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Abstract. For evaluating a hedging strategy we have to know at every instant the solu-

tion of the Cauchy problem for a parabolic equation (the value of the hedging portfolio)

and its derivatives (the deltas). We suggest to �nd these magnitudes by Monte Carlo

simulation of the corresponding system of stochastic di�erential equations using weak

solution schemes. It turns out that with one and the same control function a variance

reduction can be achieved simultaneously for the claim value as well as for the deltas.

We consider asset models with an instantaneous saving bond and the Jamshidian LIBOR

rate model.

1. Introduction

Let us consider a model for the �nancial market consisting of a cash bond (riskless asset)

with price B(t) and m stocks (risky assets) with prices per share X i(t); i = 1; :::; m;
satisfying the equations

dB = r(t)Bdt; B(t0) = 1;(1.1)

dX i = X i(�i(t; X)dt+
mX
j=1

�ij(t; X)dW j(t)); t � t0; i = 1; :::; m:

Here, for the time being, r(t) is a deterministic interest rate, X = (X1; :::; Xm)>; W =
(W 1; :::;Wm)> is anm-dimensional standardWiener process on a probability space (
;F ; P ):
We denote by fFtg the P -augmentation of the �ltration generated by W: It is assumed

that r(t); the vector (�1(t; x); :::; �m(t; x))>, and the matrix �(t; x) = f�ij(t; x)g; t 2
[t0; T ]; x 2 Rm

+ := fx : x1 > 0; :::; xm > 0g; are su�ciently smooth and such that there

exists a unique processX(t) 2 Rm
+ ; t 2 [t0; T ]; withX(t0) 2 Rm

+ satisfying (1.1) (for exam-

ple, all the �i; �ij are smooth and bounded). Moreover, we assume that the volatility ma-

trix �(t; x) = f�ij(t; x)g = fxi�ij(t; x)g has full rank for every (t; x); t 2 [t0; T ]; x 2 Rm
+ :

From now on we shall not always state explicitly the properties of the originating functions

which we regard as su�ciently good in analytical sense.

We consider a model where the stocks pay dividends to the share holders at a rate

ri(t; X(t)) for the i-th stock and a consumption process C is assumed and de�ned by

a consumption rate c(t; X(t)); t0 � t � T;

dC = c(t; X(t))dt; C(t0) = 0:(1.2)

The portfolio value V (t) of a trading strategy ('t;  t) = ('t;  
1
t ; :::;  

m
t ); i.e. the positions

in bond B(t) and stocks Xj(t) respectively, is given by

V (t) = 'tB(t) +
mX
i=1

 i
tX

i(t):(1.3)

A portfolio ('t;  t) is called (generalized) self-�nancing, if its value V (t) satis�es

dV = 'tdB +
mX
i=1

 i
tdX

i +
mX
i=1

ri(t; X(t)) i
tX

i(t)dt� c(t; X(t))dt(1.4)
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= 'tr(t)Bdt+
mX
i=1

 i
tX

i � (�i(t; X)dt+
mX
j=1

�ij(t; X)dW j(t))

+
mX
i=1

ri(t; X(t)) i
tX

i(t)dt� c(t; X(t))dt;

which is equivalent with

Bd't +
mX
i=1

X id i
t +

mX
i=1

d i
tdX

i =
mX
i=1

ri(t; X(t)) i
tX

i(t)dt� c(t; X(t))dt:(1.5)

Let a European claim at maturity time T be speci�ed by a payo� function f which

depends on X(T ) only and let V (t) be the present value of the claim. Since the model is

Markovian we have

V (t) = 'tB(t) +
mX
i=1

 i
tX

i(t) = v(t; X(t)); V (T ) = v(T;X(T )) = f(X(T ));(1.6)

where v is a function of the variables t; x1; :::; xm:

Just as in the one dimensional case we may derive a parabolic pde for the function v(t; x)
(see, e.g., [9]). Due to Itô's formula we have

dv(t; X(t)) =
@v

@t
dt+

mX
i=1

@v

@xi
dX i +

1

2

mX
i;j=1

@2v

@xi@xj
dX idXj(1.7)

=
@v

@t
dt +

mX
i=1

@v

@xi
X i�idt+

mX
i=1

@v

@xi

mX
j=1

�ijdw
j(t) +

1

2

mX
i;j=1

aij
@2v

@xi@xj
dt;

where

aij(t; x) =
mX
k=1

�ik�jk = xixj
mX
k=1

�ik�jk;

i.e., the matrix a = faijg is equal to a = ��>:

Comparing (1.4) with (1.7), we obtain

 i
t =  i(t; X(t)) =

@v

@xi
(t; X(t));  i(t; x) =

@v

@xi
(t; x);(1.8)

and

@v

@t
(t; X(t)) +

1

2

mX
i;j=1

aij(t; X(t))
@2v

@xi@xj
(t; X(t))(1.9)

