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Abstract

We study kinetic solutions, including shocks, of initial and boundary value

problems for the Euler equations of gases. In particular we consider moving

adiabatic boundaries, which may be driven either by a given path or because

they are subjected to forces.

In the latter case we consider a gas contained in a cylinder which is closed

by a piston. Here the boundary represents the piston that su�ers forces by

the incoming and outgoing gas particles. Moreover, we will study periodic

boundary conditions.

A kinetic scheme consists of three ingredients: (i) There are periods of free

�ight of duration �M , where the gas particles move according to the free trans-

port equation. (ii) It is assumed that the distribution of the gas particles at

the beginning of each of these periods is given by a Maxwellian. (iii) The

interaction of gas particles with a boundary is described by a so called ex-

tension law, that determines the phase density at the boundary, and provides

additionally continuity conditions for the the �elds at the boundary in order

to achieve convergence.

The Euler equations result in the limit �M ! 0.

We prove rigorous results for these kinetic schemes concerning (i) regularity,

(ii) weak conservation laws, (iii) entropy inequality and (iv) continuity con-

ditions for the �elds at the boundaries. The study is supplemented by some

numerical examples.

This approach is by no mean restricted to the Euler equations or to adiabatic

boundaries, but it holds also for other hyperbolic systems, namely those that

rely on a kinetic formulation.

1 Introduction

In this paper we study initial and boundary value problems for the Euler system

of gases which rely on the evolution of the phase density of the gas atoms. The

phase density is determined by a kinetic transport equation, the Maximum Entropy

Principle and appropriate boundary conditions. The methods that we will discuss
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here are more general than those which are presented in the papers [7] and [8] by

Dreyer and Kunik, where the pure initial value problem and the initial- and

boundary value problem with moving adiabatic boundaries were also studied for the

Euler system.

It is important to note that the basic ideas of this study can also be applied to

other hyperbolic systems and to more general boundary data. For example, we

mention the evolution of temperature and heat �ux in a Bose gas of phonons. At

low temperature the corresponding �eld equations constitute a hyperbolic system

which was solved by Dreyer and Kunik in [10] and [11]. The hyperbolic systems

that can be treated by the kinetic method are those which may be generated from

kinetic transfer equations and the Maximum Entropy Principle, see [2], [6] and [15].

Since these systems lead to a convex entropy function, they enable several rigorous

mathematical results, see for example [12], [5].

Kinetic schemes for the Euler system were already studied by Perthame in [16]

and [17]. Some interesting links between the Euler system and the so called kinetic

BGK-model, which is introduced in [1], are discussed in the textbooks by Cercig-

nani [3] and by Godlewski & Raviart [13].

The most important feature of the current paper is the consistent incorporation of

boundary conditions for the Euler system as well as for its kinetic schemes. The

Euler system constitutes a hyperbolic system for the �ve variables � - mass den-

sity, � - velocity, T - temperatue. For simplicity we consider often only one space

dimension, and the vector � reduces to one variable �. In case of a non-moving

impermeable wall at x = 0 the only possible boundary condition for the Euler

system is

v(t; 0) = 0 : (1)

Since mass �ux, energy �ux and entropy �ux are all proportional to �, such a wall

is adiabatic too. In particular we conclude that boundary data for the temperature

cannot be prescribed in this case, see [8]. However, from the viewpoint of the kinetic

regime, the equation 1 does not imply an adiabatic wall, because here there are many

kinetic realization of the condition (1). Even boundary data for the temperature are

possible in the kinetic range. In other words, (1) is not equivalent to the adiabatic

boundary condition in the kinetic regime. Therefore it is not suprising that we shall

present two di�erent approaches in order to realize the boundary condition (1) , and

both approaches reduce to the same Eulerian limit.

Next we describe the characteristic features of a kinetic scheme. Kinetic schemes

rely on the fact that all macroscopic quantities that appear in the Euler system
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can be represented by integrals over the atomic velocity space of the gas particles.

The central quality under the integrals is the phase denisty f(t; x; c) which gives

the number density of particles with atomic speed c at (t; x) . A kinetic scheme

determines the phase density so that the resulting macroscopic �elds solve the given

initial and boundary value problem of the Euler system. The details are discussed

in section 2.1.

This approach confronts us with the problem to relate the given initial and boundary

data for the Euler system to the corresponding initial and boundary data for the

phase density. The establishment of these relations for the pure inital value problem

is an easy task that will be resumed in section 2.2.

The formulation of appropriate boundary data is not an easy task and this is the

main objective of the current study. For the determination of the phase density

f(t; 0; c) = f
B(t; c) at the boundary x = 0, it is useful to split the boundary phase

density into two parts, one for the incoming particles with c < 0, which turns out

to be completely determined by the phase density at the preceding times, and one

for the outgoing particles with c > 0 according to

f
B(t; c) =

n
f
in(t; c) for c < 0;

f
out(t; c) for c > 0:

(2)

In contrast to the known incoming part f in we must determine f out by an extra

condition that we will call an extension law in section 2.3. We will show in this

study, that there are di�erent extension laws that all imply the same macroscopic

boundary conditions. This feature is related to the already mentioned fact that the

macroscopic boundary condition (1) has many kinetic realizations.

In section 2.4 we will derive two extension laws for an adiabatic wall at rest. The

�rst extension law was already studied in [8] and expresses a simple re�ection law

of the gas atoms. In order to formulate the second extension law we assume in sec-

tion 2.4 that the phase density at the boundary for the outgoing particles is given

by a Maxwellian with respect to three auxiliary �elds �
A(t), vA(t) and T

A(t),

where continuity and boundary conditions yield algebraic equations for the auxil-

iary �elds.

In section 2.5 we consider a single wall at rest and formulate the corresponding

kinetic scheme. We derive its mathematical properties in section 3, including con-

servation laws, the entropy inequality, regularity and continuity conditions at the

boundary.

The sections 4 and 5 are devoted to moving boundaries. In particular, we are in-

terested in free moving boundaries whose path is not given explixitly, but is part of

the solution of the problem. Moreover, we discuss periodic boundary conditions.
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To illustrate the main results we study some numerical examples in section 6.

2 Kinetic solutions for initial and boundary value

problems

2.1 The Euler system and moment de�nitions

We consider a mon-atomic ideal gas, and we describe its state at a space time point

(t; x) by the variables

� > 0 �mass density; v � velocity; T > 0 � temperature:

Sometimes it is useful to replace the temperature T by the pressure p of the gas as

a variable. T and p are related by the ideal gas law p = �T . We assume that the

variables evolve according to the Euler equations. For one space dimension, a case

that we will consider exclusively, the Euler equations read in regular points

@t� + @x(�v) = 0;

@t(�v) + @x(�v
2 + p) = 0;

@t(
1
2
�v

2 + d
2
p) + @x(

1
2
�v

3 + d+2
2
pv) = 0:

(3)

On singular surfaces that move with the normal speed VS there are the well known

jump conditions, see [4] and [18],

�Vsj[�]j + j[�v]j = 0;

�Vsj[�v]j + j[�v2 + p]j = 0;

�Vsj[(12�v
2 + d

2
p)]j + j[(1

2
�v

3 + d+2
2
pv)]j = 0:

(4)

Here, d may assume the values 1, 2 or 3. The objective of this study is the solution

of initial and boundary value problems for the Euler system. In order to establish

uniqueness for discontinuous solutions we use the second law of thermodynamics as

a selection criterion. To this end we introduce the entropy density h and the entropy

�ux � according to

h(�; T ) :=
d

2
� ln (T )� � ln � +

d

2
� +

d

2
� ln (2�); �(�; v; T ) = vh(�; T ); (5)

and the second law reads

@th+ @x� = 0 and � Vsj[h]j+ j[�]j � 0; (6)
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respectively.

