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Abstract

This paper is concerned with a phase �eld system of Penrose�Fife type for a

non�conserved order parameter � with a kinetic relaxation coe�cient depending on

the gradient of �. This system can be used to model the dendritic solidi�cation of

liquids. A time discrete scheme for an initial�boundary value problem to this system

is presented. By proving the convergence of this scheme, the existence of a solution

to the problem is shown.

1 Introduction

A class of phase��eld systems modeling the dynamics of di�usive phase transitions has

been derived by Penrose and Fife in [34]. Dealing with a non�conserved order parameter,

one of these systems is generalized to the following form:

c0�t + �
0(�)�t + �rq = g; q = �r

�
1

�

�
; (1.1)

�(r�)�t � "��+ s
0(�) = �

�
0(�)

�
: (1.2)

In this system an energy balance (1.1) is coupled with an evolution equation (1.2) for the

order parameter �. These equations determine the evolution of the absolute temperature

� and the order parameter. Here, c0 is the speci�c heat and � is the thermal conductivity,

both supposed to be positive constants. The heat �ux q = �r1
�
= � �

�2
r� considered

in (1.1) does not to correspond to the classical Fourier law, but to a Fourier law with a

temperature dependent thermal conductivity �

�2
. A heat �ux of this form is considered

in a number of papers dealing with Penrose�Fife systems. The function �0(�) represents

the latent heat of the phase transition, and the datum g represents heat sources or sinks.

Moreover, � stands for a kinetic relaxation coe�cient, depending on the gradient of the

order parameter, the positive constant " is a relaxation coe�cient, representing the energy

of the phase interfaces, and s0 is the derivative of some potential on R.

In the context of a solid�liquid phase transition with a critical temperature �C , one typi-

cally has a quadratic or linear function � and the potential s(r) is the sum of
�(r)

�C
and the

double well potential � (r2 � 1)
2
with some positive constant �. To ensure that the order

parameter attains only values in the interval [�1; 1], also the double obstacle potential

I[�1;1](r)+�(1�r
2), with I[�1;1] being the indicator function of the interval [�1; 1], is used

instead of of the double well potential .
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In this work, the existence of a solution to an initial�boundary value problem for the

Penrose�Fife system (1.1)�(1.2) is proved by considering a time discrete scheme and prov-

ing the convergence of the scheme.

The Penrose�Fife system with a constant kinetic relaxation parameter � has been inves-

tigated in a number of papers, for example in [14, 20, 21, 22, 23, 24, 26, 29, 30, 36, 39],

and, for more general heat �ux laws, in [9, 10, 12, 31]. In [25, 27, 28], the numerical ap-

proximation of Penrose�Fife systems with a space depending kinetic relaxation parameter

� has been considered.

To the knowledge of the author, a dependence of this kinetic relaxation parameter on the

gradient of the order parameter has not been taken into account before in the context of

a Penrose�Fife system. This form of the kinetic relaxation parameter � allows to model

the evolution of a phase interface with a direction dependent kinetic mobility, i.e., a phase

interface whose normal velocity depends on orientation of the phase interface. This can be

used to model the dendritic solidi�cation of liquids. For the standard phase �eld system

(c.f., [6]), i.e., the system (1.1), (1.2) with �
0(�) � L for some constant L > 0 and 1

�

replaced by ��, this has already been done, see, e.g., in [7, 16].

If only the equation (1.2) with a given right�hand side and s equal to the double well or

the double obstacle potential is considered, one is dealing with the Allen�Cahn equation

or the double�obstacle Allen�Cahn equation, respectively. In these models, one does not

take into account the latent heat of the phase transitions. The double�obstacle Allen�

Cahn equation with a kinetic relaxation parameter � depending on the direction of r� is

considered in [17, 18, 19].

To deal with non�smooth potentials, the potential is split in the form s(r) = �(r)� �(r),

where � represents the convex, maybe not smooth, part of the potential, and � is a di�er-

entiable function, such that �� can represent the non�convex part of the potential. Now,

in (1.2), s0(�) is replaced by � � �
0(�), where � is a representation of the subdi�erential

@� of �.

The layout of this paper is as follows: In Section 2, two formulations of the consid-

ered initial�boundary value problem for phase��eld system with corresponding existence

results are presented. In Section 3, the time�discrete scheme is introduced and the ap-

proximation results are shown. The remaining sections are dealing with the proof of the

results.

2 The Phase�Field system

In this section, an initial�boundary value problem for the phase �eld system of Penrose�

Fife type is investigated. It will be considered on a bounded, open domain 
 � R
N with

N 2 f2; 3g and a smooth boundary � = @
. Let 
T := 
� (0; T ) and �T := �� (0; T ),

where T > 0 stands for a �nal time.

First, the boundary condition for the temperature is derived. Afterwards, a precise for-

mulation of the initial�boundary value problem and a corresponding existence result are
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presented. Since this existence result can not be applied for some important versions of

the Penrose�Fife system, a second existence result for a weaker formulation of the initial�

boundary value problem is presented in Section 2.4, which requires to introduce before

a way to deal with 1
�
if � is not a function on 
 but only a functional on some function

space on 
.

2.1 Boundary condition for the temperature

On the boundary �, a heat exchange with an external environment at temperature �ext
is considered. For an energy balance with a heat �ux q satisfying the Fourier law with

a constant thermal conductivity �Four > 0, i.e., q = ��Fourr�, this is modeled by the

boundary condition

��Four

@�

@n
= Four (� � �ext) ; (2.1)

where Four is some positive constant and n is the outward unit normal to �.

Now, the derivation of this boundary condition as in [37] is adapted to deal with more

general heat �uxes. To avoid technicalities, this derivation is presented in a one dimen-

sional, time independent setup. Hence, we consider a temperature �eld � on an interval

(x0; x1).

The external temperature �ext(x1) considered on the right�hand side x1 of the interval

does not correspond to a physical temperature of the environment in the point x1, but

to the temperature on the right�hand side of some interface region on the right�hand

side of x1, wherein the physical temperature changes continuously its value from �(x1) to

�ext(x1).

We assume that the interfaces region has the thickness Æ > 0. Hence, we can extend the

temperature �eld � continuously to [x0; x1 + Æ] such that

�(x1 + Æ) = �ext(x1): (2.2)

Since the heat �ux is continuous across @(x0; x1), we get for the heat �ux qinter in the

interface region, i.e., in 
inter := (x1; x1 + Æ), and the heat �ux q in (x0; x1):

q(x1) = qinter(x1):

Assuming that the heat �ux stays constant inside the interfaces region, we get

q(x1) = qinter(x1 + �); 8 0 � � � Æ: (2.3)

In the derivation of the boundary condition for a heat �ux satisfying the Fourier law as

in [37], we have q = ��Four

@�

@x
and it is assumed that the heat �ux in 
inter is of the same

form, i.e., qinter = ��inter

@�

@x
with some constant �inter > 0. Hence, for 0 � � � Æ, (2.3)

yields that

��Four

@�

@x
(x1) = q(x1) = ��inter

@�

@x
(x1 + �):
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Therefore, (2.2) implies that

�Æ�Four

@�

@x
(x1) = ��inter

x1+ÆZ
x1

@�

@x
(�) d� = ��inter (�ext(x1)� �(x1)) :

Performing an analogous calculation also for the left�hand side of the interval, we �nd

that (2.1) holds on @(x0; x1) with Four :=
�inter
Æ

.

