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Abstract

We show that a special stability condition of the associated system of oblique

projections (the so-called ` - paracontractivity) guarantees that the corresponding

polyhedral Skorokhod problem in a Hilbert space X is solvable in the space of ab-

solutely continuous functions with values in X . If moreover the oblique projections

are transversal, the solution exists and is unique for each continuous input and the

Skorokhod map is Lipschitz continuous in both C([0; T ]; X) and W 1;1(0; T ; X) .
An explicit upper bound for the Lipschitz constant is derived.

Introduction

A class of models called Skorokhod problems is widely used in areas such as elastoplasticity,
queueing theory, iterative optimization methods, mathematical economics (see references

in [2, 4]). Here we consider a particular case of polyhedral Skorokhod problems which can

be described as follows.

A characteristic polyhedral set Z is given in a Hilbert space X . For a given input function

u(t) de�ned in a time interval [0; T ] with values in X we look for an output x(t) with

values in Z such that the derivative _u(t) � _x(t) (in an appropriate sense) belongs to a

given re�ection cone R(x(t)) at the point x(t) . If the re�ection rules determine for each

input u in a suitable function space and for each initial condition x0 2 Z a unique output

x , then the mapping S : [x0; u] 7! � := u� x is called the Skorokhod map. Its analytical
properties for di�erent classes of inputs and in di�erent metrics on the space of inputs and

outputs play a crucial role in applications. In particular, the Lipschitz continuity of S in

the metric of uniform convergence has been studied during the last 20 years [10, 7, 3, 2, 4].

This is, partially, due to the fact that this property allows one to consider the operator

S in the set of all continuous inputs u(�) which is more natural for the investigation of

stability with respect to small perturbations.

The case when the re�ection cone R(z) coincides with the outward normal cone to Z at

each point z 2 Z constitutes the important class of polyhedral Skorokhod problems with
normal re�ection. The corresponding Skorokhod map is then called multidimensional
play operator and its Lipschitz continuity with respect to the sup-norm was �rst proved

in [10], see also [7] where this theorem is reproduced; then (by a di�erent method) in [3, 4].

Recently, in [8], a recurrent upper bound for the Lipschitz constant has been found.

In the general situation of oblique re�ection, su�cient conditions for the Lipschitz con-

tinuity were formulated in [3, 4] in terms of existence of a special convex set B 2 X ,

0 2 Int B . Conditions of existence of solution can also be found in [3, 4]; however, they

are di�erent from the su�cient conditions of Lipschitz continuity and require additional

assumptions on the re�ection directions.
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The analysis of the Skorokhod problem in this paper is based on the concept of ` -

paracontractivity introduced in [6]. This is a special stability property of the associated

projection system (APS) of linear operators of oblique projection on hyperplanes parallel

to the faces of Z along the re�ection directions, see Section 3. We �rst prove that ` -

paracontractivity alone is su�cient for the existence of an absolutely continuous output

x(t) for every absolutely continuous input u(t) and every initial condition. If, in addition,

the APS is transversal , that is, no re�ection direction at a point z is orthogonal to all

normal directions at z , then the Skorokhod map is Lipschitz in the space W 1;1(0; T ; X)
as well as in the space C([0; T ]; X) of continuous functions. If moreover Z has nonempty

interior, then, for every continuous function u , the function � = S[x0; u] has bounded
variation.

An important property of ` -paracontracting sets of oblique projections is their robust-
ness with respect to small shifts of re�ection vectors for �xed normal directions. This

property implies the Lipschitz continuity of Skorokhod problems under the transversality

constraint whenever the re�ection vectors are close to normal ones. On the other hand,

it does not yield an explicit upper bound for the Lipschitz constant of a deviated Sko-

rokhod problem. We obtain independently such an upper bound by a modi�ed method

of Lyapunov functions (cf. [8]).

The paper is organized as follows. In Section 1, we state the Skorokhod problem in

the space of continuous functions. Section 2 is devoted to a survey of basic properties

of oblique projections. In Section 3, we prove that the ` -paracontractivity ensures the

existence of a solution for each initial condition. In Section 4, we establish a Lipschitz-

type estimate for the sup-norm. Section 5 contains the main result which consists in

proving that ` -paracontractivity and transversality imply the Lipschitz continuity of the

Skorokhod map in both W 1;1(0; T ; X) and C([0; T ]; X) . In Section 6, we derive an

estimate for the total variation of the output, and we conclude the paper by estimating

the Lipschitz constant in Section 7.

1 The Skorokhod problem

Let X be a Hilbert space endowed with a scalar product h�; �i and with the norm jxj =
hx; xi1=2 for x 2 X .

We consider a polyhedral set Z � X de�ned in terms of a system n1; : : : ; np of unit

outward normal vectors as the intersection of half-spaces H
j
, j = 1; : : : ; p , by the formula

Z :=
\
j2J

H
j
; H

j
:= fz 2 X ; hz; n

j
i � �

j
for j 2 Jg ; J := f1; : : : ; pg ; (1.1)

where �
j
� 0 for j 2 J are given real numbers.

We associate with Z a system r1; : : : ; rp of unit vectors called re�ection vectors. For

z 2 Z we denote by
~J(z) := fj 2 J ; hz; n

j
i = �

j
g (1.2)

the set of indices corresponding to `active' constraints at the point z . The set-valued

mapping ~J : Z ! 2J is upper semicontinuous in the sense that

8 z 2 Z 9 " > 0 : jz0 � zj < " ) ~J(z0) � ~J(z) : (1.3)
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Indeed, it su�ces to put

" := minf�
j
� hz; n

j
i ; j 2 J n ~J(z)g :

For a function w : [0; T ]! Z and any subset A � [0; T ] we put

~J
A
(w) =

[
t2A

~J(w(t)) :

For any subset J 0 of J we denote by C(J 0) the convex cone generated by vectors r
j
with

indices from J 0 , that is

C(J 0) :=

8<
:y =

X
j2J 0

�
j
r
j
; �

j
� 0 for j 2 J 0

9=
; ;

and for z 2 Z we call the set

R(z) := C( ~J(z)) (1.4)

the re�ection cone at the point z . Similarly, for a function w : [0; T ] ! Z and any set

A � [0; T ] we de�ne
R

A
(w) := C( ~J

A
(w)) : (1.5)

As an immediate consequence of (1.3), we see that for every w 2 C([0; T ];Z) and every

compact set A � [0; T ] there exists " > 0 such that for each ~w 2 C([0; T ];Z) the

following implication holds:

jw � ~wj
A
< " ) R

A
( ~w) � R

A
(w) ; (1.6)

where for v 2 C([0; T ]; X) we put jvj
A

:= max
t2A jv(t)j .

We state the Skorokhod problem in the framework of continuous functions as follows:

De�nition 1.1 Let u 2 C([0; T ]; X) be a given function. A pair of functions �; x 2
C([0; T ]; X) is said to be a solution to the Skorokhod problem with characteristic Z given

by (1.1) and with re�ection vectors r1; : : : ; rp , if

8>><
>>:
x(t) + �(t) = u(t) for every t 2 [0; T ] ;

x(t) 2 Z for every t 2 [0; T ] ;

�(t2)� �(t1) 2 R[t1;t2](x) for every 0 � t1 < t2 � T :

(1.7)

The alternative formulation given in [3, 4] includes also discontinuous inputs and outputs.

The restriction to continuous functions enables us to make the geometrical ideas more

clear and the proofs more transparent. Due to (1.3), we see that whenever the derivatives

_u(t) , _x(t) , _�(t) exist for some t , the third condition in (1.7) yields

_�(t) 2 R(x(t)) : (1.8)

In other words, the vector _u(t) is decomposed into a tangential component _x(t) and a

re�ection component _�(t) .
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The problem has been studied in detail in the case of normal re�ection, that is, n
j
= r

j
for

every j 2 J , and a survey of results can be found in [2]. In fact, the Skorokhod problem

can then be stated as an evolution variational inequality in a Hilbert space which makes it

accessible to classical analytical methods. Here, we are particularly interested in the case

of oblique re�ection, where no a priori assumption is made on the relationship between

n
j
and r

j
.

