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Abstract

The bifurcation of the birth of a closed invariant curve in the two-parameter

unfolding of a two-dimensional di�eomorphism with a homoclinic tangency

of invariant manifolds of a hyperbolic �xed point of neutral type (i.e. such

that the Jacobian at the �xed point equals to 1) is studied. The existence

of periodic orbits with multipliers e
�i 

(0 <  < �) is proved and the �rst

Lyapunov value is computed. It is shown that, generically, the �rst Lyapunov

value is non-zero and its sign coincides with the sign of some separatrix value

(i.e. a function of coe�cients of the return map near the global piece of the

homoclinic orbit).

Introduction.

Homoclinic orbits are one of the most interesting object of study in the theory of

dynamical systems, because their presence leads to nontrivial dynamics. Recall that

the Poincaré homoclinic orbit is an orbit which is biasymptotic to a saddle periodic

orbit, i.e. it is an orbit lying in the intersection of the stable and unstable invariant

manifolds of the saddle. If this intersection is transverse, the homoclinic orbit is

called rough; otherwise, it is called an orbit of homoclinic tangency.

It is well-known that the set of all orbits lying entirely in a small neighborhood of

a rough homoclinic orbit is hyperbolic and has a nontrivial structure which admits

a complete description in terms of symbolic dynamics [1]. The situation is dras-

tically di�erent in the case of homoclinic tangency. Here, the complete study is

proven [2, 3, 4] to be impossible in any �nite-parameter unfolding. However, some

main bifurcations of periodic orbits have been studied su�ciently well [5, 6, 7, 4].

It occurred that the basic feature of the bifurcation of homoclinic tangency is the

appearance of a large number (even in�nitely many) coexisting periodic orbits of

di�erent topological types. This is closely connected with the so-called Newhouse

phenomenon: systems with homoclinic tangencies are dense in open regions (the

Newhouse regions) in the space of smooth dynamical systems [8, 9, 10, 11, 12].

We note that it is the Newhouse regions to which, presumably, the most of known

systems with chaotic behavior belong, e.g. systems with quasistochastic and wild-

hyperbolic strange attractors [13, 14, 15, 4, 16, 17]. Therefore, the question on

which type periodic orbits (and more complicated invariant sets) can appear via

homoclinic bifurcations is especially important. For general (codimension one) ho-

moclinic bifurcations this question was solved (including the multidimensional case)

in [7, 4, 18] where necessary and su�cient conditions for the birth of periodic orbits
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of a given topological type were obtained and the appearance of invariant tori and

even in�nitely many coexisting strange attractors was established in some situations.

In the two-dimensional case, it is known since [5] that, generically, the bifurcation

of homoclinic tangency produces, along with saddle periodic orbits, either stable or

completely unstable ones. The type of stability depends on wether the saddle value �

(i.e. the absolute value of the product of the multipliers of the saddle �xed point) is

greater or less than 1. As a result, in the Newhouse regions close to two-dimensional

di�eomorphisms with a homoclinic tangency systems with in�nitely many coexisting

saddle and stable (if � < 1) or saddle and completely unstable (� > 1) periodic

orbits are dense [19]. It is also known [2, 3, 20] that di�eomorphisms with in�nitely

many arbitrarily degenerate periodic orbits are dense in these regions. Note that

these degenerate periodic orbits have exactly one multiplier equal to +1 or �1 with

an arbitrarily large number of Lyapunov values (may be all of them) vanishing1.

When � 6= 1 there cannot be other degeneracies [7, 4, 18] and, in particular, no

close di�eomorphism can have closed invariant curves or periodic orbits with the

multipliers e�i'.

In the present paper we show that if � = 1 at the moment of homoclinic tangency,

then, along with such usual for systems with homoclinic tangencies bifurcations as a

saddle-node and a period-doubling, the Andronov-Hopf bifurcations connected with

the birth of closed invariant curves from periodic orbits with the multipliers e�i 

take place when the homoclinic tangency unfolds.

Note that if both multipliers of the saddle are positive, two di�erent cases are possible

depending on the sign of the separatrix value R de�ned below (formula (5)). Namely,

if R < 0, we show that asymptotically stable invariant curves are born near the

homoclinic tangency, whereas at R > 0 we show the birth of unstable invariant

curves. In the case of negative multipliers both stable and unstable invariant curves

are born at R 6= 0.

Let us proceed to detailed formulation of the results (theorems A and B below). Let

f0 be a two-dimensional orientation-preserving Cr-di�eomorphism (r � 4) satisfying

the following conditions.

A) f0 has a saddle �xed point O with the multipliers �;  such that j�j < 1; jj > 1 ;

B) the saddle value � = � equals to 1 (i.e. O is a point of neutral type);

C) the stable and unstable manifolds W s
0 and W u

0 of the saddle O have a quadratic

homoclinic tangency at the points of some homoclinic orbit �0 (Fig.1a).

1For instance, di�eomorphisms with periodic orbits for which the �rst return map is locally

identical on the center manifold are dense in the Newhouse regions [3, 20].
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The di�eomorphisms Cr-close to f0 and satisfying the same conditions A)-C) com-

pose a bifurcational surface H 2 Di�r of codimension two. Let f�, � � (�1; �2), be

a two-parameter family passing through f0 at �1 = �2 = 0. Assume that

D) the family f� is C
r-smooth with respect to all variables and � and it is transverse

to the bifurcational surface H at � = 0.

It is not hard to understand which should be the nature of the governing parameters

�. One of them, say �1, must control the position of the invariant manifolds of O

near the points of homoclinic tangency (i.e. we choose �1 as the splitting parameter

near some homoclinic point). The second parameter �2 must control the saddle

value at O, i.e.

�(�) = 1 + �2:

Let us take a su�ciently small neighborhood U = U(O [ �0) of the closure of the

homoclinic orbit �0. It is the union of a small disc U0 around O and a �nite number

of small neighborhoods of those points of �0 which do not lie in U0 (Fig.1b). We

will call as a p-round periodic orbit a periodic orbit of f� which lies entirely in U

and visits every component of UnU0 exactly p times on the period (i.e. every such

orbit, before it returns to its initial point, runs U exactly p times).

In the present paper we study the bifurcations of single-round (p = 1) periodic

orbits in U (for families f� satisfying A)�D)). Such orbits correspond to �xed points

of the �rst return map T1T
k
0 (k = �k; �k+ 1; : : : for some su�ciently large �k) near the

homoclinic orbit. Here T0 is the so-called local map which is the di�eomorphism f�

restricted to the neighborhood U0 of its �xed point O�. The global map T1 is some

power of f� acting from a small neighborhood of some point of �0 in W
u
loc \ U0 into

a small neighborhood of some point of �0 in W
s
loc \ U0.

