
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Singularly perturbed partly dissipative

reaction-di�usion systems in case of exchange of

stabilities

Valentin F. Butuzov, 1 Nikolai N. Nefedov,1 Klaus R. Schneider2

submitted: 6th April 2000

1 Moscow State University

Faculty of Physics

Department of Mathematics

Vorob'jovi Gori

119899 Moscow, Russia

E-Mail: butuzov@mt384.phys.msu.su

E-Mail: nefedov@mt384.phys.msu.su

2 Weierstrass Institute for Applied

Analysis and Stochastics

Mohrenstraÿe 39

D � 10117 Berlin

Germany

E-Mail: schneider@wias-berlin.de

Preprint No. 572

Berlin 2000

WIAS
1991 Mathematics Subject Classi�cation. 35B25, 35K57.

Key words and phrases. Initial boundary value problem, singularly perturbed partly dissipative

reaction-di�usion system, exchange of stabilities, asymptotic lower and upper solutions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289297791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

We consider the singularly perturbed partly dissipative reaction-di�usion

system "
2

�
@u
@t
�

@2u
@x2

�
= g(u; v; x; t; ");

@v
@t

= f(u; v; x; t; ") under the condi-

tion that the degenerate equation g(u; v; t; 0) = 0 has two solutions u =

'i(v; x; t); i = 1; 2; that intersect (exchange of stabilities). Our main result

concerns existence and asymptotic behavior in " of the solution of the ini-

tial boundary value problem under consideration. The proof is based on the

method of asymptotic lower and upper solutions.

1 Introduction.

We consider the singularly perturbed partly dissipative reaction-di�usion system

"
2

 
@u

@t
�
@
2
u

@x2

!
= g(u; v; x; t; ");

@v

@t
= f(u; v; x; t; ");

(1.1)

where u and v are scalar functions, " is a small positive parameter. Partly dissipa-

tive systems are often used to model reaction-di�usion processes in di�erent �elds

(chemical kinetics, biology, astrophysics) when the e�ect of di�usion of one of the

species is negligible (see, for example, [10, 11, 6, 7, 5, 12, 4]).

If the degenerate equation

g(u; v; x; t; 0) = 0

has an isolated solution with respect to u then the standard theory (see [14]) can

be applied to derive asymptotic properties for the solution of initial boundary value

problems to system (1.1).

In the present paper we consider system (1.1) under the assumption that the degen-

erate equation has two intersecting solutions. This assumption implies an exchange

of stabilities for families of equilibria of the associated di�erential equation to (1.1).

The main result of this paper concerns the existence and asymptotic behavior in "

of the solution of some initial boundary value problem related to system (1.1). The

proof of our results is based on the method of asymptotic lower and upper solutions.

The results of this paper are extensions of corresponding results in [9, 8, 2, 3], they

can be used to study di�erential systems modelling bimolecular reactions with fast

reaction rates and to explain the jumping behavior of the reaction rate in systems

of this type.
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2 Formulation of the problem. Assumptions.

We study the singularly perturbed nonlinear initial boundary value problem

"
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@u

@t
�
@
2
u

@x2

!
= g(u; v; x; t; ");

@v

@t
= f(u; v; x; t; ");

(x; t) 2 Q := f(x; t) 2 R2 : 0 < x < 1; 0 < t � Tg;
" 2 I"0 := f" 2 R : 0 < " � "0g; 0 < "0 � 1;

@u

@x
(0; t; ") =

@u

@x
(1; t; ") = 0 for 0 < t � T;

u(x; 0; ") = u
0(x); v(x; 0; ") = v

0(x) for 0 � x � 1

(2.1)

under the following assumptions:

(A0). f; g 2 C2(D;R); where D := R�R� [0; 1]� [0; T ]�I"0 ; u0; v0 2 C2([0; 1]; R).

If we set " = 0 in (2.1) then we get the degenerate system

0 = g(u; v; x; t; 0);

dv

dt
= f(u; v; x; t; 0):

(2.2)

Concerning the solution set of the equation

g(u; v; x; t; 0) = 0 (2.3)

we assume

(A1). Equation (2.3) has exactly two solutions u = '1(v; x; t) and u = '2(v; x; t)

de�ned for (v; x; t) 2 Iv � Q, where Iv is some open interval, and that have

the same smoothness properties as g.