We immediately see, however, that a necessary condition for the well-posedness of the

Skorokhod problem reads

hr
j
; n

j
i > 0 (1.9)

whenever the j -th constraint is nondegenerate, that is, if there exists x
j
2 Z such that

~J(x
j
) = fjg . Indeed, if hr

j
; n

j
i � 0 , then taking x(0) = x

j
and _u(t) � n

j
in [0; T ] ,

we conclude from the convexity of Z and from (1.6) that hx(t) � x(0); n
j
i � 0 , h�(t) �

�(0); n
j
i � 0 for small t > 0 , which is a contradiction.

Put Y := span fn1; : : : ; np; r1; : : : ; rpg and let Y ? be the orthogonal complement of Y

in X . For every functions u; x; � 2 C([0; T ]; X) satisfying (1.7) and an arbitrary w 2
C(0; T ;Y ?) , the functions ~u := u + w , ~x := x + w , ~� := � also satisfy (1.7). We can

therefore restrict our considerations to the (�nite dimensional) space Y instead of X .

This motivates the following hypothesis which is assumed to be valid in all what follows:

Hypothesis 1.2 X = span fn1; : : : ; np; r1; : : : ; rpg and (1.9) holds for every j 2 J .

If the solution to the Skorokhod problem with a given initial condition x(0) = x0 2 Z is

unique, we de�ne the Skorokhod map S : Z�C([0; T ]; X) ! C([0; T ]; X) by the formula

S[x0; u] := � : (1.10)

By construction, the mapping S is causal and rate-independent, hence it belongs to the

class of hysteresis operators.

2 Oblique projections

For j 2 J , let Q
j
be the projection onto span fr

j
g orthogonal to n

j
, that is,

Q
j
x :=

hx; n
j
i

hr
j
; n

j
i
r
j

for x 2 X : (2.1)

The family Q of complementary projections f(I �Q
j
) ; j 2 Jg , where I : X ! X is the

identity mapping, is called the associated projection system (or APS) of the Skorokhod

problem. Let us introduce the following basic de�nition (cf. [6]).

De�nition 2.1 Let Hypothesis 1.2 hold. The system Q is said to be -̀paracontracting

(or shortly LPC) if there exists a norm in X denoted by k � k such that for every x 2 X
and every j 2 J we have

kxk � k(I �Q
j
)xk+ jQ

j
xj : (2.2)
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In the case of the Skorokhod problem with normal re�ection, such a norm can be con-

structed explicitly, see [1, 2, 9]. The following result shows that the LPC property is

robust with respect to small shifts of the re�ection vectors. In particular, it remains valid

if the re�ection directions are su�ciently close to the normal ones.

Lemma 2.2 Let the system Q possess the LPC property and let r01; : : : r
0
p
be a set of unit

vectors such that for every j 2 J we have

hn
j
; r0

j
i > 0 ;

����� r
j

hn
j
; r

j
i
�

r0
j

hn
j
; r0

j
i

����� +






 r
j

hn
j
; r

j
i
�

r0
j

hn
j
; r0

j
i






 < 1

hn
j
; r0

j
i
:

Then the system Q0 of projections I �Q0
j
, where the vectors r

j
are replaced with r0

j
, is

also an LPC-system.

Proof. Put

Æ := max
j2J

(
hn

j
; r0

j
i
 ����� r

j

hn
j
; r

j
i
�

r0
j

hn
j
; r0

j
i

����� +






 r
j

hn
j
; r

j
i
�

r0
j

hn
j
; r0

j
i







!)

< 1 :

For every j 2 J and x 2 X we then have

k(I �Q0
j
)xk � k(I �Q

j
)xk+ k(Q0

j
�Q

j
)xk

� kxk � jQ0
j
xj+ j(Q0

j
�Q

j
)xj+ k(Q0

j
�Q

j
)xk

� kxk � jQ0
j
xj+ jhx; n

j
ij
 ����� r

j

hn
j
; r

j
i
�

r0
j

hn
j
; r0

j
i

����� +






 r
j

hn
j
; r

j
i
�

r0
j

hn
j
; r0

j
i







!

� kxk � jQ0
j
xj+ Æ

����� hx; njihn
j
; r0

j
i

�����
= kxk � (1� Æ)jQ0

j
xj ;

Dividing this inequality by 1�Æ , we see that the assertion holds with respect to the norm

k � k0 := k � k=(1 � Æ) . �

We have the following easy consequence of the de�nition.

Lemma 2.3 If Q is LPC, then

kxk � k(I � 
Q
j
)xk+ 
jQ

j
xj (2.3)

for every j 2 J , x 2 X and 0 � 
 � 1 .

Proof. Multiplying (2.2) by 
 and using the triangle inequality, we get


kxk � k
(I �Q
j
)xk+ 
jQ

j
xj � k(I � 
Q

j
)xk � (1� 
)kxk+ 
jQ

j
xj

and (2.3) follows easily. �
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Let us de�ne nonlinear operators of oblique projection onto half-spaces H
j
, j 2 J , as

�
j
(x) :=

8<
:
x if hx; n

j
i � �

j
;

(I �Q
j
)x + �

j
Q
j
n
j

if hx; n
j
i > �

j
:

(2.4)

We will need the following two properties of operators �
j
:

Proposition 2.4 Let Q be LPC. Then for each j 2 J the following inequalities hold.

(i) 8x 2 X , 8z 2 H
j
: j�

j
(x)� xj � kx� zk � k�

j
(x)� zk .

(ii) 8x1; x2 2 X : k�
j
(x1)� �

j
(x2)k � kx1 � x2k � j(x1 � �

j
(x1))� (x2 � �

j
(x2))j .

Proof.

(i) Let us denote v = x� z , w = �
j
(x)� z . We have

w = (I � 
Q
j
)v; where 
 =

8><
>:

0 if hx; n
j
i � �

j
;

hx; n
j
i � �

j

hx; n
j
i � hz; n

j
i

if hx; n
j
i > �

j
:

We have 0 � 
 � 1 because hz; n
j
i � �

j
; hence the assertion follows from Lemma 2.3.

(ii) If hx
i
; n

j
i � �

j
for one or both of x1 , x2 , it su�ces to use (i). Otherwise, we have

�
j
(x1)� �

j
(x2) = (I �Q

j
)(x1 � x2) and the statement follows directly from (2.2). �

We further de�ne a mapping � : X ! Z called quasiprojection such that for every x 2 X
close to a point z 2 Z , the di�erence x� �(x) lies in the re�ection cone of z (a precise

formulation will be given in Proposition 2.6 below).

We take a speci�c sequence fj
k
; k = 0; 1; : : :g of indices from J , namely

j
k

:= k [modp] + 1 ; k = 0; 1; : : : ; (2.5)

and for a given x 2 X we de�ne recursively the sequence

y0 := x ; y
k+1 := �

jk
(y

k
) ; k 2 N : (2.6)

By construction, for every k = 0; 1; : : : we have y
k+1 2 Hjk

. Moreover, from Proposition

2.4, we get
1X
k=0

jy
k+1 � y

k
j � kx� zk 8 z 2 Z :

Hence the sequence fy
k
g is convergent and we de�ne the quasiprojection operator � :

X ! X by

�(x) := lim
k!1

y
k

for x 2 X : (2.7)

From the construction it follows that �(x) 2 Z . We now list further properties of � .

Proposition 2.5 Let Q be LPC. Then for every x 2 X we have

6



(i) k�(x)� zk � kx� zk � jx� �(x)j 8 z 2 Z ,

(ii) kx� �(x)k � 2min
z2Z

kx� zk .

(iii) k�(x1)� �(x2)k � kx1 � x2k � j(x1 � �(x1))� (x2 � �(x2))j 8x1; x2 2 X .

Proof.

(i) Let fy
k
g be the sequence (2.6). By Proposition 2.4 (i) we have

jy
k+1 � y

k
j � ky

k
� zk � ky

k+1 � zk (2.8)

for every k . Summing up over k = 0; 1; : : : we obtain the assertion.

(ii) Let z� 2 Z be such that kx � z�k = min
z2Z kx � zk . From (2.8) we obtain

ky
k
� z�k � ky0 � z�k , hence kx � y

k
k � kx� z�k + ky

k
� z�k � 2 kx � z�k and (ii)

follows.

