"X1

0(R
2 )
�2

+
�
"X2

0(R
2 )
�2�

:

Proposition 46. There is an "0 = "0(; �
2) > 0, and for any T > 0 there is a

c46 = c46(T; ; �
2) > 0 such that for any bounded Borel � : R2 ! R+ and any

0 < " < "0,

E
�

(hL"(t2); �i � hL"(t1); �i)2
�

� c46E";1=2 ( "X0) jt2 � t1j3=2t�12 k�k21
for all 0 � t1 < t2 � T:

Remark 47. The power 3=2 is by no means sharp and can easily be improved to

2� Æ for any Æ > 0, at the cost of a stronger assumption on ��2. The factor t�12
will not pose any problems as t2 is the greater of the two times.

The proof will be given at the end of this Section and uses the following bound

on a family of iterated integrals for p = 1
2
. We include the more general case here

because it will be used in [DFMPX00a] to verify (IntC).

Notation 48. If n 2 N�2 , p 2 (0; 1) and s0 > s1 > 0, let

K(p)
n (s0; s1) =

Z s1

0

ds2 : : :

Z sn�1

0

dsn

nY
k=2

(sk�2 � sk)
�1s�1

n�1s
�p
n

�
1 + [(sn�1 � sn)=sn]

�p
�
:

Lemma 49. Let p 2 (0; 1) and c49(p) = 3�= sin (�(1� p)) :

(a) If �p(x) = x (1 + (x� 1)�p)
�1 R 1

0
(x�w)�1 (w�p + (1� w)�p) dw, x > 1, then

sup
x>1 �p(x) � c49(p).

(b) K
(p)
n (s0; s1) � c49(p)

n�1s�p1 s�10

�
1 + ( s0

s1
� 1)�p

�
8n 2 N�2 , s0 > s1 > 0.

Proof. See Appendix B.

Lemma 50. If � 2 Cb(R2 ), then 8T > 0

lim
"#0

E (hL"(T ); �i) =
Z T

0

Z
SsX

1
0 (x)SsX

2
0 (x)�(x)dxds 2 R(134)

Proof. By (133)

E
�
"X1

s
(x)"X2

s
(x)
�
= "Ss

"X1
0(x)

"Ss
"X2

0(x);(135)

and therefore

E (hL"(T ); �i) =
Z
T

0

Z
"Ss

"X1
0(x)

"Ss
"X2

0(x)�(x)d
"xds(136)

Lemma 45(a) shows that

lim
Æ#0

sup
">0

Z
Æ

0

Z
"Ss

"X1
0 (x)

"Ss
"X2

0 (x)j�(x)jd"xds

� k�k1 lim
Æ#0

sup
">0

Z "Z Æ

0

"p2s(y1 � y2)ds

#
"X1

0 (dy1)
"X2

0 (dy2) = 0:(137)
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If Æ > 0, then

lim
"#0

Z T

Æ

Z
"Ss

"X1
0(x)

"Ss
"X2

0(x)�(x)d
"xds

= lim
"#0

Z T

Æ

Z �Z
"ps([y1]" � [x]")

"ps([y2]" � [x]")�([x]")dx

�
X1
0 (dy1)X

2
0 (dy2)ds

=

Z
T

Æ

Z �Z
ps(y1 � x)ps(y2 � x)�(x)dx

�
X1
0 (dy1)X

2
0 (dy2)ds

=

Z T

Æ

Z
SsX

1
0 (x)SsX

2
0 (x)�(x)dxds;

(138)

where in the next to last line we used Lemma 8 and Dominated Convergence. Note

that the �niteness of the right-hand side of (134) is clear since X0 2 Mf;e. (136),

(137) and (138) now easily give (134).

Proposition 51. If "n # 0, then f("nX1; "nX2; L
"n

"nX
) : n 2 Ng is a tight sequence

in C
�
R+ ;Mf (R

2 )3
�
.

Proof. Write (nX; Ln) for ("nX; L
"n

"nX
). It suÆces to show tightness of each of

the three coordinates separately ([JS87], p. 317) and to this end we specialize a

result of Jakubowski [J86] (see Theorem II.4.1 of [Per00]). To show a sequence of

processes, fY ng, with sample paths in C
�
R+ ;Mf (R

2 )
�
is tight it suÆces to show:

(i) 8", T > 0 there is a compact set, KT;", in R
2 such that

sup
n

P

�
sup
t�T

Y n
t
(Kc

T;s
) > "

�
< ":

(ii) 8� 2 C2
b
(R2 ), fhY n� ; �i : n 2 Ng is tight in C(R+ ;R).

We start by proving (i) for Y n = Ln. Fix  : R2 ! [0; 1] in C2
b
(R2 ) such that

[�1; 1]2 � f = 0g � f < 1g � [�2; 2]2 and de�ne  k(x) =  (xk�1). Lemma 50

implies

lim
n!1

E (hLn(T );  ki) =
Z
T

0

Z
SsX

1
0 (x)SsX

2
0 (x) k(x)dxds <1:(139)

The right-hand side of (139) approaches 0 as k ! 1 and so it follows from (139)

that for any � > 0 there is a k0 such that

sup
n

E (hLn(T );  k0i) < �:(140)

This proves (i) for Y n = Ln by the monotonicity of Ln(t) in t.
(ii) would be a simple consequence of Proposition 46 and Lemma 35 if X0 2

Mf;se. To handle X0 2 Mf;e we will condition on F"
Æ
� �("Xs : s � Æ) and use

the elementary equivalence between (ii) and

(ii)a8Æ > 0 8� 2 C2
b (R

2 ); fhY n� ; �i : n 2 Ng is tight in C ([Æ;1];R) ; and

(ii)b8� 2 C2
b (R

2 ); fhY n0 ; �i : n 2 Ng is tight in R and 8� > 0

lim
Æ#0

sup
n

P

�
sup
t�Æ

j hY n
t
; �i � hY n0 ; �i j > �

�
= 0:
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To verify (ii)a we may choose Æ = k02
�m0 for some k0;m0 2 N. For � 2 C2

b
(R2 )

and m � m0, use the Markov property of nX and Proposition 46 to see that

P

�
max

k02m�m0<k�N2m



Ln(k2�m)� Ln

�
(k � 1)2�m

�
; �
�
> 2�m=8 j F"n

Æ

�
�

N2mX
k=k02

m�m0+1

2m=4c46(N)E"n;1=2 (nXÆ) 2
�m3=2

�
k2�m � k02

�m0
��1 k�k21

� c(N; k�k1)E"n;1=2 (nXÆ) 2
�m=4

N2mX
k=1

k�1 � c(N; k�k1)E"n;1=2 (nXÆ) 2
�m=4m;

which is summable overm. The standard binary expansion argument of L�evy shows

that for some c1 > 0 and any �;M > 0,

P

0@ sup
Æ�s<t�N

t�s<�

j hLn(t); �i � hLn(s); �i jjt� sj�1=8 > c1

1A
� P

�
E"n;1=2(nXÆ) > M

�
+ P

�
nX1

Æ(R
2 ) + nX2

Æ(R
2 ) > M

�
+ c0(N; k�k1)M3Æ1(�);

where lim
�#0

Æ1(�) = 0. Lemma 36(b) and (133)(i) allow us to choose M so that the

�rst two terms are small, uniformly in n. Then choose � small enough to make the

last term small. This proves (ii)a. (ii)b is immediate from (136) and (137) which

imply

lim
Æ#0

sup
n

E (hLn(Æ); j�ji) = 0:(141)

This proves the tightness of fLn(�) : n 2 Ng in C
�
R+ ;Mf (R

2 )
�
.

Next consider (i) for Y n = nXi. If  k is as above, then a second order Taylor

expansion shows that

j"� k(x)j � c k
�2:(142)

Let � > 0. The de�nition of nXi

0 shows we may choose k0 so that

sup
n



nX i

0;  k
�
< � 8k � k0;(143)

and (140) holds but with �3 in place of �. Let k � k0. Then (MP)
�;;"n

X0
implies

sup
t�T

nXi

t
( k) � � + (c �

2=2)k�2
Z
T

0

nXi

s
(R2 )ds+ sup

t�T

���"nM i

t
( k)

��� :
Therefore for k � k0,

P

�
sup
t�T

nXi

t( k) > 3�

�
� c �

2

2�k2

Z T

0

E
�
nX i

s(R
2 )
�
ds+ ��2E

�
sup
t�T

���"nM i

t( k)
���2�

� c �
2TX i

0(R
2 )

2�k2
+ c�;

where in the last line we have used (133)(i), Burkholder's inequality, and (140)

(with �3 in place of �). Take k larger still to ensure the above bound is at most

c0�, thus verifying (i) for Y n = nXi.
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Let � 2 C2
b
(R2 ) and consider (ii)a for Y

n = nXi. A second order Taylor approx-

imation shows that �����2 "n��(x)2

���� � c� all x; n:(144)

Use the Markov property of "nX together with (MP)
�;;"n

X0
and Burkholder's in-

equality to see that for

E
��

nXi

s(R
2 )4
�
j F"n

Æ

�
(!)= E

��
nX i

s(R
2 )4
�
j nXi

0 =
nX i

Æ(!)
�

� c
h
nXi

Æ
(R2 )(!)4 + 2E

�
hLn(s� Æ); 1i2 j nXi

0 =
nX i

Æ
(!)
�i

� c
h
nXi

Æ(R
2 )(!)4 + 2c46(T )E"n;1=2(nXÆ(!))T

1=2
i
;(145)

where Proposition 46 is used in the last line. Now use (144) and (145) in (MP)
�;;"n

X0

to conclude that for 0 < Æ � t1 < t2 � T ,

E
��
h nX i

t2
; �i � h nX i

t1
; �i
�4 j F"n

Æ

�
� c

"
E

 �Z
t2

t1

h nX i

s
;
�2 "n��

2
ids
�4
j F"n

Æ

!
+E

�h
"nM i

t2
(�) � "nM i

t1
(�)
i4
j F"n

Æ

�#
� c

�
c4
�
(t2 � t1)

3

Z
t2

t1

E
�
nXi

s
(R2 )4 j F"n

Æ

�
ds+ c2E

�
(hLn(t2); �i � hLn(t1); �i)2 j F"nÆ

��
� c(T; �; ; �2)

h
nXi

Æ
(R2 )4(t2 � t1)

3 + E"n;1=2 (nXÆ) (t2 � t1)
3=2(t2 � Æ)�1

i
;

by Proposition 46. Lemma 36(b) and the fact that E
�
nXi

Æ(R
2 )
�
= X i

0(R
2 ) (from

(133)(i)) show that nXi

Æ(R
2 )4 + E"n;1=2(nXi

Æ) remains bounded in probability as

n ! 1. We can therefore argue just as for Ln, using the above conditional L4

bound, to see that (ii)a holds for Y
n = nXi.

