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Abstract

We propose an improved stochastic algorithm for temperature-dependent

homogeneous gas phase reactions. By combining forward and reverse reaction

rates, a signi�cant gain in computational e�ciency is achieved. Two modi�ca-

tions of modelling the temperature dependence (with and without conservation

of enthalpy) are introduced and studied quantitatively. The algorithm is tested

for the combustion of n-heptane, which is a reference fuel component for in-

ternal combustion engines. The convergence of the algorithm is studied by a

series of numerical experiments and the computational cost of the stochastic

algorithm is compared with the DAE code DASSL. If less accuracy is needed

the stochastic algorithm is faster on short simulation time intervals. The new

stochastic algorithm is signi�cantly faster than the original direct simulation

algorithm in all cases considered.
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1. Introduction

In this paper we present an improved stochastic algorithm that computes the time

evolution of a homogeneous reacting gas mixture in a closed adiabatic system with

constant pressure. The reaction mechanism consists of several elementary chem-

ical reactions,

(��;1; : : : ; ��;S)  ! (��
�;1; : : : ; �

�

�;S
) ; � = 1; : : : ; I ; (1.1)

where S is the number of chemical species and I is the number of possible reactions.

The stoichiometric coe�cients ��;i and �
�

�;i
of the species i in reaction � are non-

negative integer values.

The time evolution of the state variables is given by the following initial value

problem (cf. [14, formula (2); Ch. II, formulas (49), (52), (58)], [12]),

dYi

dt
=
Wi

%
_!i ; Yi(0) = Y0;i ; i = 1; : : : ; S ; (1.2)

with the chemical production rate of the i-th species

_!i =
IX

�=1

(��
�;i
� ��;i) q� (1.3)

and the rate of progress of the �-th reaction

q� = [M�]

 
K�;f

SY
k=1

[Xk]
��;k �K�;r

SY
k=1

[Xk]
�
�

�;k

!
: (1.4)

Here Y ; [X] and W denote the vectors of the mass fractions, the molar concentra-

tions, and the molecular weights of the species, respectively. The mass density is

denoted by % : The numbers K�;f and K�;r are the forward and reverse rate con-

stants for the �-th reaction, which are assumed to have the following Arrhenius

temperature dependence,

K�;f = A�;f T
��;f exp(�E�;f=RT ) ;

(1.5)

K�;r = A�;r T
��;r exp(�E�;r=RT ) ;

where A�;f ; A�;r are pre-exponential factors, ��;f ; ��;r are temperature exponents

and E�;f ; E�;r are activation energies. The factor [M�] =
P

S

k=1B�;k [Xk] takes into
account that, in some reactions, a �third body� is required for the reaction to proceed.

If no third body is needed, then [M�] = 1 : The time evolution of the temperature

is given by the equation (cf. [14, formula (15)]

dT

dt
= �

1

cp %

SX
k=1

hkWk _!k = �
1

cp

SX
k=1

hk
dYk

dt
; (1.6)
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where h is the vector of speci�c enthalpies, and cp is the mean speci�c heat capacity.

One of the �rst publications on calculating homogeneous reaction systems using

stochastic ideas is Bunker et al. [4]. In that paper an algorithm was proposed to sim-

ulate the combustion of propane in an adiabatic plug �ow reactor. Independently,

Gillespie suggested an algorithm that mimics the dynamics of any well stirred gas

mixture of reactive chemical species in thermal equilibrium [9]. In that algorithm it

is assumed that temperature is constant. This approach can be viewed as a meso-

scopic description of chemical reactions that is between the macroscopic description,

given by particle densities averaged over a control volume, and the microscopic de-

scription given by the momentum and the position of all molecules contained in the

control volume. By studying a steady state solution of the Lotka reaction system,

Gillespie demonstrated that the stochastic algorithm is able to account for micro-

scopic �uctuations [10]. Very recently this direct simulation algorithm has been used

to study chaos in chemical systems [16].

Stochastic algorithms based on [4] and [9] have been applied by several authors

for various purposes. For example in [2] the formation of soot using a coagulation

reaction model has been investigated. Also reaction di�usion problems have been

studied using the algorithm in conjunction with components that account for the

di�usion process. The Fisher equation was studied in [3], and the Maginu equation

was investigated in [6]. Another area where the algorithm has been extensively

applied is the modelling of surface processes [8]. For example the temperature-

programmed desorption was studied in [15] and [11]. In [13] a detailed numerical

study of the convergence properties of the Gillespie algorithm was performed.