(iii) Let fy(i)
k
g for i = 1; 2 be the sequences (2.6) with initial conditions y

(i)
0 = x

i
. By

Proposition 2.4 (ii), for all k we have

ky(1)
k+1 � y

(2)

k+1k � ky(1)
k
� y

(2)

k
k � j(y(1)

k
� y

(1)

k+1)� (y(2)
k
� y

(2)

k+1)j

and analogously to (i), a summation argument completes the proof. �

The following property of � plays a substantial role in our argument.

Proposition 2.6 Let Q be LPC. Let z 2 Z be given and let " > 0 be such that the
implication

kx� zk < " ) hx; n
j
i < �

j
8 j 2 J n ~J(z)

holds for every x 2 X . We then have

x� �(x) 2 R(z) 8x 2 X ; kx� zk < " ; (2.9)

where R(z) is the re�ection cone de�ned by (1.4).

Proof. Let fy
k
g be the sequence (2.6). By (2.8) we have ky

k
� zk � kx � zk < " for

every k , hence

hy
k
; n

j
i < �

j
8 j 2 J n ~J(z) : (2.10)

On the other hand, we have

x� �(x) =
1X
k=0

(y
k
� y

k+1) =
X
k2K

Q
jk
(y

k
� �

jk
n
jk
) (2.11)

=
X
k2K

hy
k
; n

jk
i � �

jk

hr
jk
; n

jk
i

r
jk
;

where K = fk ; hy
k
; n

jk
i > �

jk
g . Therefore, by (2.10) we have j

k
2 ~J(z) for every

k 2 K , and from (2.11) we conclude that there exist coe�cients �
j
� 0 such that

x� �(x) =
X

j2 ~
J(z)

�
j
r
j
; (2.12)

which we wanted to prove. �
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3 Skorokhod problem in W 1;1(0; T ; X)

We �rst solve the Skorokhod problem for absolutely continuous input functions u . Keep-

ing the notation from Section 2, we construct a solution by time-discrete approximation.

With any given input sequence (�nite or in�nite) fu0; u1; : : :g and initial condition x0 2 Z
we associate output sequences fx0; x1; : : :g , f�0; �1; : : :g , by the recurrent formula

x
i+1 := �(x

i
+ u

i+1 � u
i
) ; �

i
:= u

i
� x

i
for i = 0; 1; : : : ; (3.1)

where � is the quasiprojection operator (2.7).

For every i � 1 we have in particular x
i
2 Z and

�
i
� �

i�1 = (x
i�1 + u

i
� u

i�1)� �(x
i�1 + u

i
� u

i�1) ; (3.2)

hence Proposition 2.5 yields

j�
i
� �

i�1j � kx
i�1 + u

i
� u

i�1 � zk � kx
i
� zk 8 z 2 Z : (3.3)

Let two input sequences fu(1)
i
g , fu(2)

i
g be given. We denote by fx(j)

i
g , f�(j)

i
g , j = 1; 2 the

corresponding output sequences, and by f�u
i
g , f�x

i
g , f��

i
g the di�erences �u

i
:= u

(2)
i
�u(1)

i
,

�x
i
:= x

(2)
i
� x

(1)
i
, ��

i
:= �

(2)
i
� �

(1)
i

. From Proposition 2.5 (iii) we then obtain

j��
i
� ��

i�1j � k�x
i�1 + �u

i
� �u

i�1k � k�xik : (3.4)

The existence result can be stated as follows.

Theorem 3.1 Let Q be an LPC-system and let u 2 W 1;1(0; T ; X) , x0 2 Z be given.
Then there exist functions x; � 2 W 1;1(0; T ; X) satisfying the conditions of De�nition
1.1, x(0) = x0 .

Proof of Theorem 3.1. For a given n 2 N , we divide the interval [0; T ] into an equidistant

partition

0 = t
(n)
0 < t

(n)
1 < : : : < t(n)

n
= T ; t

(n)
i

:=
i

n
T for i = 0; : : : ; n ;

and put, keeping n �xed for the moment,

u
i
:= u(t

(n)
i

) ; for i = 0; : : : ; n : (3.5)

Let an initial condition x0 be given. We de�ne x
i
for i = 1; : : : ; n by formula (3.1), and

for t 2 [t
(n)
i�1; t

(n)
i

[ we put

8<
:
u(n)(t) := u

i�1 + n

T

(t� t
(n)
i�1) (ui � u

i�1) ;

x(n)(t) := x
i�1 + n

T

(t� t
(n)
i�1) (xi � x

i�1) :
(3.6)

As a consequence of (3.3), where we put z := x
i�1 , we have for every i = 1; : : : ; n the

inequality

kx
i
� x

i�1k � ku
i
� u

i�1k : (3.7)

8



The sequence fx(n)g is thus equibounded in C([0; T ]; X) and f _x(n)g is equiintegrable in

L1(0; T ;X) , x(n)(t) 2 Z for every t 2 [0; T ] . There exists therefore x 2 W 1;1(0; T ; X)
such that x(t) 2 Z for every t 2 [0; T ] , x(0) = x0 , and a subsequence of fx(n)g (still

indexed by (n)) such that x(n) ! x uniformly in C([0; T ]; X) and _x(n) ! _x in L1(0; T ;X)
weakly as n!1 . It remains to prove that the function �(t) := u(t)� x(t) satis�es for

a. e. t 2 ]0; T [ the condition
_�(t) 2 R(x(t)) : (3.8)

Let t 2 ]0; T [ be a Lebesgue point of both u and x , and let " > 0 be chosen according

to (1.3) in such a way that the implication

kx(t)� x̂k < " ) hx̂; n
j
i < �

j
8 j 2 J n ~J(x(t)) (3.9)

holds for every x̂ 2 X . We �x n0 2 N and Æ > 0 such that

max
�2[0;T ]

kx(n)(� )� x(� )k < "=3 for n � n0 ; (3.10)

kx(t)� x(� )k < "=3 for � 2 ]t� Æ; t+ Æ[ ; (3.11)

ku(�)� u(� )k < "=3 for �; � 2 ]t� Æ; t+ Æ[ : (3.12)

Let now n � n0 and i 2 f1; : : : ; ng be such that t
(n)
i�1; t

(n)
i

2 ]t � Æ; t + Æ[ , and for

� 2 ]t� Æ; t+ Æ[ put �(n)(� ) := u(n)(� )� x(n)(� ) . Then we have

�(n)(t(n)
i

)� �(n)(t(n)
i�1) = (x

i�1 + u
i
� u

i�1)� �(x
i�1 + u

i
� u

i�1) :

According to (3.10) � (3.12), the point x̂ := x
i�1 + u

i
� u

i�1 satis�es the inequality

kx̂� x(t)k � kx(n)(t(n)
i�1)� x(t)k+ ku(t(n)

i
)� u(t

(n)
i�1)k < " ;

and from (3.9) and Proposition 2.6 it follows that

�(n)(t
(n)
i

)� �(n)(t
(n)
i�1) 2 R(x(t)) :

Since the functions �(n) are piecewise linear, for large n we have

�(n)(t2)� �(n)(t1) 2 R(x(t))

for every t� Æ < t1 � t � t2 < t+ Æ , and passing to the limit we obtain (3.8). The proof

is complete. �

Remark 3.2 If u1; u2 2 W 1;1(0; T ; X) are two input functions, then from (3.4) it follows

for the piecewise linear approximations that for t 2 ]t
(n)
i�1; t

(n)
i

[ we have

j _�(n)2 (t)� _�
(n)
1 (t)j+

n

T
(�x

(n)
i
� �x

(n)
i�1) � k _u(n)2 (t)� _u

(n)
1 (t)k ; (3.13)

where �x(n)
i

:= kx(n)2 (t(n)
i

)� x
(n)
1 (t(n)

i
)k .
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Let 0 < a < b < T be arbitrarily chosen. For n su�ciently large, we �nd indices

1 < j < k < n such that t
(n)
j�2 < a � t

(n)
j�1 , t

(n)

k
� b < t

(n)

k+1 . Integrating (3.13) we obtainZ
b

a

j _�(n)2 (t)� _�
(n)
1 (t)j dt + (c

k
�x
(n)

k+1 + (1 � c
k
) �x

(n)

k
) � (d

j
�x
(n)
j�2 + (1 � d

j
) �x

(n)
j�1) (3.14)

�
Z

b

a

k _u(n)2 (t)� _u(n)1 (t)k dt ;

where c
k
:= (b � t

(n)

k
)n=T , d

j
:= (t(n)

j�1 � a)n=T . The sequences fu(n)1 g; fu(n)2 g converge

strongly in W 1;1(0; T ; X) and f _�(n)1 g; f _�(n)2 g converge weakly in L1(0; T ;X) . Passing to

the limit as n!1 in (3.14) we thus obtain

Z
b

a

j _�2(t)� _�1(t)j dt � lim inf
n!1

Z
b

a

j _�(n)2 (t)� _�
(n)
1 (t)j dt (3.15)

� kx2(a)� x1(a)k � kx2(b)� x1(b)k +
Z

b

a

k _u2(t)� _u1(t)k dt :

Since a and b have been arbitrary, we can write the above inequality in di�erential form

j _�2(t)� _�1(t)j+
d

dt
kx2(t)� x1(t)k � k _u2(t)� _u1(t)k a. e. (3.16)

which is the same as in the normal re�ection case, see [1].

