
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Modelling and Simulation of Power Devices

for High-Voltage Integrated Circuits

Rolf Hünlich1, Günter Albinus1, Herbert Gajewski1,

Annegret Glitzky1;?, Wilfried Röpke1;??, Jürgen Knopke2

submitted: 11th May 2000

1
Weierstrass Institute for

Applied Analysis and Stochastics

Mohrenstraÿe 39

D � 10117 Berlin, Germany

E-Mail:

huenlich@wias-berlin.de

albinus@wias-berlin.de

gajewski@wias-berlin.de

glitzky@wias-berlin.de

roepke@wias-berlin.de

2
alpha microelectronics gmbh

Im Technologiepark 1

D � 15236 Frankfurt (Oder), Germany

E-Mail:

j.knopke@alpha-microelectronics.de

Preprint No. 578

Berlin 2000

2000 Mathematics Subject Classi�cation. 35B40, 35B45, 35K55, 35K57, 80A20,

80A30, 82D37.

Key words and phrases. Power devices, integrated circuits, process simulation,

device simulation, drift-di�usion systems, reaction-di�usion systems, heat �ow

equation, thermodynamic potentials, conservation laws, Lyapunov functions.

?

Supported by the German Research Foundation (DFG) grant HU 868/1-1.

??

Supported by the Ministry of Education and Research (BMBF) grant HU7FV1.



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract. Process and device simulators turned out to be important tools

in the design of high-voltage integrated circuits and in the development of

their technology. The main goal of this project was the improvement of the

device simulator WIAS-TeSCA in order to simulate di�erent power devices in

high-voltage integrated circuits developed by the industrial partner. Some

simulation results are presented. Furthermore, we discuss some aspects of

the mathematics of relevant model equations which device and process

simulations are based on.

1 Introduction

In the computer aided design of high-voltage Integrated Circuits (ICs) and

in the development of their technology process and device simulation pro-

grammes turned out to be important tools. Challenges of new technologies

and devices require a permanent discussion of underlying physical models,

the mathematical analysis of related model equations, as well as the improve-

ment of simulation codes. The main goal of this project was the extension

of the device simulator WIAS-TeSCA [Gaj] by a self-consistent coupling of the

van Roosbroeck system with a heat �ow equation since thermal and thermo-

electric e�ects play some rôle in power devices.

The industrial partner of the project is the company alpha microelectronics

gmbh Frankfurt (Oder). The company develops and produces application-

speci�c ICs for high-voltage applications (e.g. driver ICs for coils, motors and

relays). The basis for all high-voltage ICs is a proprietary 500V dielectric iso-

lated MOS technology [Kno] which uses thick-�lm bonded silicon-on-insulator

wafers with dielectric trench isolation.

Di�erent power devices in the high-voltage ICs of the company were used

as test structures for the development and application of WIAS-TeSCA. Here

we present simulation results for a dielectric isolated, double Di�used Metal

Oxide Semiconductor Transistor (DMOST). Furthermore, we discuss some

aspects of the mathematics of relevant model equations which device and

process simulations are based on.
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2 Process Simulation

The simulation of the technological process of manufacturing semiconductor

devices is used to develop such processes and to optimize them with respect

to the device geometry and doping, for instance. We applied the process

simulator DIOS-ISE [Str]. In Fig. 1 the simulated cross-section of a typical

axisymmetric DMOST test structure with two gate contacts is shown. For the

grid generation a compromise between accuracy and e�ort was reached. The

defaults of the di�usion parameters could mostly be used; only the redistri-

bution of dopants during oxidation needed some changes. For this structure
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Fig. 1. DIOS-ISE simulation result for the DMOST: cross-section (top, the unit of

length is micron, the axis of rotation lies on the left hand side, Si � silicon) and

detail of the source and gate contact regions (bottom)
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the thickness of the silicon layer and the doping concentrations (in the silicon

layer, buried layer, sinker region) were varied to get di�erent devices. Process

simulation results are taken as input for subsequent device simulations.

3 Device Simulation

As mentioned in the introduction the device simulator WIAS-TeSCA was im-

proved in order to be able to simulate power devices successfully. Now we

shortly discuss some simulation results.