To check (ii)b, let Æ 2 (0; 1] and use (MP)
�;;"n

X0
to see

E

�
sup
t�Æ

�
h nX i

t
; �i � h nX i

0; �i
�2�

� 2E

0@ Z Æ

0

h nX i

s;
�2 "n��

2
ids
!2
1A+ 2E

�
sup
s�Æ

�
"nM i

s(�)
�2�

� 2c2�Æ

Z Æ

0

E
�
h nX i

s; 1i2
�
ds+ ck�k21E (hLn(Æ); 1i)

� 2c2
�
Æ
�
2hX i

0; 1i2 + 2ÆE (hLn(Æ); 1i)
�
+ ck�k21E (hLn(Æ); 1i) :

The above bound converges to zero uniformly in n as Æ # 0 by (141). Since

h nX i
0; �i ! hX i

0; �i as n!1, (ii)b follows for Y n = nXi and we are done.

To show the limit points obtained from Proposition 51 solve (MP)
�;

X0
we �rst

introduce some notation:


X;L =C
�
R+ ;Mf (R

2 )3
�
with its Borel sigma-�eld FX;L

and canonical right-continuous �ltration (FX;Lt ):

Let (X; L) = (X1; X2; L) denote the coordinate maps on 
X;L:
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Proposition 52. Let P be a weak limit point of the laws of f("nX; L"n"nX) : n 2 Ng
on (
X;L;FX;L), as "n # 0. Let F and Ft be the P -completions of FX;L and

FX;Lt , respectively. Then X solves (MP)
�
2
;

X0
on (
X;L;F ;Ft; P ) and L = LX is

the collision local time of X P -a.s. Moreover

hL�;Æ
X
(t); �i ! hLX(t); �i in L1(P ) as Æ # 0 8� 2 Cb(R2 )(146)

where L�;Æ
X

was de�ned in (1).

Proof. By Skorohod's theorem we may assume that on some (
0;F 0; P 0)

(nX; Ln) � ("nX; L"n"nX) a.s.�! (X; L) in 
X;L; "n # 0:(147)

Let F 0
t
(respectively, Fn

t
) be the right-continuous P 0-complete �ltration generated

by (X; L) (respectively, nX) and let � 2 C2
b
(R2 ). An elementary argument shows

that

"n��([x]"n )! ��(x) boundedly and uniformly on compacts.(148)

>From (MP )�;;"n
X0

we have

h nX i

t; �i = h nX i

0; �i+
Z t

0

h nX i

s;
�2 "n��

2
ids+ "nM i

t(�); t � 0(149)

"nM i

t(�) is a continuous L2 (Fnt )�martingale, i = 1; 2; and

h "nM i(�); "nMj
(�)i

t
= ÆijhLn(t); �2i:

As each of the �rst three terms in (149) converges a.s. in C(R+ ;R), we see that
"nM i

t(�)!M i
t (�) a.s. in C(R+ ;R) for some F 0

t-adapted continuous processM
i
t (�).

Lemma 50, (149) and Burkholder's inequality imply that

fsup
t�T

j"nM i

t
(�)j : n 2 Ng is L2-bounded for each T > 0. It follows easily that

M i
t
(�) is a continuous L2 (F 0

t
)-martingale. Theorem VI.6.1(b) of [JS87] implies

that hM i(�);M j(�)i
t
= ÆijhL(t); �2i 8t � 0 a.s. We may now let n!1 in (149)

to see that for � 2 C2
b
(R2 ),

hX i

t
; �i = hX i

0; �i+
Z
t

0

hX i

s
;
�2��

2
ids+M i

t
(�); i = 1; 2;(150)

M i

t (�) is a continuous L
2(F 0

t)-martingale such that

hM i(�);M j(�)it = ÆijhL(t); �2i 8t � 0 a.s.

By polarization the last equality implies hM1(�1);M
2(�2)i = 0 a.s. for all �1; �2 2

C2
b
(R2 ).

To show X satis�es (MP)
�;

X0
it remains to prove L = LX; P

0-a.s. The Markov

property of nX and (136) imply

For 0 � s < t and � 2 Cb(R2 ),

E (hLn(t)� Ln(s); �i j Fn
s
) =

t�sZ
0

�Z
"nSr

nX1
s
(x)"nSr

nX2
s
(x)�(x)d"nx

�
dr a.s.

(151)
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For each r > 0, it is straightforward to use Lemma 8, (147) and a Dominated

Convergence argument to see that

lim
n!1

Z
"nSr

nX1
s(x)

"nSr
nX2

s(x)�(x)d
"nx =

Z
SrX

1
s (x)SrX

2
s (x)�(x)dx(152)

<1 a.s. 8r > 0:

To take an L1 limit on the right side of (151) we �rst show

fn(r) =

Z
"nSr

nX1
s
(x)"nSr

nX2
s
(x)d"nx is a uniformly integrable

sequence on ([0; t� s]� 
0; dr � P 0) :(153)

If s = 0 this is an easy consequence of Lemma 45(a), so assume s > 0. We see from

(152) that

lim
n!1

fn(r) =

Z
SrX

1
s (x)SrX

2
s (x)dx � f(r) a.s. 8r > 0:(154)

Now use (150) just as in the proof of Proposition 15(b) (more speci�cally, (57)) to

conclude that

E0 �SrX1
s (x)SrX

2
s (x)

�
= Sr+sX

1
0 (x)Sr+sX

2
0 (x) 8r > 0; x 2 R2 :(155)

From (133) we have

lim
n!1

E0

0@ t�sZ
0

fn(r)dr

1A = lim
n!1

t�sZ
0

Z
"nSr+s

nX1
0(x)

"nSr+s
nX2

0(x)d
"nxdr

=

t�sZ
0

Z
Sr+sX

1
0 (x)Sr+sX

2
0 (x)dxdr

by Dominated Convergence and s > 0, as for (138). This with (154) and (155)

shows that lim
n!1

E0
�
t�sR
0

fn(r)dr

�
= E0

�
t�sR
0

f(r)dr

�
, which, together with (154),

gives (153). Therefore the same uniform integrability holds for�Z
"nSr

nX1
s
(x)"nSrX

2
s
(x)�(x)d"nx : n 2 N

�
:

Use this and (152) to let n!1 in the right-hand side of (151) and conclude

E0 (hLn(t)� Ln(s); �i j Fns ) L1�!
t�sZ
0

Z
SrX

1
s (x)SrX

2
s (x)�(x)dxdr as n!1

� �(Xs):(156)
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Now let  : 
X;L ! R be bounded continuous and FX;L
s

-measurable and satisfy

 (X; L) = 0 if X1
s (R

2 )+X2
s (R

2 ) > K for some K > 0. If J > 0, then (156) implies

E0 (�(Xs) (X; L))

= lim
n!1

E0 (E0 (hLn(t)� Ln(s); �i1 (jhLn(t)� Ln(s); �ij > J) jFn
s
) (nX; Ln))

+E0 (E0 (hLn(t)� Ln(s); �i1 (jhLn(t)� Ln(s); �ij � J) jFns ) (nX; Ln))

= lim
n!1

T (1)
n + T (2)

n :

(157)

Choose J so that P 0 (jhLn(t)� Ln(s); �ij = J) = 0. By Proposition 46, the Markov

property of nX, and our assumption on the support of  , if s > 0, then

jT (1)
n j � J�1E0

�
E0
�
hLn(t)� Ln(s); �i2 j Fns

�
 (nX; Ln)

�
� J�1c46(t)t

1=2k�k21K2E0 �E"n;1=2 (nXs)
�
k k1

� c(t; �;  )c36(1 + s�1)K4J�1;(158)

the last by Lemma 36(b). Next use (147), our choice of J and Dominated Conver-

gence to see that

lim
n!1

T (2)
n

= E0 (hL(t)� L(s); �i1 (jhL(t)� L(s); �ij � J) (X; L))

! E0 (hL(t)� L(s); �i (X; L)) as J !1:(159)

The last line is clear from E0 (hL(t); 1i) < 1 (by (150)). Use (158) and (159) in

(157) and then let J !1 to conclude

E0 (�(Xs) (X; L)) = E0 (hL(t)� L(s); �i (X; L)) ; t > s > 0:

It follows that for � 2 Cb(R2 )

E0 (hL(t)� L(s); �i j F 0
s) =

t�sZ
0

Z
SrX

1
s (x)SrX

2
s (x)�(x)dxdr a.s. 8s > 0;

and therefore, by the de�nition of L�;Æ
X
(t), that

hL�;Æ
X
(t); �i =

tZ
0

1

Æ
E0 (hL(s+ Æ)� L(s); �i j F 0

s) ds P
0 a.s.(160)

Theorem 37 on p. 126 of [Mey66], and the continuity and integrability of hL(t); �i
yield that the right-hand side of (160) converges in L1(P 0) to hL(t); �i as Æ # 0 for

each t � 0 and � 2 Cb(R2 ). Therefore LX exists and equals L a.s., and (146) holds

on (
0;F 0; P 0). It is now trivial to transfer these results over to the canonical space

in Proposition 52.

Proof of Theorem 11. (a) and (c) are immediate from Propositions 51, 52 and

24(b), except for the veri�cation of (IntC) and (SIntC), the latter for X0 2 Mf;se.

These are derived in [DFMPX00a] using the dual process from Section 3 and, more

speci�cally, Theorems 53, 54 and Remark 55 below.

(b) is proved in [DFMPX00a].

(d) The �rst assertion follows by a direct change of variables calculation in

(MP)
�;

X0
and the second assertion then follows from (b).
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Let PX0
denote the law on 
o = C

�
R+ ;M2

f
(R2 )

�
of the process X constructed

in Proposition 52.

Theorem 53. Assume (32) and X0 2 Mf;e. For any 0 < Æ < t, any bounded

continuous �0 : (R
2 )4 ! R+ , I0 � f1; : : : ; 4g, and any Borel map  : M2

f
(R2 ) !

R+ ,

EX0

0@Z �0(x1; : : : ; x4)
Y
i2I0

X1
t
(dxi)

Y
j =2I0

X2
t
(dxj) (XÆ)

1A
�Ê�0;I0 �EX0

0@Z �t�Æ(x1; : : : ; x4)
Y

i2It�Æ

X1
Æ
(dxi)

Y
j =2It�Æ

X2
Æ
(dxj) (XÆ)

� exp

(


Z
t�Æ

0

�
jIsj
2

�
+

�
jIcs j
2

�
ds

)!
:(161)

If, in addition,  is bounded and

f 6= 0g �
�
(�1; �2) : �1(R2 ) + �2(R2 ) � K

	
for some K > 0;(162)

then the above expressions are both �nite.

Proof. If Æ > 0,  is bounded, continuous, and satis�es (162), then both the

above results are immediate from Theorems 32(b) and 11(c), and Fatou's Lemma.

By taking bounded pointwise limits in  , these results extend to bounded non-

negative Borel  satisfying (162). Next, use Monotone Convergence to get the �rst

inequality for all non-negative Borel  and Æ > 0.