We cannot conclude for the moment that the solution to the Skorokhod problem is unique

in W 1;1(0; T ; X) , see Example 3.3 below; we only made sure that solutions which can

be constructed as discrete limits are unique. The uniqueness and Lipschitz continuity in

W 1;1(0; T ; X) will be obtained under an additional assumption below in Theorem 5.8.

Example 3.3 Let fe1; e2g be an orthonormal basis in X = R
2 . We consider the set

Z := fx 2 X; hx; e1i = 0g . This corresponds to the choice n1 = �n2 = e1 , �1 = �2 = 0
in (1.1). We choose the re�ection vectors r1 = (e2 + e1)=

p
2 , r2 = (e2 � e1)=

p
2 . Then

the system Q is ` -paracontracting with the norm

kxk := (1 +
p
2) jhx; e1ij + jhx; e2ij :

For the input function u(t) � 0 , all functions of the form �(t) = �(t) e2 , x(t) = ��(t) e2
with a nondecreasing function � such that �(0) = 0 are solutions of the Skorokhod

problem (1.7) with initial condition x(0) = 0 . However, the time discretization method

converges to the trivial solution � = x � 0 .

4 Uniqueness and Lipschitz continuity in C([0; T ]; X)

Su�cient conditions for Lipschitz continuity of the Skorokhod map with respect to the

norm j � j[0;T ] of uniform convergence were given in [3, 4] in terms of existence of a special

bounded set B � X (condition (B) in Theorem 4.1 below, with an additional requirement

0 2 Int(B)). Our goal here is to study this problem in more detail. The main result is

Theorem 4.9 at the end of this section. We �rst derive some geometrical properties of the

associated projection system.
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Theorem 4.1 Let Hypothesis 1.2 hold, let Q
j
, j 2 J be the projections de�ned by (2.1)

and let B � X be a closed convex set, 0 2 B . Then the following two conditions are

equivalent.

(A) 8x 2 B ;8 j 2 J : w := (I �Q
j
)x�Q

j
n
j
2 B ,

where I is the identity operator,

(B) 8x 2 B ;8 y 2 N
B
(x) ;8 j 2 J : jhx; n

j
ij < 1 ) hy; r

j
i = 0 ,

where N
B
(x) denotes the outward normal cone to B at the point x .

Notation 4.2 In the sequel, by a Q-invariant set we understand any convex closed set

B containing the origin and satisfying (A).

Proof of Theorem 4.1.

(A) ) (B) : By de�nition, we have for every x 2 B and every y 2 N
B
(x)

hy; x� wi � 0 8w 2 B :

Assuming (A), we may put w := (I �Q
j
)x�Q

j
n
j
and obtain

0 � hy;Q
j
(x� n

j
)i = hy; r

j
i
hx; n

j
i � 1

hn
j
; r

j
i

;

If jhx; n
j
ij < 1 for some j 2 J , the above inequality immediately yields that hy; r

j
i = 0

and (B) follows.

(B) ) (A) : Let x 2 B and j 2 J be given. Let A be the rectangle A := [0; 1]�[�1; 1] .
For (�; �) 2 A put

x
�;�

:= � (I �Q
j
)x+ � Q

j
n
j
:

Let G := f(�; �) 2 A ; x
�;�

2 Bg be the set of `good' indices. The set G is obviously

nonempty (since (0; 0) 2 G) and closed (since B is closed). The proof will be complete

if we check that G = A .

With the convex closed set B , we can associate the projection pair (P
B
; Q

B
) de�ned as

follows. For a given x 2 X , we de�ne w = Q
B
x , y = P

B
x = x�Q

B
x by the formula

w 2 B ; jyj = minfjx� zj ; z 2 Bg : (4.1)

As a consequence of the de�nition, the point y = P
B
x belongs to the outward normal

cone N
B
(w) .

Let (��; ��) 2 G be given such that 0 � �� < 1 , �1 < �� < 1 . We choose arbitrary

(�; �) 2 A such that

j�j+ j�� ��j j(I �Q
j
)xj+

j� � ��j
hr

j
; n

j
i
< 1 ; (4.2)
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and put w
�;�

:= Q
B
x
�;�

, y
�;�

:= P
B
x
�;�

. We then have

jhw
�;�
; n

j
ij � jhx

�;�
; n

j
ij+ jhy

�;�
; n

j
ij � j�j+ jy

�;�
j � j�j+ jx

�;�
� x��;��j

� j�j+ j�� ��j j(I �Q
j
)xj+

j� � ��j
hr

j
; n

j
i
:

From (4.2) it follows that jhw
�;�
; n

j
ij < 1 , and Condition (B) yields that

hy
�;�
; r

j
i = 0 : (4.3)

On the other hand, by de�nition of the outward normal cone, we have

hy
�;�
; w

�;�
� wi � 0 8w 2 B :

We can choose in particular w = � x , and from (4.3) we obtain

0 � hy
�;�
; w

�;�
� �xi = hy

�;�
; w

�;�
� x

�;�
i = �jy

�;�
j2 :

We conclude that x
�;�

2 B , hence the set G is relatively open in A . We therefore have

G = A , and Theorem 4.1 is proved. �

We now give some useful consequences of Theorem 4.1.

Corollary 4.3 Let Hypothesis 1.2 hold and let B be a Q-invariant set. We then have

8 z 2 B 8 y 2 N
B
(z) 8 j 2 J : hz; n

j
i hy; r

j
i � 0 :

Proof. Let j 2 J , z 2 B and y 2 N
B
(z) be given. We have hy; z � wi � 0 for every

w 2 B . Using Theorem 4.1, we obtain the assertion by putting w := (I �Q
j
) z . �

The following result is immediate and we leave the proof to the reader.

Corollary 4.4 Let B be a Q-invariant set. Then the sets %B := f% x ; x 2 Bg are
Q-invariant for every % 2 R, j%j � 1 . Moreover, if B1 , B2 are Q-invariant, then
B� := conv (B1 [ B2) , B� := B1 \ B2 are Q-invariant. In particular, to every Q-

invariant set B there exists a symmetric Q-invariant set Bsym := B \ �B .

We now give an explicit description of the minimal Q-invariant set.

Corollary 4.5 Let � denote the set of all �nite sequences � = (j0; : : : ; jm�1) , m 2 N ,
such that j

k
2 J for k = 0; : : : ;m� 1 . Let s

�
= (x0; : : : ; xm) be the sequence

x0 = 0 ; x
k+1 = (I �Q

jk
)x

k
�Q

jk
n
jk

for k = 0; : : : ;m� 1 ; (4.4)

and put x!
�
:= x

m
. Let B! be the set

B! := conv fx!
�
; � 2 �g :

Then
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(i) B! is a symmetric Q-invariant set ,

(ii) every Q-invariant set B contains B! .

Proof. To prove (i), it su�ces to check that B! satis�es (A). By de�nition of B! , we

have for every j 2 J and every � 2 �

(I �Q
j
)x!