The aim of device simulation is to evaluate the electrical behaviour of the

device. Often stationary current-voltage characteristics are required showing

e.g. the drain current versus the drain(-source) voltage with the gate(-source)

voltage as a parameter (see Figs. 2, 3, 4). Important device properties are de-

rived from these characteristics which have to be optimized. The on-resistance

is given by the reciprocal slope in the origin of the characteristics. The break-

down voltage characterizes the electrical breakdown of the device caused by

avalanche generation of carriers due to impact ionization in high �eld regions

and resulting in a drastic increase of the current. The knowledge of regions

of high electric �eld strength, and thus also of high avalanche generation

rate, is very useful for the designer to optimize the breakdown voltage. Fi-

nally, inhomogeneities of the temperature caused by large power densities at

higher drain voltages should also in�uence the device behaviour since decisive

physical parameters depend strongly on the temperature.

One important task for the simulation was the investigation of the in�uence

of di�erent dielectric isolated substrates on the device behaviour. In order to

demonstrate the e�ect of the electric �eld we chose two DMOST structures

as in Fig. 1, one has a buried layer, the other has not. For estimating the
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Fig. 2. WIAS-TeSCA simulation results for the DMOST: current-voltage character-

istics at low drain voltages (left, bl � buried layer, he � heat �ow equation) and

avalanche generation current at high drain voltages (right)
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Fig. 3. Simulation results for the DMOST with a 10�m thick buried layer
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Fig. 4. Simulation results for the DMOST without buried layer
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(left) and without (right) buried layer
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e�ect of inhomogeneities of the temperature all simulations were done with

and without using the heat �ow equation. On all electrical contacts and on

the bottom of the slice (more precisely, in a depth of 100�m) the temperature

was �xed at 300K while on the other parts of the boundary homogeneous

Neumann conditions were posed.

Figure 2 shows current-voltage characteristics which are used for the determi-

nation of the on-resistance and breakdown voltage. Isolines of the electrostatic

potential as well as the current-voltage characteristics at 10V gate voltage

are given in Fig. 3 for the structure with a buried layer and in Fig. 4 for the

structure without a buried layer. Figure 3 shows also isolines of the temper-

ature. For the structure without a buried layer isolines of the temperature

look similarly, but the values of the temperature are much lower. The elec-

trostatic potential di�ers clearly in both devices such that the regions of high

avalanche generation rate are also quite di�erent, see Fig. 5.

4 Device Modelling

Simulations with WIAS-TeSCA are based on some energy model that extents

the basic drift-di�usion model [Gaj] by a heat �ow equation. There is a large

variety of energy models (see e.g. [Kel] and references therein). Our approach

can be found in [AGH]. Starting with a generally accepted expression for

the density of the free energy and applying only �rst principles like the en-

tropy maximum principle and the principle of local equilibrium a system of

evolution equations is derived for di�erent variants of energy models (includ-

ing the Boltzmann or Fermi-Dirac statistics, non-parabolic band structures,

electron-hole scattering models, the kinetics of deep traps, and hot carrier

e�ects). Particular attention is paid to include the electrostatic potential

self-consistently.

Here we describe a simple version of such a model. We start with state equa-

tions of the form

ni = ni(T ) e
(�i�qi )=T ; ni(T ) = [mi(T )T ]

3=2 eqiEi(T )=T ; i = 1; 2 ;

u = u(n1; n2; T ) = cLT +

2X
i=1

niT
2 @ logni

@T
(T ) ;

s = s(n1; n2; T ) = cL logT +

2X
i=1

niPi(ni; T ) ; Pi = 1 + T
@ logni

@T
� log

ni

ni

where n1 is the electron density, q1 = �1, n2 is the hole density, q2 = 1, �i
are the electrochemical potentials,  is the electrostatic potential, T is the

lattice temperature, mi and Ei are the e�ective masses (up to a constant

factor) and energy band edges, u denotes the density of the internal energy,

s the density of entropy, cL is the heat capacity of the lattice, and Pi are the

thermoelectric powers.
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The potential  ful�lls the Poisson equation

�r � ("r ) = f � n1 + n2 (1)

where " is the dielectric permittivity, f is a given doping pro�le and does not

depend on time. A mixed boundary condition is used,

 =  
D on �D ; "

@ 

@�
+ �( �  

N
) = 0 on �N (2)

where � denotes the boundary of the domain 
 occupied by the device, �D
and �N are disjoint, relatively open parts of � with mes (� n (�D[�N )) = 0.