Theorem 54. Assume (32) and X0 2Mf;se. For any t > 0, any bounded continu-

ous �0 : (R
2 )4 ! R+ , any I0 � f1; : : : ; 4g, and any Borel map  :Mf (R

2 )
2 ! R+ ,

EX0

0@Z �0(x1; : : : ; x4)
Y
i2I0

X1
t
(dxi)

Y
j =2I0

X2
t
(dxj) (X0)

1A
� Ê�0;I0

0@Z �0(x1; : : : ; x4)
Y
i2It

X1
Æ
(dxi)

Y
j =2It

X2
Æ
(dxj) (X0)

� exp

(


Z
t�Æ

0

�
jIsj
2

�
+

�
jIcs j
2

�
ds

)!
<1:

In particular,

EX0

�
sup
t�T

X1
t (R

2 )4 +X2
t (R

2 )4
�
<1 for all T > 0:

Proof. The �rst two inequalities are proved as in Theorem 53 but using Theorem 32

(a) instead of Theorem 32(b) (the proof is simpler as the  (X0) term is deterministic

and hence trivial to include). The last result is obtained by taking �0 = 1, I0 = ;
or Ic0 = ;, and using the L4 maximal inequality for martingales.
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Remark 55. We will use Theorem 53 in [DFMPX00a] to show the solution con-

structed in Theorem 11(a),(c) satis�es (IntC). Note that without any uniqueness

result, the above proof and Propositions 51 and 52 show that any weak limit point

of f"nXg satis�es (MP)
�;

X0
and the conclusions of Theorems 53 and 54.

We complete this section with the proof of our key L2 estimate.
Proof of Proposition 46. Clearly it suÆces to consider the case � � 1: Let (F"

t
)

denote the right continuous �ltration generated by "X. Use the Markov property

of "X and (133)(ii) to see that for T �xed and 0 � t1 < t2 � T;

E
�
hL"(t2)� L"(t1); 1i2

�
= 2

Z t2

t1

dr

Z r

t1

dt

Z
d"y

Z
d"xE

�
E
�
"X1

r (x)
"X2

r (x)jF"t
�
"X1

t (y)
"X2

t (y)
�

= 2

Z
t2

t1

dr

Z
r

t1

dt

Z
d"y

Z
d"xE

�"
Sr�t

"X1
t
(x)"Sr�t

"X2
t
(x)"X1

t
(y)"X2

t
(y)
�

= 2

Z t2

t1

dr

Z r

t1

dt E

�Z
"p2(r�t)(y1 � y2)

"p0(y3 � y4)
"X1

t (dy1)
"X2

t (dy2)
"X1

t (dy3)
"X2

t (dy4)

�
:

Let �";v0 (y) = "pv(y1 � y2)
"p0(y3 � y4) (v � 0) and let (�";vt ; It) denote the dual

process in Proposition 27 starting at (�";v0 ; I0 = f1; 3g). Then a simple change of

variables in the above, together with Proposition 27, implies

E
�
hL"(t2)� L"(t1); 1i2

�
=

Z t2

t1

dt

Z 2(t2�t)

0

dv E (F (�";v0 ; I0;
"Xt))

� e3T
Z t2

t1

dt

Z 2(t2�t)

0

dv Ê"
�
";v

0 ;I0
(F (�";vt ; It;

"X0)) :(163)

To bound the expectation in(163) we will use Lemma 38. Note �rst that

�";v
t
(y) = "pv+2t(y1 � y2)

"p2t(y3 � y4) for T0 � t < T1(164)

�";v
T1�(y) =

"pv+2T1(y1 � y2)
"p2T1(y3 � y4):

We now will verify (114) for n0 = 1. Suppose i1 switches via i2, where fi1; i2g =
f2; 4g are distinct random indices. Then IT1 = f1; 3; i1g and

�";v
T1
(y) = "pv+2T1(y1 � yi2)

"p2T1(y3 � yi2)
"p0(yi1 � yi2):

It follows that for T1 � t < T2

�";vt (y) =

Z
"pv+2T1+t�T1(y1 � zi2)

"p2T1+t�T1(y3 � zi2)
"pt�T1(zi2 � yi1)

"pt�T1(zi2 � yi2)d
"zi2

�
�

c37
v + T1 + t

��
c37

T1 + t

�
"p2(t�T1)(yi1 � yi2)

and i1 2 It; i2 =2 It. A similar result holds if 1 switches via 3, or conversely, at

Tn0 . This establishes (114) with

f(t; !) = c237(v + t)�1t�1.(165)
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Then according to the de�nition in Lemma 38, after some algebra

�(s) � �f1 (s) =

�
cn+137

Qn�1
k=1 (Uk + Uk+1)

�1(v + T2)
�1(s� Tn�1)

�1; Tn � s < Tn+1; n � 2

c237(v + s)�1s�1; T1 � s < T2

= cn+137

n�1Y
k=1

(Uk + Uk+1)
�1(v + T2 ^ s)�1(s� Tn�1)

�1 Tn � s < Tn+1; n � 1:

Extend �(s) to [0; T1] by de�ning

�(s) = c37(v + s)�1 if 0 � s < T1:

Then Lemma 38, (113) and (164) imply there are random indicesfin1 ; in2g � f1; 2; 3; 4g;
such that

�";v
s
(y) � �(s) "p2(s�Tn)(yin1 � yin2 ); in1 2 Is; in2 2 Ics ; Tn � s < Tn+1; n � 0; P̂�";v0 ;I0

� a.s.

Therefore, if Ê" denotes Ê"
�
";v

0 ;I0
and N(t) = n i� Tn � t < Tn+1; then

Ê"(F (�";vt ; It;
"X0))

� Ê"
�
�(t)

Z
"p2(t�TN(t))(y1 � y2)

"X1
0 (dy1)

"X2
0 (dy2)

"X1
0 (R

2 ) "X2
0 (R

2 )

�
� �E";1=2("X0)Ê

"(�(t)(t � TN(t))
�1=2):(166)

Let �n be the rate of the exponential time Un. Then �2n = 3; �2n+1 = 2. The

de�nition of �(t) gives

Ê"(�(t)(t � TN(t))
�1=2)

= Ê"(1(t 2 [0; T1))c37(v + t)�1t�1=2)

+

1X
n=1

Ê"(1(Tn � t < Tn+1)c
n+1
37

n�1Y
k=1

(Uk + Uk+1)
�1(v + T2 ^ t)�1(t� Tn�1)

�1(t� Tn)
�1=2)

� c37(v + t)�1t�1=2 +

1X
n=1

cn+137

nY
i=1

�i

Z
Rn+

1(

nX
1

ui � t)e��n+1(t�
P

n

1 ui)e�
P

n

1 �iui

�
n�1Y
i=1

(ui + ui+1)
�1(v + (u1 + u2) ^ t)�1(t�

n�1X
1

ui)
�1(t�

nX
1

ui)
�1=2du1 : : : dun

� c37(v + t)�1t�1=2 + c37e
3t

1X
n=1

(c37
p
6)nIn(t; v);

(167)

where

In(t; v)

=

Z
Rn+

1(

nX
1

ui � t)

n�1Y
i=1

(ui + ui+1)
�1(v + (u1 + u2) ^ t)�1(t�

n�1X
1

ui)
�1(t�

X
ui)

�1=2du1 : : : dun:
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Let sj = t�Pj

i=1 ui; j = 0; 1; : : : ; n; and recall the notation K
(p)
n (s0; s) in Lemma

49. Then for n � 1,

In(t; v)

=

Z
R
n

+

1(sn � sn�1 � � � � � s1 � s0 = t)

nY
i=1

(si�2 � si)
�1(v + (s0 � s1))

�1s�1
n�1s

�1=2
n

ds1 : : : dsn

� K
(1=2)
n+1 (v + s0; s0)

� (3�)nt�1=2(v + t)�1(1 + (v=t)�1=2);

the last by Lemma 49(b). Our hypothesis (32) on ��2 implies c373�
p
6 < 1 so

we may use the above bound in (167) to conclude that for t � T ,

Ê"(�(t)(t� TN(t))
�1=2)

� c37(v + t)�1t�1=2 + c37e
3t(1� c373�

p
6)�1(v + t)�1t�1=2(1 + (v=t)�1=2)

� c1(; �
2; T )(v + t)�1t�1=2(1 + (v=t)�1=2):

Employing this bound in (166) and (163), we get (for 0 � t1 < t2 � T )

E
�
hL"(t2)� L"(t1); 1i2

�
(168)

� c2(; �
2; T ) �E";1=2("X0)

Z
t2

t1

dt

Z 2(t2�t)

0

dv(v + t)�1(t�1=2 + v�1=2)

� c2 �E";1=2("X0)I(t1; t2):

Substitute u = v=t for v to see that

I(t1; t2) =

Z
t2

t1

dt t�1=2
Z 2(

t2
t
�1)

0

du

�
1 + u�1=2

1 + u

�
� c3

Z t2

t1

dt t�1=2
��

t2

t
� 1

�
^ 1

�1=2
dt

= c3

Z t2

t1_(t2=2)
t�1(t2 � t)1=2dt+ c3

Z t1_(t2=2)

t1

t�1=2dt

� 2c3
t2

Z
t2

t1

(t2 � t)1=2dt+ c31(t2 > 2t1)2(t2=2)
1=2

� c4
t2

�
(t2 � t1)

3=2 + 1(t2 > 2t1)t
3=2
2

�
� c5

t2
(t2 � t1)

3=2;

where we use t2� t1 > t2=2 if t2 > 2t1 in the last line. Use this in (168) to complete

the proof.

5. Long-term behavior

In this Section we prove Theorem 20. Recall this gives the limiting law of

(X1
t
(R2 ); X2

t
(R2 )) as t ! 1. We will adapt the proof of the corresponding result

for the lattice case (Theorem 1.2(b) from [DP98]). Assume X0 is a �xed initial

state in Mf;e and (32) holds throughout this Section. The following third moment

bound is simpler than the fourth moment bounds in Section 4 but we include a

proof for completeness.
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Recall the notation Ep(X0) introduced prior to Lemma 35. We set

�Ep(X0) = Ep(X0)
�
hX1

0 ; 1i+ hX2
0 ; 1i

�
:

For those keeping track, in this particular argument (32) could be weakened to

=�2 < (c8�)
�1.

Lemma 56. AssumeX0 2 Mf;se . For any p
0 2 (0; 1=2) there is a c56 = c56(; �; p

0)

so that the law PX0
in Theorem 11 satis�es

EX0

Z T

0

Z
ps(x1; x2)X

1
r (dx1)LX(d[r; x2]) � c56 �Ep0(X0)s

�1=2 <1 8T > 0:

Proof. Fix s > 0. Let "X i and L" = "L"X denote our usual rescalings of the

process and its collision local time on "Z2. An application of Fatou's Lemma,

Theorem 11 (c), Skorohod's a.s. representation and Lemma 8 show that it suÆces

to prove that for all " > 0 suÆciently small,

E

Z T

0

Z
"ps(x1; x2)

"X1
r (dx1)L

" [d(r; x2)] � c56 �Ep0(X0)s
�1=2:

We calculate the left side using the moment dual process in Proposition 27 with

p = 3.