�
�Q

j
n
j
2 B! :

In a similar way, for every convex combination

x =
nX
i=1

�
i
x!
�i
2 B! ;

nX
i=1

�
i
= 1 ; �

i
� 0 for i = 1; : : : ; n ;

we have the identity

(I �Q
j
)x�Q

j
n
j
=

nX
i=1

�
i

�
(I �Q

j
)x!

�i
�Q

j
n
j

�
2 B! ;

and the closedness of B! yields the result.

Part (ii) is an immediate consequence of Theorem 4.1: if B is a Q-invariant set, then by

induction we have x!
�
2 B for every � 2 � . Since B is convex and closed, the assertion

follows. �

Remark 4.6 A sequence s
�
of the form (4.4) is called a 1-trajectory associated to � 2 � .

We will see below in Theorem 5.8 that the Lipschitz constant of the Skorokhod map is

related to the diameter of the set B from Theorem 4.1. According to Corollary 4.5, B! is

the minimal set with the desired property. An upper bound for all possible 1-trajectories

will therefore yield an upper bound for the Lipschitz constant.

In particular, we have to ask whether B! is bounded. We �rst state a necessary condition

in terms of the vectors n
j
; r

j
. For each J 0 � J we de�ne the spaces

(
R
J
0 := span fr

j
; j 2 J 0g ;

N
J
0 := span fn

j
; j 2 J 0g :

(4.5)

Lemma 4.7 For every J 0 � J we have

R
J
0 \N?

J
0 � B! � R

J
;

where R
J
0 , N

J
0 are de�ned by (4.5) and N?

J
0 denotes the orthogonal complement to N

J
0 .

Proof. The fact that B! � R
J
is obvious. Let J 0 � J and x 2 R

J
0 \N?

J
0 be arbitrarily

chosen and assume that x 6= 0 . We �nd real numbers a
i
, i 2 J 0 , such that x =

P
i2J 0 ai ri ,

and put b
i
:= hn

i
; r

i
i a

i
, c :=

P
i2J 0 jbij . Then the point

1

c
x =

X
i2J 0

b
i

c
Q
i
n
i
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belongs to B! by de�nition. Moreover, if kx 2 B! for some k 2 R, then, by Theorem

4.1 and Corollary 4.5, we have

(I �Q
j
) kx� sign (b

j
)Q

j
n
j
2 B! 8 j 2 J 0 :

By hypothesis, we have Q
j
x = 0 for every j 2 J 0 , and the convexity of B! yields

X
j2J 0

jb
j
j
c

((I �Q
j
) kx� sign (b

j
)Q

j
n
j
) =

X
j2J 0

jb
j
j
c

(kx� sign (b
j
)Q

j
n
j
)

=
�
k �

1

c

�
x 2 B! ;

hence B! contains the whole line span fxg . �

Corollary 4.8 Let B! be bounded. Then we have

R
J
0 \N?

J
0 = f0g 8J 0 � J : (4.6)

In the sequel, condition (4.6) will be referred to as the transversality condition. It is

obviously satis�ed in the case of normal re�ection and, obviously as well, it is not robust

with respect to small changes of re�ection vectors. This is indeed a drawback, but we show

below in Corollary 5.3 that in combination with ` -paracontractivity, the transversality

condition is equivalent to the condition

dimN
J
0 = dimR

J
0 8J 0 � J ; (4.7)

which is simply a linear constraint to the robustness of the ` -paracontractivity.

For the reader's convenience, we give here the proof of the following Lipschitz estimate

which basically follows the lines of Theorem 2.2 of [3]. We however do not assume explicitly

here that the set B has nonempty interior.

Theorem 4.9 Let Hypothesis 1.2 hold and let there exist a symmetric Q-invariant set
B . Let m

B
: X ! R

+ [ f+1g be the Minkowski functional of the set B , that is,

m
B
(x) := inf

�
s > 0 ;

1

s
x 2 B

�
for x 2 X :

Let u1; u2 2 C([0; T ]; X) be two input functions for which there exist respective solutions

(�1; x1) , (�2; x2) to the Skorokhod problem. For t 2 [0; T ] put ��(t) := �1(t) � �2(t) , and
similarly �x(t) := x1(t)� x2(t) , �u(t) := u1(t)� u2(t) . Then for every t 2 [0; T ] we have

m
B
(��(t)) � maxfm

B
(��(0)); j�uj[0;t]g : (4.8)

Proof of Theorem 4.9. Put X
B
:= fx 2 X ; m

B
(x) <1g . Then X

B
is a subspace of X ,

and since �Q
j
n
j
2 B! for every j 2 J , we obtain from Corollary 4.5 that R

J
� X

B
.

The statement is empty if ��(0) 62 X
B
. Let us assume therefore that ��(0) 2 X

B
and for

t 2 [0; T ] put 
(t) := j�uj[0;t] . For every t 2 [0; T ] we have by de�nition

��(t)� ��(0) 2 R[0;t](x1)�R[0;t](x2) � X
B
;
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hence we can restrict our considerations to the reduced Minkowski functional

~m
B

:= m
B
j
XB

:

For t 2 [0; T ] put  (t) := ~m
B
(��(t)) and assume that the assertion of Theorem 4.9 does

not hold. We can �nd t0 2 ]0; T [ such that


0 :=  (t0) > 
(t0) ;  (t) <  (t0) for t 2 [0; t0[ :

Put z := ��(t0)=
0 . Then z 2 B and for every y 2 @ ~m
B
(z) , where @ ~m

B
is the subdi�er-

ential of ~m
B
, we have by de�nition

hy; z � ~zi � ~m
B
(z)� ~m

B
(~z) 8 ~z 2 X

B
: (4.9)

In particular, we have y 2 N
B
(z) , and putting ~z := ��(t0�h)=
0 in (4.9) for small positive

h , we obtain

hy; ��(t0)� ��(t0 � h)i � 
0 ( (t0)�  (t0 � h)) > 0 : (4.10)

By (1.3) we choose h su�ciently small such that

~J(x1(t)) � ~J(x1(t0)) ; ~J(x2(t)) � ~J(x2(t0)) for t 2 [t0 � h; t0] : (4.11)

By (1.7), we have

�1(t0)� �1(t0 � h) 2 C( ~J(x1(t0))) ; �2(t0)� �2(t0 � h) 2 C( ~J(x2(t0))) :

We thus infer from (4.10) that there exists either some j 2 ~J(x1(t0)) such that hy; rji > 0 ,
or some i 2 ~J(x2(t0)) such that hy; r

i
i < 0 . Both cases are symmetric, let us assume

therefore that hy; r
j
i > 0 for some j 2 ~J(x1(t0)) . Then Corollary 4.3 yields hz; n

j
i � 0 .

On the other hand, by de�nition of ~J(x1(t0)) we have h�x(t0); nji � 0 . We conclude that

0 � hz; n
j
i =

1


0
h�u(t0); nji �

1


0
h�x(t0); nji �

1


0
h�u(t0); nji �


(t0)


0
< 1 :

This violates the property (B) from Theorem 4.1, which is indeed a contradiction. The-

orem 4.9 is proved. �

For practical purposes, formula (4.8) is more convenient to work with if the set B has

nonempty interior. The following straightforward argument shows that this condition

represents no restriction.

Proposition 4.10 Let B be a Q-invariant set and let B1(0) denote the unit ball in X .

Then B0 := 2B +B1(0) is also a Q-invariant set.

Proof. Let x0 2 B0 and y 2 N
B
0(x0) be given such that jhx0; n

j
ij < 1 for some j 2 J .

There exist x 2 B and h 2 B1(0) such that x0 = 2x+h . By de�nition of the normal cone,

we have hy; x0 � (2 b+ h)i � 0 for every b 2 B , hence y 2 N
B
(x) . On the other hand,

we have jhx; n
j
ij = 1=2 jhx0 � h; n

j
ij < 1 . Since B is Q -invariant, we obtain hy; r

j
i = 0

and the proof is complete. �
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Corollary 4.11 If there exists a bounded Q-invariant set, then there exists a bounded
Q-invariant set with nonempty interior.