To derive the boundary condition for (1.1), we consider in (x0; x1) the corresponding heat

�ux q = �
@

@x

�
1
�

�
and in 
inter a heat �ux of the same form, i.e., we have qinter = �inter

@

@x

�
1
�

�
with some positive constant �inter. Therefore, (2.3) yields that

�
@(1=�)

@x
(x1) = q(x1) = �inter

@(1=�)

@x
(x1 + �); 8 0 � � � Æ:

Hence, considering the integral over [x1; x1 + Æ] and using (2.2), we observe that

Æ�
@(1=�)

@x
(x1) = �inter

�
1

�ext(x1)
�

1

�(x1)

�
:

De�ning  :=
�inter
Æ

and performing an analogous calculation also for the left�hand side of

the interval, we get on @(x0; x1):

�
@(1=�)

@n
= 

�
1

�ext
�

1

�

�
: (2.4)

Hence, we have shown that the boundary condition (2.4) has a proper physical meaning

for the heat �ux considered in (1.1). To the knowledge of the author, this has not been

pointed out until now, even if this boundary condition has already been used in a number

of papers dealing with Penrose�Fife systems, see, e.g., [12, 25, 26, 27, 28]. For heat �uxes

of the more general form q = �r�(�), with a function � : (0;1)! R, the corresponding

generalized version of this boundary condition, i.e.,

�
@�(�)

@n
=  (�(�ext)� �(�)) ; (2.5)

has been used in [9, 10, 14, 23, 24] without discussing their physical meaning. Perform the

same computations as above with 1=(�) replaced by �(�), we see that also this boundary

condition models the heat exchange through a thin interface surrounding the considered

domain, with a heat �ux inside this interface that is of the same form as the considered

heat �ux in the domain. The same holds for the boundary condition used in [12] for a

heat �ux with thermal memory, i.e., a heat �ux depending also on former values of the

temperature �.

Considering (2.4) on �T and de�ning � : �T ! R by � := 
1

�ext
, we get the boundary

condition that is used in this work.
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2.2 The phase��eld system

We consider now the following initial�boundary value problem for the phase �eld system

of Penrose�Fife type:

(PF): Find (�; u; �; �) ful�lling

� 2 H1
(0; T ;H

1
(
)

�
) \ L

1
(0; T ;L

2
(
)); u 2 L2

(0; T ;H
1
(
)); (2.6a)

� 2 H1
(0; T ;L

2
(
)) \ L

2
(0; T ;H

2
(
)); � 2 L2

(0; T ;L
2
(
)); (2.6b)

� > 0; u =
1

�
; � 2 D(�); � 2 �(�); a.e. in 
T ; (2.6c)

hc0�t(t) + �
0(�(t))�t(t); viH1(
)��H1(
) � �

Z



ru(t) � rv dx � 

Z
�

u(t)v d�

=

Z



g(t)v dx �

Z
�

�(t)v d� ; 8 v 2 H1
(
); for a.e. t 2 (0; T );

(2.6d)

�(r�)�t � "��+ � � �
0(�) = ��0(�)u; a.e. in 
T ; (2.6e)

@�

@n
= 0; a.e. in �T ; (2.6f)

�(�; 0) = �
0
; in V

�
; �(�; 0) = �

0
; a.e. in 
: (2.6g)

For dealing with this system, the following assumptions will be used:

(A1): Let � be a maximal monotone graph on R and � : R ! [0;1] a convex, lower

semicontinuous function satisfying

� = @�; 0 2 D(�); 0 2 �(0); int D(�) 6= ;:

(A2): There are positive constants �fac; �
0
fac
; �
00
sup; �

00
sup such that

� 2 W
2;1
loc

(R); � 2 W
2;1
loc

(R);

��(s) � �fac(�(s) + 1); (�0(s))
2
� �

0

fac
(�(s) + 1); 8 s 2 D(�);

j�00(s)j � �
00

sup; j�00(s)j � �
00

sup; for a.e. s 2 R:

(A3): We have

g 2 L2
(0; T ;L

2
(
));

� 2 L2(0; T ;H
1
2 (�)); � � 0; a.e. in �T :

(A4) We consider initial data �0 2 L2(
), �0 2 H2(
), such that

�(�0) 2 L1(
); �
0
> 0; �

0 2 D(�); a.e. in 
:

(A5): We have positive constants �inf ; �sup such that the function � : RN ! [�inf ; �sup] is

continuous on RN .
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(A6): We have a positive constant �0sup such that

j�0(s)j � �
0

sup; 8 s 2 D(�):

We have the following existence result

Theorem 2.1. Assume that (A1)�(A6) hold. Then there is a solution (�; u; �; �) to the

Penrose�Fife system (PF).

Remark 2.1. For a quadratic �, the assumption (A6) is only satis�ed if D(�) is bounded.

This is the case for the double obstacle potential, but not for the double well potential.

For dealing with this situation, one has to consider the existence result presented in

Theorem 2.2.
Remark 2.2. Similar to the existence result for a standard phase �eld system with a

kinetic relaxation parameter depending on the gradient of the order parameter in [8],

no uniqueness result is known for the solution to (PF).
Remark 2.3. If one starts to model the evolution of a phase interface with a kinetic

mobility term depending on orientation of the interface, one would like to use a kinetic

relaxation parameter � which depends only on the direction of r�, and has therefore

a discontinuity in 0, but neither one of the theorem in this section or Theorem 3.2,

apply to this situation.

By extending the concept of Lp(
)�viscosity solution as in [5] with considerations

similar to Chapter 9 in [13], we get a Lp(
)�viscosity solution formulation for (2.6e),

which is also valid if u and � are not continuous. But, also in this formulation, � has to

be continuous on 
T , and this does not even hold for the solution to the Penrose�Fife

system (PF) with continuous � derived in Theorem 2.1.