Let Tn = U1 + � � � + Un (T0 = 0) be the jump times of the dual process�
�t(x1; x2; x3); It

�
for third order moments with �0(x1; x2; x3) =

"ps(x1; x2)
"p0(x2; x3)

and I0 = f1; 2g. Then fUig are i.i.d. exponential with rate  and Proposition 27

gives

E
�R
�0(x1; x2; x3)

"X1
r (dx1)

"X1
r (dx2)

"X2
r (dx3)

�
= Ê"

V"

0
(er

R
�r(x1; x2; x3)

Y
i2Ir

"X1
0 (dxi)

Y
j2Ic

r

"X2
0 (dxj)):(169)

Recall from Lemma 8 that "pr � c8�
�2r�1 � c1r

�1. We claim that setting U0 � s
for all n 2 Z+,

(170)

Tn � r < Tn+1 implies

�r(x1; x2; x3) � (c1)
n+1

n�1Y
`=0

(U` + U`+1)
�1(Un + r � Tn)

�1 "p2(r�Tn)(xi; xj); and

(170n)

Ir = fi; kg or Ir = fig (i; j; k distinct random indices):

Assume (170n) with, say, ITn+1� = fi; kg (a similar argument goes through if

ITn+1� = fig). Then, if k changes type at Tn+1,

�Tn+1(x1; x2; x3) � c1
n+1

nY
`=0

(U` + U`+1)
�1 "p2Un+1(xi; xj)

"p0(xi; xk); ITn+1 = fig:
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Therefore if Tn+1 � r < Tn+2,

�r(x1; x2; x3)

� c1
n+1

nY
`=0

(U` + U`+1)
�1
Z

"p2Un+1+(r�Tn+1)(xj ; yi)
"pr�Tn+1(xk; yi)

"pr�Tn+1(xi; yi) d
"yi

� cn+21

nY
`=0

(U` + U`+1)
�1�

Un+1 + (r � Tn+1)
��1 "p2(r�Tn+1)(xi; xk):

If i changes type at Tn+1, then

�Tn+1(x1; x2; x3) � cn+11

nY
`=0

�
U` + U`+1

��1 "p2Un+1(xk; xj) "p0(xi; xk); ITn+1 = fkg;

and so if Tn+1 � r < Tn+2

�r(x1; x2; x3)

� cn+11

nY
`=0

�
U` + U`+1

��1 Z "p2Un+1+(r�Tn+1)(xj ; yk)
"pr�Tn+1(xi; yk)

"pr�Tn+1(xk ; yk)d
"yk

� cn+21

nY
`=0

�
U` + U`+1

��1�
Un+1 + (r � Tn+1)

��1 "p2(r�Tn+1)(xi; xk);
which gives (170n+1) . Finally if T0 � r < T1, Ir = f1; 2g and

�r(x1; x2; x3) =

Z
"ps+r(x1; y2)

"pr(y2; x3)
"pr(x2; y2)d

"y2

� c1(s+ r)�1 "p2r(x2; x3)

and so (1700) holds. This completes the inductive proof of (170n) for n 2 Z+.

It follows from (169) and (170n) that

E "X0

Z
�0

"X1
r (dx1)

"X1
r (dx2)

"X2
r (dx3)

�
1X
n=0

E(1(Tn � r < Tn+1)e
rcn+11

n�1Y
`=0

(U` + U`+1)
�1(Un + r � Tn)

�1

Z
"p2(r�Tn)(x1; x2)

"X1
0 (dx1)

"X2
0 (dx2))(hX1

0 ; 1i+hX2
0 ; 1i)

�
1X
n=0

(c1)
n+1

Z
Rn+

1

 
nX
1

ui � r

!
er exp

 
�
 
r �

nX
1

ui

!!
exp

 
�

nX
1

ui

!

�(s+ u1)
�1

n�1Y
`=1

(u` + u`+1)
�1

 
un + r �

nX
1

ui

!�1
c35 �Ep0(X0)

 
r �

nX
1

ui

!�1=2
d~u;

where 0 < p0 < 1=2 and we have used Lemma 35 in the last line.
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Therefore

E

Z T

0

Z
"ps(x1; x2)

"X1
r (dx1)L

"(d[r; x2])

=E

Z T

0

dr

Z
"ps(x1; x2)

"p0(x2; x3)
"X1

r (dx1)
"X1

r (dx2)
"X2

r (dx3)

�
1X
n=0

(c1)
n+1

Z
T

0

dr

Z
R
n

+

1

 
nX
1

ui � r

!
(s+ u1)

�1
n�1Y
`=1

(u` + u`+1)
�1

 
un + r �

nX
1

ui

!�1

� (r �
nX
1

ui)
�1=2 d~u � c35 �Ep0(X0)

�c35 �Ep0(X0)

1X
n=0

(c1)
n+1

Z
R
n+1
+

1

 
n+1X
1

ui � T

!
(s+ u1)

�1
nY
`=1

(u` + u`+1)
�1u

�1=2
n+1 d~u

� c35 �Ep0(X0)

1X
n=0

(c1�)
n+1s�1=2;

the last by Lemma 60 in Appendix B below. Our choice of =�2 in (32) ensures the

series is summable and so the above expected valued is bounded by the required

quantity.

Proof of Theorem 20. The a.s. convergence of Xt(R
2 ) is immediate from the

martingale convergence theorem as X i
t
(R2 ) is a non-negative (hence L1-bounded)

martingale. Since Xt(R
2 ) is a conformal martingale (X i

t(R
2 ) are orthogonal mar-

tingales with the same square function) Xt(R
2 ) = B(At) for some planar Brownian

motion B starting at X0(R
2 ), where At = LX(t)(R

2 ). Clearly X1(R2 ) = B(A1)

where A1 � �ex because X�(R
2 ) stays in the �rst quadrant. To complete the proof

we need only prove

X1
1(1)X2

1(1) = 0 a.s.,(171)

as this clearly implies A1 = �ex a.s.

To prove (171) we may assume X0 2 Mf;se by applying the Markov property at

a �xed time Æ > 0 and using Proposition 24(a). Let ~St denote the 4-dimensional
Brownian semigroup, M i denote the martingale measures associated with

X i(i = 1; 2), and �t = X1
t �X2

t denote the product measure on R
4 . We claim that

if � is bounded and Borel measurable on R4 , then for each s > 0, with probability

1,

�s(�) = h�0; ~Ss�i+
sZ

0

Z
~Ss�r�(x1; x2)

�
X1
r
(dx1)M

2(dr; dx2) +X2
r
(dx2)M

1(dr; dx1)
�
:

(172)

If �(x1; x2) = �1(x1)�2(x2) for bounded measurable �i, then this is immediate from
Corollary 23 and an integration by parts. The general result follows by passing to
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the bounded pointwise closure of the linear span of this class. Let " > 0 and de�ne

Ms =

sZ
0

Z
p"+2(s�r)(x1; x2)

�
X1
r
(dx1)M

2(dr; dx2) +X2
r
(dx2)M

1(dr; dx1)
�
:

Now let �(x1; x2) = p"(x1; x2) in (172) to getZ
p"(x1; x2)�s(dx1; dx2) =

Z
p"+2s(x1; x2)�0(dx1; dx2) +Ms:(173)

Integrate s over [0; T ] and use a stochastic Fubini theorem [[Wal86], Theorem 2.6]

to concludeZ T

0

Z
p"(x1; x2)�s(dx1; dx2) ds

=

Z T

0

Z
p"+2s(x1; x2)�0(dx1; dx2)ds+

Z T

0

Msds

=

Z 241
2

"+2TZ
"

pr(x1; x2) dr

35�0(dx1; dx2) +

Z T

0

Z 2641
2

"+2(T�r)Z
"

pu(x1; x2) du

375

�
X1
r
(dx1)M

2(dr; dx2) +X2
r
(dx2)M

1(dr; dx1)
�
:

(174)

To check the integrability condition required for the stochastic Fubini Theorem,

note �rst that the expression on the left-hand side of (173) is L2-bounded in s
(by Theorem 54 and our assumption that the initial measure is in Mf;se) and the

�rst term on the right-hand side of (173) is bounded. This shows that Ms is also

L2 bounded in s and so E(
R
T

0
hMis ds) < 1, which is the required condition in

[Wal86].

Let hÆ;T : R+ ! [0; 1] be the piecewise linear function satisfying hÆ;T (0) =

hÆ;T (x) = 0 for all x � 2T + Æ and hÆ;T (r) = 1 for r 2 [Æ; 2T ]. Let qÆ(x; y) =

Æ�1
R
Æ

0
pr(x; y) dr. The left side of (174) equalsZ T

0

Z
S"=2X

1
s (x)S"=2X

2
s (x)dxds(175)

by Chapman-Kolmogorov. By Theorem 11(a) (SIntC) holds, and this (we do not

require the factor jx� yj�1 in the de�nition of H" in this application of (SIntC)),

together with the Cauchy-Schwarz inequality, shows that (175), and so the left side

of (174), remains L2-bounded as " # 0. The �rst term on the right hand side of

(174) approaches

1

2

Z
G2T (x1; x2)�0(dx1; dx2) <1;

where G2T (x; y) =
2TR
0

pr(x; y) dr and the above is �nite since X0 2 Mf;se. This

means the stochastic integral on the far right side of (174) is also L2-bounded as

" # 0. This allows us to integrate (174) with respect to " 2 (0; Æ] and again use the
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stochastic Fubini theorem to see thatZ T

0

Z
qÆ(x1; x2)�s(dx1; dx2) ds

=

Z
1

2

Æ+2TZ
0

pr(x1; x2)hÆ;T (r) dr�0(dx1; dx2)

+

Z
T

0

Z 2641
2

Æ+2(T�r)Z
0

pu(x1; x2)hÆ;T�r(u)du

375
�
X1
r (dx1)M

2(dr; dx2) +X2
r (dx2)M

1(dr; dx1)
�
:(176)

As Æ # 0, the �rst term on the right approaches 1
2

Z
G2T (x1; y2))�0(dx1; dx2) <1

by Dominated Convergence (recall that X0 2Mf;se). The left side converges in L
1

to LX(T )(R
2 ) by (146), and is L2 bounded as Æ # 0, by (SIntC) and the Cauchy-

Schwarz inequality (as above), respectively. It follows that the square function of

the stochastic integral remains L1 bounded as Æ # 0 and so by Fatou's lemma

E

 Z T

0

Z �Z
G2(T�r)(x1; x2)X

1
r (dx1)

�2
LX(dr; dx2)

+

Z T

0

Z �Z
G2(T�r)(x1; x2)X

2
r (dx2)

�2
LX(dr; dx1)

!
< 1:

This and the above L2-boundedness readily allow us to see that the above integrals

are still �nite if G2(T�r)(x1; x2) is replaced with
Æ+2(T�r)R

0

pu(x1; x2)~hÆ;T�r(u) du

where ~hÆ;T�r(u) = 1 for 0 � u � 2(T � r) and agrees with hÆ;T�r elsewhere.