Theorem 4.9 implies uniqueness of solutions and a Lipschitz continuous dependence with

respect to the sup-norm provided the set B is bounded. Existence (in W 1;1(0; T ; X))
and uniqueness (in C([0; T ]; X)) thus have been proved under di�erent hypotheses. In

the next Section 5 we show (Theorem 5.5) that the ` -paracontractivity together with

transversality of the system Q ensures the existence of a bounded Q -invariant set. This

will enable us to characterize a class of Skorokhod problems for which existence, unique-

ness and Lipschitz continuous dependence hold.

5 Paracontractivity and invariant sets

Keeping the notation from Corollary 4.5, we assume that Q is an LPC-system, and that

x 2 X and � 2 � , � = (j0; : : : ; jm�1) are given. Let us consider the sequence

x0 = x ; x
k+1 = (I �Q

jk
)x

k
for k = 0; : : : ;m� 1 : (5.1)

We de�ne the mapping !
�
: X ! X by the formula

!
�
(x) := x

m
: (5.2)

By de�nition of ` -paracontractivity, we have

jx
k+1 � x

k
j � kx

k
k � kx

k+1k for every k ; (5.3)

hence

jx� !
�
(x)j � kxk � k!

�
(x)k : (5.4)

We now introduce some further notation. For J 0 � J we put

�
J
0 :=

(
� 2 � ; � = (j0; : : : ; jm�1) ;

m�1[
k=0

fj
k
g = J 0

)
: (5.5)

We start with two auxiliary results.

Lemma 5.1 Let Q be an LPC-system and let J 0 � J , � 2 �
J
0 be given. Then !

�
(x) = x

if and only if x 2 N?
J
0 .

Proof. We have indeed !
�
(x) = x for x 2 N?

J
0 . Conversely, let !

�
(x) = x for some

x 2 X and � 2 �
J
0 , � = (j0; : : : ; jm�1) . From (5.3) we infer that x = x1 = : : : = x

m�1

and Q
j
x = 0 for all j 2 J 0 , hence x 2 N?

J
0 . �

Lemma 5.2 Let Q be an LPC-system. Then we have R?
J
0 \NJ

0 = f0g for every J 0 � J .
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Proof. For arbitrary z 2 R?
J
0 \ NJ

0 , � 2 �
J
0 we de�ne recursively the sequence

z0 := z ; z
n
= !

�
(z

n�1) ; n 2 N :

By (5.4) we have jz
n
� z

n+1j � kz
n
k � kz

n+1k , hence fzng is a convergent sequence,

z
n
! z� . On the other hand, for every j 2 J 0 and x 2 X we have hQ

j
x; zi = 0 , hence

hz
n
; zi = jzj2 for every n 2 N . Passing to the limit as n!1 we obtain

z� = !
�
(z�) ; hz�; zi = jzj2 ;

hence, by Lemma 5.1, z� 2 N?
J
0 and z = 0 . �

As an immediate consequence of Lemma 5.2, we have

Corollary 5.3 Let Q be an LPC-system. Then the following conditions are equivalent.

(i) The transversality condition (4.6) holds;

(ii) The condition (4.7) holds;

(iii) R?
J
0 �N

J
0 = R

J
0 �N?

J
0 = X for every J 0 � J .

The next statement is the key point of this section and illustrates the meaning of paracon-

tractivity. We see that for every J 0 � J and � 2 �
J
0 , the mapping !

�
leaves invariant

both complementary subspaces R
J
0 and N?

J
0 , reduces to the identity on N?

J
0 and to a

contraction on R
J
0 with respect to the norm k � k .

Proposition 5.4 Let Q be an LPC-system and let the transversality condition (4.6) hold.
Then for every J 0 � J there exists Æ

J
0 2 [0; 1[ such that

8x 2 R
J
0 8� 2 �

J
0 : !

�
(x) 2 R

J
0 ; k!

�
(x)k � Æ

J
0 kxk :

Proof. Let J 0 � J be given. The fact that !
�
(x) 2 R

J
0 for x 2 R

J
0 and � 2 �

J
0 is

obvious. Put

Æ
J
0 := sup fk!

�
(x)k ; � 2 �

J
0 ; x 2 R

J
0 ; kxk = 1g :

By (5.4) we have Æ
J
0 � 1 . Assume that Æ

J
0 = 1 . Then there exists a sequence fx

n
; n 2 Ng

in R
J
0 , kx

n
k = 1 , and a sequence f�

n
; n 2 Ng in �

J
0 such that

k!
�n
(x

n
)k � 1 �

1

n
8n 2 N : (5.6)

We may assume that x
n
! x , kxk = 1 .

Let us �x an arbitrary j 2 J 0 . For each n 2 N , the sequence �
n
= (j(n)0 ; : : : ; j

(n)
mn�1)

contains j , say, j = j
(n)

kn
for some k

n
� m

n
�1 . Put �0

n
:= (j

(n)
0 ; : : : ; j

(n)

kn�1
) , z

n
:= !

�
0

n
(x

n
) .

Then, by (5.3), we have

k!
�n
(x

n
)k � k(I �Q

j
) z

n
k ; (5.7)

kz
n
k � kx

n
k = 1 (5.8)
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for every n 2 N , hence

kz
n
k � jQ

j
z
n
j � k(I �Q

j
) z

n
k � 1�

1

n
8n 2 N : (5.9)

We therefore have lim
n!1 kznk = 1 , lim

n!1 jQj
z
n
j = 0 , and (5.3) entails that

jx
n
� z

n
j � kx

n
k � kz

n
k 8n 2 N : (5.10)

We conclude that lim
n!1 z

n
= x and Q

j
x = 0 for all j 2 J 0 , which contradicts the

transversality condition (4.6). �

The main result of this section can be stated as follows.

Theorem 5.5 Let Q be an LPC-system and let the transversality condition (4.6) hold.
Then the minimal Q-invariant set B! from Corollary 4.5 is contained in the ball centered

at 0 of radius K with respect to the norm k � k , where

K �
C

Æ

��
1

1 � Æ

�
p

� 1
�

(5.11)

with C := maxfkr
j
k=hn

j
; r

j
i ; j 2 Jg and any Æ 2 ]0; 1[ , Æ � maxfÆ

J
0 ; J 0 � Jg .

We postpone the proof of Theorem 5.5 and prove �rst an auxiliary statement.

Proposition 5.6 Let the assumptions of Theorem 5.5 hold and let J 0 � J , � 2 �
J
0 be

given, card J 0 = q 2 J , � = (j0; : : : ; jm�1) . Let n̂jk = �n
jk

be arbitrarily chosen for each
k = 0; : : : ;m� 1 . Let us de�ne the sequence

8<
:
z
k

:= (I �Q
jm�1

) : : : (I �Q
jk
)Q

jk�1
n̂
jk�1

; k = 1; : : : ;m� 1 ;

z
m

:= Q
jm�1

n̂
jm�1

:
(5.12)

Then we have 





mX
k=1

z
k






 �
C

Æ

��
1

1� Æ

�
q

� 1
�
: (5.13)

The proof of Proposition 5.6 is based on the following induction step.

Lemma 5.7 Let the assertion of Proposition 5.6 hold for some q < p , and let J 0 � J ,

� 2 �
J
0 be given, card J 0 = q+1 , � = (j0; : : : ; jm�1) such that �0 = (j1; : : : ; jm�1) 62 �

J
0 .

Let z
k
be de�ned by (5.12). Then







mX
k=1

z
k






 � C

�
1 +

1

Æ

��
1

1 � Æ

�
q

� 1
��

: (5.14)

Proof of Lemma 5.7. By induction hypothesis, we have







mX
k=2

z
k






 �
C

Æ

��
1

1 � Æ

�
q

� 1
�
; (5.15)
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while

kz1k � kQ
j0
n̂
j0
k � C ; (5.16)

and formula (5.14) follows easily. �

Proof of Proposition 5.6. For q = 1 we have z
k
= 0 for k < m , hence






mX
k=1

z
k






 = kz
m
k � C ; (5.17)

and (5.13) holds. Assume now that the assertion holds for some q � 1 , q < p and �x

some J 0 � J , card J 0 = q + 1 , and � 2 �
J
0 , � = (j0; : : : ; jm�1) . We de�ne the numbers

d(0); d(1); : : : ; d(`) recurrently according to the following recipe:

d(0) := m;

d(1) := maxfk < m ; (j
k
; : : : ; j

m�1) 2 �
J
0g ;

:
:
:

d(n + 1) := maxfk < d(n) ; (j
k
; : : : ; j

d(n)�1) 2 �
J
0g

until (j0; : : : ; jd(`)�1) 62 �
J
0 .