The purpose of this paper is to introduce an improved stochastic algorithm, to

present two alternative methods to include temperature dependence, and to study

its convergence and performance properties. In contrast to the direct simulation

approach by Bunker et al. and Gillespie, the new algorithm is based on combining

forward and reverse reactions in order to achieve better e�ciency, when partial

equilibria are reached. The algorithm contains various mechanisms of approximating

the temperature step during an elementary reaction - a simple �rst order approach,

and an iteration scheme preserving enthalpy. The algorithm is applied to a real

combustion problem using a practically relevant fuel.

The paper is organized as follows. Section 2 is concerned with the description

of the stochastic model. The basic Markov jump process is de�ned, and relevant

combustion quantities are represented in terms of related random variables. The

deterministic equations (1.2)-(1.4) and (1.6) are derived from the stochastic system.

Finally, the corresponding stochastic algorithm is described. Results of numerical

experiments are presented in Section 3. The algorithm is applied to simulate

the ignition of heptane. Heptane chemistry is modelled with a detailed chemical

mechanism that includes 107 species and 808 reversible reactions. It is compared

with an accurate deterministic method based on the solver DASSL for systems of

sti� ordinary di�erential equations. The �rst part of test calculations is concerned

with the convergence behaviour of the algorithm. In the second part the issue of

performance is studied, and limitations of the present algorithm are illustrated.
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Finally some conclusions are drawn in Section 4.

2. The stochastic model

2.1. Markov process

We consider a Markov process of the form

Z
(n)(t) =

�
N

(n)
1 (t); : : : ; N (n)

S
(t); T (n)(t)

�
; t � 0 ; (2.1)

where N
(n)
j

(t) 2 f0; 1; : : :g denotes the number of particles of type j = 1; : : : ; S and

T
(n)(t) > 0 denotes temperature at time t : The number of particles at time zero,

n =
SX
j=1

N
(n)
j

(0) ;

plays the role of an approximation parameter. Concerning the initial state, it is

assumed that

lim
n!1

N
(n)
i

(0)

n
= �

0
i
; i = 1; : : : ; S ; (2.2)

and

T
(n)(0) = T

0
; (2.3)

for some constants �0
i
; T

0
:

The stochastic system (2.1) is a pure jump process de�ned by the generator

(A�)(x) =
IX

�=1

Q�(x)
h
�(J�(x))� �(x)

i
; x 2 f0; 1; : : :gS �R+ ; (2.4)

where � is some test function. The distribution of the random jumps is determined

by rate functions of the form

Q�(x) = jQ�;f(x)�Q�;r(x)j ; (2.5)

where (cf. (1.1), (1.5))

Q�;f(x) = (x)1�
P

S

j=1
��;j

M�(x)K�;f (xS+1)
SY
j=1

��;j�1Y
i=0

(xj � i) ; (2.6)

Q�;r(x) = (x)1�
P

S

j=1
�
�

�;j M�(x)K�;r(xS+1)
SY
j=1

�
�

�;j
�1Y

i=0

(xj � i) ; (2.7)
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and

M�(x) =

8>><
>>:
P

S

k=1B�;k

xk

(x)
; if third body reaction with some species ;

p

RxS+1
; if third body reaction with all species ;

1 ; otherwise :

(2.8)

The function  is a normalization parameter. The choice

(x) =
RxS+1

p

SX
j=1

xj (2.9)

corresponds to normalization with volume (cf. (2.17) below). The process performs

jumps according to the jump transformation

J�(x) =

(
J�;f(x) ; if Q�;f(x) � Q�;r(x) ;
J�;r(x) ; otherwise ;

(2.10)

where

J�;f(x) = (x1 � ��;1 + �
�

�;1; : : : ; xS � ��;S + �
�

�;S
; xS+1 +�T�;f(x)) (2.11)

and

J�;r(x) = (x1 � �
�

�;1 + ��;1; : : : ; xS � �
�

�;S
+ ��;S; xS+1 +�T�;r(x)) : (2.12)

Remark 2.1 The second products in (2.6), (2.7) assure that a reaction may only

occur if there are enough of the corresponding particles in the system (cf. (2.11),

(2.12)). Note that these products are zero if xj < ��;j (or xj < �
�

�;j
; respectively)

for some j = 1; : : : ; S : They are de�ned to be 1 in the case ��;j = 0 or ��
�;j

= 0 ;
respectively.