From assumption (A1) we obtain for (v; x; t) 2 Iv �Q; i = 1; 2 :

g('i(v; x; t); v; x; t; 0) � 0;

gu('i(v; x; t); v; x; t; 0)
@'i

@v
(v; x; t) + gv('i(v; x; t); v; x; t; 0) � 0:

(2.4)

Di�erent from the standard case (see [13],[14]), assumption (A1) does not require

that the solutions '1 and '2 are isolated. The following assumption expresses the
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property that the surfaces u = '1(v; x; t) and u = '2(v; x; t) intersect in a smooth

surface whose projection into the (v; x; t)-space can be described by v = s(x; t).

(A2). There exists a smooth function s : Q! R such that

'1(v; x; t) = '2(v; x; t) for v = s(x; t);

'1(v; x; t) > '2(v; x; t) for v < s(x; t);

'1(v; x; t) < '2(v; x; t) for v > s(x; t):

The di�erential equation
du

d�
= g(u; v; x; t; 0); (2.5)

where v; x; t are considered as parameters, is said to be the associated equation to

(2.1). It follows from hypothesis (A1) that u = 'i(v; x; t); i = 1; 2; are families of

equilibria of (2.5). The families 'i are stable (unstable) if gu('i; v; x; t; 0) is negative

(positive). Concerning the stability of these families we assume

(A3). For (x; t) 2 Q it holds

gu('1(v; x; t); v; x; t; 0) < 0; gu('2(v; x; t); v; x; t; 0) > 0 for v < s(x; t);

gu('1(v; x; t); v; x; t; 0) > 0; gu('2(v; x; t); v; x; t; 0) < 0 for v > s(x; t):

From assumption (A3) we get that gu(u; v; x; t; 0) changes its sign on the surface

v = s(x; t) where u = '1(v; x; t) and u = '2(v; x; t) intersect. This sign change of

gu expresses an exchange of stabilities of the families of equilibria of the associated

equation (2.5).

From (A3) we get for (x; t) 2 Q

gu('1(s(x; t); x; t); s(x; t); x; t; 0) � gu('2(s(x; t); x; t); s(x; t); x; t; 0) � 0:

In what follows we will construct the so-called composed stable solution to the

degenerate system (2.2). To this purpose we have to assume v0(x) 6= s(x; 0) for all

x. First we consider the case

v
0(x) < s(x; 0) for 0 � x � 1: (2.6)

(A4). For x 2 [0; 1], the initial value problem

dv

dt
= f('1(v; x; t); v; x; t; 0);

v(x; 0) = v
0(x)

(2.7)
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where v
0(x) satis�es (2.6) has a unique solution v = v1(x; t) de�ned on Q.

There exists a smooth curve C de�ned by C := f(x; t) 2 Q : t = tc(x); 0 � x �
1g where tc 2 C2[0; 1] and such that

0 < tc(x) < T for 0 � x � 1;

v1(x; t) < s(x; t) for 0 � t < tc(x); 0 � x � 1;

v1(x; t) = s(x; t) for t = tc(x); 0 � x � 1;

v1(x; t) > s(x; t) for tc(x) < t � T; 0 � x � 1:

(2.8)

Assumption (A4) says that the surfaces v = v1(x; t) and v = s(x; t) intersect in a

curve whose projection into Q can be described by t = tc(x). We denote by Q1 and

Q2 all points (x; t) of Q satisfying t < tc(x) and t > tc(x) respectively (see Fig 1.).

0

0

t
T

1 x

Q1

t = tc(x)

Q2

Fig. 1: Decomposition of Q into Q1 and Q2 by the curve C.

(A5). For x 2 [0; 1], the initial value problem

dv

dt
= f('2(v; x; t); v; x; t; 0);

v(x; tc(x)) = s(x; tc(x))
(2.9)

has a unique solution v = v2(x; t) de�ned on Q such that

v2(x; t) > s(x; t) for (x; t) 2 Q2;

v2(x; t) < s(x; t) for (x; t) 2 Q1:
(2.10)

Let
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 1(x; t) := '1(v1(x; t); x; t) for (x; t) 2 Q;
 2(x; t) := '2(v2(x; t); x; t) for (x; t) 2 Q:

(2.11)

From assumption (A2) and from (2.11) we obtain

 1(x; t) �  2(x; t) on C: (2.12)

Now, we introduce the functions û(x; t) and v̂(x; t) by

û(x; t) :=

(
 1(x; t) for (x; t) 2 Q

1
;

 2(x; t) for (x; t) 2 Q
2
;

v̂(x; t) :=

(
v1(x; t) for (x; t) 2 Q

1
;

v2(x; t) for (x; t) 2 Q
2
:

(2.13)

The pair of functions (û(x; t); v̂(x; t)) is referred to as the composed stable solution

of the degenerate system (2.2).