2.3 New formulation to deal with 1

�

To prepare the weak formulation of the Penrose�Fife system, the compatibility condition

between � and u has to be replaced by a weaker one, which can also be applied if �(t) is not

function on 
 but only a functional in H1(
)
�
. For ~u and ~� in L2(
), the conditions ~� > 0

and ~u = 1
~�
a.e. on 
 are equivalent to �~u 2 @j0(~�) in L

2(
), where j0 : L
2(
) 7! R[f1g

is the L2(
)�representation of the convex function � ln(�) : (0;1)! R, i.e., we have for

 2 L2(
)

j0( ) :=

8<:
R



� ln( (x)) dx ; if  > 0 a.e. in 
 and ln( (�)) 2 L
1(
);

+1; otherwise:
(2.7)

In [14, 15, 23], Damlamian, Kenmochi, and Kubo extend this function to a function on

H
1(
)

�
and replace the L2(
)�compatibility condition between � and u by a condition

in this space. Following their formulation, we denote by V the Hilbert space, arising by

considering H1(
) with the inner product (�; �)
V
de�ned by

(w; v)
V
= �

Z



rw � rv dx + 

Z
�

wv d� ; 8w; v 2 H1(
); (2.8)
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and the corresponding norm k�k
V
. Thanks to the trace theorem and Poincaré's inequality,

we see that the norms k�k
V
and k�k

H1(
) are equivalent. Hence, V
� can be identi�ed with

H
1(
)

�
and the H1(
)

�
�norm is equivalent to the induced norm k�k

V �
on V

� as dual

space of V .

Let F : V ! V
� be the duality mapping:

hFw; vi
V ��V

= (w; v)
V
; 8w; v 2 V: (2.9)

We see that V � is a Hilbert space with the inner product (�; �)
�

(w; v)
�
:=


w; F

�1
v
�
V ��V

=
�
F
�1
w; F

�1
v
�
V
; v; w 2 V �; (2.10)

satisfying

kfk
V �

=
p

(f; f)� =
F�1f

V
; 8 f 2 V �: (2.11)

Now, j0 is extended to work on the whole V
� by considering the corresponding ��

regularization j of j0 on V
�, i.e., we have

j(w) = inf
�
lim inf
n!1

j0(zn) : (zn)n2N � L
2(
); zn ! z in V �

	
; 8w 2 V �

: (2.12)

We have, see [15, Theorem 1.5, Corollary 1.6] with @�j denoting the subdi�erential of j

in the Hilbert space V �:

Lemma 2.1. With the above de�nitions hold:

1. j = j0 on L
2(
).

2. For ~� 2 L2(
):

~� 2 D(@�j) , ~� > 0 a.e. in 
 and 9 ~u 2 H1(
) : ~u =
1

~�
; a.e. in 
: (2.13)

3. For ~� 2 L2(
) \ D(@�j):

@�j(
~�) = f�F ~ug ; with ~u as in (2.13):

2.4 Weak formulation of the Penrose�Fife system

Now, we can de�ne the weak formulation (PF)
�
of phase �eld system of Penrose�Fife

type.

(PF)
�
: Find (�; u; �; �) ful�lling (2.6b), (2.6d)�(2.6g), and

� 2 H
1
(0; T ;V

�
); u 2 L2

(0; T ;V ); (2.14a)

�Fu(t) 2 @�j(�(t)) in V
�
; for a.e. t 2 (0; T ); (2.14b)

� 2 D(�); � 2 �(�); a.e. in 
T : (2.14c)
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Remark 2.4. We see that every solution to the Penrose�Fife system (PF) is also a solution
to the Penrose�Fife system in the weak formulation (PF)

�
. On the other hand, Lemma

2.1 yields that a solution to the Penrose�Fife system in the weak formulation (PF)
�

with � 2 L1(0; T ;L2(
)) is also a solution to the Penrose�Fife system (PF).

We have the following existence result:

Theorem 2.2. Assume that (A1)�(A5) hold. Then there is a solution (�; u; �; �) to the

Penrose�Fife system in the weak formulation (PF)
�
.

3 The time discrete scheme

In this section, a time discrete scheme is introduced to prepare numerical computations.

Moreover, this scheme is used to prove the existence results in the last section. We consider

time�steps sizes that do not need to be uniform, but satisfy the following assumption,

where cup � 1 is a �xed constant.

(A7): The vector H = (h1; : : : ; hK) 2 R
K of time�steps sizes, with K 2 N, ful�lls

KX
m=1

hm = T; hm � cuphm�1; 8 1 < m � K;

0 < hm <
�inf

3�00sup
; 8 1 � m � K:

We de�ne hmax(H) := max
1�m�K

hm, t0 := 0, and, for 1 � m � K:

tm := tm�1 + hm =

mX
i=1

hi; (3.1)

gm(x) :=
1

hm

tmZ
tm�1

g(x; t) dt ; �m(�) :=
1

hm

tmZ
tm�1

�(�; t) dt ; 8 x 2 
; � 2 �: (3.2)

Now, an Euler scheme in time for the Penrose�Fife systems is presented, which is implicit,

except for the treatment of the nonlinearities �0, �0, and �:

(D): Let
�0 := �

0
; �0 := �

0
; (3.3a)

and, for 1 � m � K, �nd

�m 2 L2
(
); um; �m 2 H2

(
); �m 2 L2
(
) (3.3b)

such that

0 < �m; um =
1

�m
; �m 2 D(�); �m 2 �(�m); a.e. in 
; (3.3c)

c0
�m � �m�1

hm
+ �

0
(�m�1)

�m � �m�1

hm
+ ��um = gm; a.e. in 
; (3.3d)

8



� (r�m�1)
�m � �m�1

hm
� "��m + �m � �

00(�m�1)�m

= � �
0
(�m�1) um � �

00
(�m�1)�m�1 + �

0
(�m�1); a.e. in 
;

(3.3e)

��
@um

@n
= um � �m;

@�m

@n
= 0; a.e. in �: (3.3f)

Remark 3.1. The time�discrete scheme (D), especially the approximation used for the

coupling terms, is chosen in such a way that one can use discrete versions of the a

priori estimates derived by Sprekels and Zheng (cf. [36]).

The approximation for �0(�m) used in (3.3e) is linear with respect to �m, i.e., with

respect to the implicit part, and involves an approximation error which is less or equal

�
00
sup (�m � �m�1)

2
. This approximation is equal to �0(�m), if �

0(�) is a linear function.

Theorem 3.1. Assume that (A1)�(A5), and (A7) hold. Then there exists a unique

solution to (D).

We use the solution to (D) to construct an approximate solution�b�Z ; uZ ; b�Z; �Z� in (L1(0; T ;L2(
)))
4
to the Penrose�Fife system. The function b�Z is

de�ned to be linear in time on [tm�1; tm] for m = 1; : : : ; K such that b�Z(tk) = �k holds for

k = 0; : : : ; K. The function b�Z is de�ned analogously. We de�ne uZ piecewise constant

in time by uZ(t) = um for t 2 (tm�1; tm] and m = 1; : : : ; K, and �
Z
is de�ned analogously.

We have the following convergence result:

Theorem 3.2. Assume that (A1)�(A5) hold. Let a sequence
�
H

(n)
	
n2N

of vectors of

time�step sizes with (A7) and hmax

�
H

(n)
�
���!
n!1

0 be given.