By de�nition, mass conservation means (cf. (2.10)-(2.12))

SX
j=1

Wj J�(x)j =
SX
j=1

Wj xj : (2.13)

This property holds provided that

SX
i=1

Wi ��;i =
SX
i=1

Wi �
�

�;i
; � = 1; : : : ; I : (2.14)

The basic theoretical result concerning the Markov process (2.1) is that, under

assumptions (2.2), (2.3),

lim
n!1

N
(n)
i

(t)

n
= �i(t) ; i = 1; : : : ; S ; t > 0 ; (2.15)

and

lim
n!1

T
(n)(t) = T (t) ; t > 0 : (2.16)

Later we will formally derive equations, which are satis�ed by the limit of the

stochastic process. For a rigorous approach we refer to [7, p.454]). These limit-

ing equations can be numerically solve by the corresponding stochastic algorithm.
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2.2. Physical quantities

Here we discuss how relevant physical quantities are represented in terms of the

random variables N
(n)

k
(t) ; k = 1; : : : ; S (cf. (2.1)), which correspond to the mole

numbers nk(t) in the chemical literature.

The total mole number is

n(t) =
SX

k=1

nk(t) �
SX

k=1

N
(n)

k
(t) ;

the total mass is

m(t) =
SX

k=1

Wk nk(t) �
SX

k=1

Wk N
(n)

k
(t) ;

and the volume is

V (t) =
RT (t)

p
n(t) �

RT
(n)(t)

p

SX
k=1

N
(n)

k
(t) ; (2.17)

where W denotes the vector of the molecular weights of the species, T and p denote

temperature and pressure, respectively, and R is a gas constant. Note that

1

n

SX
k=1

N
(n)

k
(t)

n

�!

SX
k=1

�k(t) =: ~n(t) ;

1

n

SX
k=1

Wk N
(n)

k
(t)

n

�!

SX
k=1

Wk �k(t) =: ~m(t) ; (2.18)

and

1

n

RT
(n)(t)

p

X
j

N
(n)
j

(t)
n

�!
RT (t)

p

SX
k=1

�k(t) =: ~V (t) =
RT (t)

p
~n(t) : (2.19)

Remark 2.2 The quantities n(t);m(t); V (t) are of physical size (large values). They
are obtained from the quantities ~n(t); ~m(t); ~V (t) (which are calculated using the limit

functions �i(t)) by multiplication with the appropriate initial total mole number n(0) :
The quantities below are normalized (moderate values), and we will use the same

symbols for both the physical quantities and the quantities obtained using �i(t) :

The mole fraction of a species k is given by

Xk(t) =
nk(t)

n(t)
�

N
(n)

k
(t)P

j
N

(n)
j

(t)

n

�!
�k(t)P
j �j(t)

=
�k(t)

~n(t)
;

its mass fraction is

Yk(t) =
Wk nk(t)

m(t)
�

Wk N
(n)

k
(t)P

j Wj N
(n)
j

(t)

n

�!
Wk �k(t)P
j
Wj �j(t)

=
Wk �k(t)

~m(t)
; (2.20)
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and the molar concentration is

[Xk](t) =
nk(t)

V (t)
�

N
(n)

k
(t)

RT
(n)(t)

p

P
j
N

(n)
j

(t)

n

�!
�k(t)

RT (t)

p

P
j �j(t)

=
�k(t)
~V (t)

: (2.21)

The mass density is

%(t) =
m(t)

V (t)
=

P
S

k=1Wk nk(t)

V (t)
=

SX
k=1

Wk [Xk](t)

�

P
k
WkN

(n)

k
(t)

RT

p

P
j
N

(n)
j

(t)

n

�!
~m(t)
~V (t)

: (2.22)

One obtains from the de�nitions that

SX
k=1

Yk(t) = 1 ;
SX

k=1

Xk(t) = 1 ;
SX

k=1

[Xk](t) =
n(t)

V (t)
=

p

R T (t)
;

and

Yk(t)

Wk

=
Xk(t)

W (t)
=

[Xk](t)

%(t)
;

where

W (t) =
SX

k=1

WkXk(t) =
1

n(t)

SX
k=1

Wk nk(t) =
m(t)

n(t)

is the mean molecular weight.