The map T0 is C
r-smooth and it has a saddle �xed point O� at all small � (at � = 0
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it is the original point O). It is shown in [21, 22] that in some Cr�1-coordinates

(x; y) in U0 the map T0 has the following form for all small �:

�x = �(�)x+ h(x; y; �)x2y ; �y = (�)y + g(x; y; �)xy2 ; (1)

where h(x; y; �)xy 2 Cr�1
; g(x; y; �)xy 2 Cr�1. Hereafter, we assume that the map

T0 is brought to this form.

In these coordinates, the �xed pointO� is in the origin andW
s
loc(�)\U0 andW

u
loc(�)\

U0 are segments of straight lines y = 0 and x = 0, respectively. By assumption C), at

� = 0, the homoclinic orbit �0 have points both inW
u
loc\U0 and inW s

loc\U0. Chose

a pair of such points M+(x+; 0) 2 W
s
loc \ U0 and M�(0; y�) 2 W

u
loc \ U0; without

loss of generality we may assume x+ > 0, y� > 0. Let �0 and �1 be su�ciently

small neighborhoods ofM+ and M�, respectively. We denote the coordinates in �0

and �1 as, respectively, (x0; y0) and (x1; y1).

By construction, there exists such positive n0 that M
+ = f

n0
0 (M�). We de�ne the

global map T1 as follows:

T1 � f
n0
� : �1 ! �0: (2)

It is de�ned at all small � and it is, at least, Cr�1-smooth (in the coordinates for

which T0 has the form (1)).

Let us write T1 in the following form:

�x0 � x
+ = F (x1; y1 � y

�
; �) ; �y0 = G(x1; y1 � y

�
; �) ; (3)

where F (0; 0; 0) = 0, G(0; 0; 0) = 0. According to the condition C), the image of the

segment fx1 = 0g by T1 must have a quadratic tangency with fy0 = 0g at � = 0.

Hence,
@G(0; 0; 0)

@y1
= 0 ;

@
2
G(0; 0; 0)

@y21

= 2d 6= 0

Thus, one can write

F � ax1 + b(y1 � y
�) + e20x

2
1 + e11x1(y1 � y

�) + e02(y1 � y
�)2+

O[(jx1j+ jy1 � y
�
j)3] ;

G � �1 + cx1 + d(y1 � y
�)2 + f20x

2
1 + f11x1(y1 � y

�)+

+f03(y1 � y
�)3 + f30x

3
1 + f21x

2
1(y1 � y

�) + f12x1(y1 � y
�)2+

+o[(jx1j+ jy1 � y
�
j)3] ;

(4)

where the coe�cients a; b; :::; f03 (as well as x+ and y
�) are some functions of �.

Since T1 preserves orientation,

bc < 0:

Note that we choose the parameter �1 such that it enters (in the main order) the

right-hand side of the equation for �y0 additively. It means that �1 is the splitting

parameter for the invariant manifolds of O near the homoclinic point M+.

Let us introduce the separatrix value

R � 2a�
b

d
f11 � 2

c

d
e02 (5)
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where the coe�cients of the global map T1 (see (4)) are taken at � = 0. Note that

it is important in this de�nition that the coordinates are chosen such that the local

map T0 has the form (1)).

Theorem A. If R 6= 0, in the parameter plane (�1; �2) there exists a sequence of

open regions �k, accumulating at � = 0 as k ! +1, such that the di�eomorphism

f� has a closed invariant curve at all � 2 �k. At � > 0;  > 0, the invariant curves

are asymptotically stable at R < 0 and unstable at R > 0. If � < 0;  < 0, then the

invariant curves at � 2 �k are stable or unstable depending on parity of k.

We prove this theorem by means of the study of bifurcations of single-round periodic

orbits or, what is the same, of bifurcations of �xed points of the maps Tk = T1T
k
0

at all su�ciently large k: k = �k; �k + 1; : : :. By de�nition, a single-round periodic

orbit has exactly one point in each of the neighborhoods �0 and �1 . Let M0 2 �0

and M1 2 �1 be such points. Then, M0 = T1(M1) and there exists such an integer

k that M1 = T
k
0 (M0). Thus, the point M0 2 �0 is a �xed point of Tk � T1T

k
0 (the

period of the corresponding orbit of f� equals k+n0, see (2)).

Theorem B. 1. In the plane of parameters (�1; �2), for every su�ciently large

k there exist bifurcational curves L
+
k , L

�
k and L

'
k , corresponding to single-round

periodic orbits (�xed points of Tk) with multipliers +1, �1 and e
�i 

(0 <  < �),

respectively. The curves L
+
k and L

�
k accumulate to the line �1 = 0 as k ! +1. The

curves L
'
k connect points B

++
k and B

��
k on, respectively, L

+
k and L

�
k and accumulate

at the point �1 = �2 = 0.

2. At � from the region Dk between the curves L
+
k and L

�
k the di�eomorphism f�

has two single-round periodic orbits one of which, Qk, is saddle and the other, Pk

is asymptotically stable at � 2 D
s
k and completely unstable at � 2 D

u
k where D

s
k

(D
u
k) is the region in Dk to the left (resp., to the right) of L

'
k . The transitions into

the region Dk across the curves L
+
k (without the point B

++
k = L

+
k \ L

'
k ) and L

�
k

(without the point B
��
k = L

�
k \ L

'
k ) correspond, respectively, to generic saddle-node

and period-doubling bifurcations of Pk (on L
+
k the orbits Pk and Qk merge together).

At � = B
++
k the orbit Pk has two multipliers equal to 1, and both the multipliers are

equal to �1 at � = B
��
k .

3. If R�
k
< 0, the boundary L

'
k of stability of Pk is "safe": the �rst Lyapunov

value is negative, so at the transition across L
'
k (except for two points for which

 = �=2 ; 2�=3) towards the increase of �2 the orbit Pk becomes unstable and a

stable invariant curve is born from it.

If R�
k
> 0, the boundary L

'
k is "dangerous": the �rst Lyapunov value is positive,

so at the transition across L
'
k (except for two points for which  = �=2 ; 2�=3)

towards the decrease of �2 an unstable invariant curve is born from Pk.

See �gure 2 as an illustration to theorem B.
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It is obvious that theorem A follows from theorem B. Here, the region �k is some

part of Dk adjoining to L
e
k from the left if R�k > 0 and from the right if R�k < 0,

corresponding to the existence of the invariant curve.

The content of the paper is as follows. In section 2 we study properties of iterations

of the local map T0. In section 3 the �rst return maps Tk are constructed. Here

we prove that the map Tk for su�ciently large k may be brought to a certain form

close to the quadratic Henon family. Unlike some standard results [23, 2, 4], we take

into account also small terms of the order O(�k). In section 4 bifurcations of �xed

points of Tk are studied, and the �rst Lyapunov value is calculated for the �xed

point undergoing the Andronov-Hopf bifurcation. In section 5 theorems A and B

are �nally proved.