Denote by
��b�(n); u(n); b�(n)

; �
(n)
��

n2N

the corresponding sequence of approximations. Hence,

there is a subsequence fnkgk2N and a solution (�; u; �; �) to the weak formulation (PF)
�

of the Penrose�Fife system such that

b�(nk) ���!
k!1

�; strongly in C([0; T ];H
1
(
)

�
); (3.4)

weakly in H
1(0; T ;H1(
)

�
); (3.5)

u
(nk) ���!

k!1
u; weakly in L

2(0; T ;H1(
)); (3.6)

b�(nk) ���!
k!1

�; weakly in H
1(0; T ;L2(
)) \ L

2(0; T ;H2(
)); (3.7)

weakly�star in L
1(0; T ;H1(
)); (3.8)

�
(nk)

���!
k!1

�; weakly in L
2(0; T ;L2(
)): (3.9)

If also (A6) is satis�ed, then (�; u; �; �) is a solution to the Penrose�Fife system (PF),
and we have b�(nk) ���!

k!1
�; weakly�star in L

1
(0; T ;L

2
(
)): (3.10)

9



Remark 3.2. The upper bound for �00 and �
00 used in (A2) can be weakened to some

growth condition by using ideas similar to [27].

If one replaces L2(0; T ;H2(
)) in (3.7) by L2(t; T ;H2(
)) for all 0 < t < T , and uses a

more technical argumentation (c.f. [8]) to prove the strong convergence (6.16) for the

approximation of �, one can weaken the assumptions for �0 in (A4) to �0 2 H
1(
)

and �(�0) 2 L1(
).
Remark 3.3. If (A2) holds, there is some n0 2 N satisfying 3T�00sup � n0�inf . For n 2 N,

we can consider the vector H(n) =
�
h
(n)
; h

(n)
; : : : ; h

(n)
�
2 Rn+n0 of time�step sizes with

h
(n) := T

n0+n
, such that (A7) is satis�ed. Hence, it follows from Theorem 3.2 that

Theorem 2.2 and Theorem 2.1 hold.

In the sequel, Theorem 3.2 will be proved. The existence of a unique solution to the

scheme is proved in Section 4, and uniform estimates for the solutions to the scheme are

derived in Section 5. In Section 6, the convergence of the solutions to the time discrete

scheme and the existence of a solution to the considered Penrose�Fife system is proved.

Therein, the notation k�k
p
will be used for the Lp(
)�norm and the notation k�k

p;N
will

be used for the (L2(
))N�norm for all p 2 [1;1].

Remark 3.4. As mentioned above in Remark 2.3, one is interested in weaken the assump-

tion (A5) on the kinetic relaxation parameter � by allowing � to be discontinuous in

0. If this weaker version of (A5) is used, Theorem 3.1 still holds and the estimates

in Section 5 can be performed for the corresponding solutions to the scheme. Hence,

one can get all convergences results in Section 6 except of (6.22) and (6.25), and is

therefore not able to prove in this way that (2.6e) is satis�ed.

4 The proof of Theorem 3.1

Proof. Assume that (A1)�(A5), and (A7) hold. Now, the existence of a unique solution
to the scheme will be shown by induction.

Thanks to (3.3a), (A4), and Sobolev's embedding theorem, we have �0 2 L
2(
); �0 2

L
1(
).

Let �m�1 2 L
2(
) and �m�1 2 L

1(
) be given for some m 2 f1; : : : ; Kg. Because of

(A2) and (A5), we obtain �0(�m�1) 2 L
1(
) and � Æ r�m�1 2 L

1(
).

To rewrite the conditions in the scheme, let the nonlinear operators Am and Dm on L2(
)

and the linear operator Bm : L2(
)! L
2(
) be de�ned by

10



Amu = �
c0

u
� hm��u+ c0�m�1 + hmgm + �

0(�m�1)�m�1; a.e. in 
;

8 u 2 D(Am); (4.1)

D(Am) =

(
u 2 H2

(
) j �
@u

@n
= u� �m; a.e. in �;

u > 0; a.e. in 
;
1

u
2 L2(
)

)
; (4.2)

Bm� =

�
�(r�m�1)

hm
�

�inf

2hm
� �

00
(�m�1)

�
�; a.e. in 
; 8� 2 L2

(
); (4.3)

Dm� = � "�� + f� 2 L2
(
) j � 2 �(�); a.e. in 
g; (4.4)

D(Dm) =

n
� 2 H2

(
) j
@�

@n
= 0; a.e. in �; � 2 D(�); a.e. in 
;

9 � 2 L2(
) : � 2 �(�); a.e. in 


o
: (4.5)

Thanks to (A5), (A2), (A7), and �m�1 2 L
2(
), we conclude that Bm is a maximal

monotone linear operator, and [4, Corollary 13] yields that Dm is a maximal monotone

operator on L2(
). By translating the proof of [4, Corollary 13], we see that the operator

Am is maximal monotone. By showing that this operator is also coercive, we obtain

that the operator is also surjective. By �nally estimating the di�erence between two

given solutions, we have shown that Am is one�to�one as operator from D(Am)! L
2(
).

Details can be found in [25, Lemma 5.1].

De�ning fm 2 L2(
) by

fm :=
1

hm
�(r�m�1)�m�1 � �

00(�m�1)�m�1 + �
0(�m�1); a.e. in 
 (4.6)

we can see that the conditions (3.3b)�(3.3f) are satis�ed if and only if

Amum = �
0(�m�1)�m; (4.7)

�inf

2hm
�m +Bm�m +Dm�m + �

0(�m�1)um 3 fm; (4.8)

and the functions �m and �m are de�ned by (3.3e) and �m = 1
um

respectively.

Using �0(�m�1) 2 L
1(
) and that Am is maximal monotone and one�to�one as operator

from D(Am)! L
2(
) , we deduce that Em : L2(
)! L

2(
) with

Em� := �
0(�m�1)A

�1
m (�0(�m�1)�); a.e. in 
; 8� 2 L2(
);

is maximal monotone and (4.7) yields �0(�m�1)um = Em�m.

Hence, we can replace in the system (4.7)�(4.8) the second condition by

�inf

2hm
�m + (Bm +Dm + Em)�m 3 fm: (4.9)
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Applying a theorem on summing maximal monotone operators (see, e.g., [3, Chap. II,

The. 1.7]), we observe that Bm + Dm + Em is a maximal monotone operator on L2(
).

Therefore, we conclude that (4.9) has a unique solution �m 2 H
2(
) � L

1(
). Now,

um 2 H2(
) and �m 2 L2(
) are uniquely de�ned by (4.7) and (3.3e), and �m 2 L2(
) is

uniquely de�ned by �m := 1
um

.

5 Uniform estimates

In this section, uniform estimates for the solution to the time�discrete scheme are derived.