Further quantities, relevant for temperature considerations, are enthalpyHk(T ) ;

speci�c enthalpy hk(T ) =
Hk(T )

Wk

; heat capacity Ck(T ) and speci�c heat ca-

pacity (at constant pressure) ck(T ) =
Ck(T )

Wk

: Note that [14, Ch. II, formula (15)]

ck(T ) =
d

dT
hk(T ) : (2.23)

The mean enthalpy is

H(t) =
SX

k=1

Hk(T (t))Xk(t)

�

P
S

k=1Hk(T (n)(t))N
(n)

k
(t)P

j
N

(n)
j

(t)

n

�!

P
kHk(T (t))�k(t)P

j �j(t)
;

the mean speci�c enthalpy is

h(t) =
SX

k=1

hk(T (t))Yk(t) (2.24)

�

P
S

k=1Hk(T (n)(t))N
(n)

k
(t)P

j Wj N
(n)
j

(t)

n

�!

P
kHk(T (t))�k(t)P

j
Wj �j(t)

;

7



the mean heat capacity is

C(t) =
SX

k=1

Ck(T (t))Xk(t) (2.25)

�

P
S

k=1Ck(T (n)(t))N (n)

k
(t)P

j N
(n)
j

(t)

n

�!

P
k
Ck(T (t))�k(t)P

j
�j(t)

;

and the mean speci�c heat capacity is

c(t) =
SX

k=1

ck(T (t))Yk(t) (2.26)

�

P
S

k=1 Ck(T (n)(t))N (n)

k
(t)P

jWj N
(n)
j

(t)

n

�!

P
k
Ck(T (t))�k(t)P
j
Wj �j(t)

:

Note that from de�nitions (2.24) and (2.23) one obtains

d

dt
h(t) =

X
k

hk(T (t))
d

dt
Yk(t) +

X
k

Yk(t) ck(T (t))
d

dt
T (t) :

Thus, the enthalpy conservation property [14, formula (13)]

d

dt
h(t) = 0 (2.27)

and the de�nition (2.26) imply (cf. (1.6))

d

dt
T (t) = �

1

c(t)

SX
k=1

hk(T (t))
d

dt
Yk(t) : (2.28)

2.3. Temperature step

Here we construct concrete expressions for the terms �T�;f(x) ;�T�;r(x) in (2.11),

(2.12).

Using (2.26) and (2.20), equation (2.28) may be rewritten as

d

dt
T (t) = �

P
k
Hk(T (t))

d

dt
nk(t)P

k Ck(T (t))nk(t)
: (2.29)

Note that

N
(n)

k
(t+�t)�N

(n)

k
(t) = �

�

�;k
� ��;k ; (2.30)

in case (2.11), and

N
(n)

k
(t+�t)�N

(n)

k
(t) = ��;k � �

�

�;k
; (2.31)

8



in case (2.12). These relations and (2.29) suggest �rst order approximations of

the form

�T�;f(x) = �

P
S

k=1Hk(xS+1) [���;k � ��;k]P
S

k=1Ck(xS+1)xk
; (2.32)

�T�;r(x) = �

P
S

k=1Hk(xS+1) [��;k � �
�

�;k
]P

S

k=1Ck(xS+1)xk
: (2.33)

Next we construct a temperature step taking into account the conservation prop-

erty (2.27). One observes that mass conservation (2.14) implies (cf. (2.30), (2.31))

SX
k=1

Wk N
(n)

k
(t+�t) =

SX
k=1

Wk N
(n)

k
(t) :

Thus, (2.27) and (2.24) suggest an enthalpy preserving approximation of the

temperature step T (n)(t+�t)� T
(n)(t) de�ned via the equation

SX
k=1

Hk(T
(n)(t+�t))N

(n)

k
(t+�t) =

SX
k=1

Hk(T
(n)(t))N

(n)

k
(t) : (2.34)

In order to solve (2.34) with respect to T (n)(t+�t) we introduce the function

f(x) :=
X
k

Hk(x)N
(n)

k
(t+�t)�

X
k

Hk(T
(n)(t))N (n)

k
(t) ;

an iteration scheme

Ti+1 := Ti �
f(Ti)

f 0(Ti)
; T0 := T

(n)(t) ;

and de�ne

T
(n)(t+�t) = lim

i!1

Ti :