The particle �uxes ji and the reduced heat �ux jq are assumed to be given by

ji = ��i(n1; n2; T ) (r�i + PirT ) ; jq = ��(n1; n2; T )rT

with conductivities�i; � > 0. A �rst form of the system of evolution equations

consists of two continuity equations and a heat �ow equation,

@ni

@t
+r � ji = �R ; c(n1; n2; T )

@T

@t
+r � jq = H (3)

with the net recombination rate

R = �(n1; n2; T ) (e
(�1+�2)=T � 1) ; � > 0 ;

the heat capacity c = @u=@T > 0, and the heat generation rate

H =

2X
i=1

�
jjij2

�i
� T rPi � ji + [�i + (Pi � 1)T ]R� T r � ji

�
representing especially the Joule, Thomson and Peltier heating rates as well

as the recombination heat (cf. [Alb,Kel,Wac]). This form of the evolution

equations was the starting point for the implementation of the energy model

in WIAS-TeSCA. The heat �ow equation can be replaced by other balance

equations, too.

Firstly, de�ning the energy �ux ju = jq+
P2

i=1(�i+PiT )ji, the energy balance

equation
@u

@t
+r � ju = � r � (j1 � j2)

is obtained. If we introduce the total energy density eu = u +
"
2 jr j

2 and

the total energy �ux jeu = ju +  @D=@t, D = �"r , then the last equation

becomes a conservation law,

@eu
@t

+r � jeu = 0 : (4)

Concerning this result our approach di�ers from those given in [BS,Kel,Wac].
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Secondly, de�ning the entropy �ux js = jq=T+
P2

i=1 Piji, the entropy balance

equation
@s

@t
+r � js = � (5)

is derived where � denotes the entropy production rate,

T� =

2X
i=1

1

�i
jjij2 +

1

�T
jjqj2 + �R =

2X
i=1

�i jr�i + PirT j2 +
�

T
jrT j2 + �R

= �T
2X
i=1

ji � r
�i

T
+ T ju � r

1

T
+ �R

= �
2X
i=1

ji � r�i � js � rT + �R; �R = � (e(�1+�2)=T � 1)(�1 + �2) :

Obviously � � 0 holds, and � = 0 if and only if r�i = 0, rT = 0, �1+�2 = 0

(thermodynamic equilibrium). The Onsager relations are valid if either the

�uxes (j1; j2; ju) and the generalized forces (r[�1=T ];r[�2=T ];�r[1=T ]), or

the �uxes (j1; j2; js) and the generalized forces (r�1;r�2;rT ) are used.
The equations (4), (5) re�ect the First Law and Second Law of Thermody-

namics in di�erential form. In order to get their integral form we introduce

the functionals of total energy and total entropy,

U(n1; n2; T ) =

Z



h
"

2
jr j2 + u(n1; n2; T )

i
dx+

Z
�N

�

2
 
2 d� ;

S(n1; n2; T ) =

Z



s(n1; n2; T )dx :

Assuming that the system is thermodynamically closed (ji � � = 0, jq � � = 0

on � ) we obtain that

dU

dt
=

Z
�D

"r
@ 

@t
� �  D d� +

Z
�N

�  
@ 

N

@t
d� ;

dS

dt
=

Z



� dx

along any solution of (3), (1), (2). The second equation shows that the neg-

ative total entropy �S is a Lyapunov function of the evolution system. The

�rst equation implies that the total energy is preserved if  D = 0 and  N

does not depend on time.