Assume that (A1)�(A5), and (A7) hold. Thanks to Theorem 3.1, there exists a unique

solution to the scheme (D).
Remark 5.1. Applying (3.3d), Green's formula, (3.3f), and (2.8), we deduce thatZ




�
c0
�m � �m�1

hm
+ �

0
(�m�1)

�m � �m�1

hm

�
v dx � (um; v)V

=

Z



gmv dx �

Z
�

�mv d� ; 8 v 2 H1(
); 1 � m � K: (5.1)

In the sequel, Ci, for i 2 N, will always denote positive generic constants, independent of

the vector H of time�step sizes. To prepare the a priori estimates, we estimate the data

and their approximations:

Lemma 5.1. There exist positive constants C1; C2; C3; C4 such that,

j�0(s)j+ j�0(s)j � C1(jsj+ 1); 8 s 2 R; (5.2)������
Z



gmv dx

������ +
������
Z
�

�mv d�

������ � C2 kvkH1(
)

�
kgmk2 + k�mkL2(�)

�
� C3 kvkV

�
kgmk2 + k�mkL2(�)

�
; 8 v 2 H1(
); 1 � m � K;

(5.3)

KX
m=1

hm

�
kgmk

2

2 + k�mk
2

L2(�)

�
� C4: (5.4)

Proof. These estimates follow from (A2), (A3), (3.2), the trace�mapping from H
1(
) to

H
1
2 (�), and the equivalence of the H1(
)�norm and k�k

V
.

The following Lemmas use ideas from [22, 36, 11, 27].
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Lemma 5.2. There are two positive constants C5; C6 such that

max
0�m�K

�
k�mk1 + kln(�m)k1 + k�mk

2

H1(
) + k�(�m)k1

�
+

KX
m=1

hm kumk
2

V
+

KX
m=1

hm

�m � �m�1

hm

2
2

+

KX
m=1

k�m � �m�1k
2

H1(
) � C5; (5.5)

max
0�m�K

(k�0(�m)k6 + k�0(�m)k6) � C6: (5.6)

Proof. Testing (3.3e) by (�m � �m�1), and using (A5), Green's formula, (3.3f), (3.3c),
(A1), (AP.6), and Hölder's inequality, we deduce

�infhm

�m � �m�1

hm

2
2

+
"

2
kr�mk

2

2;N +
"

2
kr�m �r�m�1k

2

2;N + k�(�m)k1

�
"

2
kr�m�1k

2

2;N + k�(�m�1)k1 �

Z



�
0(�m�1) (�m � �m�1) um dx

+ k�00(�m�1)k1 k�m � �m�1k
2

2 + k�0(�m�1)k2 k�m � �m�1k2 :

Taking the sum fromm = 1 to m = k, and applying (3.3a), (A4), (A2), (A7), Schwarz's
inequality, and Young's inequality, we deduce

�inf

6

kX
m=1

hm

�m � �m�1

hm

2
2

+
"

2
kr�kk

2

2;N +
"

2

kX
m=1

kr�m �r�m�1k
2

2;N + k�(�k)k1

� C7 �

kX
m=1

Z



�
0(�m�1) (�m � �m�1)um dx +

1

2�inf
�
0

fac

kX
m=2

hm k�(�m�1)k1 : (5.7)

For 1 � m � K and � > 0 to be speci�ed later, we insert v = hm�� hmum in (5.1),

use (3.3c), take into account that �1
s
is the derivative of the convex function � ln(s), and

apply (5.3), and Young's inequality, to conclude that

�c0 k�mk1 � �c0 k�m�1k1 + c0

Z



(� ln(�m)) dx � c0

Z



(� ln(�m�1)) dx +
1

2
hm kumk

2

V

�

Z



�
0
(�m�1) (�m � �m�1) (um � �) dx + C8hm

�
kgmk

2

2 + k�mk
2

L2(�)

�
: (5.8)

Because of (A2) and Taylors formula, we have

��0(�m�1) (�m � �m�1) � ��(�m) + �(�m�1) +
�
00
sup

2
(�m � �m�1)

2
; a.e. in 
:

Hence, summing (5.8) from m = 1 to m = k, and applying (5.4), (3.3c), (3.3a), (A2),
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and (A4), we conclude that

�c0 k�kk1 + c0

Z



(� ln(�k)) dx +
1

2

kX
m=1

hm kumk
2

V

�C9 +

kX
m=1

Z



�
0(�m�1)(�m � �m�1)um dx + ��fac k�(�k)k1

+ �
�
00
sup

2

kX
m=1

h
2
m

�m � �m�1

hm

2
2

: (5.9)

Now, for � := min

�
1

2�fac
;

1
6�00supT

�inf

�
, we use Lemma AP.7, and add (5.9) to (5.7) to derive

C10 k�kk1 + c0 kln(�k)k1 +
1

2

kX
m=1

hm kumk
2

V
+

1

12
�inf

kX
m=1

hm

�m � �m�1

hm

2
2

+
"

2
kr�kk

2

2;N

+
"

2

kX
m=1

kr (�m � �m�1)k
2

2;N +
1

2
k�(�k)k1 � C11 +

1

2�inf
�
0

fac

k�1X
m=1

hm+1 k�(�m)k1 :

Thanks to the discrete version of Gronwall's lemma, (A7), (3.3a), and (A4), we have

proved that (5.5) is satis�ed.

In the light of (5.2), (AP.1), and (5.5), we observe that (5.6) holds.

Lemma 5.3. There is a positive constant C12 such that

KX
m=1

hm

�0(�m�1)�m � �m�1

hm

2
3
2

+

KX
m=1

hm

�m � �m�1

hm

2
V �

� C12: (5.10)

Proof. In view of the terms in (5.1) and the estimates (5.3)�(5.5), we deduce that

KX
m=1

hm

c0 �m � �m�1

hm
+ �

0(�m�1)
�m � �m�1

hm

2
V �

� C13: (5.11)

Thanks to Hölder's inequality as in Lemma AP.2, we have�0(�m�1)�m � �m�1

hm


3
2

� k�0(�m�1)k6

�m � �m�1

hm


2

; 8 1 � m � K: (5.12)

Hence, combining this with (5.6), (5.5), the continuity of the embedding of L
6
5 (
) in

H
1(
)

�
, the equivalence of the spaces H1(
) and V , and (5.11), we conclude that (5.10)

is satis�ed.
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Lemma 5.4. There exists a positive constant C14 such that

KX
m=1

hm k�mk
2

2 +

KX
m=1

hm k�mk
2

H2(
) � C14: (5.13)

Proof. We use (AP.3), (5.5), and (3.3f), and compare the terms in (3.3e), to derive that

k�mkH2(
) � C15 + C16 k��mk2 � C15 + C16

1

"
kf �m � �mk2 ; (5.14)

with f �m 2 L2(
) de�ned by

f
�

m := ��0 (�m�1) um��(r�m�1)
�m � �m�1

hm
+�

00
(�m�1) (�m � �m�1)+�

0
(�m�1): (5.15)

Testing formally (3.3e) by �m and using Green's formula, (3.3f), (3.3c), Young's inequality,

and (5.15), we observe that

k�mk2 � kf �mk2 : (5.16)

For a precise derivation of this inequality, one has to consider for n 2 N the nonlinear

elliptic problem

�m;n � "��m;n + � 1
n
(�m;n) = f

�

m + �m; a.e. in 
;

@�m;n

@n
= 0; a.e. in �;

with the Yosida approximation � 1
n
of �. This equation is tested by �m;n and � 1

n
(�m;n),

using that �m;n is an element of H1;6(
) such that the generalized chain rules hold, see

[33, Theorem 1] and [32, Lemma 2.1 and Remark 2.1]. Now, a passage to the limit and

using [3, Cha. II Prob. 1.1(iv)] lead to (5.16).