From (2.23) one obtains

f
0(x) =

X
k

Ck(x)N
(n)

k
(t+�t)

so that

Ti+1 = Ti �

P
kHk(Ti)N

(n)

k
(t+�t)�

P
kHk(T0)N

(n)

k
(t)P

k
Ck(Ti)N

(n)

k
(t+�t)

: (2.35)
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2.4. Asymptotic behaviour

The Markov process (2.1) satis�es

�(Z(n)(t)) = �(Z(n)(0)) +
Z

t

0
(A�)(Z(n)(s)) ds + �

(n)(t) ; t � 0 ; (2.36)

where �(n)(t) is a martingale term vanishing in the limit n!1 : The representation

(2.36) suggests that (cf. (2.4))

d

dt
lim
n!1

�(Z(n)(t)) =
IX

�=1

lim
n!1

Q�(Z
(n)(t))

h
�(J�(Z

(n)(t)))� �(Z(n)(t))
i
: (2.37)

Since (cf. (2.6))

Q�;f(x) = 
(x)

n

!1�PS

j=1
��;j

nM�(x)K�;f(xS+1)
SY
j=1

xj (xj � 1) : : : (xj + 1� ��;j)

n��;j
;

and, according to (2.15), (2.16),

lim
n!1

N
(n)
j

(t) (N (n)
j

(t)� 1) : : : (N (n)
j

(t) + 1 � ��;j)

n��;j
= �j(t)

��;j ;

one obtains

lim
n!1

1

n
Q�;f(Z

(n)(t)) = ~(t) ~M�(t)K�;f (T (t))
SY
j=1

"
�j(t)

~(t)

#
��;j

(2.38)

and, analogously (cf. (2.7)),

lim
n!1

1

n
Q�;r(Z

(n)(t)) = ~(t) ~M�(t)K�;r(T (t))
SY
j=1

"
�j(t)

~(t)

#
�
�

�;j

; (2.39)

where the notations

~(t) = lim
n!1

1

n
(Z(n)(t)) (2.40)

and

~M�(t) = lim
n!1

M�(Z
(n)(t))

have been used. Note that (cf. (2.8), (2.15), (2.16))

~M�(t) =

8>><
>>:
P

S

k=1B�;k

�k(t)

~(t)
; if third body reaction with some species ;

p

RT (t)
; if third body reaction with all species ;

1 ; otherwise :

(2.41)
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Thus, equation (2.37) takes the form (cf. (2.5))

d

dt
lim
n!1

�(Z(n)(t)) = ~(t)
IX

�=1

~M�(t)

������K�;f(T (t))
SY
j=1

"
�j(t)

~(t)

#
��;j

� (2.42)

K�;r(T (t))
SY
j=1

"
�j(t)

~(t)

#
�
�

�;j

������ limn!1
n

h
�(J�(Z

(n)(t)))� �(Z(n)(t))
i
:

First we derive the equations for the state variables (1.2)-(1.4). Consider

the test functions

�i(x) =
Wi xiP
S

j=1Wj xj

; i = 1; : : : ; S ;

and note that (cf. (2.20))

lim
n!1

�i(Z
(n)(t)) =

Wi �i(t)P
S

j=1Wj �j(t)
= Yi(t) :

According to (2.13) one obtains

�i(J�;f(x))��i(x) =

1P
S

j=1Wj xj

h
Wi (xi � ��;i + �

�

�;i
)�Wi xi

i
=

1P
S

j=1Wj xj

h
Wi (�

�

�;i
� ��;i)

i

so that (cf. (2.18))

lim
n!1

n

h
�i(J�;f(Z

(n)(t)))� �i(Z
(n)(t))

i
=

1

~m(t)

h
Wi (�

�

�;i
� ��;i)

i

and, analogously,

lim
n!1

n

h
�i(J�;r(Z

(n)(t)))��i(Z
(n)(t))

i
=

1

~m(t)

h
Wi (��;i � �

�

�;i
)
i
:

Using (2.10), we obtain

lim
n!1

n

h
�i(J�(Z

(n)(t)))� �i(Z
(n)(t))

i
=

8>>>>><
>>>>>:

1
~m(t)

h
Wi (���;i � ��;i)

i
; if

limn!1

1
n
Q�;f(Z(n)(t)) � limn!1

1
n
Q�;r(Z(n)(t)) ;