The function v̂(x; t) is obviously continuously di�erentiable with respect to t. But

û(x; t) is in general not smooth on the curve C, since we get from (2.8), (2.10) and

(2.11)
@ 1

@t
�
@ 2

@t
on C:

For the sequel it is convenient to introduce the following notation: the symbol ^

over g and f or some derivative of g and f denotes that we have to consider the

arguments (u; v; ") at (û(x; t); v̂(x; t); 0):

It follows from assumption (A1) that

ĝ(x; t) := g(û(x; t); v̂(x; t); x; t; 0) � 0 in Q; (2.14)

by assumption (A3) we have

ĝu(x; t) < 0 in QnC; (2.15)

ĝu(x; t) � 0 on C: (2.16)

Remark 2.1 The case v
0(x) > s(x; 0) can be treated analogously. In that case we

have to use the function '2(v; x; t) to construct v1(x; t) (see assumption (A4)) and

the function '1(v; x; t) to construct v2(x; t) (see assumption (A5)). The case when

v
0(x) = s(x; 0) for some x requires a special treatment.

In what follows we prove that under the hypotheses (A1)� (A5) and under some ad-

ditional assumptions (see (A6)� (A8) below) problem (2.1) has a solution (u(x; t; ");

v(x; t; ")) satisfying
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lim
"!0

u(x; t; ") = û(x; t) in Qnft = 0; 0 � x � 1g;

lim
"!0

v(x; t; ") = v̂(x; t) in Q:
(2.17)

Concerning the initial condition u0(x) for u(x; t; ") we assume

(A6). For x 2 [0; 1]; u0(x) lies in the basin of attraction of the equilibrium point

'1(v
0(x); x; 0) of the associated equation (2.5) for v = v

0(x), t = 0.

Assumption (A6) implies that for v = v
0(x), t = 0 equation (2.5) with the initial

condition

u(x; 0) = u
0(x)

has a unique solution u = u(x; �) de�ned for � � 0; and such that lim�!1 u(x; �) =

'1(v
0(x); x; 0). Finally, we assume

(A7). ĝuu(x; t) := guu(û(x; t); v̂(x; t); x; t; 0) < 0 on C:

(A8). ĝ"(x; t) > 0 on C:

Concerning assumption (A8) we would like to mention that the sign of ĝ"(x; t) on C
plays an important role (see [1] - [3]).

Our approach to prove the asymptotic behavior of the solution of problem (2.1) is

based on the concept of ordered lower and upper solutions. Let us recall its de�nition

[10].

De�nition 2.1 Let the vector-functions �(x; t; ") = (�u(x; t; "); �v(x; t; ")) and

�(x; t; ") = (�u(x; t; "); �v(x; t; ")) be de�ned for (x; t; ") 2 Q � I"1; "1 � "0, and

satisfy the smoothness conditions �
u
; �

u 2 C2;1;0
x;t;" (Q� I"1)\C

1;0;0
x;t;" (Q� I"1), �

v
; �

v 2
C

0;1;0
x;t;" (Q � I"1) \ C

0;0;0
x;t;" (Q � I"1). Furthermore, we assume �

u(x; t; ") � �
u(x; t; ");

�
v(x; t; ") � �

v(x; t; ") for (x; t; ") 2 Q�I"1. Let the operators Lv and Mu be de�ned

by

(Lvw)(x; t; ") := "
2

 
@w

@t
�
@
2
w

@x2

!
� g(w; v; x; t; "); (2.18)

(Muw)(x; t; ") :=
@w

@t
� f(u; w; x; t; "): (2.19)

Then, �(x; t; ") and �(x; t; ") are called ordered lower and upper solutions of problem

(2.1) respectively, if they satisfy the following inequalities

(Lv�
u)(x; t; ") � 0 � (Lv�

u)(x; t; ") for (x; t; ") 2 Q� I"1; �
v � v � �

v
; (2.20)