To simplify the notation we introduce the vectors of densities u =(u0; u1; u2)
T and

of �uxes F = (F0; F1; F2)
T by

u(�; v; T ) :=

�
�; �v;

1

2
�v

2+
d

2
�T

�T
and F(u) :=

�
�; �v;

1

2
�v

3+
d+ 2

2
�Tv

�T
(u):

(7)

Since the vector of densities u as function of �, v and T is invertible we can express

the entropy h and the entropy �ux � as function of u. Thus the abbreviated Euler

system with entropy condition reads

@tu + @xF(u) = 0; �Vsj[u]j + j[F(u)] = 0;

@th(u) + @x�(u)7 = 0; �Vsj[h(u)]j + j[�(u)]j � 0:
(8)

Our strategy to solve the Euler system relies on the kinetic representation of all

quantities appearing here. The kinetic representation reduces the evolution of these

quantities to the evolution of the phase density f(t; x; c) which gives at any space

time point (t; x) the number density of gas atoms with the atomic speed c. For

simplicity regarding the notation we consider in the following sections only the one-

dimensional case, i.e. c = (c; 0; 0) T which implies d = 1. However, the numerical

calculations are carried out for the general case with c = (c1; c2; c3)
T and d = 3.

In order the establish the kinetic representation we de�ne at �rst the integrals

uf (t; x) := +

+1Z
�1

m(c)f(t; x; c) dc (9)

Ff (t; x) := +

+1Z
�1

cm(c)f(t; x; c) dc (10)

hf(t; x) := �

+1Z
�1

(f ln f)(t; x; c) dc (11)

�f(t; x) := �

+1Z
�1

c(f ln f)(t; x; c) dc: (12)

as functions of x, t and f , where m denotes the function

m(c) :=

�
1; c;

c
2

2

�T
: (13)

In general the evolution of the phase density is described by the Boltzmann equa-

tion. However, this aspect does not interest us here. Instead, we pose the question
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whether it is possible to use the kinetic representation (9) - (12) in order to approach

a solution of the Euler system.

To this end we recall that the phase density f , that maximizes the entropy density

hf under the constraint of a prescribed vector uf , is given by the Maxwellian

phase density

f(t; x; c) = wM(u; c) =
�(u)p
2�T (u)

exp

��(c� v(u))2

2T (u)

�
: (14)

TheMaxwellian re�ects the local equilibrium of the gas. If we insert theMaxwellian

phase density into the kinetic integrals (9) - (12) we obtain for any vector u =

(u0; u1; u2)
T 2 R

3 with u0 > 0 and u21 < 2u0u2 the identities

u = +
+1R
�1

m(c)wM(u; c) dc;

F(u) = +
+1R
�1

cm(c)wM(u; c) dc;

h(u) = �
+1R
�1

m(c)(wM lnwM)(u; c) dc;

�(u) = �
+1R
�1

cm(c)(wM lnwM)(u; c) dc:

(15)

2.2 The kinetic scheme for the pure initial value problem

The kinetic solution of the Euler system is best illustrated for the pure initial value

problem.

Scheme 2.2.1 1. We choose a constant �M > 0 and we consider the equidistant

times tn = n�M ; for n = 0; 1; 2; :::.

2. At t0 = 0 we start with initial data u0 (x) and we de�ne f (0; x; c) = wM (u0 (x) ; c).

3. For 0 < � � �M and t = tn+� the gas particles move according to the collision

free kinetic transport equation

@f

@t
+ c

@f

@x
= 0: (16)

We choose the initial phase density f (tn; x; c) = wM (u (tn; x) ; c), and we

obtain the solution

f (tn + �; x; c) = f (tn; x� c�; c) = wM (u (tn; x� c�) ; c) : (17)

Then we calculate uf ; Ff ; hf ; �f for 0 < � � �M and t = tn + � .
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4. We proceed with step 3 for n+ 1.

For small �M the resulting densities and �uxes can regarded as a good approximation

of the solution of the Euler system. For more details we refer the reader to [7] and

[8]. In the following subsection we will generalize the scheme to initial and boundary

value problems.

2.3 Discussion of initial and boundary value problems

For a �rst illustration of the initial and boundary value problem we consider a half

space with a non-moving boundary at x = 0. More precisely we consider the space

time region


 := f(t; x) : t � 0; x � 0g: (18)

The kinetic solution of the Euler system consists of several pieces: We choose a

constant �M > 0 and consider the equidistant times tn = n�M ; for n = 0; 1; 2; :::.

Within the intervals tn < t � tn+�M the gas particles move according to the collision

free transport equation
@f

@t
+ c

@f

@x
= 0; (19)

except when they interact with the boundary at x = 0. Since there are no inter-

actions between gas particles in this interval we call the full time interval tn < t �
tn + �M a period of free �ight. The explicit procedure of determining the phase

density will be explained in detail later on. If this problem is solved we can use the

phase density to calculate the thermodynamic �elds uf . At the times tn = n�M we

stop and use uf(tn + �M ; x) as constrains for the maximization of the entropy. The

resulting phase density is obviously the Maxwellian

wM (uf (tn + �M ; x) ; c) (20)

which in turn is used as the initial value for the next period of free �ight. The times

tn are called maximization times. Next we study the periods of free �ight seriously.

The equation (19) gives rise to micro characteristics that relate for given c any point

(t; x) either to the initial axes t = 0 or to the boundary at x = 0 by straight lines

along which every solution of (19) is a constant. The micro characteristics have the

generic form

t
0
 x

0 = x� c(t� t
0); (21)

and we thus may write

f(t; x; c) = f(t0; x0; c): (22)
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x

t

(tn + � ; x)

(tn; x� �c1)

(tn; 0) (tn + � � x=c3; 0)

c1 < x=�

c2 = x=� c3 > x=�

Figure 1: micro characteristics relating the initial- or boundary line

Figure 1 shows three micro characteristics for three di�erent values of c which all

start in the point (tn + �� ; �x). If c < �x=�� ; the micro characteristic intersects the

initial axes at (t0; x0) = (tn; �x� c�� ), and we obtain

f(tn + � ; x; c) = f(tn; x� �c; c) = wM(u(tn; x) ; c): (23)

In this case the phase density can be calculated at time tn + � from the �elds u at

the former time tn. If c > �x=�� , the micro characteristic intersects the boundary at