1
~m(t)

h
Wi (��;i � �

�

�;i
)
i
; otherwise :

Thus, equation (2.42) implies (cf. (2.38), (2.39))

d

dt
Yi(t) =

~(t)

~m(t)

IX
�=1

~M�(t)

2
4K�;f (T (t))

SY
j=1

"
�j(t)

~(t)

#
��;j

� (2.43)

K�;r(T (t))
SY
j=1

"
�j(t)

~(t)

#
�
�

�;j

3
5 hWi (�

�

�;i
� ��;i)

i
:
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With the choice (2.9) one obtains (cf. (2.19), (2.40))

~(t) = ~V (t) ; (2.44)

and equation (2.43) takes the form (cf. (2.21), (2.22))

d

dt
Yi(t) = (2.45)

Wi

%(t)

IX
�=1

[��
�;i
� ��;i] ~M�(t)

0
@K�;f(T (t))

SY
j=1

[Xj](t)
��;j �K�;r(T (t))

SY
j=1

[Xj ](t)
�
�

�;j

1
A;

where (cf. (2.41))

~M�(t) =

8><
>:
P

S

k=1B�;k [Xk](t) ; if third body reaction with some species ;
p

RT (t)
; if third body reaction with all species ;

1 ; otherwise :

Note that, up to notations, equation (2.45) is identical with (1.2)-(1.4).

Next we derive the equation for the temperature (1.6). Consider the test

function

�(x) = xS+1

and note that (cf. (2.1), (2.16))

lim
n!1

�(Z(n)(t)) = T (t) : (2.46)

According to (2.11), (2.12) one obtains

�(J�;f (x))� �(x) = �T�;f(x)

so that

lim
n!1

n

h
�(J�;f(Z

(n)(t)))� �(Z(n)(t))
i
= lim

n!1
n�T�;f(Z

(n)(t))

and, analogously,

lim
n!1

n

h
�(J�;r(Z

(n)(t)))��(Z(n)(t))
i
= lim

n!1
n�T�;r(Z

(n)(t)) :

Using (2.10), we obtain

lim
n!1

n

h
�(J�(Z

(n)(t)))� �(Z(n)(t))
i
= (2.47)

8>>><
>>>:

limn!1 n�T�;f(Z(n)(t)) ; if

limn!1

1
n
Q�;f(Z(n)(t)) � limn!1

1
n
Q�;r(Z(n)(t)) ;

limn!1 n�T�;r(Z(n)(t)) ; otherwise :

12



Assume

�T�;f(x) = ��T�;r(x) (2.48)

so that

lim
n!1

n�T�;f(Z
(n)(t)) = � lim

n!1
n�T�;r(Z

(n)(t)) :

Then, using (2.46), (2.47), equation (2.42) implies

d

dt
T (t) = ~(t)

IX
�=1

~M�(t)

2
4K�;f (T (t))

SY
j=1

"
�j(t)

~(t)

#
��;j

� (2.49)

K�;r(T (t))
SY
j=1

"
�j(t)

~(t)

#
�
�

�;j

3
5 lim
n!1

n�T�;f(Z
(n)(t)) :

With the approximations (2.32), (2.33), which ful�l (2.48), we obtain (cf. (2.15))

lim
n!1

n�T�;f(Z
(n)(t)) = �

P
S

k=1Hk(T (t)) [���;k � ��;k]P
S

k=1 Ck(T (t))�k(t)
;

and equation (2.49) takes the form

d

dt
T (t) = �~(t)

IX
�=1

~M�(t)

2
4K�;f (T (t))

SY
j=1

"
�j(t)

~(t)

#
��;j

�

K�;r(T (t))
SY
j=1

"
�j(t)

~(t)

#
�
�

�;j

3
5 PS

k=1Hk(T (t)) [���;k � ��;k]P
S

k=1 Ck(T (t))�k(t)
:

With the choice (2.9), this equation transforms into (cf. (2.26), (2.18), (2.22), (2.21),

(2.44))

d

dt
T (t) = �

1

c(t) %(t)

SX
k=1

Wk hk(T (t))
IX

�=1

~M�(t) [�
�

�;k
� ��;k]�

2
4K�;f (T (t))

SY
j=1

[Xj](t)
��;j �K�;r(T (t))

SY
j=1

[Xj](t)
�
�

�;j

3
5 : (2.50)

Taking into account (2.45), we observe that, up to notations, equation (2.50) is

identical with (1.6).