(Mu�
v)(x; t; ") � 0 � (Mu�

v)(x; t; ") for (x; t; ") 2 Q� I"1; �
u � u � �

u
; (2.21)
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@�
u

@x
(0; t; ") � 0 �

@�
u

@x
(0; t; ");

@�
u

@x
(1; t; ") � 0 �

@�
u

@x
(1; t; "); (2.22)

�
u(x; 0; ") � u

0(x) � �
u(x; 0; "); �

v(x; 0; ") � v
0(x) � �

v(x; 0; ") (2.23)

for (x; t; ") 2 Q� I"1 :

This de�nition can be obviously adapted to any subdomain of Q. It is known (see,

for example, [10]) that the existence of ordered lower and upper solutions of (2.1)

implies the existence of a unique solution (u(x; t; "); v(x; t; ")) of (2.1) satisfying for

(x; t; ") 2 Q� I"1

�
u(x; t; ") � u(x; t; ") � �

u(x; t; ");

�
v(x; t; ") � v(x; t; ") � �

v(x; t; "):

The goal of the following investigations is to characterize the asymptotic behavior of

the solution of (2.1), in particular, we prove the limit behavior (2.17) by constructing

lower and upper solutions to the initial boundary value problem (2.1).

3 Existence and asymptotic behavior of the solu-

tion.

In this section we will prove that the initial boundary value problem (2.1) has a

unique solution. Taking into account an initial layer correction we can show that for

small " the solution of (2.1) is close to the composed stable solution (û(x; t); v̂(x; t)):

In order to be able to formulate our main result we decompose the domain Q into

two disjoint sub-domains Q1 and Q2 and introduce a function which represents an

approximation of the initial layer correction.

First we decompose Q. Let tmin be the minimum of the function tc(x) in [0,1], let

� be any small positive number such that t1 := tmin � � is positive. Let Qc be the

domain de�ned by Qc := f(x; t) 2 R2 : 0 < x < 1; t1 < t � Tg, (see Fig. 2).

Next we introduce an initial layer correction. According to [14] we de�ne the zeroth

order initial layer function �0(x; �) (� = t="
2) as the solution of the initial value

problem (x 2 [0; 1] has to be considered as a parameter)

d�0

d�
= g( 1(x; 0) + �0; v

0(x); x; 0; 0); � > 0;

�0(x; 0) = u
0(x)�  1(x; 0):

(3.1)

7



0
0

t
T

x

Q\Qc

tc(x)

Qν

Qc

tmin

t1 := tmin − ν

Fig. 2: Decomposition of Q.

By (2.11) we have  1(x; 0) = '1(v
0(x); x; 0). Thus, from assumptions (A3) and

(A6) it follows that the initial value problem (3.1) has a solution which satis�es the

estimate j�0(x; �)j < c exp(���); � � 0 for some positive constants c and �.

Theorem 3.1 Assume hypotheses (A0)�(A8) to be valid. Then, for su�ciently small

", the initial boundary value problem (2.1) has a unique solution (u(x; t; "); v(x; t; "))

satisfying

u(x; t; ") =

(
û(x; t) + �0(x; �) +O(") for (x; t) 2 QnQc;

û(x; t) +O(
p
") for (x; t) 2 Qc;

(3.2)

v(x; t; ") =

(
v̂(x; t) +O(") for (x; t) 2 QnQc;

v̂(x; t) +O(
p
") for (x; t) 2 Qc:

(3.3)

Corollary 3.1 From (3.2), (3.3) it is obvious that the relations (2.17) hold.

Proof. The proof Theorem 3.1 consists of two steps. In the �rst step we consider

the initial boundary value problem (2.1) in the sub-domain Q n Qc. From our

assumptions it follows that the exchange of stabilities takes place in Qc. Therefore,

we can apply the standard theory [14] to solve the initial boundary value problem

in Q nQc. We get the following result.

Lemma 3.1 Assume hypotheses (A0) � (A6) to be valid. Then, for su�ciently small

", the initial boundary value problem (2.1) has a unique solution (u(x; t; "); v(x; t; "))

in Q nQc satisfying

u(x; t; ") = û(x; t) + �0(x; �) +O(");

v(x; t; ") = v̂(x; t) +O("):
(3.4)

8



Let u1(x; ") := u(x; t1; "); v
1(x; ") := v(x; t1; "). Now we consider the initial boundary

value problem (2.1) inQc with the initial conditions u(x; t1; ") = u
1(x; "); v(x; t1; ") =

v
1(x; ") for 0 � x � 1.