1 Properties of the local map T0(�) .

The map T0 is de�ned as the restriction of di�eomorphism f� of the neighbourhood

U0 , i.e., T0(�) � f�jU0
. The map T0 has, at all su�ciently small �, the �xed saddle

point O�. It is well-known that in some Cr-coordinates (x; y) on U0 the map T0 can

be written as

�x = �(�)x+ h(x; y; �) ; �y = (�)y + g(x; y; �) ; (6)
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where h(0; y; �) = g(x; 0; �) � 0. Here, the axes x and y are eigendirections of the

Jacobi matrix of T0 at O�, and the local stable and unstable manifolds of O� are

straightened.

Note that the form (6) of T0 is not very convenient from the technical point of view

since the right-hand sides of (6) contain too many non-resonant terms. For example,

if to write functions h and g in the following extended form

h(x; y; �) � '1(x; �)x+ '2(y; �)x+ ~h(x; y; �)x2y ;

g(x; y; �) � �1(y; �)y + �2(x; �)y + ~g(x; y; �)xy2 ;

where '�(0; �) � 0 ; ��(0; �) � 0 ; � = 1; 2; then one can see that functions ' and

� contain only nonresonant monomials2. It was shown in [21, 22] (see also [24] for

the general multidimensional case) that such "always nonresonant monomials" can

all be nulli�ed by a su�ciently smooth change of variables. Namely, the following

result is valid [21, 22] :

There exist such Æ1 > 0 and Æ2 > 0 that, at k(x; y)k � Æ1 and k�k � Æ2, the map

T0(�) is brought to the form

�x = �(�)x+ h1(x; y; �)x
2
y ; �y = (�)y + g1(x; y; �)xy

2
; (7)

where h1(x; y; �)xy 2 C
r�1

; g1(x; y; �)xy 2 C
r�1

, by means of a C
r�1

-smooth trans-

formation of coordinates (this transformation is C
r�2

with respect to parameters).

By (7), the point O� is in the origin (at all su�ciently small �) and W s
loc(�) \ U0

and W
u
loc(�) \ U0 have, respectively, equations y = 0 and x = 0. At � = 0 let

us choose in U0 a pair of points of the orbit �0 : M+(x+; 0) and M
�(0; y�), and

take their su�ciently small rectangular neighbourhoods �0 and �1 . We denote the

coordinates (x; y) in �0 and �1 as (x0; y0) and (x1; y1), respectively. Without loss

of generality, we assume that x+ > 0, y� > 0. The neighborhoods �0 and �1 are

de�ned as follows

�0 = f(x0; y0) jjx0 � x
+
j � "0 ; jy0j � "0g ;

�1 = f(x1; y1)

����jx1j � "1 ; jy1 � y
�
j � "1g ;

(8)

where "0 and "1 are su�ciently small (so T0(�0) \ �0 = ; ; T
�1
0 (�1) \ �1 = ;, in

particular).

To study the maps Tk � T1T
k
0 it is necessary, �rst of all, to have appropriate formulas

and estimates for the maps T k0 : �0 ! �1 for all su�ciently large k. To this aim,

the form (7) of T0(�) is very convenient because the iterations of the map T0 in form

(7) are asymptotically close (as k ! 1) to those in the linear case3. Namely, the

following lemma holds.

2it is a consequence of the inequalities j�j < 1 and jj > 1: a monomial xmyn in the �rst

equation of (6) is resonant if �m�1n = 1, and in the second equation it is resonant if �mn�1 = 1
3Note, that a smooth linearization is impossible here because of the resonance � = 1 at � = 0.
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Lemma 1 For any " > 0 there exists �k > 0 such that for any k � �k and k�k � "

the map T
k
0 : �0 ! �1 can be represented as follows:

x1 = �
k(�)x0(1 + k̂

�k
�̂k(x0; y1; �)) ;

y0 = 
�k(�)y1(1 + k̂

�k
�̂k(x0; y1; �)) ;

(9)

where ̂ = (0)=(1 + ") and functions �̂k �
~�k � x0y1 and �̂k � ~�k � x0y1 and their

derivatives (along with derivatives with respect to �) up to the order (r � 2) are

bounded, uniformly in k. The derivatives of order (r � 1) from the right-hand sides

of (9) tend to zero as k !1.

Proof. The proof of this lemma repeats closely the proof of an analogous statement

(lemma 1.2 in [22]). Therefore, we prove here only the boundedness for the functions

�k and �k themselves; the boundedness of derivatives is veri�ed along the same lines

(for more detail see [22, 24]).

We will use the method of the boundary-value problem [1, 25] in a modi�cation of

[26]. For the sake of simplicity, we write the map T0(�) in the form

�x = �(�)x+ ĥ(x; y; �); �y = (�)y + ĝ(x; y; �) (10)

where �(0)(0) = 1 and , by (7), ĥ(x; y; �) � x
2
y(�1(�)+O(jxj+ jyj)) , ĝ(x; y; �) �

xy
2(�2(�) + O(jxj + jyj)) . Also, in the proof, we will use notations �(�) �

� ; (�) � .

Let us consider the following operator � : [(xj; yj)]
k
j=0 7! [(�xj; �yj)]

k
j=0 where

�xj = �
j
x0 +

j�1P
s=0

�
j�s�1

ĥ(xs; ys; �);

�yj = 
j�k

yk �
k�1P
s=j


j�s�1

ĝ(xs; ys; �);

(11)

j = 0; 1; : : : ; k. The operator � is de�ned on the set

Z(Æ) = fz = [(xj; yj)]
k
j=0; kzk � Æg ;

where the norm k � k is de�ned as the maximum of the absolute values of the com-

ponents xj; yj of the vector z. Note that if z0 = [(x0j ; y
0
j )]

k
j=0 is a �xed point of �,

then

(x00; y
0
0)

T0
�! (x01; y

0
1)

T0
�! : : :

T0
�! (x0k; y

0
k);

i.e. the �xed point of � is the orbit of the map T0.

For su�ciently small Æ = Æ0 and kx0k � Æ0=2; jykj � Æ0=2 the operator � maps the

set Z(Æ0) into itself and is contracting on this set (see the proof in [26]). Thus, map

(11) has a unique �xed point z0 = [(x0j(x0; yk); y
0
j (x0; yk)]

k
j=0 which is the limit of

iterations by � of any initial sequence in Z(Æ0), i.e., the coordinates x
0
j and y