For n = 0; : : : ; ` , k = 1; : : : ; d(n)� 1 put8<
:
�n
k

:= (I �Q
jd(n)�1

) : : : (I �Q
jk
)Q

jk�1
n̂
jk�1

;

�n
d(n) := Q

jd(n)�1
n̂
jd(n)�1

:
(5.18)

For d(n+ 1) + 1 � k � d(n) we then have

z
k

= (I �Q
jm�1

) : : : (I �Q
jd(n)

) �n
k
: (5.19)

The inequality 






d(n)X

k=d(n+1)+1

�n
k







 � C

�
1 +

1

Æ

��
1

1� Æ

�
q

� 1
��

; (5.20)

where we put d(`+ 1) := 0 , is valid for n = 0; : : : ; `� 1 according to Lemma 5.7 and for

n = ` according to the induction hypothesis. Proposition 5.4 now yields for n = 0; : : : ; `
that 







d(n)X
k=d(n+1)+1

z
k







 =







(I �Q
jm�1

) : : : (I �Q
jd(n)

)
d(n)X

k=d(n+1)+1

�n
k







 (5.21)

� C Æn
�
1 +

1

Æ

��
1

1� Æ

�
q

� 1
��

:

Summing up the above inequalities over n = 0; : : : ; ` we obtain





mX
k=1

z
k






 �
C

1� Æ

�
1 +

1

Æ

��
1

1 � Æ

�
q

� 1
��

(5.22)

=
C

Æ

 �
1

1� Æ

�
q+1

� 1

!
;
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and the induction step is complete. Proposition 5.6 is proved. �

We are now ready to conclude this section by proving Theorem 5.5.

Proof of Theorem 5.5. Let � 2 � , � = (j0; : : : ; jm�1) be arbitrary, and let s
�
be the

corresponding 1 -trajectory de�ned by (4.4). We then have

8>><
>>:
x
k

=
k�1X
i=1

(I �Q
jk�1

) : : : (I �Q
ji
)Q

ji�1
n̂
ji�1

; k = 2; : : : ;m� 1 ;

x1 = Q
j0
n̂
j0

(5.23)

for some n̂
ji
= �n

ji
, i = 0; : : : ;m� 1 . Using Proposition 5.6 we obtain that

sup fkx!
�
k ; � 2 �g �

C

Æ

��
1

1� Æ

�
p

� 1
�
; (5.24)

hence the inequality (5.11) holds. �

Theorem 5.8 Let the associated projection system Q be LPC and transversal. Then the
Skorokhod map S is well de�ned and Lipschitz both as a map from Z �W 1;1(0; T ; X) to

W 1;1(0; T ; X) and from Z �C([0; T ]; X) to C([0; T ]; X) .

Proof. Theorem 3.1 guarantees that the Skorokhod problem admits a solution for every

u 2 W 1;1(0; T ; X) and every initial condition. By Theorem 5.5, the set B! is bounded.

There exists therefore M > 0 such that B! is contained in a ball centered at 0 with radius

M . Using the fact that the space W 1;1(0; T ; X) is dense in C([0; T ]; X) , we obtain the

existence and Lipschitz continuity in C([0; T ]; X) immediately from Theorem 4.9, from

the upper semicontinuity property (1.6) and from the inequality m
B
!(x) � jxj=M for

every x 2 X . The Lipschitz continuity in Z �W 1;1(0; T ; X) ! W 1;1(0; T ; X) follows

immediately from Remark 3.2. �

6 A bounded variation result

Similarly as in the normal re�ection case, one might expect that, if the set B in Theo-

rem 4.9 is bounded and Z has nonempty interior, the extension of the Skorokhod map

onto C([0; T ]; X) has a regularizing e�ect, namely that for inputs u 2 C([0; T ]; X) , the
outputs � belong to C([0; T ]; X) \BV (0; T ; X) .

Assume that there exists z0 2 Z and % > 0 such that the whole ball B
%
(z0) is contained

in Z . We prove the following result (which subsequently immediately implies the desired

BV - estimate).

Proposition 6.1 Let the associated projection system Q be LPC and transversal. Let
u 2 C([0; T ]; X) be given and let �; x 2 C([0; T ]; X) be the corresponding solution to

the Skorokhod problem for a given initial condition x0 2 Z . Let Æ > 0 be such that the

implication

jt2 � t1j < Æ ) ju(t2)� u(t1)j < %=2
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holds for every t1; t2 2 [0; T ] . Then for every 0 � s < t � T such that jt � sj < Æ we
have

Var
[s;t]

� � kx(�)� z0k[0;t] ;

where k � k[0;t] denotes the sup-norm with respect to the norm k � k over the interval [0; t] .

Proof. We approximate the function u uniformly by functions from W 1;1(0; T ; X) and for
each of these approximating functions we apply the discretization procedure from Section

3. By diagonalization we obtain, according to Theorem 5.8 and to the construction in the

proof of Theorem 3.1, discrete sequences fu
i
g , fx

i
g , f�

i
g satisfying (3.1) such that the

piecewise linear interpolates fu(n)g , fx(n)g , f�(n)g given by (3.6) converge uniformly to

u , x , � , respectively.

Let " > 0 be arbitrarily given. We �nd n0 su�ciently large such that for n > n0 we have

ju(n) � uj[0;T ] < %=4 , kx(n) � xk[0;T ] < " , and there exist t
(n)
j�1 � s < t � t

(n)

k
such that

t
(n)

k
� t

(n)
j�1 < Æ .

For i = j; : : : ; k we have by hypothesis

ju
i
� u

j�1j � 2 ju(n) � uj[0;T ] + %=2 � % ;

hence z
i
:= z0 + u

i
� u

j�1 2 Z for every i = j; : : : ; k . Inequality (3.3) for z = z
i
yields

j�
i
� �

i�1j � kx
i�1 � u

i�1 + u
j�1 � z0k � kxi � u

i
+ u

j�1 � z0k 8 i = j; : : : ; k :

Summing up the above inequalities we obtain

Var
[s;t]

�(n) �
kX
i=j

j�
i
� �

i�1j � kx
j
� z0k � "+ kx(�)� z0k[0;t] :

Passing to the limit as n!1 and using the fact that " has been chosen arbitrarily, we

complete the proof. �

7 An upper bound for the invariant sets

According to Lemma 2.2, the LPC property is robust with respect to small changes of

vectors r
i
if the vectors n

i
do not change. This allows us to extend the Lipschitz continuity

results from the normal re�ection case to the case of Skorokhod problems with re�ection

vectors r
i
that are close to the normals n

i
under the transversality constraint. This

argument, however, does not provide an e�cient estimate of the corresponding Lipschitz

constant. In this section, we show an algorithm which gives at least an upper bound.

Put N := dimN
J
. For k = 1; : : : ; N we denote

L
k

:= fJ 0 � J ; card J 0 = k ; fn
i
g
i2J 0 linearly independentg ; (7.1)

"
k

:= min

8<
:
������
X
i2J 0

�
i
n
i

������ ;
X
i2J 0

�2
i
= 1 ; J 0 2 L

k

9=
; : (7.2)

Note that we have 0 < "
N
� "

N�1 � : : : � "1 � 1 .

We make the following assumption.
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Hypothesis 7.1 For every j 2 J we have

jn
j
� r

j
j � "

N
=(2

p
N)

and (4.7) holds.

The above hypothesis implies in particular that for every j we have jn
j
� r

j
j2 � 1=4 ,

hence hn
j
; r

j
i � 7=8 > 0 .

Notation 7.2 For an arbitrary subspace X 0 � X we denote by P
X
0 the orthogonal

projection onto X 0 . In particular, P
X

= I is the identity operator.

We further denote by D
k
, 0 � k � N , the system of all k -dimensional subspaces of R

J

generated by the vectors r1; : : : ; rp , that is, D0 = ff0gg , D
N
= fR

J
g and

D
k

:= fX 0 � R
J
; X 0 = spanfr

i1
; : : : ; r

im
g ; i

j
2 J

for j = 1; : : : ;m ; dimX 0 = kg ; k = 1; : : : ; N � 1 :

We need in the sequel the following elementary properties of projections.