2.5. Description of the algorithm

The stochastic algorithm for the numerical treatment of equations (1.2)-(1.4), (1.6)

consists in generating trajectories of the Markov process (2.1) and averaging the

appropriate functionals.

13



Given the state

x =
�
N

(n)
1 (t); : : : ; N

(n)

S
(t); T (n)(t)

�
; t � 0 ;

the process remains there for a random time � having exponential distribution with

the waiting time parameter (cf. (2.6), (2.7), (2.9))

�(x) =
IX

�=1

jQ�;f(x)�Q�;r(x)j ; (2.51)

i.e.

Prob(� � s) = exp(�s �(x)) ; s � 0 :

At the moment t + � ; a particular reaction is chosen according to the reaction

probabilities

P�(x) =
jQ�;f(x)�Q�;r(x)j

�(x)
; � = 1; : : : ; I : (2.52)

Finally, the process jumps into the state J�(x) (cf. (2.10)), and the same procedure

is repeated.

3. Numerical experiments

3.1. Test case

The test case for our study is the combustion of n-heptane. This example is of prac-

tical relevance, since n-heptane is part of the reference fuel for internal combustion

engines such as spark-ignition, diesel, and gas turbine engines. The chemistry is de-

scribed by a reaction mechanism containing 107 chemical species and 808 reversible
reactions [5]. The initial conditions are

Xn�C7H16
(0) = 0:0187 ; XO2

(0) = 0:2061 ; XN2
(0) = 0:7752 :

Temperature and pressure are set to T = 1500K and p = 1:01325PA : The time

pro�les of some reactants and products as well as temperature are displayed in

Figure 1. The oxidation of n-heptane takes place in several steps. In a �rst phase

n-heptane is decomposed into smaller hydrocarbons. After 5:0� 10�5s this process
is completed. At about 8:6 � 10�5s ignition takes place and CO is converted to

CO2. During this ignition process the number of reactions increases rapidly due to

a chain-branching reaction mechanism.

3.2. Approximation

First we study convergence properties of the algorithm. We consider the test example

for t 2 [0; 0:0002]s so that the ignition point is roughly in the middle of the time

14
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Figure 1: Time evolution of the species' mole fractions and temperature.

interval. The �rst order approximations (2.32), (2.33) are used to perform the

temperature steps during a single reaction.

The average curves for the temperature are displayed in Figure 2 for n =
103; 104; 105; 106 and nL = 107 ; where L is the number of independent runs of the

particle ensemble used to construct con�dence bands. These curves are compared

with the results from the code DASSL [1] for solving systems of di�erential/algebraic

equations. DASSL has been applied successfully to combustion problems as part

of the software package SENKIN [14]. We mention that the DASSL-results are

contained in the con�dence band of the averaged curve for n = 105 and n = 106 :

The behaviour of both the systematic and the statistical error is highly non-

uniform in time. These quantities are displayed in Figure 3 and 4 for di�erent

numbers of particles. The systematic error increases drastically during and after the

ignition time. The statistical error is much larger during the ignition period.

Results for the concentrations of some important species are displayed in Fig-

ure 5. They show that di�erent numbers of particles are needed to resolve the time

evolution correctly.
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Figure 2: Time evolution of temperature for di�erent particle numbers. The prod-

uct of particle number and repetition is constant at n� L = 1:0� 107:

Finally we mention that, applying the iteration scheme (2.35) conserving en-

thalpy, we observed fast convergence, but did not see any real improvement in the

systematic error. Thus the �rst order approximations (2.32), (2.33) turn out to be

robust enough so that there is only weak accumulation of enthalpy error and no

signi�cant in�uence on temperature.
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3.3. E�ciency

Here we discuss the issue of performance for the stochastic algorithm. We compare it,

on the one hand, with the deterministic DASSL-algorithm and, on the other hand,

with the direct simulation algorithm (without combining forward and backward

reactions).