0
j can
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be found by the successive approximations method. As an initial approximation we

take the following (the solution of the linear problem)

x
0(1)
j = �

j
x0 ; y

0(1)
j = 

j�k
yk

As it follows from (11), the second approximation has the form

x
0(2)
j = �

j
x0 +

j�1P
s=0

�
j�s�1

�
2s

s�k

x
2
0yk(�1(�) +O(j�jsjx0j+ jj

s�k
jykj)) =

= �
j
x0 + �

j

�k

j�1P
s=0

�
�1
�
s

s
x
2
0yk(�1(�) +O(j�jsjx0j+ jj

s�k
jykj)) =

= �
j
x0 + �

j

�k
�
�1

j�1P
s=0

(1 + �2)
s
x
2
0yk(�1(�) +O(j�jsjx0j+ jj

s�k
jykj));

y
0(2)
j = 

j�k
yk +

k�1P
s=j


j�s�1

�
s

2(s�k)

x0y
2
k(�2(�) +O(j�jsjx0j+ jj

s�k
jykj)) =

= 
j�k

yk + 
j�2k

k�1P
s=j


�1
�
s

s
x0y

2
k(�2(�) +O(j�jsjx0j+ jj

s�k
jykj)) =

= 
j�k

yk + 
j�2k�1

k�1P
s=j

(1 + �2)
s
x0y

2
k(�2(�) +O(j�jsjx0j+ jj

s�k
jykj))

(12)

(in the last step, in both formulas here, we use the relation � = 1 + �2). Let

j�2j � ". Then

j�1P
s=0

(1 + �2)
s
�

j�1P
s=0

(1 + ")j�1 = j(1 + ")j�1
;

and, analogously,
k�1P
s=j

(1 + �2)
s
� (k � j)(1 + ")k�1

:

It follows from (12) that

jx
0(2)
j � �(�)jx0j � L1j�

j

�k(1 + ")j ;

jy
0(2)
j � (�)j�kykj � L2(k � j)j�2k(1 + ")k ;

(13)

where L1 and L2 are some positive constants independent of j; k and �. When we

plug (13) in (11) as the initial guess for the next approximation, it is not hard to see

that inequalities (13) will be valid for the next approximation too, with the same

constants L1 and L2, etc.. Thus, we obtain the following formula for the coordinates

x
0
j and y

0
j of the �xed point of �

x
0
j = �(�)jx0(1 + j(�)�k(1 + ")j)Fjk(x0; yk; �) ;

y
0
j = (�)j�kyk(1 + (k � j)(�)�k(1 + ")k)Gjk(x0; yk; �) ;

(14)

where functions Fjk and Gjk are uniformly bounded in j and k. Assuming j = k for

x
0
j and j = 0 for y0j in (14) and taking into account (�) = (0) + O�, we obtain

formula (9). 2

9



Hereafter, we will write (9) as

x1 = �
k(�)x0(1 + ~�k�k(x0; y1; �)) ;

y0 = 
�k(�)y1(1 + ~�k�k(x0; y1; �)) ;

(15)

where ~ depends on " only and ~ = maxfj�(�)j�1
; j(�)jg for kj�kj � ".

2 Construction of the �rst return maps Tk

The domain of the �rst return map is the set of those points in �0 whose iterations

by T0 reach �1. One can easily see that it is a union of a countable number of

horizontal strips �0k = �0 \ T
�k
0 �1 , k = �k; �k + 1; : : : which accumulate on the

segment �0 \W
s
loc as k ! 1 (Figure 3a). In turn, the images of the strips �0k by

T
k
0 are vertical strips �1k = �1 \ T

k
0 �0 lying in �1. These strips accumulate on the

segment �1 \W
u
loc as k!1 (Figure 3b).

Indeed, if we de�ne �0 and �1 by formula (8) for some su�ciently small "0 and "1,

then it follows immediately from (15) that

�
0
k = f(x0; y0)j jx0 � x

+
j � "0 ;


�k(y� � "1 +O(�k)) � y0 � 

�k(y� + "1 +O(�k))g ;

�
1
k = f(x1; y1)j �

k(x+ � "0 +O(�k)) � x1 � �
k(x+ + "0 +O(�k)) ;

jy1 � y
�
j � "1g

(16)

The map Tk � T1T
k
0 is de�ned on the strip �0k. Using (4) and (15) this map can be

10



represented in the following form

�x0 = x
+ + a�

k
x0 + b(y1 � y

�) + e02(y1 � y
�)2 + e11�

k
x0(y1 � y

�)+

+E1(x0; y1 � y
�
; �) ;


�k�y1(1 + ~�k�k(�x0; �y1; �)) = �1+

+[c�kx0 + f11�
k
x0(y1 � y

�)](1 + ~�k�k(x0; y1; �)) + d(y1 � y
�)2+

+f12�
k
x0(y1 � y

�) + f20�
2k
x
2
0 + f21�

2k
x
2
0(y1 � y

�) + f03(y1 � y
�)3+

+E2(x0; y1 � y
�
; �);

(17)

where

E1 = O(j�jk~�k) +O((y � y
�)3) + j�j

k
O((y � y

�)2) + j�j
2k
O(y � y

�);

E2 = O(�2k~�k)) + o((y � y
�)3) + j�j

k
o((y � y

�)2) + j�j
2k
o(y � y

�):
(18)

Hereafter we will adhere the following notation: the symbols O('(k)) and o('(k))

for some function '(k) denote functions (of all variables) which are bounded by a

constant (resp., an in�nitely small factor) times k'(k)k as k ! +1, and the same

asymptotic behavior is shown by all their derivatives up to the order (r � 2); the

symbol o(xmyn) denotes a function vanishing, if n 6= 0, at y = 0 along with the �rst

n derivatives with respect to y and, if m 6= 0, vanishing at x = 0 along with the �rst

m derivatives with respect to x; the symbol O(xmyn) denotes a function of the form

const �x
m
y
n+ o(xmyn); below, we will also write O(jf j+ jgj) instead of O(f)+O(g)

and o(jf j+ jgj) instead of o(f) + o(g), by esthetic reasons.

To study map (17), we use the rescaling technique. Thus, the following result takes

place.

Rescaling lemma. By means of an a�ne transformation of coordinates and pa-

rameters the map Tk can be brought to the form
4

�X = Y �
1
bd
(e02 + : : :)�kY 2 +O(~�2k) ;

�Y =M1 �M2X � Y
2 +

�
2a� b

d
f11 + : : :

�
�
k
XY+

+ 1
d
2 (f03 + : : :)�kY 3 + o(�k)o(Y 3) +O(~�2k)

(19)

where

M1 = �d
2k[�1 � 

�k(y� + : : :) + c�
k(x+ + : : :)];

M2 = �bc(1 + �2)
k(1 + : : :);

(20)

the dots stand for the terms, independent of (X; Y ), which tend to zero as k ! +1.

The new coordinates (X; Y ), as well as the new parameter M1, run all �nite val-

ues at su�ciently large k and M2 runs all �nite positive values
5
. Namely, there

exist positive constants C1; :::; C5 such that X; Y;M1;M2 take values in the following

domain

jXj � C1"0jj
k
; jY j � C2"1jj

k
;

jM1j � C3"
2k
; C4(1� ")k �M2 � C5(1 + ")k ;

(21)

4Note that in comparison with the known results on the rescaling near homoclinic [23, 2, 7, 4] or

heteroclinic [27, 28] tangencies we compute also terms which are asymptotically small as k ! +1.
5M2 > 0 since f� preserves orientation.
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where "0 and "1 are the diameters of �0 and �1, respectively, and " is the size of

the interval of variation of �.