Therefore we may apply Dominated Convergence to see that the stochastic integral

in (176) converges in L2 and conclude that

AT �LX(T )(R2 ) =
1

2

Z
G2T (x1; x2)�0(dx1; dx2)

+

Z T

0

Z �
1

2
G2(T�r)(x1; x2)

�
[X1

r (dx1)M
2(dr; dx2)

+X2
r
(dx2)M

1(dr; dx1)]

�A1
T
+NT ;(177)

where NT is in L2.
Choose M = M(X0) 2 N so that X i

0(B(0;M=2)) � 1
2
X i
0(R

2 ). If T � M4 and

G2T (M) = inf jx1�xj2j<M G2T (x1; x2), then

A1
T �

1

8
G2T (M)X1

0 (1)X
2
0 (1) � c1(logT )X

1
0 (1)X

2
0 (1)(178)
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for some universal constant c1(M) by an elementary calculation. Let p > 1 and

set

�i
T
=

Z
T

0

Z 8><>:
Z 264 T

�pZ
0

ps(x1; x2) ds

375X i

r
(dx1)

9>=>;
2

LX(dr; dx2); and

ÆiT =

T
�pZ

0

log
�
T�p=s

� "Z T

0

Z
ps(x1; x2)X

i

r(dx1)LX(dr; dx2)

#
ds:

If X i
�

T
(1) = supr�T X

i
r(1); then (for T � 2),

hNiT =


4

X
i=1;2

Z T

0

Z �Z
G2(T�r)(x1; x2)X

i

r(dx1)

�2
LX(dr; dx2)

� 

2

X
i=1;2

264Z T

0

Z 24Z 2TZ
T�p

ps(x1; x2) dsX
i

r
(dx1)

352 LX(dr; dx2) + �i
T

375
� c(p; ; �) (logT )

2

0@X
i=1;2

X i
�

T
(1)2

1ALX(T )(R
2 )

+
X
i=1;2

c(; �)

Z
T

0

Z Z 264 T
�pZ

0

ps1(x1; x2)

T
�pZ

s1

ds

s
ds1

375X i

r
(dx01)X

i

r
(dx1)LX(dr; dx2)

� c2(logT )
2

24X
I=1;2

X i
�

T (1)2

35AT + c2
X
i=1;2

X i
�

T (1)ÆiT ;

(179)

recalling AT � LX(T )(R
2 ).

Lemma 56 shows that if 0 < p0 < 1=2,

E
�
Æi
T

�
� c56 �Ep0(X0)

T
�pZ
0

�
log(T�p=s

�
s�1=2 ds

= c56 �Ep0(X0)

24 1Z
0

(log 1=u)u�1=2du

35T�p=2
� c3 �Ep0(X0)T

�p=2:(180)

Assume X1
0 (1)X

2
0 (1) > 0 and T1(X0) is chosen large enough so that for T �

T1(X0),

c1(logT )X
1
0 (1)X

2
0 (1) � 2 and T � 2 _M4:(181)

Then (177) and (178) imply that for T � T1(X0)
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P (AT � 1) � P
�
c1(log T )X

1
0(1)X

2
0 (1) +NT � 1; AT � 1

�
� P

 
NT � �c1

2
(log T )X1

0(1)X
2
0 (1); AT � 1; X1�

T
(1) _X2�

T
(1) � R;

Æ1T _ Æ2T� R (logT )
2

!
+
X
i=1;2

P
�
X i

T

�
(1) > R;AT � 1

�
+ P

�
Æi
T
> R(logT )2

�
by (181)

� P
�
NT � �c1

2
(logT )X1

0 (1)X
2
0 (1); hNiT � 4c2(logT )

2R2
�

(182)

+

0@X
i=1;2

PXi

0(1)

�
sup
s�1

Bs � R

�1A+2R�1(log T )�2c3 �Ep0(X0)T
�p=2;

where in the last line B is a linear Brownian motion starting at x under Px, and
we have used (179), (180), and the Dubins-Schwarz theorem to write X i

t
(R2 ) as

B(At). Assume

R � max
�
2
�
hX1

0 ; 1i+ hX2
0 ; 1i

�
; hX1

0 ; 1ihX2
0 ; 1i

�
;

then an elementary calculation with Brownian motion, again using Dubins-Schwarz

(see [DP98, (3.12) and (3.13)]) shows that the �rst term on the right side of (182)

is at most

1� c4hX1
0 ; 1ihX2

0 ; 1iR�1

(c4 > 0 universal) and the second term is at most

8

R
exp(�R2=8):

Now set

R = R
�
hX1

0 ; 1i; hX2
0 ; 1i

�
= max

�
2
�
hX1

0 ; 1i+ hX2
0 ; 1i

�
; hX1

0 ; 1ihX2
0 ; 1i;

h
8
���log h32 �c4hX1

0 ; 1ihX2
0 ; 1i

��1i���i1=2�
and then assume T 2 N, in addition to (181), also satis�es T � T2(X0) to ensure

the last term on the right side of (182) is at most c4
4
X1
0 (1)X

2
0 (1)R

�1. In fact de�ne

T (X0) to be the smallest such T in N. Set T � 1 if X0 =2Mf;se or X
1
0 (1)X

2
0 (1) = 0.

Combining the above bounds and using them in (182), we get

P (AT > 1) � c4X
1
0 (R

2 )X2
0 (R

2 )R�1 � 8

R
e�R

2
=8 � c4

4
X1
0 (R

2 )X2
0 (R

2 )R�1

� c4

4
X1
0 (R

2 )X2
0 (R

2 )R(X1
0 (R

2 ); X2
0 (R

2 ))�1 (by the choice of R)(183)

� q(X1
0 (R

2 ); X2
0 (R

2 )):
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Set q(0; x) = q(x; 0) = 0 so that (183) remains valid if hX1
0 ; 1ihX2

0 ; 1i = 0. Note

that

inffq(u; v) : u � Æ; v � Æg = "(Æ) > 0 8Æ > 0:(184)

Inductively de�ne N{valued stopping times by Tn+1 = T (X1
Tn
; X2

Tn
)+Tn � 1. By

the Markov property for X if FX
t

= �(Xr : r � t),

PX0

�
ATn+1 �ATn � 1 j FXTn

�
= PXTn

(A (T1(X0)) � 1) 1(Tn <1) � q (XTn(1)) 1(Tn <1) (by (183)).

Now use the conditional version of the Borel-Cantelli Lemma and the fact that

lim
t!1

At = A1 <1 a.s. (because X i
t
(R2 )

a:s:�! X i
1(R2 ) <1) as in (3.18) of [DP98]

to conclude that
1X
n=1

q
�
XTn(R

2 )
�
1(Tn <1) <1 a.s.(185)

If Tn <1 for all n then (184) and (185) imply lim
n!1

X1
Tn
(R2 )X2

Tn
(R2 ) = 0 a.s. and

so lim
t!1

X1
t
(R2 )X2

t
(R2 ) = 0 a.s. by martingale convergence. If Tn =1 for some n,

then let n0 be the �rst such n. Since Xk 2Mf;se for all k 2 Z+ a.s. by Proposition

24(a), this implies X1
Tn0�1

(R2 )X2
Tn0�1

(R2 ) = 0 and therefore, X1
t
(R2 )X2

t
(R2 ) = 0

for all t � Tn0�1. The required result is established in either case.

6. Existence of Densities and Segregation of Types

We start with a general result giving the existence of densities for a class of

measure-valued martingale problems based on a conformal martingale argument.

Write M = M(Rd) for the space of all Radon measures on Rd equipped with the

topology of vague convergence and let C1com(Rd) be the space of in�nitely di�eren-

tiable functions on Rd with compact support.

Theorem 57. Let Qt denote a Feller semigroup on Rd , let T > 0, and assume

Xt = (X1
t ; X

2
t ); 0 � t � T is an adapted continuous M2

valued process on

(
;F ;Ft; P ). Suppose that for some c > 0, for all non-negative 'j 2 C1com(Rd ),
j = 1; 2,

N j

t
('j) =

D
Xj

t
; QT�t'

j

E
; t � T; j = 1; 2 are orthogonal Ft-martingales(186)

whose predictable square functions satisfy


N1('1)

��
t
= c



N2('1)

��
t
; ; 0 � t � T:

Then Xj

T
� `; P -a.s. for j = 1; 2 if and only if QTX

j

0 � `; P -a.s. for j = 1; 2.

Proof. By working with the regular conditional probability for X given X0 we

may assume that X0 is deterministic (it suÆces to assume the above for a countable

supnorm dense set of 'j 's).
Step 1Æ: First we assume that c = 1: Fix a non-negative ' 2 C1com(Rd ): Set

X := X1 + iX2 and N(') := N1(') + iN2('). Then N(') is a conformal
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martingale (see, e.g., [RY91, xV.2], V.2), and Itô's lemma shows that the bounded

process t 7! e�Nt(') is a continuous F�{martingale. We therefore have

EhXT ; 'i = ENT (') = N0(') = hX0 ; QT'i(187)

and

Ee�hXT ;'i = Ee�NT (') = e�N0(') = e�hX0 ;QT'i:(188)

Let f'n : n � 1g denote a (non-negative) radially symmetric approximate identity

(that is approximating the Æ0{function) in C1com (Rd ): Set 'xn(y) := 'n(y � x);
x; y 2 Rd : Since B 7!



X0 ; QT (1B')

�
=: �(B) is a �nite complex measure, we

may apply standard di�erentiation theory of measures (see e.g. Theorem 8.6 in

[Rud74]). From the identity (187) we conclude that

ENT ('
x

n
') =



X0 ; QT ('

x

n
')
�
�!
n"1

f(x) =: f1(x) + if2(x) for `{a.a. x;

(189)

where f is the density of the absolutely continuous part of � :

�(�) =

Z
( � )
`(dx) f(x) + �(�); � ? `:(190)

Note that f j � 0; j = 1; 2; andZ
`(dx) f j(x) �



Xj

0 ; QT'
�
= N j

0 (') < 1;(191)

hence f j(x) <1 for `{almost all x: Applying the same argument to the random
�nite complex measure B 7! hXT ;1B'i ; we see that

hXT ; '
x

n'i �!
n"1

�(x) =: �1(x) + i�2(x) for `� P{a.a. (x; !);(192)

where � is the density of the absolutely continuous part of


XT ;1( � )'

�
: Fatou's

lemma gives

E�j(x) � lim inf
n"1

E


Xj

T
; 'x

n
'
�
= lim inf

n"1



Xj

0 ; QT ('
x

n
')
�

= f j(x) < 1; for `{a.a. x:(193)

Now (189) shows that for `{a.a. x and for � � 0;

e��f(x) = lim
n"1

exp
h
� �


X0 ; QT ('

x

n')
�i
;

which by (188), (192), and bounded convergence, equals

lim
n"1

E exp
�
� �hXT ; '

x

n'i
�
= Ee���(x):

We use the �niteness in (193) to di�erentiate P e���(x) with respect to � at � = 0+

and conclude

E�(x) = f(x) < 1; for `{a.a. x:(194)

Step 2Æ: Assume now that X0 �QT � (`; `): Then, by (187) and since � = 0 in

the decomposition (190),

E


Xj

T
; '
�
=


Xj

0 ; QT'
�
=

Z
`(dx) f j(x) = E

Z
`(dx) �j(x)
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where in the last step we used (194). This shows the singular part of B 7!

Xj

T
; 1B'

�
is a.s. 0 and as ' is an arbitrary smooth non-negative function with

compact support, we may conclude that Xj

T
� ` P -a.s.