Because of (5.15), the discrete Schwarz's inequality, Hölder's inequality, (A5), and (A2),
we have

kf �mk
2

2 � 3

 
k�0(�m�1)k

2

4 kumk
2

4 +
�
�sup + �

00

suphm

�2 �m � �m�1

hm

2
2

+ k�0(�m�1)k
2

2

!
:

Hence, in the light of (5.6), (5.5), and (AP.1), we observe that

KX
m=1

hm kf
�

mk
2

2 � C17: (5.17)

Combining (5.14), (5.16), and (5.17), we see that (5.13) is satis�ed.

Lemma 5.5. We have

KX
m=1

hm k�m � �m�1k
6

H1(
) � C18hmax(H) (5.18)
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Proof. We have

KX
m=1

hm k�m � �m�1k
6

H1(
)

� hmax(H) max
1�m�K

�
k�mkH1(
) + k�m�1kH1(
)

�4 KX
m=1

k�m � �m�1k
2

H1(
) :

Recalling (5.5), we conclude that (5.18) is satis�ed.

Lemma 5.6. If (A6) holds, there exists a positive constant C19 such that

KX
m=1

hm k�mrumk
2

2;N + max
0�m�K

k�mk2 � C19: (5.19)

Proof. We multiply (3.3d) by hm, sum up the resulting equation for m = 1 to m = i and

apply (3.3a), to derive that

c0�i + �

iX
m=1

hm�um = c0�
0 +

iX
m=1

hm

�
gm � �

0(�m�1)
�m � �m�1

hm

�
; a.e. in 
: (5.20)

Recalling (A6) and (5.5), we observe that

KX
m=1

hm

�0(�m�1)�m � �m�1

hm

2
2

� C20: (5.21)

Because of (3.3c), the continuity of ui on 
, (3.2), and (A3), we see that ui � 0 and

�i � 0 a.e. in �. Hence, by applying Green's formula, (3.3c), and (3.3f), we get, at least

formally, Z



�i�ui dx � k�iruik
2

2;N � C21: (5.22)

For a precise derivation of this inequality, one has to perform this computation with �i
replaced by the approximation �i;l 2 H

1(
) de�ned by

�i;l :=

�
ui +

1

l

��1
; a.e. in 
; 8 l 2 N;

and consider afterwards the limit for l ! 1, using that the Lebesgue dominated con-

vergence theorem yields that we have strong convergences for �i;l in L
2(
), such that

�i;lrui ���!
l!1

�irui strongly in (L1(
))
3
and weakly in (L2(
))

3
.
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Because of (5.22), we can test (5.20) by hi ��ui. Taking the sum from i = 1 to i = k over

the resulting equation, and utilizing (AP.5) and (AP.4), we get

c0

kX
i=1

hi k�iruik
2

2;N +
�

2


kX
i=1

hi�ui


2

2

+
�

2

kX
i=1

h
2
i k�uik

2

2

� C22 +

Z



 
c0�

0 +

kX
i=1

hi

�
gi � �

0(�i�1)
�i � �i�1

hi

�! kX
i=1

hi�ui dx

�

k�1X
i=1

hi+1

Z



�
gi+1 � �

0
(�i)

�i+1 � �i

hi+1

� iX
m=1

hm�um dx :

Applying Schwarz's inequality, Young's inequality, (A4), (5.4), (5.21), and (A7), we
observe that

c0

kX
i=1

ki k�iruik
2

2;N +
�

4


kX
i=1

hi�ui


2

2

+
�

2

kX
i=1

h
2
i k�uik

2

2

�C23 + C24

k�1X
i=1

hi


iX

m=1

hm�um


2

2

: (5.23)

Thanks to the discrete version of Gronwall's lemma, there is a uniform upper bound for

the left�hand side of (5.23). Comparing now the terms in (5.20) and using (A4), (5.21),
Schwarz's inequality, (5.4), and (3.3a), we see that (5.19) holds.

6 Convergence of the time�discrete scheme

In this section, Theorem 3.2 is proved. We assume that (A1)�(A5) hold, and that we

have a sequence
�
H

(n)
	
n2N

of vectors

H
(n) =

�
h
(n)
1 ; h

(n)
2 ; : : : ; h

(n)

K(n)

�
of time�step sizes with (A7) and hmax

�
H

(n)
�
���!
n!1

0.

Hence, Theorem 3.1 yields that for every H(n) there exists a unique solution to the time�

discrete scheme (D). Let
�b�(n); u(n); b�(n)

; �
(n)
�
be the corresponding approximations de-

rived from the solution to (D) as in Section 3. Moreover, we de�ne the piecewise constant

functions �
(n)
, �(n), �(n), g(n), analogously to u(n), and �(n) 2 L

1(0; T ;H2(
)) is de�ned

by

�
(n)

(t) = b�(n)
(t

(n)
m�1) = �

(n)
m�1; 8 t 2 (t

(n)
m�1; t

(n)
m ); 1 � m � K

(n)
; (6.1)

with t
(n)
0 := 0 and t

(n)
m :=

mP
i=1

hi, for 1 � m � K
(n).
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Then, by the de�nition of the approximations, (3.3b)�(3.3a), (A4), and (5.1), we have

b�(n) 2 H1
(0; T ;L

2
(
)); u

(n) 2 L2
(0; T ;H

2
(
)); (6.2a)b�(n) 2 H1(0; T ;H2(
)); �

(n)
; �

(n) 2 L1(0; T ;H2(
)); (6.2b)

�
(n)

2 L1(0; T ;L2(
)); (6.2c)

0 < u
(n)
; �

(n)
=

1

u
(n)
; �

(n)
; b�(n)

; �
(n) 2 D(�); �

(n)
2 �

�
�
(n)
�
; a.e. in 
T ; (6.2d)

c0

Db�(n)t (t); v

E
V ��V

+

Z



�
0
(�(n)

(t))b�(n)
t (t)v dx �

�
u
(n)

(t); v
�
V

=

Z



g
(n)(t)v dx �

Z
�

�
(n)(t)v d� ; 8 v 2 H

1(
); for a.e. t 2 (0; T );

(6.2e)

�(r�(n))b�(n)
t � "��(n) + �

(n)
� �

00(�(n))(�(n) � �
(n))� �

0(�(n))

=� �
0(�(n))u(n); a.e. in 
T ;

(6.2f)

@�
(n)

@n
= 0; a.e. in �T ; (6.2g)b�(n)(�; 0) = �

0
; b�(n)(�; 0) = �

0
; a.e. in 
: (6.2h)

From (A3) and (3.2), we obtain by a density argument:g � g
(n)

L2(0;T ;L2(
))

+
�� �

(n)

L2(0;T ;H

1
2 (�))

���!
n!1

0: (6.3)

In the sequel, Ci, for i 2 N, will always denote positive generic constants, independent of

n.