Proof. First, we shift the origin to the point (x+; y�), i.e. we introduce the coordi-

nates x = x0 � x
+, y = y1 � y

�. The map (17) takes the form

�x = a�
k
x+ a�

k
x
+ + (b+ e11�

k
x
+)y + e11�

k
xy + e02y

2+

+O(j�jk~�k + (jyj+ j�j
k)3) ;

(�y + y
�)(1 + ~�k�k(�x+ x

+
; �y + y

�
; �)) =

= �1
k + �

k

k(x+ x

+)[c+ f11y][(1 + ~�k�k(x+ x
+
; y + y

�
; �)]+

+dky2(1 +
f12
d
�
k(x + x

+))�2kkx2(f20 + f21y) + f03
k
y
3+

+O(�k~�k(1 + �2)
k) + 

k
o((jy1 � y

�
j+ j�j

k)3)

(22)

By an additional shift of coordinates

x! xnew + a�
k
x
+
�

bf11x
+

2d
�
k + o(�k) ; y ! ynew �

bf11x
+

2d
�
k + o(�k)

we can bring the map to such form where the right-hand side of the �rst equation

does not contain the constant term and the right-hand side of the second equation

does not contain the term linear in y. Then, (22) is rewritten as follows

�x = (a+ : : :)�kx + by(1 + �1�
k) + +(e02 + : : :)y2+

+O(j�jkjxj(jyj+ jxj) + jyj
3) ;

�y + ~�kO(j�yj+ j�xj) = 
k[�1 � 

�k(y� + : : :) + c�
k(x+ + : : :)]+

(c+ : : :)�kkx+ (f11 + : : :)�kkxy + d
k
y
2(1 + �2�

k) + f03
k
y
3+

+O(j�jkjxjy2 + �
2k
jj

k
x
2) + 

k
o(y3)

(23)

where �1 = e11x
+
=b� e02f11x

+
=(bd) + : : : ; �2 = f12x

+
=d� 3f11f03x

+
=d+ : : :; the

dots stand for terms asymptotically vanishing as k !1 and independent of (x; y).

Let us make the following rescaling of the variables

x = �

b(1 + �1�
k)

d(1 + �2�
k)

�k
X ; y = �

1

d(1 + �1�
k)

�k
Y:

Then, map (23) is brought to the form

�X = Y + (a + : : :)�kX �
1
bd
(e02 + : : :)�kY 2 +O(j�jk~�k);

�Y + �
1
k
�Y + �

2
k
�X = M̂1 + bc(�)kX(1 + : : :)� Y

2
�
b

d
(f11 + : : :)�kXY+

+(
f03

d
2 + : : :)�kY 3 + o(�k)o(Y 3) +O(~�2k)

(24)

where �
1;2
k are some coe�cients of order ~�k, and

M̂1 = �d
2k[�1 � 

�k(y� + : : :) + c�
k(x+ + : : :)]:

12



Substituting expressions for �X into the left-hand side of the second equation of (24)

we obtain

�X = Y + (a + : : :)�kX �
1
bd
(e02 + : : :)�kY 2 +O(~�2k);

�Y = ��
2
kY + M̂1=(1 + �

1
k) + bc(�)kX(1 + : : :)� Y

2(1 + �
1
k)

�1
�

�
b

d
(f11 + : : :)�kXY +

f03+:::

d
2 

�k
Y

3 + o(�k)o(Y 3) +O(~�2k):

(25)

Denote the coe�cient of the linear in X term (taken with the sign "minus") in the

second equation of (25) as M2, i.e.

M2 = �bc(�k)k(1 + : : :):

Make the new change

X = Xnew(1 + �
1
k); Y = Ynew(1 + �

1
k)� (a + : : :)�kX

which brings the map to the form

�X = Y �
1
bd
(e02 + : : :)�kY 2 +O(~�2k);

�Y = ��
3
kY + M̂1=(1 + �

1
k)

2
�M2X � Y

2 + (2a� b

d
f11 + : : :)�kXY+

+
f03+:::

d
2 

�k
Y

3 + o(�k)o(Y 3) +O(~�2k)

(26)

where the coe�cient �3k is of order ~
�k. One more shift of coordinates

X ! Xnew +
1

2
�
3
k; Y ! Ynew +

1

2
�
3
k

eliminates the linear in Y term in the second equation and brings, �nally, the map

to the requried form (19) (with the new constant term M1 satisfying (20)). This

completes the proof of the lemma.

3 Bifurcations of the �xed points of the �rst return

map.

By the rescaling lemma, the map Tk in the rescaled coordinates X; Y is close to the

standard quadratic Henon map

�X = Y ; �Y =M1 �M2 � Y
2 (27)

where the JacobianM2 of (27) may take arbitrary �nite positive values (see inequal-

ities (20)). The bifurcations of the �xed points of the Henon family are well known.

The corresponding bifurcational diagram on the half-plane M2 > 0 is represented

in Figure 4. It contains three bifurcational curves: L
+ : M1 = �

1
4
(1 + M2)

2;

L
� : M1 = 3

4
(1 +M2)

2 and L
' : M̂2 = �1;�1 < M̂1 < 3. At (M1;M2) 2 L

+

13



map (27) possesses a �xed point with a multiplier �1 = +1 ; at M2 6= 1 this point

is a saddle-node either with the stable sector at M2 < 1 or with the unstable sector

at M2 > 1. At (M1;M2) 2 L
� map (27) possesses a �xed point with a multiplier

�1 = �1; this point is stable at M2 < 1 and unstable at M2 > 1. At M2 = 1

the Henon map is area-preserving. It is known that this map has a parabolic

�xed point (�1 = �2 = 1) of unstable type at M1 = �1; a parabolic �xed point

(�1 = �2 = �1) of stable type at M1 = 3 and an elliptic �xed point (�1;2 = e
�i )

at �1 < M1 < 3 (i.e., at (M1;M2) 2 L
'). The elliptic �xed point is generic if

 =2 f�=2; 2�=3; arccos(�1=4)g [29].
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Since the rescaled map Tk given by (19) is Cr�2-close to Henon map, it also has in

the half-plane (de�ned by inequalities (20)) three bifurcational curves L+
(k); L

�
(k) and

L
'
(k) close to the curves L

+
; L

� and L', respectively. Direct calculations give us the

following equations for L+
(k) and L

�
(k) :

L
+
(k) :M1 = �

(1 +M2)
2

4
(1 +O(j�jk + jj

�k));

L
�
(k) :M1 =

3(1 +M2)
2

4 (1 +O(j�jk + jj
�k)):

(28)

The equation of L
'
(k) in a parametric form (where the argument  of the multiplier

is taken as a parameter) can be written as follows

M1 = cos
2
 � 2 cos +O(j�jk + jj

�k) ;

M2 = 1 + cos 
h
2�k(e02 + : : :)� (2a� b

d
f11 + : : :)�k

i (29)

where 0 <  < �.