(t0; x0) = (tn + �� � �x=c; 0) : Here we obtain

f(tn + � ; x; c) = f(tn + � �
x

c
; 0; c): (24)

On the right hand side of (24) there appears the phase density of the boundary. Its

determination will be discussed next. We call the phase density of the boundary

simply boundary density and we write

f
B
(t; c) = f(t; 0; c): (25)

We observe that there are two di�erent types of micro characteristics which may end

in given point of the boundary. A characteristic with c < 0 corresponds to incoming

particles. For c < 0 the boundary density can be calculated at time tn + �� from the

data at the former maximization time tn, viz.

f
B
(tn + � ; c) = f(tn; ��c; c) = wM(u(tn; ��c) ; c) 8 c < 0: (26)

However, the part of the boundary density that corresponds to outgoing particles,

i.e. c > 0, can not be calculated from data at former times. In order to exhibit the
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fundamental di�erence between the two cases c > 0 and c < 0 we write

f
B
(t; c) =

n
f
in(t; c) for c < 0;

f
out(t; c) for c > 0:

(27)

As it is indicated by the upper indices, f in and f out correspond to the incoming and

outgoing particles, respectively. The determination of f out require the prescription

of boundary conditions. The problem of reasonable initial and boundary conditions

that guarantee existence and uniqueness of a solution of the Euler system is a

complicate problem that will not be discussed here. Rather we start from the as-

sumption that this problem has already been solved, and we pose the question how

the boundary data can be realized by the microscopic motion of the gas particles in

order to determine f out: This realization can be done in several ways and it is called

extension law, because it leads to an extension of f in to the complete boundary

density fB.

We conclude this section with an important remark concerning the maximization

times tn > 0. At �rst we consider an inner space time point (tn; x) with x > 0. If

we approach tn from the left, the phase density f(tn; x; c) is given by

lim
�!0+

f(tn � �; x; c) =

n
f(tn � �M ; x� �Mc; c) for c < x=�M ;

f(tn � x
c
; 0; c) for c > x=�M :

(28)

If we approach tn from the right, the phase density approaches a Maxwellian and

we write

lim
�!0+

f(tn + �; x; c) = wM(u(tn; x); c): (29)

Note that we de�ne f(tn; x; c) by the equation (28). This de�nition interprets the

maximization times tn as the end points of the periods of free �ight. Corresponding

to (28) and (29) there are also two limits of the boundary density fB(tn; cc) at the

maximization times. For f in we obtain for any c < 0

f
in
(tn; c) = lim

�!0+
f
in
(tn � �; c) = f(tn � �M ; ��Mc; c) ; (30)

lim
�!0+

f
in
(tn + �; c) = wM(u(tn; 0); c) : (31)

2.4 Extension laws for the Euler system with an adiabatic

wall at rest

For a �rst and simple discussion of reasonable extension laws we consider a lower

adiabatic wall at x = 0: From the point of view of the Euler system, an imperme-

able wall at rest, i.e. v(t; 0) = 0, implies that the mass �ux, the energy �ux and the
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entropy �ux vanish simultaneously at the boundary, see (5) and (7). In particular,

this means that an impermeable wall at rest is adiabatic. In the kinetic range this

can be realized by the extension law

f
out

(tn + � ; c) = f
in
(tn + � ; �c) 8 c > 0: (32)

This law expresses a simple re�ection law, i.e. an incoming gas particle with speed c

will be re�ected at the adiabatic wall so that after the encounter it has the speed �c.
This extension law was investigated by Dreyer and Kunik in [8]. The extension

law (32) implies that the conditions for an adiabatic wall at rest, namely

+1Z
�1

cf
B(t; c) dc = 0;

+1Z
�1

1

2
c
3
f
B(t; c) dc = 0;

+1Z
�1

c
�
f
B ln fB

�
(t; c) dc = 0; (33)

are identically satis�ed. Note that the extension law (32) implies that the conditions

(33) are satis�ed during the total periods of free �ight. This is not a necessary

property in order to obtain a solution of the Euler system. We illustrate this fact

by studying another extension law that is also used to solve the same boundary value

problem. For this purpose we assume, that the boundary density of the outgoing

particles is given by a Maxwellian with respect to three auxiliary �elds �
A, vA

and TA, in other words

f
out(t; c) = wM(uA(t); c) 8 c > 0; (34)

where uA is related to �A, vA and T
A as u is related to �, v and T . The three

auxiliary �elds are determined by the requirements

+1Z
�1

cf
B(t; c) dc = 0;

+1Z
�1

1

2
c
3
f
B
(t; c) dc = 0 and v

A
(t) = 0: (35)

The conditions (35)1 and (35)2 are identical to the conditions (33)1 and (33)2 of

the �rst extension law. However, the condition (35)3 does not imply a vanishing

entropy �ux at the wall. If we were to replace vA (t) = 0 by the condition (33)3,

then we end up with a highly nonlinear algebraic system for the auxiliary �elds

u
A (t) which cannot be resolved easily. For that reason we have used the condition

v
A (t) = 0. But it is important to note that (33) and (35) both satisfy the boundary

condition lim
x!0+

v(t; x) = 0 in the kinetic range, and numerical studies will lead us to

the conjecture that both conditions yield the same Eulerian limit �M ! 0, which

satis�es the adiabatic boundary condition. For the exploitation of the extension law
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(34), (35) we write explicitely

+1R
0

cwM(uA(t); c) dc = �
0R
�1

cf
in(t; c) dc =: �I1(t)

+1R
0

1
2
c
3
w
M
(uA(t); c) dc = �

0R
�1

1
2
c
3
f
in(t; c) dc =: �I3(t):

(36)

Note that the left hand sides of these equations represent algebraic expressions for

the auxiliary �elds �A and T
A at time t = tn + � , while the right hand sides are

known from the densities at the former time tn. A straight forward calculation leads

to

T
A
(t) =

I3(t)

I1(t)
and �

A
(t) = �I1(t)

s
2�

TA(t)
: (37)

The de�nitions of I1(t) and I3(t) imply immediately I1(t) < 0 and I3(t) < 0, so that

�
A(t) and TA(t) result as positive quantities. Note, that the auxiliary �elds �A(t)

and TA(t) do not coincide with the boundary values �B(t) and TB(t) which result

from the kinetic scheme.

We conclude this section with some general remarks regarding the di�erences of

the two considered extension laws. While the �rst extension law relies on the kind

of re�ection of the individual gas particles at the adiabatic wall, the second exten-

sion law takes only care for the prescribed boundary condition v(t; 0) = 0, but do

not have such a suggestive physical interpretation. In particular, both laws are not

equivalent in the kinetic range, but they coincide in the Euler range. In other

words, the boundary condition v(t; 0) = 0 is equivalent to the re�ection at the adi-

abatic boundary only in the Euler range, but not in the kinetic range.

Regarding the initial and boundary value problem of an ideal gas of material parti-

cles, the second extension law using the auxiliary �elds at the boundaries seems to be

somehow arti�cial. However, for other kinetic initial and boundary value problems

there is in general no re�ection law, whereas extension laws which rely on auxiliary

�elds may still be used. This situation is met in the phonon gas, a case which has

extensively been studied by Dreyer and Kunik in [10] and [11].