Step 3Æ: Conversely, assume that Xj

T
� `; P{a.s., j = 1; 2: Then, if B is a

Lebesgue null set in R2 ; we get Xj

T
(B) = 0; P{a.s., and so


Xj

0 ; QT1B
�
= E



Xj

T
;1B

�
= 0:

In fact, in the �rst equality we have extended (187) from ' 2 C1com to bounded

measurable ' by a standard monotone class argument.

Step 4Æ: The result for general c now follows by applying the above to (c�1=2X1; X2).

Although the above result may appear to be fairly general, a bit of thought will

convince the reader that these hypotheses are not readily satis�ed. Of course we

have just worked rather hard to �nd at least one case where they are satis�ed.

Proof of Theorem 17(a). Corollary 23 shows that the hypothesis of Theorem 57

holds with Qt = ST , the Brownian semigroup, and c = 1. The absolute continuity

of the Brownian semigroup and Theorem 57 completes the proof.

Remark 58. Note that the proof of Theorem 17(a) only relied on a result (Corol-

lary 23), which was established for any solution of (MP)
�;

X0
independently of our

uniqueness results, and on the general Theorem 57, which is independent of the

other results in this paper. This will allow us to use the above existence of den-

sities in the derivation of uniqueness in law and the strong Markov property in

[DFMPX00a].

The proof of the segregation of types result, Theorem 17 (b), will be an adap-

tation of the method of Cox-Klenke-Perkins [CKP00] which was designed to prove

convergence to equilibria from more general initial conditions once it is estab-

lished from uniform initial measures, and will be used for precisely this purpose

in [DEFMPX00b]. Given the close links between the local and longtime behaviors

(cf. [DEFMPX00b]), this connection is not surprising.

Proof of Theorem 17(b). (b2) is clearly immediate from (b1).

(i) Assume �rst that X0 2 Mf;se. Write pt;x(y) = pt(x; y), let a1, a2 � 0 and

set a = a1 + a2, b = a1 � a2. We let xt = x1t + x2t , yt = x1t � x2t , Xt = X1
t +X2

t ,

Yt = X1
t �X2

t ,
~Xt = ~X1

t +
~X2
t and

~Yt = ~X1
t � ~X2

t , where
~X i
t are the dual solutions in

Proposition 13. By this latter result and standard di�erentiation theory, for `-a.a.
x

EX0

�
e�aXt(x)+ibYt(x)

�
= lim

Æ#0
E
�
e�ahXt;pÆ;xi+ibhYt;pÆ;xi

�
= lim

Æ#0
lim
"#0

Ea1pÆ;x;a2pÆ;x

�
e�hX0;S"

~Xti+ihY0;S" ~Yti
�
;(195)

where the subscript now denotes the initial densities.

Let k = Æ�1, �x x so that (195) holds, let t > 0, and note that

h ~X i;k;x

t ; �i = h ~X i

t=k
; �
�
(� � x)

p
k
�
i; i = 1; 2
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also de�nes a solution to (MP)
�;x

~X
k;x

0

with initial conditions ~X i;k;x

0 = ai�0, where �0

is the normal law on R2 with mean zero and covariance matrix �2I . Now use

hX i

0; S"
~Xj

t
i =

Z �Z
p"(zk

�1=2 � y + x)X i

0(dy)

�
~Xj;k;x

kt
(dz)

= h ~Xj;k;x

kt
; S"X

i

0(� k�1=2 + x)i
in (195) to see

EX0

�
e�axt(x)+ibyt(x)

�
(196)

= lim
k!1

lim
"#0

Ea1�0;a2�0

�
exp

n
�
D
~Xkt; S"X0(�k�1=2 + x)

E
+i
D
~Ykt; S"Y0(�k�1=2 + x

Eo�
:

Let

�i

k;"
(y) = S"X

i

0

�
yk�1=2 + x

�
� StX

i

0(x)

and note by Corollary 23, under Pa1�0;a2�0 ,

h ~Xj

kt
;�i

k;"i = ajh�0; Skt�i

k;"i+
ktZ
0

Z
R2

Skt�r�
i

k;"(y) d
~M j(r; y) a.s.(197)

Fix � 2 (0; t=2) and consider r 2 [0; kt). Then

Skt�r�
i

k;"
(z) =

ZZ
ptk�r(y � z)p"(yk

�1=2 + x� w)X i

0(dw)dy � StX
i

0(x)(198)

=

Z h
pt+"�rk�1(w � x� zk�1=2)� pt(w � x)

i
X i

0(dw):

As " # 0 and k !1, the integrand converges pointwise to 0, and for r 2 [0; k(t��))
is uniformly bounded by c=�. Therefore

1(r < kt)Skt�r�
i

k;"
! 0 pointwise as "! 0; k !1 and(199)

sup
�
Skt�r�

i

k;"
(z) : r � k(t� �); z 2 R2 ; k 2 N; " > 0

	
� c

�
X i

0(R
2 ):

By Dominated Convergence, the �rst term on the right-hand side of (197) ap-

proaches 0 as " # 0 and k !1. Turning to the second term, let

N i;j

k;"
(s) =

Z
s

0

Z
R2

Skt�r�
i

k;"
(y)d ~M j(r; y); s � kt:

Then

hN i;j

k;"
i (k(t� �)) = 

k(t��)Z
0

Z
R2

�
Skt�r�

i

k;"(y)
�2
L~X(dr; dy)

which approaches 0 a.s. as " # 0 and k ! 1 by (199), Dominated Convergence,

and the fact that L ~X(t;R
2 ) ! L ~X(1;R2 ) < 1 a.s. as t ! 1. The latter is true

because L ~X(t;R
2 ) is the square function of the non-negative martingale ~X i

t(R
2 )

which therefore must converge a.s. Now use Proposition 15 (c) to see that
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Ea1�0;a2�0

�
hN i;j

k;"
i(kt)� hN i;j

k;"
i (k(t� �))

�
� 

ktZ
k(t��)

Z
R2

�
Skt�r�

i

k;"(y)
�2
a1a2Sr�0(y)

2 dy dr

� c(t;X0)

264 ktZ
k(t��)

Z
R2

�Z
pt+"�rk�1(w � x� yk�1=2)X i

0(dw)

�2
pr+1(y)

2 dy dr

+

ktZ
k(t��)

Z
R2

pr+1(y)
2dy dr

375 ;
where we have used (198) in the last line.

This in turn is bounded by

c(t;X0)

264 ktZ
k(t��)

Z
pt+"�rk�1(w1 � x� yk�1=2)pt+"�rk�1 (w2 � x� yk�1=2) dy(r + 1)�2

�X i

0(dw1)X
i

0(dw2) dr +

ktZ
k(t��)

p2(r+1)(0) dr

375
� c(t;X0)

264 ktZ
k(t��)

Z
kp2(t+"�rk�1)(w1 � w2)X

i

0(dw1)X
i

0(dw2)(r + 1)�2 dr + log(t=t� �)

375
� c(t;X0)

264 ktZ
k(t��)

(t+ "� rk�1)
�1=2

(r + 1)�2kdr + log(t=t� �)

375 (since X0 2Mf;se)

� c0(t;X0)
h
�1=2 + �

i
! 0 as � # 0:

It follows from the above results that

hN i;j

k;"
i(kt) Pa1�0;a2�0�! 0 a.s. " # 0 and k !1;

and so by a standard martingale inequality, the second term on the right-hand side

of (197) (i.e. N i;j

k;"
(kt)) also converges to 0 in Pa1�0;a2�0 -probability as " # 0 and

k !1. We have proved h ~Xj

kt
;�i

k;"
i Pa1�0;a2�0�! 0 as " # 0 and k !1 and so (196)

now gives

EX0

�
e�aXt(x)+ibYt(x)

�
= lim
k!1

Ea1�0;a2�0

�n
�
D
~Xkt; 1

E
StX0(x) + i

D
~Ykt; 1

E
StY0(x)

o�
= E0

a1;a2

�
e�StX0(x)(B

1
�ex

+B2
�ex

)+iStY0(x)(B
1
�ex

�B2
�ex

)
�
( by Theorem 20)(200)

= E0
StX

1
0 (x);StX

2
0 (x)

�
e�a(B

1
�ex

+B2
�ex

)+ib(B1
�ex

�B2
�ex

)
�
:
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The last equality is an easy exercise on harmonic functions which may be found in

the proof of Theorem 1.5 in [DP98]. An easy application of the Stone-Weierstrass

Theorem, as in the proof of Lemma 2.3(b) in [DP98], shows that the above joint

Laplace-Fourier transforms for a1; a2 � 0 uniquely determine the law of (xt(x); yt(x))
and the result follows for X0 2 Mf;se.

Assume now that X0 2 Mf;e. Let Æn 2 (0; t) decrease to 0. By Proposition

24(a), XÆn 2Mf;se a.s. and so the Markov property and (200) imply

EX0

�
e�aXt(x)+ibYt(x)

�
= EX0

�
EXÆn

�
e�axt�Æn(x)+ibyt�Æn (x)

��
= EX0

�
E0
a1;a2

�
e�St�ÆnXÆn

(x)(B1
�ex

+B2
�ex

)+iSt�ÆnYÆn (x)(B
1
�ex

�B2
�ex

)
��

! E0
a1;a2

�
e�StX0(x)(B

1
�ex

+B2
�ex

)+iStY0(x)(B
1
�ex

�B2
�ex

)
�

as n!1:

In the last line we have used Dominated Convergence, the a.s. continuity of Xt, and

the uniform convergence of pt�Æn(�) to pt(�). This establishes (200) for X0 2 Mf;e

and the proof may be completed just as in the previous case.