Our approach to study this problem is based on the method of ordered lower and

upper solutions. We construct these solutions for (2.1) by means of the composed

stable solution (û(x; t); v̂(x; t)) .

As we noticed above, û(x; t) in general is not smooth on the curve C. In order to

be able to use û(x; t) for the construction of lower and upper solutions we have to

smooth û(x; t) in some neighbourhood Q� of C. Let Q� be de�ned by Q� := f(x; t) 2
Q : jt � tc(x)j < �; 0 � x � 1g, where � is any su�ciently small positive number

such that Q� has no common point with t = T (see Fig. 2).

Using the function

!(�) :=
1
p
�

Z �

�1

exp(�s2)ds;

where

� := (t� tc(x))="
a
; a 2 (1=2; 1)

we introduce the function ~u by

~u(x; t; ") :=  1(x; t)!(��) +  2(x; t)!(�): (3.5)

It is easy to show that ~u is smooth and satis�es

~u(x; t; ") = û(x; t) + �(x; t; "); (3.6)

where

�(x; t; ") =

(
O("a) for (x; t) 2 Q�;

O(exp�(�=")) for (x; t) 2 Q nQ�
(3.7)

(see [1]).

Now we construct lower and upper solutions for (2.1) in Qc by using the smooth

function ~u as follows

�
u(x; t; ") := ~u(x; t; ") +

p
"h(x; t) + "

a
z(x; ");

�
u(x; t; ") := ~u(x; t; ")�

p
"�h(x; t)� "

a
z(x; ");

�
v(x; t; ") := v̂(x; t) +

p
"�

2
h(x; t);

�
v(x; t; ") := v̂(x; t)�

p
"�

2
h(x; t);

(3.8)

where

h(x; t) := exp(�(t� tc(x)));

z(x; ") := exp(�kx="a) + exp(�k(1� x)="a)
(3.9)

9



are positive functions in Q� I"1, ; �; �; k are positive numbers. We will determine

these numbers in such a way that � and � will be ordered lower and upper solutions,

i.e. they will satisfy all conditions of De�nition 2.1 in Qc.

It is obvious that for any choice of ; �; � and k we have

�
u(x; t; ") � �

u(x; t; "); �
v(x; t; ") � �

v(x; t; ") in Qc;

hence, if �(x; t; ") and �(x; t; ") are lower and upper solutions for (2.1) then they

are ordered.

Taking into account the exponential decay of �0(x; �) we get from (3.8), (3.4) for

su�ciently small "

�
u(x; t1; ") � u(x; t1; ") = u

1(x; ") � �
u(x; t1; ");

�
v(x; t1; ") � v(x; t1; ") = v

1(x; ") � �
v(x; t1; "):

Consequently, the inequalities (2.23) for the initial data hold.

Now we check that �u(x; t; ") and �u(x; t; ") satisfy the inequalities (2.20) in Q� for

su�ciently small ".

From (2.11) and (2.12) we obtain

 2(x; t)�  1(x; t) = O(jt� tc(x)j):

Using this relation it can be shown (see [1, 3]) that

"
2

 
@~u

@t
�
@
2~u

@x2

!
=

(
O("2�a)) in Q�;

O("2) in QcnQ�:
(3.10)

From (3.9) we get

"
2
"
1=2

 
@h

@t
�
@
2
h

@x2

!
= O("5=2) in Qc;

"
2
"
a

 
@z

@t
�
@
2
z

@x2

!
= O("2�a) in Qc:

(3.11)

Thus, because of 1=2 < a < 1, we obtain from (3.8) - (3.11)

"
2

 
@�

u

@t
�
@
2
�
u

@x2

!
= O("2�a) = o(") in Qc; (3.12)

"
2

 
@�

u

@t
�
@
2
�
u

@x2

!
= O("2�a) = o(") in Qc: (3.13)

To treat the expression g(�u(x; t; "); v; x; t; ") in Lv�
u we use the relations ~u(x; t; ") =

û(x; t)+O("a) which follows from (3.6) and (3.7) and "az(x; ") = O("a) in Q� due to
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(3.9). Moreover, we note that the set of all v satisfying �v(x; t; ") � v � �
v(x; t; ")

can be represented in the form

v = v̂(x; t) +
p
"�

2
h(x; t)�; �1 � � � 1:

Thus, we have

g(�u(x; t; "); v; x; t; ") = g(û(x; t) +
p
"h(x; t) +O("a); v̂ +

p
"�

2
h(x; t)�; x; t; ")

= ĝ(x; t) +
p
"

h
ĝu(x; t)

�
 +O("a�1=2)

�
+ ĝv(x; t)�

2
�

i
h(x; t) + (3.14)

+
1

2
"

h
ĝuu(x; t)

2 + 2ĝuv(x; t)�
2
� + ĝvv(x; t)�

4
�
2
i
h
2(x; t) + "ĝ"(x; t) + o("):

Our goal is to prove g(�u(x; t; "); v; x; t; ") = �c" + o(") for (x; t) 2 Q� and some

positive constant c.

From (2.4) we get

ĝv(x; t) = �ĝu(x; t)'̂v(x; t); (3.15)

where

'̂v(x; t) =

(
'1v(v1(x; t); x; t) in Q1;

'2v(v2(x; t); x; t) in Q2:

Since '̂v(x; t) is uniformly bounded in Q; j�j � 1, we have by (3.15) and (2.15),

(2.16) for any �xed � and for su�ciently large 

ĝu(x; t)( +O("a�1=2)) + ĝv(x; t)�
2
� =

= ĝu(x; t)[ +O("a�1=2)� '̂v(x; t)�
2
�] � 0:

(3.16)

According to assumption (A7) there is a positive constant c� such that for su�ciently

small �

ĝuu(x; t) � �c� < 0 in Q� : (3.17)

Hence, for su�ciently large , we have for (x; t) 2 Q�

[ĝuu(x; t) + 2ĝuv(x; t)�
2
� + 

�1
ĝvv(x; t)�

4
�
2] < �2c; (3.18)

where c is some positive constant.

Now we set � = 1=�. Then, by (3.9), it holds

e
�1 � h(x; t) � e for (x; t) 2 Q�: (3.19)

Under our smoothness assumption there is a positive constant cg such that

jĝ"(x; t)j � cg for (x; t) 2 Q�: (3.20)

By (2.14), (3.15) - (3.20) we get from (3.14)

g(�u(x; t; "); v; x; t; ") < �(ce�2 � cg)"+ o("): (3.21)
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Taking into account (3.12) and (3.21) we have for su�ciently small � and " and for

su�ciently large 

(Lv�
u)(x; t; ") � "

2

 
@�

u

@t
�
@
2
�
u

@x2

!
� g(�u(x; t; "); v; x; t; ")

> (ce�2 � cg)"+ o(") � 0;

i.e. the inequality (2.20) holds for �u in Q�.

Now we verify the inequality (2.20) for �u in Q�. Using (3.8), (3.13), and a repre-

sentation for g(�u(x; t; "); v; x; t; ") similar to (3.14) we get

Lv�
u(x; t; ") � "

2

 
@�

u

@t
�
@
2
�
u

@x2

!
� g(�u(x; t; "); v; x; t; ") =

p
"ĝu(x; t)

h
� +O("a�1=2) + '̂v(x; t)�

2
�

i
h(x; t) (3.22)

�
1

2
�
2
"

h
ĝuu(x; t)� 2ĝuv(x; t)�� + ĝvv(x; t)�

2
�
2
i
h
2(x; t)� "ĝ"(x; t) + o("):

There is a su�ciently small �0 such that for 0 < � � �0

1 + �'̂v(x; t)� � 1=2 for (x; t) 2 Q�; j�j � 1:

Thus, because of a � 1=2 > 0 and taking into account (2.15), (2.16) and (3.9), we

have for su�ciently small "

ĝu(x; t)
h
� +O("a�1=2) + '̂v(x; t)�

2
�

i
h(x; t) � 0: (3.23)

By assumption (A8) there is a positive constant kg such that for su�ciently small �

�ĝ"(x; t) � �kg < 0 for (x; t) 2 Q� :

Now we choose �0 so small that for 0 < � � �0

1

2
�
2

���ĝuu(x; t)�2ĝuv(x; t)��+ ĝvv(x; t)�
2
�
2

���h2(x; t) � kg=2 for (x; t) 2 Q� : (3.24)

Therefore, for 0 < � � �0, and for su�ciently small " we get from (3.22), (3.23),

and (3.24)

(Lv�
u)(x; t; ") � 0;

i.e. inequality (2.20) is satis�ed for �u in Q�.