2.5 Kinetic schemes for a lower adiabatic wall at rest

We proceed with the half space problem and the boundary condition

v(t; 0) = 0 (38)
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for the velocity at x = 0. We introduce the abbreviations

f
I
n(x; c) := wM(u(tn; x) ; c); f

B
n (� ; c) := f

B
(tn + � ; c): (39)

The functions f In and fBn are the initial phase density and the boundary density for

the n-th period of free �ight, respectively. The initialization of the kinetic scheme

is given by

1. We start with bounded and integrable initial values u0(x) satisfying �0(x) �
" > 0, T0(x) � " > 0 where " is a constant.

2. We choose a �xed time �M of free �ight, so that the entropy will be maximized

at the equidistant times tn := n�M , n 2 N .

3. We choose one of the two extension laws from the above or any other one that

implies (38).

Scheme 2.5.1

1. At t0 = 0 we de�ne

f(0; x; c) = wM(u0(x); c): (40)

2. We solve the n-th free �ight problem for t = tn + � , 0 < � � �M in three steps

(a) We calculate the boundary density for the incoming particles (c < 0) by

means of free �ight

f
in
n (� ; c) = f

I
n(��c; c): (41)

(b) We use the extension law to determine the boundary density for the out-

going particles (c > 0).

(c) Every macroscopic �eld results as a sum of two integrals, which contain

the initial phase density and the boundary density, respectively:

u(tn + � ; x) := u
I
n(� ; x) + u

B
n (� ; x)

F(tn + � ; x) := F
I
n(� ; x) + F

B
n (� ; x)

h(tn + � ; x) := h
I
n(� ; x) + h

B
n (� ; x)

�(tn + � ; x) := �
I
n(� ; x) + �

B
n (� ; x)

(42)
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with

u
I
n(� ; x) := +

x=�R
�1

m(c)f In(x� �c; c) dc;

u
B
n (� ; x) := +

+1R
x=�

m(c)fBn (� � x=c; c) dc;

F
I
n(� ; x) := +

x=�R
�1

cm(c)f In(x� �c; c) dc;

F
B
n (� ; x) := +

+1R
x=�

cm(c)fBn (� � x=c; c) dc;

h
I
n(� ; x) := �

x=�R
�1

(f In ln f In)(x� �c; c) dc;

h
B
n (� ; x) := �

+1R
x=�

(fBn ln fBn )(� � x=c; c) dc;

�
I
n(� ; x) := �

x=�R
�1

c(f In ln f In)(x� �c; c) dc;

�
B
n (� ; x) := �

+1R
x=�

c(fBn ln fBn )(� � x=c; c) dc:

(43)

3. We proceed with step 3 for n+ 1.

Note that fB and fBn enter the momentum integrals only for c > 0, i.e. only their

part f out is used. In the case of the second extension law from the last section,

step 2b reduces to the calculation of the auxiliary �elds �A and TA by means of the

equations (37).

We call a pentupel (�M ; uf ; Ff ; hf ; �f ) a kinetic approximation. If there is no con-

fusion we omit the index f:

To complete this section we discuss brie�y the case d = 3, where the one dimen-

sional atomic speed c and the space variable x must be replaced by the vectors

c = (c1; c2; c3) and x = (x1; x2; x3) , respectively. However, also in this case we

consider all macroscopic �elds as one dimensional. Certainly, we have to suppose

translational symmetry of the phase density (with respect to x2, x3, c2 and c3) and

therefore translational symmetry of all macroscopic �elds (with respect to x2, x3).

These symmetries allow us to formulate kinetic schemes, including the extension

law, analogously to the case d = 1. Next we list the necessary changes in scheme

2.5.1 under the assumption that we use an extension law with auxiliary �elds. We

write x and c instead of x1 and c1, respectively. Furthermore we use the abbreviation

M(u; c) =m(c)w(u; c) +

�
0; 0; T (u)

�T
w(u; c) (44)

13



in order to replace the equations (43)1-(43)4 by

u
I
n(� ; x) :=

x=�R
�1

M

�
u(tn; x� �c); c

�
dc;

u
B
n (� ; x) :=

+1R
x=�

M

�
u
A(tn + � � x

c
); c

�
dc;

F
I
n(� ; x) :=

x=�R
�1

cM

�
u(tn; x� �c); c

�
dc;

F
B
n (� ; x) :=

+1R
x=�

cM

�
u
A(tn + � � x

c
); c

�
dc:

(45)

At �rst glance the equations (45) and (43)1-(43)4 look totally di�erent. The simple

reason is that, while (43) is valid for any extension law, whereas a special extension

law has already been used in the equations (45). The steps 2a and 2b of the scheme

2.5.1 reduce to the calculation of the auxiliary �elds uA(t), which we determine also

in the case d = 3 by the requirement, that the �uxes of mass and energy and the

auxiliary velocity vA(t) vanish. We obtain after a straight forward calculation the

expressions

v
A(t) = 0; T

A(t) =
1

2

I3(t)

I1(t)
; �

A = �I1(t)

s
2�

TA(t)
; (46)

where I1(t) and I3(t) are components of the vector I(t) = (I1; I2; I3)
T (t) which is

given by

I(tn + �) =

0Z
�1

M

�
u(tn; ��c); c

�
dc: (47)

3 Analytical properties of the kinetic scheme

In this section we derive analytical properties of the scheme 2.5.1. To this end we

restrict the class of admissible extension laws. We only consider so called normal

extension laws and these have the following two properties

1. f out(tn + � ; c) is smooth with respect to c,

2. cif out(tn + � ; c) is integrable with respect to c for i 2 f0; 1; 2; 3g.

3.1 The periods of free �ight

Up to now we have de�ned the periods of free �ight by the intervals tn < tn +

� � tn + �M . In order to remind the reader that the maximization times must be

14



studied separately, we consider in this section only the open intervals (tn; tn + �M).

Furthermore, for shortness we omit the lower index n at uIn, u
B
n and at the other

appearing �elds.