We �nd, from (5.5), (5.10), (5.13), (3.3a), and (A4):b�(n)
H1(0;T ;V �)\L1(0;T ;L1(
))

+

�(n)
L1(0;T ;V � \L1(
))

+
u(n)

L2(0;T ;V )
� C1; (6.4)b�(n)


H1(0;T ;L2(
))\C([0;T ];H1(
))\L2(0;T ;H2(
))

+
�(n)


L1(0;T ;H1(
))\L2(0;T ;H2(
))

+
�(n)


L1(0;T ;H1(
))\L2(0;T ;H2(
))

+

�(n)
L2(0;T ;L2(
))

� C2: (6.5)

The di�erence between the di�erent approximations can be estimated, by using (5.5),

(5.10), and (5.18):b�(n) � �
(n)

L2(0;T ;V �)

� C3hmax

�
H

(n)
�
���!
n!1

0; (6.6)b�(n) � �
(n)

L2(0;T ;L2(
))

+
�(n) � �

(n)

L2(0;T ;L2(
))

+
b�(n) � �

(n)
6
L6(0;T ;H1(
))

� C4hmax

�
H

(n)
�
���!
n!1

0: (6.7)

Thanks to the estimates (6.4)�(6.5), compactness arguments (see, e.g. [38, Prop. 23.7,

23.19, Prob. 23.12]), (6.6), and (6.7), we get a subsequence fnkgk2N and functions u; �; � :

18




T ! R and � : (0; T )! V
�, such that we have the convergences

b�(nk) ���!
k!1

�; weakly in H
1
(0; T ;V

�
); (6.8)

�
(nk)

���!
k!1

�; weakly�star in L
1(0; T ;V �); (6.9)

u
(nk) ���!

k!1
u; weakly in L

2(0; T ;V ); (6.10)

b�(nk) ���!
k!1

�; weakly in H
1
(0; T ;L

2
(
)) \ L

2
(0; T ;H

2
(
)); (6.11)

weakly�star in L
1(0; T ;H1(
)); (6.12)

�
(nk) ���!

k!1
�; weakly in L

2(0; T ;H2(
)); (6.13)

�
(nk)

���!
k!1

�; weakly in L
2
(0; T ;L

2
(
)): (6.14)

Now, we will show that (�; u; �; �) is a solution to the Penrose�Fife system in the weak

formulation (PF)
�
. Thanks to the convergences above, we see that (2.14a) and (2.6b) are

satis�ed.

Because of (6.5), the Aubin Lemma as in [35, Corollary 8] implies that the sequence�b�(nk)
	
k2N

is relatively compact in L6(0; T ;H1(
)). Therefore, by (6.11),

b�(nk) ���!
k!1

�; strongly in L
6(0; T ;H1(
)): (6.15)

Recalling (6.7) and the continuous embedding of H1(
) in L6(
), we deduce that

�
(nk) ���!

k!1
�; strongly in L

6(0; T ;H1(
)); (6.16)

strongly in L
6(
T ): (6.17)

Thus, we can extract a subsequence fnklgl2N from fnkgk2N such that we have a.e. cconver-

gence for �(nk) and r�(nk). Now, we can assume without losing generality that already

fnkgk2N has been chosen in such a way, that these convergences are satis�ed, i.e., we have

�
(nk) ���!

k!1
�; a.e. in 
; (6.18)

r�(nk) ���!
k!1

r�; a.e. in 
: (6.19)

Hence, by applying the generalized Lebesgue dominant convergence theorem (see, e.g., [1,

A-1.26]), (5.2), (6.17), and (A5), we conclude that

�
0
(�

(nk)) ���!
k!1

�
0
(�); strongly in L

6
(
T ); (6.20)

�
0
(�

(nk)) ���!
k!1

�
0
(�); strongly in L

6
(
T ); (6.21)

�(r�(nk)) ���!
k!1

�(r�); strongly in L
p
(
T ); 8 1 � p <1: (6.22)
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Combining this with (6.11), Hölder's inequality, (6.10), and (AP.1), we observe

�
0(�(nk))b�(nk)

t ���!
k!1

�
0(�)�t; weakly in L

3
2 (0; T ;L

3
2 (
)); (6.23)

�
0
(�(nk))u

(nk) ���!
k!1

�
0
(�)u; weakly in L

3
2 (0; T ;L

3
(
)); (6.24)

�(r�(nk))b�(nk)
t ���!

k!1
�(r�)�t; weakly in L

2�Æ(0; T ;L2�Æ(
)); 8 0 < Æ < 1:

(6.25)

Thanks to (A2), (6.7), and (6.21), we have

��00(�(nk))(�
(nk)��(nk))��0(�(nk)) ���!

k!1
��0(�); strongly in L

2
(0; T ;L

2
(
)): (6.26)

Applying (6.2e), (6.8), (6.23), (6.10), and (6.3), we deduce that

c0 h�t(t); viV ��V +

Z



�
0
(�(t))�t(t)v dx � (u(t); v)

V

=

Z



g(t)v dx �

Z
�

�(t)v d� ; 8 v 2 H1(
); for a.e. t 2 (0; T );

(6.27)

Hence, by (2.8) and the equivalence of V and H1(
), we conclude that (2.6d) is satis�ed.

Recalling (6.2f), (6.25), (6.13), (6.14), (6.26), and (6.24), we conclude that (2.6e) is satis-

�ed.

Moreover, (6.2g) and (6.13) produces (2.6f), and (2.6g) is satis�ed because of (6.2h), (6.8),

and (6.11).

Using (6.15), (6.7), and (6.14), we observe that

TZ
0

Z



�
(nk)�

(nk)
dx dt ���!

k!1

TZ
0

Z



�� dx dt :

Now, we combine this with (6.2d), (6.13), (6.14), and [3, Chap. II, Lemma 1.3], to show

that (2.14c) is satis�ed.

Hence, it remains only to show that (2.14b) is satis�ed to prove that (�; u; �; �) is a

solution to the Penrose�Fife system in the weak form (PF)
�
. This is done by following

the calculations in [23, (4.10)�(4.16)].