These important properties of the evolution system remain valid for the cor-

responding discrete system what has been achieved by using sophisticated

discretization schemes with respect to time and space coordinates. Thus the

energy model implemented in WIAS-TeSCA turns out to be well posed from

the thermodynamic point of view. From the mathematical point of view the

evolution system is very complicated, and there are known only few results,

at least under realistic assumptions on the state equations and kinetic coe�-

cients. For the stationary case in [Gri] new existence and uniqueness results

are obtained using the Implicit Function Theorem and properties of linear

elliptic operators in a suitable scale of Sobolev-Campanato spaces.
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5 Process Modelling

One of the main process steps in manufacturing semiconductor devices is

the redistribution of dopants connected with or followed after the doping. In

order to simulate this process, di�erent models have been developed. Nowa-

days so called pair di�usion models are preferred [Dun,GH,Höf,Str]. They

consist in a set of reaction-di�usion equations for a lot of electrically charged

species X1; : : : ;Xm (dopants, point defects, dopant�defect pairs, see Fig. 6).

The kinetics of electrons and holes is assumed to be very fast. Then the

electrochemical potential of the electrons does not depend on the spatial co-

ordinates, and for determining their chemical potential, denoted by  again,

a boundary value problem for a nonlinear Poisson equation is obtained,

�r � ("r ) = f + e( ) +

mX
i=1

ni qi( ) ; r � � j� = 0 : (6)

Here f , e( ), ni and qi( ) denote a �xed background doping, the charge

density of electrons and holes, the density of the species Xi and its charge

number depending on  , respectively.

The initial boundary value problem for the reaction-di�usion system is

@ni

@t
+r � ji = �

X
(�;�)2R

(�i � �i)R�� ; ji � � j� = 0 ; ni(0) = Ni (7)

0 V + I AV +AI 2 A

A V +AI AI A + I

A I + AV AV A + V

Species:

host atom

on lattice site

A dopant atom

on lattice site

I host atom

on interstice

V vacancy

AI dopant�

interstitial pair

AV dopant�

vacancy pair

Fig. 6. Species and reactions in a variant of pair di�usion models
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where the particle �uxes ji and reaction rates R�� are given by

ji = �Di( ) [rni + ni qi( )r ] ;

R�� = k��( )

"
mY
i=1

a
�i
i �

mY
i=1

a
�i
i

#
; ai =

ni

pi( )
; pi( ) = ni e

�

R
 

0
qi(s)ds :

Here the vector (�; �) = (�1; : : : ; �m; �1; : : : ; �m) represents the stoichiomet-

ric numbers of mass action type reactions of the form

�1X1 + � � �+ �mXm *) �1X1 + � � � + �mXm ; (�; �) 2 R :

The kinetic coe�cients Di( ) and k��( ) are generally positive (only for the

dopants often Di = 0 is proposed). Finally, ni is a positive reference density,

Ni is the non-negative initial density of the i-th species.

If the charge numbers do not depend on  we arrive at a model that we

have studied in a previous project [HGGR]. In the more general situation

considered now the mathematical investigation starts from thermodynamic

principles, again. Since we deal only with isothermal processes, the energy

functional that has to be chosen is the total free energy [HG],

F (n) =

Z



�
"

2
jr j2dx+

Z  

0

[e(s)� e( )]ds+

mX
i=1

ni

Z  

0

[qi(s)� qi( )]ds

+

mX
i=1

�
ni

�
ln
ni

ni
� 1

�
+ ni

��
dx

where  is the solution of (6) for prescribed densities n = (n1; : : : ; nm).

Under some assumptions concerning the initial values and the structure of

the underlying reaction system we have proved in [HG] the following results.

The time derivative of the free energy ful�lls the inequality

dF

dt
� �

Z



ddx

along any solution of (7), (6), d is a lower estimate of the dissipation rate,

d =

mX
i=1

4Di( ) pi( ) jr
p
aij

2
+

X
(�;�)2R

2 k��( )

���� mY
i=1

p
ai
�i �

mY
i=1

p
ai
�i

���� 2:
Since d � 0 the free energy is a Lyapunov function of the evolution system.

Moreover, there exists a steady state n� (with corresponding potential  �)

which is uniquely determined in the class�
n :

Z



(n�N)dx 2 span
�
�� � : (�; �) 2 R

	�
:

The di�erence F (n)�F (n
�

) decays exponentially to zero if the time tends to

in�nity. Based on these properties of the free energy further a priori estimates

and existence results can be derived. First results are obtained in [MGHP].
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