Lemma 7.3 Let X 0 � X 00 � X be subspaces of X . Then

(i) P
X
00P

X
0 = P

X
0P

X
00 = P

X
0 ;

(ii) jhz; vij � jP
X
0zj � jzj 8 z 2 X ; 8 v 2 X 0 ; jvj � 1 :

According to Hypothesis 7.1, every system fr
i
; i 2 J 0g for J 0 2 L

k
is linearly independent

and we may put

Æ
k
:= min

8<
:
������
X
i2J 0

�
i
r
i

������ ;
X
i2J 0

�2
i
= 1 ; J 0 2 L

k

9=
; ; (7.3)

and we again have 0 < Æ
N
� Æ

N�1 � : : : � Æ1 � 1 . Moreover, from Hypothesis 7.1 it

follows that
1

2
"
k
� Æ

k
�

3

2
"
k

8 k = 1; : : : ; N : (7.4)

Indeed, we have for J 0 2 L
k

X
i2J 0

j�
i
j jr

i
� n

i
j �

"
N

2
p
N

X
i2J 0

j�
i
j �

"
N

2

s
k

N

and inequalities (7.4) follow.

We �rst prove an auxiliary estimate.

Lemma 7.4 Let k 2 f0; 1; : : : ; N � 1g , X 0 2 D
k
, v 2 X 0 , r

j
62 X 0 be given such that

jvj = 1 . Put

�0 := 0 ; �
k
:= 1�

1

2

�
1 +

1

k

�
Æ2
k+1 for k = 1; : : : ; N � 1 : (7.5)

Then we have

jhr
j
; vij � �

k
: (7.6)
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Proof. The case k = 0 is trivial. For k � 1 we �nd J 0 2 L
k
and real numbers

f�
i
; i 2 J 0g such that span fr

i
; i 2 J 0g = X 0 and v =

P
i2J 0 �i ri . We have indeed

J 00 := J 0 [ fjg 2 L
k+1 (note that Hypothesis 7.1 has been used here), and

8><
>:

1 + jvj2 � 2hr
j
; vi = jr

j
� vj2 � Æ2

k+1 (1 +
P

i2J 0 �
2
i
) �

�
1 + 1

k

�
Æ2
k+1 ;

1 + jvj2 + 2hr
j
; vi = jr

j
+ vj2 � Æ2

k+1 (1 +
P

i2J 0 �
2
i
) �

�
1 + 1

k

�
Æ2
k+1 ;

(7.7)

and the assertion follows. �

Let �0; : : : ; �N�1 be de�ned as in Lemma 7.4. For arbitrary s � 0 and k = 0; : : : ; N we

de�ne the sequence M
k
(s) by the recurrent formula

M0(s) := 0 ; M2
k
(s) := M2

k�1(s) +
1

1� �2
k�1

�
1 + s+ �

k�1Mk�1(s)
�2
: (7.8)

Note that for all s > 0 and k = 1; : : : ; N we have

 
M

k
(s)

s

!2

=

 
M

k�1(s)

s

!2

+
1

1� �2
k�1

 
1

s
+ 1 + �

k�1

M
k�1(s)

s

!2

; (7.9)

hence each of the functions s 7!M
k
(s)=s , k = 1; : : : ; N is decreasing in ]0;1[ , and

lim
s!1

M
k
(s)

s
= M

k
(0) 8k = 1; : : : ; N : (7.10)

For every s � 0 de�ne a functional V
s
: X ! R

+ by the formula

V
s
(z) := max

n
M2

k
(s) + j(P

RJ
� P

X
0)zj2 ; X 0 2 D

k
; k = 0; : : : ; N � 1

o
: (7.11)

Obviously, V
s
is convex and the set

B
s

:= fz 2 R
J
; V

s
(z) � M2

N
(s)g (7.12)

is convex and closed for every s � 0 .

Our main goal is to prove the following result.

Theorem 7.5 Let Hypothesis 7.1 hold. Assume moreover that

� := max
j2J

jn
j
� r

j
j <

1

M
N
(0)

: (7.13)

Let s � 0 satisfy the equation
s

M
N
(s)

= � : (7.14)

Then the set B := B
s
de�ned by (7.12) satis�es Condition (B).

Indeed, from (7.10) it follows that condition (7.14) is meaningful and the value of s is

uniquely determined. Moreover, for every z 2 X we have

V
s
(z) � M2

0 (s) +
���(P

RJ
� Pf0g)z

���2 = jP
RJ
zj2 ; (7.15)
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hence, by (7.12),

jzj � M
N
(s) 8 z 2 B : (7.16)

In particular, the set B in Theorem 7.5 is contained in the ball centered at the origin

with radius M
N
(s) .

The proof of Theorem 7.5 is based on the following Lemma.

Lemma 7.6 Let the hypotheses of Theorem 7.5 hold. Assume that for some z 2 B ,

X 0 2 D
k
, k 2 f0; : : : ; N � 1g we have M2

k
(s) + j(I � P

X
0)zj2 = M2

N
(s) , and that there

exists i 2 J such that jhz; n
i
ij < 1 . Then r

i
2 X 0 .

Proof of Lemma 7.6. Assume that r
i
62 X 0 , and put X 00 := X 0 � spanfr

i
g . We �nd

v 2 X 0 , jvj = 1 and real numbers a; b such that

P
X
00z = a r

i
+ b v : (7.17)

Put � := hr
i
; vi 2 [��

k
; �

k
] . We have

jP
X
00zj2 = a2 + b2 + 2ab� ; (7.18)

jP
X
0zj � jhP

X
00z; vij = ja� + bj ; (7.19)

and, by hypothesis,

ja+ b�j = jhP
X
00z; r

i
ij = jhz; r

i
ij � jhz; n

i
ij+ jzj jn

i
� r

i
j < 1 + � jzj : (7.20)

According to (7.14), we conclude from (7.20) and (7.16) that

ja+ b�j < 1 + s : (7.21)

The assumption z 2 B moreover yields

M2
k+1(s) + j(I � P

X
00)zj2 � M2

k
(s) + j(I � P

X
0)zj2 (7.22)

(note that for k = N � 1 we have (I � P
X
00) z = 0), and we obtain

M2
k+1(s) � M2

k
(s) � jP

X
00zj2 � jP

X
0zj2 ; (7.23)

where

M2
k+1(s) � M2

k
(s) =

1

1� �2
k

�
1 + s+ �

k
M

k
(s)
�2
; (7.24)

and

jP
X
00zj2 = (a� + b)2 + a2(1� �2) (7.25)

= (a� + b)2 +
1

1� �2

�
a+ b� � � (a� + b)

�2

< jP
X
0zj2 +

1

1� �2

�
1 + s+ j�j jP

X
0zj
�2

� jP
X
0zj2 +

1

1� �2
k

�
1 + s+ �

k
jP

X
0zj
�2
:
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Combining (7.23) � (7.25) we obtain that

M
k
(s) < jP

X
0zj ; (7.26)

hence

M2
k
(s) + j(I � P

X
0)zj2 < jzj2 � M2

N
(s) ; (7.27)

which is a contradiction. Lemma 7.6 is proved. �

We now pass to the proof of Theorem 7.5.

Proof of Theorem 7.5. Assume that z 2 B is given and that jhz; n
i
ij < 1 for some i 2 J .

For �0 > 0 and � 2 [��0; �0] put z� := z + � r
i
. Then z

�
2 R

J
and for every X 0 2 D

k
,

k = 1; : : : ; N � 1 , we either have M2
k
(s) + j(I � P

X
0)zj2 = M2

N
(s) , hence, by Lemma 7.6,

M2
k
(s)+ j(I � P

X
0)z

�
j2 = M2

N
(s) , or M2

k
(s)+ j(I � P

X
0)zj2 < M2

N
(s) , hence �0 > 0 can

be chosen in such a way that z
�
2 B for every � 2 [��0; �0] . For every y 2 N

B
(z) and

every � 2 [��0; �0] we then have hy; z � z
�
i � 0 , hence hy; r

i
i = 0 and Theorem 7.5 is

proved. �
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