Now we will prove that �u and �u will satisfy the inequalities (2.20), (2.21) inQcnQ�.

From (3.14) we get

g(�u(x; t; "); v; x; t; ") =
p
"

h
ĝu(x; t) + ĝv(x; t)�

2
�

i
h(x; t) + o(

p
"): (3.25)
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It follows from (2.15) that there is a positive constant c1 such that for su�ciently

large 

ĝu(x; t) + ĝv(x; t)�
2
� � �c1 in QcnQ�: (3.26)

Therefore, by (2.18), (3.12), (3.25), and (3.26) we have for  su�ciently large and "

su�ciently small

(Lv�
u)(x; t; ") � 0 in QcnQ�:

Analogously, we get from (3.22) for � and " su�ciently small

(Lv�
u)(x; t; ") =

p
"ĝu(x; t)(� + '̂v(x; t)�

2
�)h(x; t) + o(

p
") � 0 for (x; t) 2 QcnQ�:

Thus, the inequalities (2.20) for �u
; �

u hold in QcnQ�.

Now we verify the inequality (2.21) in Qc. For u we use the representation

u = û(x; t) +
p
"�h(x; t) +O("a); �� � � � :

By (2.19) and (3.8) we have

(Mu�
v)(x; t; ") �

@�
v

@t
� f(u; �v(x; t; "); x; t; ") =

@v̂

@t
+
p
"
�
2

�
h(x; t)�

�f(û(x; t) +
p
"�h(x; t) +O("a); v̂ +

p
"�

2
h(x; t); x; t; "):

(3.27)

Using the representation

f(û(x; t) +
p
"�h(x; t) +O("a); v̂ +

p
"�

2
h(x; t); x; t; ") = f(û; v̂; x; t; 0) +

p
"

h
f̂u(x; t)� + f̂v(x; t)�

2
i
h(x; t) + o(

p
")

and taking into account
@v̂

@t
� f(û; v̂; x; t; 0) � 0

we get from (3.27)

(Mu�
v)(x; t; ") =

p
"

h�2
�
� f̂u(x; t)�� f̂v(x; t)�

2
i
h(x; t) + o(

p
"): (3.28)

To given � > 0 we choose � so small such that

h�2
�
� f̂u(x; t)�� f̂v(x; t)�

2
i
h(x; t) � c2 for (x; t) 2 Qc;

where c2 is some positive number. Thus, for su�ciently small ", we have

(Mu�
v)(x; t; ") � 0 for (x; t) 2 Qc:
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Similarly we can verify the inequality (2.21) for �v.

Finally we verify the inequalities (2.22). If we di�erentiate �u with respect to x at

x = 0 and x = 1 respectively we get from (3.8)

@�
u

@x
(0; t; ") =

@~u

@x
(0; t; ")� k +O(

p
");

@�
u

@x
(1; t; ") =

@~u

@x
(1; t; ") + k +O(

p
"):

Using (3.5) it can be shown that there exists a positive constant c3 such that

���@~u
@x

(x; t; ")
��� � c3 for (x; t) 2 Q:

Consequently, the inequalities (2.22) for �u from De�nition 2.1 are satis�ed if k is

chosen su�ciently large and " is su�ciently small. The inequalities (2.22) for �u

can be veri�ed in a similar way.

From our considerations above it follows that the functions �(x; t; "); �(x; t; ") ful�l

all conditions of De�nition 2.1 , and we can conclude that for su�ciently small "

there exists a unique solution (u(x; t; "); v(x; t; ")) of problem (2.1) satisfying for

(x; t) 2 Qc

�
u(x; t; ") � u(x; t; ") � �

u(x; t; ");

�
v(x; t; ") � v(x; t; ") � �

v(x; t; "):

From these inequalities and from (3.8) it follows that the representations (3.2) and

(3.3) for u(x; t; ") and v(x; t; ") in Qc are valid. This completes the proof of Theorem

3.1.

2

4 Example.

Consider the initial boundary value problem

"
2

 
@u

@t
�
@
2
u

@x2

!
= g(u; v; x; t; ") � �u(u� v + x + t+ 2) + "I(x; t);

@v

@t
= f(u; v; x; t; ") � u+ 2

(x; t) 2 Q := f(x; t) 2 R2 : 0 < x < 1; 0 < t � Tg; T > 2; (4.1)

@u

@x
(0; t; ") =

@u

@x
(1; t; ") = 0 for 0 < t � T;

u(x; 0; ") = u
0(x) > 0; v(x; 0; ") = v

0(x) � 1 for 0 � x � 1;
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where I : Q ! R is smooth and positive, u0 is a smooth function on 0 � x � 1.