Lemma 3.1.1 Within a period of free �ight the densities u, h and their �uxes F,

� are smooth in space and time and here they satisfy the conservation laws

@tu + @xF = 0 and @th+ @x� = 0: (48)

Proof: We replace in (43) the integration variable c by y = x� �c and s = � � x=c,

respectively. There follows

u
I(� ; x) =

1

�

0Z
�1

m(
x� y

�
)f I(y;

x� y

�
) dy; (49)

u
B(� ; x) =

x

(� � s)2

+1Z
0

m(
x

� � s
)fB(s;

x

� � s
) ds: (50)

The smoothness of the phase densities f I and fB with respect to the atomic speed

c implies the smoothness of u with respect to x and t. The smoothness of h, F and

� follow by a similar argument. In order to prove the equation (48)1 we di�erentiate

formally the �elds u and F with respect to � and x and apply the chain rule to

obtain

@�u
I(tn + � ; x) = +

x=�Z
�1

m(c)@�f
I
n(x� �c; c) dc�

x

� 2
m(

x

�
)f In(0;

x

t
)

= �

x=�Z
�1

cm(c)@xf
I
n(x� �c; c) dc�

x

� 2
m(

x

�
)f

I
n(0;

x

t
);

@�u
B
(tn + � ; x) = +

+1Z
x=�

m(c)@�f
B
n (� � x=c; c) dc+

x

� 2
m(

x

�
)fBn (0;

x

�
);

@xF
I
(tn + � ; x) = +

x=�Z
�1

cm(c)@xf
I
n(x� �c; c) dc+

x

� 2
m(

x

�
)f

I
n(0;

x

t
);
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@xF
B(tn + � ; x) = +

+1Z
x=�

cm(c)@xf
B
n (� � x=c; c) dc�

x

� 2
m(

x

�
)fBn (0;

x

�
)

= �

+1Z
x=�

m(c)@�f
B
n (� � x=c; c) dc�

x

� 2
m(

x

�
)fBn (0;

x

�
) :

There follow the two systems of conservation laws

@�u
I+@xF

I = 0 and @�u
B+@xF

B = 0: (51)

The summation of both systems yields (48)1. The proof of equation (48)2 can be

carried out analogously. Note that the di�erentiations can also be applied rigorously

to the transformed integrals (49) and (50). �

It is important to note that the equations (48)1 do not constitute a local hyperbolic

system for the �elds u, because the �uxes F at (tn + � ; x) depend globally on the

functions u(tn; �).

Remark 3.1.2 Within a period of free �ight the �elds u, h, F and � can be extended

continuously to the boundary x = 0. We obtain in the limit x! 0

u(� ; 0) =

0Z
�1

m(c)f I(��c; c) dc+

+1Z
0

m(c)fB(� ; c) dc; (52)

and analogous results follow for F, h and �.

3.2 The maximization times

In this section we consider an arbitrary but �xed maximization time tn > 0. At �rst

we investigate the properties of the �elds at the inner points (tn; x) with x > 0.

Lemma 3.2.1 Let be x > 0. Then the densities u are continuous at (tn; x) and

the entropy h increases with time, in other words

lim
�!0+

u(tn + � ; x) = lim
�!0+

u(tn � � ; x); lim
�!0+

h(tn + � ; x) � lim
�!0+

h(tn � � ; x) :

(53)
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Proof: We use the equations (15) and the de�nitions (42) and (43), and we obtain

lim
�!0+

u(tn + � ; x) =

+1Z
�1

m(c)wM(u(tn; x) ; c) dc = u(tn; x) ;

lim
�!0+

u(tn � � ; x) =

+1Z
�1

m(c)f(tn; x; c) dc = u(tn; x) :

Analogously we obtain for the entropy density h the limits

lim
�!0+

h(tn + � ; x) =�

+1Z
�1

(wM lnwM)(u(tn; x) ; c) dc;

lim
�!0+

h(tn � � ; x) =�

+1Z
�1

(f ln f)(tn; x; c) dc:

Next we de�ne for an arbitrary c the expressions

a = a(c) := wM(u(tn; x) ; c) and b = b(c) := f(tn; x; c): (54)

If we apply Taylors formula to the function x lnx at the point x = a(c), we obtain

b ln b� a ln a = (1 + ln a)(b� a) +
1

2�
(b� a)

2 � (1 + ln a)(b� a); (55)

where �(c) > 0 is between a(c) and b(c). Since a(c) is a Maxwellian with respect

to c, the function 1 + ln a(c) is a quadratic polynomial with respect to c, i.e.

�(c) = �0 + �1c+
1

2
�2c

2
: (56)

The coe�cients of �(c) depend only on u(tn; x) and we conclude

lim
�!0+

�
h(tn + � ; x) � h(tn � � ; x)

�
=

+1Z
�1

�
b(c) ln b(c)� a(c) ln a(c)

�
dc

�

+1Z
�1

�
1 + ln a(c)

��
b(c)� a(c)

�
dc

= (�0; �1; �2)
T �

+1Z
�1

m(c)

�
b(c)� a(c)

�
dc

= (�0; �1; �2)
T � lim

�!0+

�
u(tn + � ; x) � u(tn � � ; x)

�
:
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We have thus established (53)2. �

The lemma verbally reads: Across the maximization times the densities u are con-

served while the entropy increases. The continuity of the �uxes can obviously not

be expected in general.

Remark 3.2.2 At the maximization times the entropy h as well as the �uxes F and

� become functions of the variables u, e.q.

F(tn; x) = (FÆu)(tn; x); h(tn; x) = (hÆu)(tn; x); �(tn; x) = (�Æu)(tn; x): (57)

The functions F , h and � on the right hand sides are de�ned in (5) and (7).

Proof: The proposition follows immediately from the equations (15). �

Next we shall discuss the behavior of the �elds u at the boundary points (tn; 0) .

For given n 2 N+ we consider the following three limits

u
#

n := lim
"!0+

u(tn; "); u
 

n := lim
�!0+

u(tn + � ; 0); u
!

n := lim
�!0+

u(tn � � ; 0): (58)

The de�nitions (42) and (43) imply immediately the equality

u
#

n = u
!

n : (59)

In order to establish a relation between u#n and u n we regard the beginning of a

period of free �ight, starting with the maximation time tn, see also section 2.3. We

can express u#n and u n as follows

u
#

n =

+1Z
�1

m(c)wM(u
#

n
(0); c) dc; (60)

u
 

n =

0Z
�1

m(c) lim
�!0+

f
in
(tn + �; c) dc+

+1Z
0

m(c) lim
�!0+

f
out

(tn + �; c) dc: (61)

The evaluation of these equations, where we take care for the obvious relation

lim
�!0+

f
in(tn + �; c) = wM(u#

n
(0); c) 8 c < 0; (62)
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reveals that the equality u#n = u
 

n cannot be expected in general. However, if we

assume the continuity condition

lim
�!0+

f
out

(tn + �; 0; c) = wM(u
#

n
(0); c) 8 c > 0 (63)

at each maximization time, we obtain

u
#

n = u
!

n = u
 

n : (64)

Recall that in the current approach, the phase density f out is given by an extension

law. For example, in section 2.4 we discussed the extension law

f
out

(tn + �; c) = wM(u
A
(tn + �); c) 8 c > 0: (65)

Thus the necessary assumption (63) is very natural and identically satis�ed if

lim
�!0+

u
A(tn + �) = u

#

n (66)

holds. This condition implies, that the auxiliary �elds and the boundary �elds

coincide at the maximization times tn > 0.

The condition (63) cannot be guaranteed for any extension law, and we can only

check its validity for each case separately. It is easy to prove, that the extension law

(32) satisfy this condition. In the case of the extension law with auxiliary �elds uA

this condition can be established by using the algebraic equations (35)3 and (37).

This check will be carried out in section 5.1. Extension laws are called regular, if

they are normal and if they satisfy additionally the condition (63).

3.3 The complete scheme

In this section we derive properties of the kinetic procedure during a time period

that contains several maximization times. In particular we summarize the complete

scheme for the half space problem with the non-moving wall at x = 0.