Proof of Corollary 19. Let fBk : k 2 Ng be the set of open balls in R2

with rational centers and radii. Choose non-negative f�kg � Ccom(R2 ) such that

f�k > 0g = Bk. We may �x "n # 0 such that

hL�;"n
X

(t); �ki ! hLX(t); �ki 8t 2 Q+ 8k a.s.(201)

By Theorem 17 we may �x ! outside a null set such that (201) holds,

X i

s(dx) = X i

s(x)dx for Lebesgue a.a. s > 0;(202)

and
1Z
0

Z
R2

X1
s (x)X

2
s (x)dx ds = 0:(203)

It clearly suÆces to show that for this �xed choice of !, the desired conclusion holds
for U = (r1; r2)�Bk for a �xed k and �xed rationals 0 � r1 < r2. Assume

LX(r2)(Bk)� LX(r1)(Bk) > 0

and, say, kx1k
U
<1. Clearly 9Bk0 � Bk0 � Bk such that

hLX(r2); �k0 i � hLX(r1); �k0 i > 0. Then by (201)

lim
n!1

"�1
n

"nZ
0

dr

r2Z
r1

ds

�Z
�k0(y)SrX

1
s
(y)SrX

2
s
(y)dy

�
= hLX(r2); �k0 i � hLX(r1); �k0 i > 0;

which by Fubini implies

lim
n!1

r2Z
r1

Z
R2

24 1

"n

"nZ
0

SrX
1
s
(y)SrX

2
s
(y)dr

35 �k0(y) dy ds = hLX(r2); �k0 i � hLX(r1); �k0 i > 0:

(204)

On the other hand (202) implies

SrX
i

s
(y)! X i

s
(y) for Lebesgue a.a. (s; y) a.s. r # 0:(205)

Let d(Bk0 ; B
c

k
) = �k > 0. Recall k kU denotes the essential supremum with respect

to Lebesgue measure on the space-time open set U. We abuse this notation slightly

and let k k
Bk

denote the essential sup with respect to Lebesgue measure on Bk.
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We may �x s 2 (r1; r2) outside a Lebesgue null set so that (202) holds and

kx1skBk � kx1k
U
<1. If y 2 Bk0 , then

SrX
1
s
(y) �

Z
Bk

pr(z � y)x1
s
(z) dz +

Z
Bc

k

pr(z � y)X1
s
(dz)

� kx1skBk + pr(�k)X
1
s (R

2 )

� kx1k
U
+X1

s (R
2 )

providing r < r(k), where r(k) > 0. This implies that for "n < r(k), y 2 Bk0 , and
Lebesgue a.a. s 2 (r1; r2), we have

1

"n

Z "n

0

SrX
1
s (y)SrX

2
s (y) dr �

�
kx1kU + sup

s�r2
X1
s (R

2 )

�
1

"n

Z "n

0

SrX
2
s (y) dr:(206)

Assume for the moment that

Hn(s; y) =
1

"n

Z
"n

0

SrX
2
s
(y) dr (n 2 N) is a uniformly integrable family on

((r1; r2)� R2 ; �k0 (y)ds dy)(207)

Then (206) allows us to take the limit in (204) through the �rst two integrals and

conclude that the limit on the left side of (204) equals

r2Z
r1

Z
R2

24 lim
n!1

1

"n

"nZ
0

SrX
1
s
(y)SrX

2
s
(y)dr

35 �k0 (y) dy ds
=

r2Z
r1

Z
R2

X1
s (y)X

2
s (y)�k0 (y) dy ds by (205)

= 0 by (203).

This contradicts (204) and so shows that for ! as above LX(U) > 0 implies

kx1k
U

= 1. By symmetry the proof is complete except for the veri�cation

of (207). To this end note that by (205), limn!1Hn(s; y) = x2s(y) for Lebesgue
a.a. (s; y) and

lim
n!1

Z
r2

r1

Z
Hn(s; y)�k0(y)dy ds = lim

n!1

Z
r2

r1

Z
1

"n

Z
"n

0

Sr�k0 (y)dr x
2
s
(y)dy ds

=

Z
r2

r1

Z
�k0 (y)x

2
s
(y)dy ds

(by Dominated Convergence).

Since Hn � 0 (207) follows, and the proof is complete.

7. Some Open Questions

An intriguing feature of this process is the volatile nature of its densities. There

are a number of interesting open problems about the qualitative nature of the

densities but, after spending three papers just to get existence, uniqueness and

the basic features of the process straight, we will leave these for another day and

perhaps another bunch of authors. Throughout this Section (X1
t ; X

2
t ) denotes the

unique solution of (MP)
�;

X0
starting at X0 2Mf;e.
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We know from Theorem 17 that at a �xed time the densities segregate and the

measures are mutually singular. This does not however say anything about their

closed supports. Let S(X i
t
) denote the closed support of X i

t
and let

G(X i) = clf(t; x) : x 2 S(X i

t
); t > 0g

(cl denotes closure in R+ � R2 ) be the closed graph of X i for i = 1; 2.
Conjecture 1. The interface I = G(X1)\G(X2) is a.s. Lebesgue null in R+�R2
and there are versions of the densities xi(�; �) which are smooth on Ic and satisfy
@x

i

@t
= �

2�xi

2
on Ic.

Conjecture 2. For t > 0, the �xed time interface S(X1
t )\S(X2

t ) is a.s. Lebesgue

null.

Assuming the second conjecture is correct we have

Question 3 What is the Hausdor� dimension of S(X1
t ) \ S(X2

t )?

Uniform in time behavior leads to an even more diÆcult set of problems. Even

the simplest kind of uniform in t non-singularity (membership inMf;e for all t � 0

a.s.) led to some non-trivial arguments in Proposition 24 (b) and we were never

able to decide if in fact X i
t
2 Mf;se for all t > 0 a.s. The fact that the existence

of the densities at a �xed time is rather delicate means the existence for all t is
uncertain.

Question 4. Is X i
t(dx) � dx for all t > 0 a.s.? Is S(X1

t ) \ S(X2
t ) Lebesgue null

for all t > 0 a.s.?

We showed in Corollary 19 that the densities blow up at typical points in the

interface.

Question 5. Can one �nd a canonical rate of explosion of xi(t; x) as x approaches

x0 for LX a.a. (t; x0)?

As mentioned in Section 1.2 we feel that the results of this paper should hold

for any (; �2).

Problem 6. Prove this.

Having done this, the reader may then want to turn to higher dimensions. Recall

for super-Brownian motion branching in a super-Brownian medium, the process will

only exist in 3 or fewer dimensions as it is critical that a typical Brownian path

collides with the time-dependent catalyst [DF97a]. The situation for mutually

catalytic branching is less clear and, depending on the time of day, you may be

able to convince yourself that it should exist in any dimension, or only for d � 3,

or only for d � 2.

Problem 7. Construct a solution to (MP)
�;

X0
in higher dimensions or prove they

cannot exist for suÆciently high dimensions.

8. Appendices

8.1. Appendix A. Random Walk Kernels. In this Appendix we gather to-

gether the results we need for the transition kernel of our continuous time random

walk "� on "Z2 which jumps to a randomly chosen nearest neighbor with rate

2"�2�2. One would have thought that references containing proofs of Lemma 8 are

commonplace but we could not locate one. Recall that

"pt(x) = "�2�("�t = x); x 2 "Z2 and pt(x) = (2�t�2)�1e�jxj
2
=2�2t:
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Let "qt(x) and qt(x) be the one-dimensional counterparts of
"pt(x) and pt(x), respec-

tively, so that "pt(x1; x2) =
"qt(x1)

"qt(x2) and pt(x1; x2) = qt(x1)qt(x2). Lemma 8
then is immediate from its one-dimensional version which we now prove.

Lemma 59. (a) 8s > 0 lim
"!0

sup
x2"Z

j"qs(x) � qs(x)j = 0

(b) There is a universal constant cA:1 <1 such that for all " > 0

sup
s�0;x2"Z

"qs(x)
p
s� = sup

s�0

"qs(0)
p
s� = cA:1:

Proof. The characteristic function of "qs(x) is given by

"bqs(�) = e��
2
s="

2
X
n

(�2s="2)n

n!
(cos�")n

= exp
�
� �2s

�1� cos�"

"2
��
:

Then by Fourier inversion (see p. 511 of [Fel71]) we have

"qs(x) = (2�)�1
Z
�="

��="
cosx� exp

�
��2s

�
1� cos �"

"2

��
d�(208)

and

qs(x) = (2�)�1
Z 1

�1
cosx� exp

�
��2s�2=2

�
d�:(209)

Let K > 1 and assume " < �

K
s1=2. Then

j "qs(x)� qs(x)j � ��1
Z
Ks

�1=2

0

����exp���2s�22

�
� exp

�
��2s

�
1� cos(�")

"2

������ d�
+ ��1

Z �="

Ks�1=2

exp(��2s�2=2) + exp

�
��2s

�
1� cos(�")

"2

��
d�

� I1 + I2:

Let � > 0 and de�ne c0 = inf jxj��(1� cosx)x�2 2 (0; 1
2
]. Then

I2 � 2��1
Z 1

Ks�1=2

exp(��2sc0�2)d� � 2��1
Z 1

Ks�1=2

�

Ks�1=2
e��

2
sc0�

2

d�

= (��2c0)
�1s�1=2e��

2
c0K

2

� �s�1=2;(210)

where the last line is valid provided K � K0(�; �). For I1 use a second order Taylor
expansion to write

1� cos �"

"2
=
�2

2
cosX� for some X� 2 (0; �");

and conclude that

I1 = ��1
Z
Ks

�1=2

0

����exp(��2s�2=2) �1� exp

���2s�2
2

(cosX� � 1)

������ d�
� ��1

Z Ks
�1=2

0

exp(��2s�2=2)
��exp(�2s�4"2=4)� 1

�� d�:
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The elementary inequality 1� cosx � x2=2 is used in the last line.

For 0 � � � Ks�1=2, our assumed bound on " gives

�2s�4"2 � �2s�1K4"2 < �2�2K2;

and so

exp(�2s�4"2=4)� 1 � exp(�2�2K2=4)�2s�4"2=4:

This gives

I1 � ��1 exp(�2�2K2=4)

Z Ks
�1=2

0

exp(��2s�2=2)�2s�4"2=4 d�

� ��1 exp(�2�2K2=4)
"2p

2�2s3=2

Z 1

0

e�uu3=2 du

� c(K;�)"2s�3=2:

Combine this with (210) and set K = K0(�; �) to see that

sup
x2Z

j"qs(x) � qs(x)j � �s�1=2 + c(K0; �)"
2s�3=2 for " <

�

K0

s1=2:(211)

(a) is immediate from the above.

The �rst equality in (b) is clear from (208). For the second note that (211)

implies that for " < �

K0
s1=2,

"qs(0) � qs(0) + �s�1=2 + c0(K0; �)s
�1=2 � c1s

�1=2:

For " � �

K0
s1=2,

"qs(0) � "�1 � K0�
�1s�1=2;

and (b) follows.

Proof of Lemma 44. We may consider x = (x1; x2) 2 "Z2 such that x1 = jx1j �
jx2j. By scaling, Lemma 59(b), and (208)Z Æ

0

"ps(x1; x2)ds =

Z Æ"
�2

0

1pu(x1"
�1; x2"

�1)du

� c1(�)

Z Æ"
�2

0

1qu(x1"
�1)u�1=2du

= c1(�)�
�1
Z Æ"

�2

0

Z �

0

cos(x1�=") exp(��2(1� cos �)u)d�u�1=2du

= c2(�)

Z
�

0

cos(x1�=")gÆ;"(�)d�;(212)

where gÆ;"(�) =
R
Æ"
�2

0
exp(��2(1� cos �)u)u�1=2 du: Note that gÆ;" is a decreasing

function on [0; �] and if c(�) = �
p
1� cos �, then

gÆ;"(�) =

Z c(�)2Æ"�2

0

e�vv�1=2 dvc(�)�1 � c3

"
c(�)�1 ^

p
Æ

"

#
:(213)
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This implies Z ("=x1)^�

0

j cos(x1�=")gÆ;"(�)jd�

� c3

Z ("=x1)^("=
p
Æ)

0

p
Æ

"
d� + c3

Z "=x1

("=
p
Æ)^("=x1)

c(�)�11(� � �)d�

� c4(�)

"
1 ^

p
Æ

x1
+

Z
"=x1

("=
p
Æ)^("=x1)

��1d�

#

� c4(�)

"
1 ^

p
Æ

x1
+ log+

 p
Æ

x1

!#
:(214)