The degenerate equation

�u(u� v + x + t+ 2) = 0

has two solutions

u = '1(v; x; t) � 0 and u = '2(v; x; t) � v � x� t� 2 (4.2)

intersecting in a smooth surface with the representation

v = s(x; t) � x + t+ 2:

The inequality '1(v; x; t) > (<) '2(v; x; t) holds for v < (>) s(x; t); (x; t) 2 Q, i.e.

the assumptions (A1) and (A2) are ful�lled.

From (4.1) and (4.2) we get

gu('1(v; x; t); x; t; 0) � v � x� t� 2 � �gu('2(v; x; t); x; t; 0):

Obviously we have for (x; t) 2 Q

gu('1(v; x; t); x; t; 0) < 0; gu('2(v; x; t); x; t; 0) > 0 for v < s(x; t);

gu('1(v; x; t); x; t; 0) > 0; gu('2(v; x; t); x; t; 0) < 0 for v > s(x; t);

i.e. assumption (A3) holds.

Note that 1 � v
0(x) < s(x; 0) = x + 2 for x 2 [0; 1] and f('1(v; x; t); v; x; t; 0) � 2:

Therefore, the initial value problem for v1(x; t) reads

dv1

dt
= 2; 0 < t � T ; v1(x; 0) = 1:

It has the solution

v1(x; t) = 2t+ 1:

The equation

v1(x; t) = s(x; t); i.e. 2t+ 1 = x+ t + 2

de�nes the curve C :

t = tc(x) = x + 1:

It is obvious that

v1(x; t) < s(x; t) for 0 � t < tc(x)

and

v1(x; t) > s(x; t) for tc(x) < t � T;

i.e. assumption (A4) is ful�lled.

From f('2(v; x; t); v; x; t; 0) � v� x� t and v1(x; tc(x)) = 2x+ 3 it follows that the

initial value problem for v2(x; t) reads

dv2

dt
= v2 � x� t; v2(x; tc(x)) = 2x+ 3:
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Its solution is

v2(x; t) = exp(t� x� 1) + x + t+ 1:

It is easy to check that

v2(x; t) > s(x; t) for tc(x) < t � T ( i.e. in Q2);

and

v2(x; t) < s(x; t) for 0 � t < tc(x) ( i.e. in Q1):

Therefore, assumption (A5) holds.

In our example the composed stable solution has the form

û(x; t) =

(
 1(x; t) � 0 in Q

1
;

 2(x; t) � exp(t� x� 1)� 1 in Q
2
;

(4.3)

v̂(x; t) =

(
v1(x; t) � 2t+ 1 in Q

1
;

v2(x; t) � exp(t� x� 1) + x + t+ 1 in Q
2
:

(4.4)

Now we verify the hypotheses (A6) - (A8). The associated equation (2.5) for v =

v
0(x) � 1; t = 0 reads

du

d�
= �u(u+ x+ 1); � > 0:

It is easy to see that the solution u(x; �) of this equation with the initial condition

u(x; 0) = u
0(x) > 0

exists for � > 0 and tends to '1(v
0(x); x; 0) = 0 as � !1. Hence, assumption (A6)

is ful�lled.

Moreover, the solution �0(x; �) of problem (3.1) which reads in our case

d�0

d�
= ��0(�0 + x+ 1); � > 0; �0(x; 0) = u

0(x)

can be found in the explicit form

�0(x; �) = u
0(x)(x+1)

h
u
0(x)(1� exp(�(x+1))�)+x+1

i
�1

exp(�(x+1)�): (4.5)

Assumptions (A7) and (A8) are obviously satis�ed since

guu � �2 < 0 in Q and g" � I(x; t) > 0 in Q:

Thus, all assumptions (A1)-(A8) of Theorem 3.1 are ful�lled. Therefore, the initial

boundary value problem (2.1) for our example has a unique solution (u(x; t; "); v(x; t; "))

satisfying (3.2), (3.3) where û(x; t); v̂(x; t), and �0(x; �) are de�ned in (4.3), (4.4)

and (4.5) respectively.
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