A basic component in�uencing the computation time is the mean number of

reactions RN(n; t) : It is easy to see that (cf. (2.51), (2.4), (2.5))

lim
n!1

RN(n; t)

n
=: a(t) =

Z
t

0
lim
n!1

1

n
�(Z(n)(s)) ds :

The quantity d

dt
a(t) represents the mean number of reactions per particle at time

t : It can be expressed via the solution of the problem. Since, according to (2.38),

(2.39), (2.44), (2.21),

lim
n!1

1

n
Q�;f(Z

(n)(t)) = ~V (t) ~M�(t)K�;f(T (t))
SY
j=1

[Xj](t)
��;j

and

lim
n!1

1

n
Q�;r(Z

(n)(t)) = ~V (t) ~M�(t)K�;r(T (t))
SY
j=1

[Xj ](t)
�
�

�;j ;

one obtains

d

dt
a(t) = (3.1)

~V (t)
IX

�=1

~M�(t)

������K�;f(T (t))
SY
j=1

[Xj](t)
��;j �K�;r(T (t))

SY
j=1

[Xj](t)
�
�

�;j

������
for the new stochastic algorithm, and

d

dt
a(t) = (3.2)

~V (t)
IX

�=1

~M�(t)

2
4K�;f (T (t))

SY
j=1

[Xj ](t)
��;j +K�;r(T (t))

SY
j=1

[Xj](t)
�
�

�;j

3
5

for the direct simulation algorithm. These formulas clearly show the origin of the

e�ciency gain of the improved algorithm. Note that the right-hand side in formulas

(3.1) and (3.2) can be calculated using the DASSL-solution and used to predict the

relative performance of the two stochastic algorithms.

A comparison of the normalized reaction numbers for both stochastic algorithms

is given in Figure 6. Up to ignition time their behaviour is very similar. However,

during and after ignition the new algorithm leads to a signi�cant decrease of the

number of reactions, compared to the original direct simulation algorithm.
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Figure 6: Normalized reaction numbers for the direct simulation and the improved

algorithm.

Figure 7 shows the measured CPU-time CT(n; t) for a single run of the al-

gorithm divided by the number of reactions, for varying particle numbers. The

observed convergence allows us to conclude that the CPU-time is asymptotically

proportional to the number of particles, i.e.

lim
n!1

CT(n; t)

n
=: b(t) : (3.3)

Note that the quantity b(t)

a(t)
representing the mean e�ort per reaction does not vary

signi�cantly in time.

The absolute values of the CPU-time for a single run of the algorithm are dis-

played in Figure 8 for varying particle numbers. It can be seen that the new

algorithm outperforms the direct simulation algorithm by a factor 25 up to time

t = 0:0002s and by a factor 100 up to time t = 0:001s : Figure 8 shows how the

length of the time interval, on which the stochastic algorithm is faster than the

deterministic one, depends on the number of particles. The necessary number of

particles is determined by the accuracy and depends on the functional to be re-

solved. For short simulation time the stochastic algorithm is signi�cantly faster

than the deterministic algorithm. Using Figure 8 we conclude that for n = 104 the
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Figure 7: Computational time divided by reaction number.

stochastic algorithm is faster for simulation times up to 10�3 ; while for n = 105 it
is faster only for simulation times up to 10�5 ; and for n = 106 up to 10�6 : These
general conclusions can be applied to the quantities displayed in Figure 5.
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methods.

23



4. Concluding remarks

We proposed an improved stochastic algorithm for temperature-dependent homo-

geneous gas phase reactions. By combining forward and reverse reaction rates, a

signi�cant gain in computational e�ciency was achieved. Two modi�cations of mod-

elling the temperature dependence (with and without conservation of enthalpy) were

introduced and studied quantitatively. The algorithm was tested for the practically

relevant combustion of n-heptane.

The numerical studies reveal that

� the algorithm converges to the solution of the deterministic equation;

� combining forward and reverse reactions leads to a signi�cant improvement

over the direct simulation method (up to a factor 100, dependent on the time

interval) ;

� the �rst order temperature scheme is su�cient for practical applications;

� for short times the stochastic algorithm is faster than DASSL.

In the original formulation of the stochastic algorithm, the presence of forward

and backward reactions was basically ignored. Now we combine those pairs to a

single type of event, taking into account that the corresponding elementary inter-

actions cancel each other. Formally, the original process can be reproduced by �rst

ignoring reverse reactions by putting their rates equal to zero, and than introducing

them as independent reactions.

As we have solved the problem of simulating very fast processes by accounting

for partial equilibria, the treatment of the slower processes needs further attention.

Also the need of high accuracy for several species during ignition should be studied

in more detail.
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