In order to prove that a closed invariant curve is born while crossing the curve L
'
(k),

it is necessary to calculate the �rst Lyapunov value G1 at the weak focus (the �xed

point of Tk with the multipliers e�i ). We show that the following result takes place

Lemma 2 The following formula is valid for the �rst Lyapunov value G1

G1 =
R

16(1� cos )
� �

k + o(�k) (30)

where R is the separatrix value given by (5).

Proof. The �rst step of the proof is to write the Taylor expansion for the map Tk
given by (19) at the weak focus. Let us �x the values of parameters M1 and M2 so

that (M1;M2) 2 L
'
(k), i.e. Tk has a �xed point Pk with the multipliers e�i , for some

 2 (0; �). We will denote the corresponding values of M1 and M2 as M
 
1 and M

 
2 .

By (20), we have M
 
2 = �bc�

k

k(1 + : : :), so it follows from the second equation of

(29) that


�k = �bc�

k(1 + : : :) (31)

for values of the parameters at the curve L
'
(k). Thus, map (19) near the weak focus

can be written as follows

�X = Y + h02�
k
Y

2 +O(~�2k) ;

�Y =M1 �M2X � Y
2 + s11�

k
XY + s03�

k
Y

3+

+o(�k)o(Y 3) +O(~�2k)

(32)

where

h02 =
c

d
e02 + : : : ; s11 = 2a�

b

d
f11 + : : : ; s03 = �

bc

d2
f03 + : : : ; (33)
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the dots stand for the terms, independent of (X; Y ), which tend to zero as k ! +1.

Let us now �nd coordinates (X 
; Y

 ) of the �xed point of (32) at M1 =M
 
1 ;M2 =

M
 
2 . We use that the trace of the characteristic matrix

0
BB@
@ �X
@X

@ �X
@Y

@ �Y
@X

@ �Y
@Y

1
CCA (34)

of Tk at the �xed point is equal to the sum of the multipliers, i.e. at the weak focus

it equals to 2 cos . We have

�2Y  + s11�
k
X
 + 3s03�

k(Y  )2 + o(�k) = 2 cos ;

or, since X = Y
 + h02�

k(Y  )2 + o(�k),

Y
 (1�

1

2
s11�

k
�

3

2
s03�

k
Y
 ) = � cos + o(�k):

We obtain from this that

Y
 = � cos � (1 + 1

2
s11�

k + 3
2
s03�

k cos ) + o(�k);

X
 = Y

 + h02�
k cos2  + o(�k):

(35)

We shift now the origin to the point (X 
; Y

 ) and consider map (32) at M1 =

M
 
1 ;M2 =M

 
2 . We obtain

�X = Y + h02�
k
Y

2 + o(�k);
�Y = �X + 2Y cos + s11�

k
XY�

�Y
2(1 + 2h02�

k cos + 3s03�
k cos ) + s03�

k
Y

3 + o(�k):

(36)

The following change of variables

X = � �Xnew ; Y = � � Ynew

where � = (1 + 2h02�
k cos + 3s03�

k cos )�1, brings map (36) to the form

�X = Y + h02�
k
Y

2 + o(�k) ;

�Y = �X + 2Y cos + s11�
k
XY�

�Y
2 + s03�

k
Y

3 + o(�k):

(37)

This map has a �xed point with multipliers e�i at the origin. Evidently, the �rst

Lyapunov value of this point will coincide with that for map (36) up to terms of

order o(�k). It is also obvious that if we omit the o(�k) terms in the right-hand side

of (37), the �rst Lyapunov value will get only some o(�k) corrections.

Thus, to prove the lemma it is enough to show that the �rst Lyapunov value of the

�xed point (in the origin) of the map

�X = Y + h02�
k
Y

2
;

�Y = �X + 2Y cos � Y
2 + s11�

k
XY + s03�

k
Y

3
:

(38)
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satis�es formula (30)

The �rst Lyapunov value of the weak focus in the map (38) is a polynomial with

respect to the coe�cients h02�
k, s11�

k, s03�
k. Hence, it has the form

G1 = F0 + �
k
h02 � F1 + �

k
s11 � F2 + �

k
s03 � F3 +O(�2k) (39)

where F0; F1; F2 and F3 are some coe�cients, depending on  . We note that if

h02 = s11 = 0, then map (37) is conservative, i.e. G1 = 0 in this case. It means that

F0 = F3 � 0 in (39). Hence, the �rst Lyapunov value is independent of s03 in the

main order. Therefore, it is su�cient to prove (30) for the �rst Lyapunov value of

the following quadratic map (i.e., at s03 = 0)

�X = Y + h02�
k
Y

2
;

�Y = �X + 2Y cos � Y
2 + s11�

k
XY:

(40)

By means of the linear change

X = �; Y = cos � � � sin � � (41)

map (40) is brought to the form where its linear part is the rotation

�� = cos � � � sin � � + h02�
k[cos2  � �2 � sin 2 � �� + sin2  � �2];

�� = sin � � + cos � � + �
2

"
1 + h02�

k cos 
sin 

cos2  � s11�
k cos 
sin 

#
+

+��
h
�2 cos � (1 + h02�

k cos ) + s11�
k
i

+

+�2 sin � (1 + h02�
k cos ):

(42)

In the complex coordinates z = � + i�; z
� = � � i� map (42) takes the form

�z = e
i 
z + C20z

2 + C11zz
� + C02(z

�)2 (43)

where
C20 = [(A+B

0
� C) + i(A0

�B � C
0)] =4

C11 = [2(A+ C) + i2(A0 + C
0)] =4

C02 = [(A�B
0
� C) + i(A0 +B � C

0)] =4

with A;B;C and A0
; B

0
; C

0 denoting the coe�cients of the quadratic terms �2; ��; �2

in the right-hand sides of the equations for �� and ��, respectively; i.e.