Lemma 3.3.1 Let 
 be a bounded domain in R+�R+ with a smooth boundary @
.

We denote the positive oriented surface element of @
 by d�. Then there hold the

weak conservation law and the weak entropy inequalityZ
@


(u; F) d� = 0;

Z
@


(h; �) d� � 0: (67)
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Sketch of the proof: We divide 
 into subdomains


n :=

n
(t; x) 2 
 : tn < t � tn+1

o
; n = 0; 1; ::: (68)

Since 
 is bounded, only a �nite number of these subdomains are not empty. With-

out any restriction we consider only the �rst two subdomains, viz. 
 = 
0 [ 
1.

Furthermore we de�ne

� :=

n
(t1; x) 2 


o
; (69)

and we de�ne for positive " < 1
2
�M the substructure


"
M :=

n
(t; x) 2 
 : t1 � " � t < t1 + "

o
; 
"

L := 
0 n
"
; 
"

R := 
1 n
"
: (70)

This decomposition of 
 is visualized in the following �gure.

x

tt1 � " t1 t1 + "


"
L


"
R


"
M


"
M

�

@


Figure 2: The decomposition of 


Recall lemma 3.1.1, which states the conservation law (48)1 in 
"
L and in 
"

R and

implies hereZ
@


(u; F) d� =

Z
@
"

L

(u; F) d� +

Z
@
"

M

(u; F) d� +

Z
@
"

R

(u; F) d� =

Z
@
"

M

(u; F) d�:

(71)

We conclude thatZ
@


(u; F) d� = lim
"!0

Z
@
"

M

(u; F) d� =

Z
�

lim
"!0

�
u(t1 + "; x) � u(t1 � "; x)

�
dx:

The last integral vanishes due to the continuity of u in the points (t1; �) and this

proves (67)1. By similar arguments we obtainZ
@


(h; �) d� =

Z
�

lim
"!0

�
h(t1 + "; x) � h(t1 � "; x)

�
dx: (73)

Lemma 3.2.1 yields the positivity of the right hand side as it is stated in (67)2. �
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3.4 The limit �M ! 0

Up to now we are not able to give a rigorous mathematical proof of the convergence

of the kinetic scheme 2.5.1 in the limit �M ! 0. However, we have observed the

convergence in various numerical tests, at least for reasonable initial data, boundary

values and extension laws. On the other hand, if we assume convergence, then we

can prove that the limit functions establish solutions of the Euler system. In other

words:

Lemma 3.4.1 Let (�nM ; u
n
; F

n
; h

n
; �

n) be a sequence of kinetic approximations

with �
n
M ! 0 and let (u; F; h; �) be limit functions, such that

u
n ! u; F

n ! F; h
n ! h; �

n ! � (74)

for n!1 in L
1
loc(R+ � R+ ; R

3). Then there holds:

1. The entropy h and the �uxes F,  become local function of u, i.e.

F = FÆu; h = hÆu; � = �Æu: (75)

2. The following weak conservation law and the weak entropy condition are sat-

is�ed: Z
R+�R+

u@t + u@x = 0;

Z
R+�R+

h@t +  @x � 0; (76)

where  denotes any smooth function with compact support in R+ � R+ . Re-

garding the entropy inequality we have to require that the test function  sat-

is�es in addition  � 0.

It is important to note that the convergence at the boundary is a crucial point

which is intimately related to the choice of appropriate continuity conditions for

the extension law. Numerical tests have lead We state the conjecture, that only

regular extension laws will lead to convergent schemes. This is supported by several

numerical tests.

4 Discussion of two moving boundaries

In this section we generalize the kinetic scheme 2.5.1 to two moving boundaries.

In particular we will demonstrate that moving boundaries, a case that was already
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Figure 3: micro characteristics related to inner points and to points at the boundary

described in [8] by means of re�ection laws, can also be described by extension laws.

In what follows we consider a lower and an upper boundary given by the piecewice

smooth paths xBL (t) and x
B
U (t), respectively. Thus we are seeking for solutions of the

Euler system in the domain


 :=

n
(t; x) : t � 0; xBL (t) � x � x

B
U (t)

o
: (77)

Since there are now at every time t two boundary points, (t; xBL (t)) and (t; xBU (t));

there are also two boundary densities fBL (t) and fBU (t). Both functions will be decom-

posed into parts indicating incoming and outgoing particles. The boundary speeds

_xBL (t) and _xBU (t) determine whether any particle with atomic speed c is incoming or

outgoing. Especially there are the obvious indications

f
B
L (t; c) =

n
f
in
L (t; c) for c < _xBL (t);

f
out
L (t; c) for c > _xBL (t);

(78)

f
B
U (t; c) =

n
f
in
U (t; c) for c > _xBU (t);

f
out
U (t; c) for c < _xBU (t):

(79)

Next we discuss the free �ight problem in 
. It is su�cient to consider the �rst pe-

riod of free �ight. At �rst we �x an inner point (� ; x) . According to the reasoning

from the above we can express the phase density f(� ; x; c) by means of the initial

phase density f I and the by the boundary densities fBL and fBU at former times (see

the non-dashed micro characteristics in Figure 3). Let us consider a micro char-

acteristic with atomic speed c which starts in (� ; x) and intersects the boundary

point (� 0; x0)with � 0 < � which might belong to the upper or to the lower boundary.
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We read o� from equations (78) and (79) that c is the atomic speed of an outgoing

particle with respect to (� 0; x0) .

We consider now a point (� ; xBU (�)) of the upper boundary. For incoming particles

with atomic speed c we can determine the boundary density fBU (� ; c) = f
in
U (� ; c)

by means of free �ight (see the dashed lines in Figure 3). The boundary density for

outgoing particles cannot be determined by means of free �ight, obviously it must

again be determined by an extension law. In the next section we will study some

extension laws for moving boundaries.

Note that the case of two walls which additionally might move is in some aspects

much more di�cult as the former case of a single non-moving wall. For a given

extension law, the boundary density of the former case is completely given by the

initial phase density. Here, however, in the case of two walls, a boundary density

is determined by the initial phase density and by two boundary densities at former

times.

Nevertheless, a kinetic scheme can be formulated in an analogous manner as in 2.5.1,

although a rigorous formulation becomes more complicate. We mention that every

lemmas in section 5 can be generalized to the case of two moving boundaries.

Fortunately, for the practical application to solve a hyperbolic system with ini-

tial and boundary data, the study a single boundary does not mean a restriction,

because for a su�ciently small time step in the kinetic scheme there is only a local

in�uence from each boundary, and the boundaries may be treated separately. For

many applications boundaries is described by polygons, which is linear between two

subsequent maximization times.

5 Further examples of extension laws

In this section we continue the discussion of those extension laws that rely on aux-

iliary �elds.