An integration by parts shows that if x1 > "=�; thenZ
�

"=x1

cos(x1�=")gÆ;"(�)d�

=
"

x1
sin(x1�=")gÆ;"(�)j�"=x1 �

Z
�

"=x1

"

x1
sin(x1�=")g

0
Æ;"
(�)d�

� "

x1
gÆ;"(�) +

"

x1
(gÆ;"("=x1)� gÆ;"(�)) =

"

x1
gÆ;"("=x1):(215)

In the last line we bounded the integrand in absolute value by "

x1
(�g0

Æ;"
(�)): Now

use (213) in (215) to conclude that for x1 > "=�;Z �

"=x1

cos(x1�=")gÆ;"(�)d� �
"

x1
gÆ;"("=x1)

� "

x1
c3

h
c("=x1)

�1 ^
p
Æ="
i

� c5(�)
"

x1

x1 ^
p
Æ

"
= c5(�)

 
1 ^

p
Æ

x1

!
:

Combine this with (214) in (212) to see thatZ
Æ

0

"ps(x1; x2)ds � c6(�)

"
1 ^

p
Æ

x1
+ log+

p
Æ

x1

#
:

Recalling our assumption that x1 = jx1j � jx2j, we see that the result follows.
Proof of Lemma 34. By Lemma 59 (b) and the fact that j(x1; x2)j > sr=2 + "r

implies jxij > s
r=2+"r

2
for i = 1 or 2, the result follows from

supfs�1=2 "qs(x) : 0 < s; "; jxj > sr=2 + "r

2
; x 2 "Zg<1:(216)

Another application of Lemma 59(b) shows that we need only consider s � 1. If �1
is the �rst jump time of the one-dimensional random walk "� then for x 6= 0,

"qs(x) � "�1P (�1 < s) = "�1(1� exp(��2s"�2)) � �2s"�3

and so

supfs�1=2 "qs(x) : s1=6 � "; x 6= 0g � �2:
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These observations show that it now suÆces to prove

supfs�1=2 "qs(x) : jxj >
sr=2 + "r

2
; 0 < " � s1=6 � 1g <1:(217)

To get bounds for larger values of s we �rst use some exponential bounds. Let
Sn be a simple symmetric random walk on "Z and let N"(s) be a Poisson process

with rate �2"�2 which is independent of fSng. Then we may take "�(s) = SN"(s)

and a simple calculation shows that if 0 < � � "�1, then

E(e�
"
�(s)) = exp(�2"�2s(cosh�"� 1)) � ec1s�

2

for some c1 = c1(�
2) > 0. If � = "�1 ^ s�1=2 and x � ("r + sr=2)=2, then

"qs(x) � "�1P (e�
"
�(s) � e�x) � "�1 exp(��x+ c1s�

2)

� "�1 exp(�("�1 ^ s�1=2)("r + sr=2)=2 + c1)

� "�1 exp(�(" _ s1=2)r�1=2 + c1):

By symmetry in x this gives

supfs�1=2 "qs(x) : jxj �
"r + sr=2

2
; 0 < s9 � " � s1=6 � 1g

� supfs�1=2"�1 exp(�(" _ s1=2)r�1=2 + c1) : 0 < s9 � " � s1=6 � 1g
� supfs�19=2 exp(�s(r�1)=6=2 + c1) : 0 < s � 1g = c2 <1:

To obtain (217) it therefore now suÆces to show

supfs�1=2 "qs(x) : jxj �
"r + sr=2)

2
; 0 < " < s9 � 1g <1:(218)

For this use (208) to see that

"qs(x) = ��1
Z
�="

0

cosx� exp

�
��2s

�
1� cos �"

"2

��
d�

= ��1
Z s

�1

0

cosx�

�
exp

�
��2s

�
1� cos �"

"2

��
� exp(��2s�2=2)

�
d�

+ ��1
Z �="

s�1

exp(�"�2�2s[1� cos �"])d� � ��1
Z 1

s�1

exp(��2s�2=2)d�

+ ��1
Z 1

0

cos �x exp(��2s�2=2)d�

� ��1

�����
Z
s
�1

0

cosx�

�
exp

�
��2s

�
1� cos �"

"2

��
� exp(��2s�2=2)

�
d�

�����
+ ��1

Z
�="

s�1

exp(�"�2�2s[1� cos �"])d� + ��1
Z 1

s�1

exp(��2s�2=2)d�

+ ��1
����Z 1

0

cos �x exp(��2s�2=2)d�
����

� I + II + III + IV:(219)

By Fourier inversion we see that for jxj � sr=2 and s 2 (0; 1],

IV = ps(x) � c(�2)s�1=2 exp(�sr�1=2�2) � c(�2)s1=2:(220)
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Use the fact that (1� cos �")"�2 � c2�
2 for all j�j � �=" and some c2 2 (0; 1=2], to

see that

II + III �
Z 1

s�1

exp(��2c2s�2)d�

�
Z 1

s�1

exp(��2c2s�2)�sd�

= (2�2c2)
�1 exp(��2c2s�1) � c(�2)s1=2:(221)

To bound I , use Taylor's formula to write 1� cos �" = �
2
"
2

2
� (cosX)�4"4

4!
for some

jX j < �" and note that for 0 � � � s�1and " � s9 � 1,

�2s�4"2 � �2:(222)

Therefore for " < s9 � 1;

I �
Z s

�1

0

exp(��2s�2=2)j exp((cosX)�4�2s"2=24)� 1jd�

�
Z s

�1

0

c(�2)s"2�4d� by (222)

� c(�2)s1=2:(223)

We use the condition on " and s in the last line. Now use (220),(221) and (223) in

(219) to derive (218) and complete the proof.

8.2. Appendix B. Integration Lemmas.

Lemma 60. Let p 2 (0; 1) and In;p(s) =
R
R
n

+

1
s+u1

Q
n�1
1

1
ui+ui+1

1
u
p

n

du1 : : : dun:

Then In;p(s) =
�

�

sin((1�p)�)

�n
s�p for all n 2 N.

Proof. Let z = (un=un�1)
1�p to see that (un = un�1z

1=(1�p))Z 1

0

1

un�1 + un

1

upn
dun =

Z 1

0

1

un�1(1 + z1=(1�p))

un�1z
p=(1�p)

up
n�1z

p=(1�p)(1� p)
dz

=
u�p
n�1

1� p

Z 1

0

dz

1 + z1=(1�p)

=
�

sin(�(1� p))
u�p
n�1

by a standard residue calculation. This shows

In;p(s) =

Z
R
n�1
+

1

s+ u1

n�2Y
1

1

ui + ui+1

�Z 1

0

1

un�1 + un

1

upn
dun

�
du1 : : : dun�1

=
�

sin(�(1� p))
In�1;p(s)

and I1;p(s) =
�

sin(�(1�p))s
�p. The obvious induction completes the proof.

Corollary 61. Let 0 < p < 1 and for s; T > 0; de�ne

Jn(s; T ) =

Z
Rn+

1

s+ u1
1(un � T )

n�1Y
i=1

1

ui + ui+1
du1 : : : dun:
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Then there is a constant c61(p) such that

Jn(s; T ) � c61(p)
�

�

sin(�(1�p))

�n�1 �
T

s

�p
for all n 2 N.

Proof. Z
T

0

1

un�1 + un
dun = log

�
1 +

T

un�1

�
� c61(p)

�
T

un�1

�p
because log(1 + x) � c61x

p for all x � 0. Therefore by Lemma 60

Jn(s; T ) � c61

Z
R
n�1
+

1

s+ u1

n�2Y
i=1

1

ui + ui+1

�
T

un�1

�p
du1 : : : dun�1

= c61T
pIn�1(s) � c225

�
�

sin((1� p)�)

�n�1�
T

s

�p
:

Corollary 62. Assume h : (0;1) ! [0;1) satis�es h(u) � c(1 + u�p) for u 2
[0; T ] and some p 2 (0; 1). Then

Jn(s; h) �
Z
Rn+

1(un � T )

s+ u1

 
n�1Y
1

1

ui + ui+1

!
h(un)du1 : : : dun

� cc62(p)

�
�

sin((1� p)�)

�n
s�p(T p + 1)

Proof. Immediate from the previous two results.

Proof of Lemma 49. (a) Let u = (1� w)=(x � 1) in the integral de�ning �p to

see that

�p(x) =
x

1 + (x� 1)�p

h Z 1=(x�1)

0

x� 1

(x� 1)(1 + u)
(1� (x� 1)u)�pdu

+

Z 1=(x�1)

0

x� 1

(x� 1)(1 + u)
(x� 1)�pu�pdu

i

=
x

(x� 1)p + 1

"Z 1=(x�1)

0

((x � 1)�1 � u)�p

1 + u
du+

Z 1=(x�1)

0

(1 + u)�1u�pdu

#
:

(224)

If x � 2, then

�p(x) �
2x

(x� 1)p + 1

Z 1=(x�1)

0

u�pdu

=

�
2

1� p

�
x

x� 1 + (x� 1)1�p
� 2

1� p
:(225)

Assume now that x 2 (1; 2). If R = (x� 1)�1 � 1 and we set w = R� u, thenZ
R

0

(R � u)�p(1 + u)�1du �
Z
R=2

0

u�p(1 + u)�1du+

Z
R

R=2

(R� u)�p(1 +R � u)�1du

=

Z R=2

0

u�p(1 + u)�1du+

Z R=2

0

w�p(1 + w)�1dw

� 2

Z 1

0

u�p(1 + u)�1du:



66 DAWSON, ETHERIDGE, FLEISCHMANN, MYTNIK, PERKINS, AND XIONG

Use this together with the fact (x � 1)p + 1 � x� 1 + 1 = x for x < 2, to see that

(224) implies

�p(x) � 3

Z 1

0

u�p(1 + u)�1du =
3�

sin(1� p)�
;(226)

the last by a standard contour integration. As 3�
sin(1�p)� > 2

1�p , the result follows

from (225) and (226).

(b) If w = s2

s1
, then

K
(p)
2 (s0; s1) =

Z
s1

0

(s0 � s2)
�1s�11 s�p2 (1 + ((s1 � s2)=s2)

�p)ds2

= s�1�p1

Z 1

0

((s0=s1)� w)�1(w�p + (1� w)�p)dw

� c49s
�p
1 s�10 (1 + ((s0=s1)� 1)�p):

In the last line we used (a). This gives the result for n = 2. Assume the result for

n � 2. Then

K
(p)
n+1(s0; s1) =

Z s1

0

Kn(s1; s2)(s0 � s2)
�1ds2

� cn�149 s�11

Z
s1

0

(s0 � s2)
�1s�p2 (1 + ((s1 � s2)=s2)

�p)ds2

= cn�149 K
(p)
2 (s0; s1):

Use the result derived for n = 2 to obtain the required bound for n+ 1 and hence

complete the induction.

Lemma 63. Let fXng be a sequence of non-negative random variables on (
;F ; P )
and let G be a sub-�-�eld of F . Assume for some p > 1, fE(Xp

njG) : n 2 Ng is

bounded in probability and Xn converges in probability to X1. Then

E(XnjG) converges in probability to E(X1jG) <1 a.s.

Proof. This may be shown by making the obvious changes in the standard proof

of the unconditional version of this result.
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