A = h02�
k cos2  ; B = �h02�

k sin 2 ; C = h02�
k sin2  ;

A
0 =

"
1 + h02�

k cos 
sin 

cos2  � s11�
k cos 
sin 

#
;

B
0 =

h
�2 cos � (1 + h02�

k cos ) + s11�
k
i
;

C
0 = sin � (1 + h02�

k cos ):
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Thus, we have

C20 =
1
4

h
�2 cos � h02�

k + s11�
k
i
+

+ i
4

�
cos 2 
sin 

+ �
k cos 
sin 

(h02 � s11)

�

C11 = �
kh02
2 + i

2

�
1

sin 
+ �

k cos 
sin 

(h02 � s11)

�

C02 =
1
4

h
2 cos + h02�

k
�
3 cos2  � sin2  

�
� s11�

k
i
+

+ i
4

�
cos 2 
sin 

+ h02�
k cos 
sin 

�
cos2  � 3 sin2  

�
� s11�

k cos 
sin 

�
:

(44)

Make the following normalizing change of variables in (43)

w = z + A20z
2 + A11zz

� + A02(z
�)2 (45)

in order to nullify all quadratic terms in (43). It is not hard to see that the coe�cients

A20; A11 and A02 should be taken as follows

A20 =
C20

e
i 
� e

2i 
; A11 =

C11

e
i 
� 1

; A02 =
C02

e
i 
� e

�2i 
; (46)

in this case all quadratic terms will be eliminated indeed, provided  6= 2�=3 (in the

latter case, the term (z�)2 is resonant and cannot be killed by smooth coordinate

changes). Thus, map (43) is brought to the form (if  6= 2�=3)

�w = e
i (w +G30w

3 +G21w
2
w
� +G12w(w

�)2 +G03(w
�)3 +O(jwj4) (47)

We note that, among the cubic terms, the term w
2
w
� is always resonant, the terms

w
3 and w(w�)2 are always nonresonant, while the term (w�)3 is resonant only in the

case where  = �=2. Thus, if  6= �=2; 2�=3, the last three terms may be eliminated

by some cubic change of variables. But the coe�cient G21 is not changed and, hence,

the map (47) can be brought to the form

�w = e
i (w +G21w

2
w
�) +O(jwj4) (48)

In the polar coordinates (�; �), where w = �e
i�, the map (48) takes the following

form

�� = �(1 +G1 � �
2) +O(�4) ; �� = � +  +B�

2 +O(�3) (49)

where G1 = Re(G21); B = Im(G21). Thus, Re(G21) is the �rst Lyapunov value.

Now we calculate the coe�cient G21. Using (43),(45) and (46) we obtain for G21

the following expression

G21 = 2A20C11 + A11C
�
11 + A11C20e

�2i + 2A02C
�
02e

�i 
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By virtue of (46)

G21 = C20C11
2ei � 1
(1� e

i e
�2i 

��2
jC02j

2

(1� e
3i �

jC11j
2

(1� e
i (50)

and, hence,

G1 � Re(G21) = Re

(
C20C11

2ei � 1
(1� e

i e
�2i 

)
��jC02j

2
�

1
2
jC11j

2
; (51)

or

G1 = Re(C20C11)
cos 3 � 3 cos 2 + 2 cos 

2(1� cos )
+

+Im(C20C11)
sin 3 � 3 sin 2 + 2 sin 

2(1� cos )
� jC02j

2
�

1
2
jC11j

2
:

(52)

Finally, (52) can be rewritten as

G1 =
1
2
Re(C20C11)(3 + cos � 2 cos2  )+

+1
2
Im(C20C11)

�
2 sin � 2 sin 2 �

1 + cos 
sin 

�
��jC02j

2
�

1
2
jC11j

2
;

(53)

where C20; C11 and C02 are given by (44).

In the case where s11 = 0; h02 = 0 one can check directly that G1 � 0. Indeed, it

follows from (44) that in this case

Re(C20C11) = �
cos 2 

8 sin2  
; Im(C20C11) = �

cos 
4 sin 

;

jC11j
2 = 1

4 sin2  
; jC02j

2 = 1
4 cos

2
 +

cos2 2 

16 sin2  

(54)

Then, we obtain from (53) that

G1 = �
1
16

cos2 2 

sin2  
(3 + 2 cos � 4 cos2  )�

�
1
8
cos 
sin 

�
2 sin � 2 sin 2 �

1 + cos 
sin 

�
�

�
1
4 cos

2
 �

1
16

cos2 2 

sin2  
�

1
8 sin2  

� 0:

We are now in the position to compute the coe�cients F1 and F2 in formula (39)

for G1. To compute F2, we may assume h02 = 0. It follows from (44), that in this

case

C20 =
1
4

h
�2 cos + s11�

k
i
+ i

4

�
cos 2 
sin 

�
cos 
sin 

s11�
k

�

C11 =
i
2

�
1

sin 
�

cos 
sin 

s11�
k

�

C02 =
1
4

h
2 cos � s11�

k
i
++ i

4

�
cos 2 
sin 

�
cos 
sin 

s11�
k

�
:

(55)
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We obtain from here

Re(C20C11) = [Re(C20C11)]fin +
(cos 2 + 1) cos 

8 sin2  
� s11�

k +O(�2k) ;

Im(C20C11) = [Im(C20C11)]fin +
1 + 2 cos2  

8 sin 
� s11�

k +O(�2k) ;

jC11j
2 = [jC11j

2]fin �
cos 

2 sin2  
� s11�

k +O(�2k) ;

jC02j
2 = [jC02j

2]fin �
1
4

�
cos +

cos 2 cos 

2 sin2  

�
� s11�

k +O(�2k)

where [�]fin denotes the �nite part of the corresponding coe�cients, i.e., its value

at �k = 0 according to (54). Substituting these expressions in formula (53) and

collecting the terms of order �k, we �nd

16F2 =
(cos 2 + 1) cos 

sin2  
(3 + 2 cos � 4 cos2  )+

+
1 + 2 cos2  

sin 

�
2 sin � 2 sin 2 �

1 + cos 
sin 

�
+

+4 cos +
2 cos 2 � cos 

sin2  
+

4 cos 

sin2  
:

It is easy to check that

F2 =
1

16(1� cos )

Analogously we compute that

F1 = �

2

16(1� cos )

Thus, the following formula

G1 =
s11 � 2h02

16(1� cos )
�
k +O(�2k)

de�nes the �rst Lyapunov value. Since R = s11 � 2h02 (see (5) and (33)), this

completes the proof.

Now we are able to describe main bifurcations of �xed points of the rescaled �rst

return map Tk. Such a map has three bifurcational curves L+
(k) , L

�
(k) and L

'
(k) which

divide the half-plane M2 > 0 of parameters M1 and M2 into four parts D0, D
s
1,

D
u
1 and D2 (see �gure 5). The map Tk has no �xed points for (M1;M2) 2 D0 .

Transitions from D0 into regions D
s
1 and D

u
1 across the curve L

+
(k) corresponds usual

saddle-node bifurcations which are the same as in the Henon map (27)6. Thus, map

Tk has exactly two �xed points Qk and Pk for values of the parameters from the

region from above the curve L+
(k). The point Qk is a saddle and Pk is a stable point

when (M1;M2) 2 D
s
1 and a completely unstable point when (M1;M2) 2 D

u
1 ; it is a

6Except for the point B++
(k)

where the map Tk has the �xed point with two unit multipliers. It

is not hard to check that the "parabolic" �xed point of Tk is not degenerate in the sense that at

R 6= 0 this point is the so-called Bogdanov-Takens �xed point [31]
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weak focus when (M1;M2) 2 L
'
(k). Thus, the curve L

'
(k) is the boundary of stability

of Pk. In the case where R 6= 0 we can de�ne the type of this boundary, i.e., whether

the boundary is "safe" or "dangerous" [32]. Namely, it depends on the sign of the

value R�k < 0 as follows.