5.1 Moving adiabatic walls

We consider a single adiabatic wall. Its motion is given by a smooth path xB(t) and

the gas is located above the wall. For the following purposes it is not important
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whether there is a second wall. Thus we are looking for solutions in the domain


 =

n
(t; x) : t � 0; x � x

B
(t)

o
: (80)

We choose the macroscopic boundary condition

v(t; xB(t)) = _xB(t): (81)

There are two interesting cases of moving adiabatic walls

1. Driven adiabatic walls with a given path xB (t).

2. Free adiabatic walls which are subjected to an external force F (t) and to the

gas pressure. In this case the path xB(t) is also unknown.

The gas pressure gives rise to a force on the wall which we denote by �K(t): A

simple calculation of the temporal development of the total mass, the total moment

and the total energy yields the equations

+1Z
�1

�
c� _xB(t)

�
f
B(t; c) dc = 0; (82)

+1Z
�1

c

�
c� _xB(t)

�
f
B(t; c) dc = K(t); (83)

+1Z
�1

1

2
c
2
�
c� _x

B
(t)

�
f
B
(t; c) dc = K(t) _x

B
(t): (84)

Note that these equations hold for any Euler-solution which satisfy (81). However,

here these equations serve as conditions for the auxiliary �elds.

At time t the micro characteristics with atomic speed c < _xB(t) and c > _xB(t)

correspond to incoming and outgoing particles, respectively. Recall that the parts

of the integrals that correspond to incoming particles are known and we abbreviate

these, as before, by I(t) = (I1; I2; I3)
T (t) with

I(t) =

_xB(t)Z
�1

�
c� _xB(t)

�
m

�
c� _xB(t)

�
f
I(t; c) dc: (85)
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Thus we can rewrite the equations (82)-(84) as

+1Z
_xB(t)

�
c� _x

B
(t)

�
f
out

(t; c) dc = �I1(t); (86)

+1Z
_xB(t)

�
c� _xB(t)

�2
f
out(t; c) dc = K(t)� I2(t); (87)

+1Z
_xB(t)

1

2

�
c� _xB(t)

�3
f
out(t; c) dc = �I3(t): (88)

We can interpret the centered moments in the equations (82)-(84) as moments mea-

sured by an observer which moves with the wall. The �uxes of mass and energy are

zero for this observer. Thus he meets the same situation as in the case of non-moving

walls. For this reason it is obvious to choose

v
A(t) = _xB(t): (89)

The resulting algebraic equations for the other auxiliary �elds are the same as before,

and they read

T
A
(t) =

I3(t)

I1(t)
; �

A
(t) = �I1(t)

s
2�

TA(t)
: (90)

These equations guarantee again the positivity of TA(t) and �A(t). However, there

is an important di�erence between (90) and (37). If the wall is at rest (or moves

with constant velocity) the integrals Ii at time t depend only on the �elds u calcu-

lated at the previous maximization time. For time dependent velocities _xB(t) the

integrals Ii depend in addition on the auxiliary �elds at former times. Nevertheless,

the formulas (90) become explicit if we assume that all data for times t0<t are given.

In the case of a free adiabatic wall, there remains the determination of the path

x
B(t), which follows from Newtons law for the wall with the mass M

M �xB(t) = F (t)�K(t): (91)

Here we replace the gas force K(t) by (87) and obtain

M �x(t) = F (t)� I2(t)�

+1Z
_xB(t)

�
c� _x

B
(t)

�2
f
out

(t; c) dc = F (t)� I2(t)�
1

2
�
A
(t)T

A
(t):

(92)
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There remains to prove that the extension law (89), (90) guarantees the continuity

of the boundary �elds u
�
t; x

B (t)
�
across the maximization times. In section 3.2

we have called an extension law with this property a regular extension law. In an

analogous manner to the procedure in section 3.2, we consider at the time tn > 0

the one-sided limits

u
#

n := lim
"!0+

u(tn; x
B(tn) + ") ; u

 

n := lim
�!0+

u(tn + � ; x
B(tn + �)) ;

u
!

n := lim
�!0+

u(tn � � ; x
B(tn + �)) :

(93)

As before it can be shown that u!n = u
#

n. Furthermore we �nd by means of (89)

the equality v n = v
!

n = _xB(tn) and we conclude v#n = _xB(tn). Next we use the

identity lim
�!0+

f
in(tn + � ; c) = wM(u#n; c) and de�nition (85) in order to calculate

lim
�!0+

I(tn + �). We obtain

lim
�!0+

I1(tn + �) = �
#

n

s
T
#

n

2�
; lim

�!0+
I3(tn + �) = �

#

nT
#

n

s
T
#

n

2�
; (94)

which implies

lim
�!0+

�
A(tn + �) = �

#

n; lim
�!0+

T
A(tn + �) = T

#

n : (95)

Finally there follows

u
 =

1Z
�1

m(c)wM(u#n; c) dc = u
#

n = u
!

n : (96)

Similar formulas for the auxiliary �elds and the force K can be derived in the case

d = 3. Analagously to the equations (46) and (47) we �nd for a lower adiabatic wall

that moves with speed _xB(t) the expressions

v
A(t) = _xB(t); T

A(t) =
1

2

I3(t)

I1(t)
; �

A(t) = �I1(t)

s
2�

TA(t)
(97)

and

K(T ) = I2(t)�
1

2
�
A(t)TA(t); (98)

where I(t) = (I1; I2; I3)
T (t) are the corresponding centered moment integrals of

f
in(t; xB(t)) . It can be shown again, that this extension law guarantees the conti-

nuity of the boundary �elds across the maximization times.

An upper adiabatic wall can be treated analogously to the case of a lower adia-

batic wall.
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5.2 Periodic boundary conditions

In this section we will study a further example of an extension law with auxiliary

�elds that will be applied to spatial periodic boundary conditions. To this end we

consider the domain


 :=

n
(t; x) : t � 0; �L � x � L

o
; (99)

where L > 0 is a given constant. We consider the Euler system for the initial and

boundary value problem

u(0; x) = u0(x); u(t; +L) = u(t; �L): (100)

We denote the common boundary values by uB and �
B, vB, TB, respectively. In

the following it is su�cient to consider only one single period of free �ight, say the

n-th period with �xed n 2 N . Regarding the initial and boundary phase densities,

we introduce for 0 < � < �M the abbreviations

f
I
(x; c) := f(tn; x; c) ; f

B
�
(� ; c) := f(tn + � ; �L; c); (101)

where the lower index n has been omitted on the left hand sides. Thus we can

rewrite the boundary condition (100) as

u
B(tn + � ; �L) =

0Z
�1

m(c)f in
�
(� ; c) dc+

+1Z
0

m(c)f out
�

(� ; c) dc; (102)

u
B(tn + � ; L) =

0Z
�1

m(c)f out+ (� ; c) dc+

+1Z
0

m(c)f in+ (� ; c) dc: (103)

Next we will formulate the extension law at time tn+ � . To this end we assume that

we already know the boundary densities fB
�
and fB+ for all times tn+ �

0 with � 0 < � .