Inserting v = F
�1b�(n)(t) in (6.2e), we get, by (2.10) and (2.11):

1

2
c0

d

dt

b�(n)(t)2
V �

+

Z



�
0(�(n)(t))b�(n)

t (t)F�1�̂(t) dx �
�
Fu

(n)(t); b�(n)(t)�
�

=

Z



g
(n)(t)F�1b�(n)(t) dx � Z

�

�
(n)(t)F�1b�(n)(t) d� ; a.e. in (0; T ):

(6.28)
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Since V is compactly embedded in L3(
), the Aubin Lemma yields that H1(0; T ;V ) is

compactly embedded in C([0; T ];L3(
)). Hence, the continuity of the map F�1 : V � ! V

and (6.8) yield that

F
�1b�(nk) ���!

k!1
F
�1
�; strongly in C([0; T ];L3(
)): (6.29)

Hence, integrating (6.28) from 0 to s 2 [0; T ] and using (6.23), (6.29), Hölder's inequality,

and (6.3) produce

1

2
c0

b�(nk)(s)2
V �

+

sZ
0

�
�Fu(nk)(t); b�(nk)(t)�

�

dt ���!
k!1

1

2
c0 k�(0)k

2

V �

�

sZ
0

Z



�
0(�(t))�t(t)F

�1
�(t) dx dt +

sZ
0

0@Z



g(t)F�1�(t) dx �

Z
�

�(t)F�1�(t) d�

1A dt :

(6.30)

Inserting v = F
�1(�(t)) in (6.27), integrating the resulting equation from 0 to s, and

applying (2.10), (2.11), (6.30), (6.6), and (6.4), we have proved that

1

2
c0

b�(nk)(s)2
V �
+

sZ
0

�
�Fu(nk)(t); �

(nk)
(t)

�
�

dt ���!
k!1

1

2
c0 k�(s)k

2

V �
+

sZ
0

(�Fu(t); �(t))
�
dt :

(6.31)

Hence, (6.8) yields that

lim sup
k!1

sZ
0

�
�Fu(nk)(t); �

(nk)
(t)

�
�

dt �

sZ
0

(�Fu(t); �(t))
�
dt ; 8 0 � s � T: (6.32)

Moreover, from (6.2d), (6.2a), and Lemma 2.1, it follows that

�Fu(n)(t) 2 @�j(�
(n)

(t)) in V
�
; for a.e. t 2 (0; T ): (6.33)

Combining this with (6.9), (6.10), (6.32) for s = T , and [3, Chap. II, Lemma 1.3], we

deduce that (2.14b) is satis�ed. Hence, we have shown that (�; u; �; �) is a solution to

weak formulation (PF)
�
of the Penrose�Fife system.

Thanks to (2.14b), (6.33), (6.9), and (6.10), we observe that

0 � lim inf
k!1

sZ
0

�
�Fu(nk)(t) + Fu(t); �

(nk)
(t)� �(t)

�
�

dt

= lim inf
k!1

sZ
0

�
�Fu(nk)(t); �

(nk)
(t)

�
�

dt �

sZ
0

(�Fu(t); �(t))
�
dt ; 8 0 � s � T:
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Hence, (6.31) and (6.32) lead tob�(nk)(s)2
V �
���!
k!1

k�(s)k
2

V �
; 8 s 2 [0; T ]:

Therefore, we get form (6.8)

b�(nk)(s) ���!
k!1

�(s); strongly in V
�
; 8 s 2 [0; T ]: (6.34)

Since the sequence
nb�(nk)o

k2N

of continuous functions from [0; T ] to V
� is uniformly

equicontinuous by (6.4), we now recall Ascoli's Theorem and the equivalence of the space

V
� and H

1(
)
�
, to show that (3.4) is satis�ed. Moreover, (3.5)�(3.9) hold because of

(6.8), (6.10), (6.11), (6.12), (6.14), the equivalence of H1(
) and V and the equivalence

of V � and H1(
)
�
. Hence, we have show the �rst assertion in Theorem 3.2.

In the sequel, we assume that (A6) is satis�ed. Hence, (5.19) yields thatb�(n)
L1(0;T ;L2(
))

� C5: (6.35)

Combining this with (6.8), we observe by compactness, that (3.10) and � 2 L1(0; T ;L2(
))

are satis�ed. By Remark 2.4, we deduce that (�; u; �; �) is also a solution of the Penrose�

Fife system (PF).

This completes the proof of Theorem 3.2.

A Appendix

For convenience, we list some inequalities and equalities used throughout this paper.

Lemma AP.1 (Young's inequality). For a � 0, b � 0, � > 0, p > 1, q :=
p

p�1
, it

holds

ab �
1

p
a
p +

1

q
b
q
; ab �

1

p
�
�(p�1)

a
p +

1

q
�b

q
:

Lemma AP.2 (Hölder's inequality). For a bounded, open domain 
 � R
N with N 2

N, p; p1; p2 2 [1;1], f1 2 L
p1(
), f2 2 L

p2(
), with

1

p1
+

1

p2
=

1

p
;

we have f1 � f2 2 L
p(
) and

kf1 � f2kLp(
) � kf1kLp1 (
) kf2kLp2(
) :

Thanks to Sobolev's embedding theorem, we have
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Lemma AP.3. For a bounded, open domain 
 � R
N with N 2 f2; 3g and Lipschitz

boundary, and the norm k�k
V
on H1(
) de�ned in Section 2, there are positive constants

Ca; Cb such that

kjvj
p
k
L

6
p (
)

= kvk
p

L6(
)
� C

p
a kvk

p

H1(
)
� C

p

b
kvk

p

V
; 8 v 2 H1(
); p 2 (0; 6]: (AP.1)

The following classical elliptic estimate can be found in [2, Remark 9.3 d].

Lemma AP.4. For a bounded, open domain 
 � R
N with N 2 N and @
 smooth there

is a positive constant C such that

kvk
2

H2(
) � C

 
k�vk

2

L2(
) +

@v@n
2
H

1
2 (�)

+ kvk
2

L2(
)

!
; 8 v 2 H2(
): (AP.2)

In particular, for all v 2 H2(
) with @v

@n
= 0 a.e. on �,

kvk
2

H2(
) � C

�
k�vk

2

L2(
) + kvk
2

L2(
)

�
: (AP.3)

Elementary calculations lead to

Lemma AP.5. For n 2 N, a0; a1; : : : ; an, b0; b1; : : : ; bn 2 R, we have

nX
i=1

ai

iX
j=1

bj =

 
nX
i=1

ai

! 
nX
i=1

bi

!
�

n�1X
j=1

bj+1

jX
i=1

ai; (AP.4)

nX
i=1

ai

iX
j=1

aj =
1

2

 
nX
i=1

ai

!2

+
1

2

nX
i=1

a
2
i : (AP.5)

Lemma AP.6. Let H be a Hilbert space with scalar-product h�; �iH and norm k�k
H
. Then

we have

ha; a� biH =
1

2
kak

2

H
�

1

2
kbk

2

H
+

1

2
ka� bk

2

H
; 8 a; b 2 H: (AP.6)

The next lemma follows from elementary analysis.

Lemma AP.7. Let a; b > 0 be given. Then there exists a constant C > 0, such that

a

2
s+ b jln sj � as� b ln s + C; 8 s > 0:
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