If R�k < 0, the boundary L
'
(k) is "safe": the �rst Lyapunov value G1 is negative, so

at the transition across L
'
(k) (except for two points on L

'
(k) where  = �=2; 2�=3, see

formula (29)) in the direction from D
s
1 to D

u
1 (towards the increase of M2) the orbit

Pk becomes unstable and a stable invariant curve is born from it. Moreover, Pk is the

stable weak focus at (M1;M2) 2 L
'
(k)nf�=2; 2�=3g. This boundary is "safe" because,

just after the loss of stability, iterations of any initial point close to Pk approach the
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stable invariant curve and, hence, do not escape a small neighbourhood of the �xed

point. The corresponding bifurcation picture is shown in �gure 5.

If R�k > 0, the boundary L
'
(k) is "dangerous": the �rst Lyapunov valueG1 is positive

and ,here, at the transition across L
'
(k) (except for two points where  = �=2; 2�=3) in

the direction from D
u
1 to D

s
1 an unstable invariant curve is born from Pk. Moreover,

Pk is the unstable weak focus at (M1;M2) 2 L
'
(k)nf�=2; 2�=3g. This boundary is

"dangerous" because the loss of stability is happened when the unstable invariant

curve "merges" into the stable point Pk and, as a result, iterations of any initial

point close to Pk (except for Pk itself) escape any su�ciently small neighbourhood

of the �xed point.

To conclude this section, we note that the importance of the separatrix value R goes

beyond the fact that its sign de�nes the sign of the �rst Lyapunov value at the weak

focus.

Indeed, for example, the Jacobian J of the map

�X = Y + h02�
k
Y

2
;

�Y =M1 �M2X � Y
2 + s11�

k
XY + s03�

k
Y

3 (56)

calculated in the weak focus (or, which is the same, the Jacobian of map (38) in the

origin) is given by

J = 1�R�
k
Y +O(�2k) (57)

That is, J di�ers from 1 on a value which is proportional to R�k in the main order.

The second observation is that the shape of the bifurcational curve L
'
(k) of map (56)

depends essentially on the coe�cient R�k. Indeed, the equation of this curve has

the form (put �k = �bc�
k(1 + : : :) in (29)):

M1 = cos2  � 2 cos +O(�k) ;

M2 = 1 + cos �R�k +O(�2k)
(58)

where  is the parameter, 0 <  < �. We see that the curve L
'
(k) at R 6= 0 is not

C
1-close to the curve L' (M2 = 1) for the Henon map, see �gure.

An interesting curve (nonbifurcational) Ls(k) starts with the point B++
(k) , which cor-

responds to the existence of a saddle �xed point of (56) of the neutral type, (i.e.,

the �xed point with multipliers �s > 0 and �u > 0 such that �s�u = 1). This curve

is drawn in �gure as the dotted line, its equation is

M1 = �
2
� 2�+O(�k) ;

M2 = 1 + � �R�
k +O(�2k)

(59)

. where � = (�s + �u)=2 is the parameter, and � > 1.7

7Values � < �1 corresponds to that part of the curve Ls
(k)

where the corresponding neutral

type saddle �xed point of (56) has both negative multipliers; values j�j < 1 corresponds to the

curve L
'

(k)
- in this case � = cos .
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We note that the curve Ls(k) may play an important role for the answer to the

following principal question: how does the found invariant curve disappear? It is

naturally to assume that this curve exists only for values of parameters M1 and M2

from some part of the region bounded by the curves L(k)' , L
s
(k) and L

�
(k) (the dashed

region in �gure). In any case,it follows from [5, 7] that no invariant closed curve

exists for values of the parameters which are su�ciently far from this region. If

to assume that our map can be embedded into the �ow (this models the situation

reasonably near the point B++
(k) [31, 24]), then the invariant curve should disappear

merging into a homoclinic loop of the saddle. In this case, the homoclinic loop should

have the same type of stability as the invariant curve [33, 34]. Thus this phenomenon

can occur only for values of the parameters in the dashed region, because the saddle

value �s�u of the saddle �xed point is less or greater than one for values of the

parameters from the left of Ls(k) or from the right of Ls(k), respectively.

In fact, the general mechanism of disappearance of the invariant curve is connected

with its break-down [30]: the invariant curve becomes resonant one (in this case it

contains alternating saddle and stable (or completely unstable) periodic orbits of

the same period) and it is destroyed, typically, by one of the ways given in [30]. In

this connection, the questions related to the existence of the resonant zones seem to

be very interesting.

Another important question which we will consider in a forthcoming paper addreses

the bifurcational phenomena accompanying the transition across the strong reso-

nances  = �=2 and  = 2�=3 (and  = 0; � also).

All these questions may be studied both in the map (56) itself and in the map

�x = y + A"y
2
;

�y =M1 �M2x� y
2 +B"xy + C"y

3 (60)

where the parameters M1;M2; A; B; C are arbitrary and the parameter " is su�-

ciently small. Map (60) can be considered as a practically interesting small pertur-

bation of the standard Henon map.

4 The proof of theorems A and B.

We note, �rst of all, that the rescaling lemma allows to compute immediately the

equations of bifurcational curves L+
k ; L

�
k and L

'
k , k = �k; �k+1; : : : ; for the �rst return

maps Tk on the plane of the initial parameters (�1; �2). Namely, using (31) and the

relation � = 1 + �2, formulas (28) and (29) are transformed as follows
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L
+
k : �1 =  � k(y� � (1 + �2)

k
cx

+) + rk + +�2k (1 + bc(1 + �2)
2

4d
(1 + : : :)

L
�
k : �1 =  � k(y� � (1 + �2)

k
cx

+) + rk � �
�2k 3(1 + bc(1 + �2)

2

4d
(1 + : : :)

L
'
k : �1 =  � k(y� + x+

b
+ : : :) + rk � �

�2k cos
2
'� 2 cos'
4d

(1 + : : :)

�2 = �1 + (�bc)
�1=k

�
1�

R cos'
bc

�
�
k

k
(1 + : : :)

�

where rk = o(�k) and the dots denote terms tending to zero as k !1.

Evidently, curves L+
k and L�

k accumulate on the line �1 = 0 corresponding to the

di�eomorphisms possessing a (single-round) orbit of homoclinic tangency. Curves L
'
k

connect points B++
k and B��

k on the curves L+
k and L�

k , respectively, and accumulate

at the point �1 = �2 = 0. The bifurcational part of theorem B (items 2 and 3) follows

directly from our analysis of bifurcations of the �rst return maps (section 4 and 5).

Finally, theorem A follows immediately from theorem B: the region �k is some part

of Dk adjoining to L
'
k (on the segment 0 <  < �=2, for example) from the left if

R�
k
> 0 and from the right if R�k < 0.
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