Thus we can calculate by means of free �ight the integrals

I�(�) :=

0Z
�1

m(c)f
in
�
(� ; c) dc; I+(�) :=

+1Z
0

m(c)f
in
+ (� ; c) dc: (104)

We assume now that f out
�

and f
out
+ at time � are given by a Maxwellian with

respect to the auxiliary �elds uA(�) and put

+1Z
�1

m(c)wM(uA(�); c) dc = I�(�) + I+(�) =: I(�); (105)
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where the components of the vector I(�) are denoted by Ii(�) with i = 1; 2; 3. The

evaluation of (105) yields the algebraic equations

�
A(�) = I1(�); v

A(�) =
I2(�)

I1(�)
; T

A(�) = 2
I3(�)

I1(�)
�
I2(�)

2

I1(�)
2
: (106)

Note that, f out+ (�) as well as f out
�

(�) are assumed to be Maxwellians with respect

to the same auxiliary �elds uA(�).

If we apply similar arguments to the case d = 3, we are led to the following ex-

tension law

�
A(�) = I1(�); v

A(�) =
I2(�)

I1(�)
; T

A(�) =
2

3

I3(�)

I1(�)
�

1

3

I2(�)
2

I1(�)
2
: (107)

6 Numerical examples

For an illustration of the main result of this paper, we consider now some numerical

examples. We choose d = 3. The applied extension laws were derived in the sections

2.4 and 5 and they all rely on auxiliary �elds.

Since all kinetic schemes and extension laws from the latter sections are not dis-

cretized with respect to the space variable x and the atomic speed c, we shall resume

brie�y the numerical implementation. We mention that the construction of e�ective

numerical algorithms is not among the objectives of this paper.

The initial data u0(x) corresponding to �0(x), v0(x) and T0(x) of all examples are

given in a space interval [0; Lx] . The number of entropy maximization within the

total time interval Lt is denoted by NM . The length of any period of free �ight is

thus Lt=NM . For a given maximization time tn we divide the space interval into Nx

subintervals of equal length. The length of the space interval at time tn depends in

general on tn according to the positions of the boundaries at time tn. In order to

calculate the auxiliary �elds, every period of free �ight will be decomposed into fur-

ther NA subintervals. To evaluate the moment integrals we apply the Simpson rule

with respect to Nc integration nodes and a su�cient large domain of integration.

The phase density at the current integration nodes is obtained by interpolation of

the data from the proceeding maximization time and from the time grids at the

boundaries.
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As a �rst example we consider a single shock which is re�ected by an adiabatic

wall at x = 0. The initial data are given by u0(x) = u� for x < 3
2
and u0(x) = u+

for x >
3
2
with �� = 2

3
, v� = 0, T� = 3

4
, �+ = 1, v+ = �1

2
, T+ = 1. This is a

Riemann problem which can be solved analytically (see [18]). The discontinuity of

the initial data creates a 1-shock that propagates with the speed �3
2
. The shock

will reach the wall at time t = 1, which leads to a re�ection. After the re�ection

a 3-shock arises. It propagates with the speed 7
6
and connects the state u+ to the

state u? given by �? = 10
7
, v? = 0 and T? =

77
60
. Figure 4 shows a numerical solution

for the parameters Lx = 2, Lt =
13
7
, Nx = 2000, NM = 1000, NA = 40, Nc = 3000.

There is a good agreement between the calculated values and the theoretical values

for u? and the shock speeds, respectively. Note that for shocks the angle of incidence

is not equal to the angle of re�ection.

The evolution of a gas in a cylinder with two adiabatic walls is shown in Figure
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I
T
I
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TEMPERATURE

Figure 4: Re�ection of a shock wave on an adiabatic wall

5. Here the lower wall is at rest while the upper wall is driven along the given path

x
U(t) = 3

4
(t � 2)2 + 1. The parameters of the solution are �0(x) = 4, v0(x) = 0,

T0(x) = 1, Lx = 4, Lt = 2, Nx = 800, NM = 800, NA = 20, Nc = 2000.

Next we consider a gas in cylinder wich is closed by a free upper adiabatic wall

and a lower adiabatic wall at rest. The upper wall has the mass M = 1, and it is

subjected to the gas pressure and additionally to a constant external force F = 3.

Figure 6 shows the solution for the parameters �0(x) = 1
4
, v0(x) = 0, T0(x) = 4,

Lx = 4, Lt = 32, Nx = 800, NM = 3200, NA = 20, Nc = 2000. We conclude from

space time diagram of Figure 6 that the motion of the upper wall is irreversible.

Irreversibility comes exclusively into to play due to the appearance of shocks.
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Figure 5: Driven adiabatic walls

Finally we consider the case of periodic boundary conditions in a �xed spacial re-

TIME

P
O
S
I
T
I
O
N

MASS DENSITY

TIME

P
O
S
I
T
I
O
N

VELOCITY

TIME

P
O
S
I
T
I
O
N

TEMPERATURE

Figure 6: A free adiabatic wall

gion with length Lx = 4. The Riemann initial data u0(x) = u� for x < 2 and

u0(x) = u+ for x > 2 are given by �� = 1, v� = 0, T� = 1, �+ = 3
2
, v+ = �1

3

p
3,

T+ = 4
3
. The evolution of this �elds, which is displayed in Figure 7, corresponds to

the parameters Lt = 4, Nx = 800, NM = 800, NA = 20, Nc = 2000.

7 Conclusions and perspectives

The study of the Euler system has revealed that a kinetic solution of a hyperbolic

initial and boundary value problem requires appropriate extension laws for the phase

density at the boundaries. The incorporation of boundary data and extension laws

leads to a generalization of the kinetic scheme presented in [7] for the pure initial

value problem.

In this paper we have solved the Euler system for adiabatic boundary conditions,
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Figure 7: Periodic boundary conditions

and to this end we have introduced two kinds of extension laws, namely the re�ection

law, that was already studied in [8], and a second method that uses auxiliary �elds

at the boundaries. While the second method may also work for some non-adiabatic

boundary conditions, in this respect we refer the reader to the phonon Bose gas

studied in [10] and [11], the re�ection method is only useful in order to simulate the

re�ection of particles at adiabatic boundaries.

For the further illustration of extension laws with auxiliary �elds, we have solved

the Euler system for periodic boundary conditions.

In this study we were lead to the conjecture that regular extension laws, which pro-

vide continuity for the �elds at the boundaries, play an important role in order to

achieve convergence of the kinetic schemes. Despite the fact that we could not prove

convergence, we have rigorous results for the kinetic schemes itself, namely the weak

form of the conservation laws and of the entropy inequality, regularity results and

continuity conditions at the boundaries for the �elds de�ned by the kinetic scheme.

Numerical solutions with shock structures exhibit additionally the importance of

regular extension laws.

In his textbook [3], Cercignani discusses so called stochastical re�ection laws.

This might be an appropriate example for the construction of a further extension

law. However, this task is left to the future.

Likewise important for future studies is the generalization to more than one space

dimension, involving boundaries with a more complicated geometry. Regarding the

evaluation of the integrals appearing in the kinitec scheme, the numerical e�ciency

should be improved. For example we mention here the grid re�nement techniques,

described by Kröner in [14], and the integration method that uses Gaussian in-

tegration nodes, introduced in [9].
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