= 'tr(t)B(t) +
mX
i=1

ri(t; X(t)) i
tX

i(t)� c(t; X(t)):

Substituting (see(1.6) and (1.8))

'tB(t) = v(t; X(t))�
mX
i=1

 i
tX

i(t) = v(t; X(t))�
mX
i=1

@v

@xi
(t; X(t))X i(t);
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in (1.9) and taking into account (1.8), we get the following Cauchy problem for the

function v(t; x) :

Lv(t; x) + c(t; x) :=
@v

@t
+

1

2

mX
i;j=1

aij(t; x)
@2v

@xi@xj
(1.10)

+
mX
i=1

bi(t; x)
@v

@xi
� r(t)v + c(t; x) = 0;

v(T; x) = f(x);(1.11)

where we introduced the notation bi = (r � ri)xi; b = (b1; :::; bm):

Let v(t; x) be the solution of the problem (1.10)-(1.11). Then the required hedging strategy

('t;  
1
t ; :::;  

m
t ) as a function of (t; X(t)) is given by

't =
1

B(t)
(v(t; X(t))�

mX
i=1

@v

@xi
(t; X(t))X i(t));  i

t =
@v

@xi
(t; X(t)); i = 1; :::; m:(1.12)

The relation (1.5) for this strategy can be checked directly. Indeed

Bd't = �r(v �
mX
i=1

X i @v

@xi
)dt+ d(v �

mX
i=1

X i @v

@xi
)

= �r(v �
mX
i=1

X i @v

@xi
)dt+ dv �

mX
i=1

@v

@xi
dX i �

mX
i=1

X id(
@v

@xi
)�

mX
i=1

d(
@v

@xi
)dX i;

mX
i=1

X id i
t =

mX
i=1

X id(
@v

@xi
);

mX
i=1

d i
tdX

i =
mX
i=1

d(
@v

@xi
)dX i:

Therefore the left part of (1.5) is equal to

Bd't +
mX
i=1

X id i
t +

mX
i=1

d i
tdX

i = �r(v �
mX
i=1

X i @v

@xi
)dt+ dv �

mX
i=1

@v

@xi
dX i:(1.13)

Further, see(1.7),

dv �
mX
i=1

@v

@xi
dX i =

@v

@t
dt+

1

2

mX
i;j=1

aij
@2v

@xi@xj
dt

and according to (1.10)

dv �
mX
i=1

@v

@xi
dX i = (�c+ rv �

mX
i=1

(r � ri)xi
@v

@xi
)dt;

which combined with (1.13) gives (1.5).
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Remark 1.1. Consider the model (1.1) with now r depending on t and X; i.e., (1.1) with
the �rst equation

dB = r(t; X)Bdt; B(t0) = 1:

Then in general V (t) depends on t; X(t); B(t); i.e., V (t) = v(t; X(t); B(t)). Arguing as

above, we obtain that v satis�es the following equation

@v

@t
+

1

2

mX
i;j=1

aij(t; x)
@2v

@xi@xj
+

mX
i=1

bi(t; x)
@v

@xi
+ r(t; x)B

@v

@B
� r(t; x)v + c(t; x) = 0:

But, if the claim depends as before on X(T ) only the solution of the above equation

satisfying condition (1.11) is independent of B. So @v=@B = 0 and we obtain Cauchy

problem (1.10)-(1.11) where r = r(t; x): The formulas for the required hedging strategy,

(1.12), remain the same.

Moreover it is possible to consider the model in which all the coe�cients depend on t; X

and B and the claim is a function f(X(T ); B(T )): In this case we derive in a similar way

the following degenerate problem

@v

@t
+

1

2

mX
i;j=1

aij(t; x; B)
@2v

@xi@xj
+

mX
i=1

bi(t; x; B)
@v

@xi
(1.14)

+r(t; x; B)B
@v

@B
� r(t; x; B)v + c(t; x; B) = 0;

v(T; x; B) = f(x;B):(1.15)

If this problem has a solution v = v(t; x; B), then a hedging strategy is given by

't =
1

B(t)
(v(t; X(t); B(t))�

mX
i=1

@v

@xi
(t; X(t); B(t))X i(t));

 i
t =

@v

@xi
(t; X(t); B(t)); i = 1; :::; m:

Remark 1.2. We note that a Cauchy problem is considered in spite of the fact that

the variable x belongs to Rm
+ = fx : x1 > 0; :::; xm > 0g: This is possible because

every solution X(t); X(t0) 2 Rm
+ ; of system (1.1) evolves in Rm

+ during the whole time

interval [t0,T ]: Consider a stock model with prices evolving in an open parallelepiped

� = fx : 0 � �11 < x1 < �12; :::; 0 � �m1 < xm < �m2 g, where �k1 ; �k2 ; k = 1; :::; m; are
constants (it is possible to consider cases when some of �2 are equal to1). For example,

dX i = (X i � �i1)(�
i
2 �X i)(�i(t; X)dt+

mX
j=1

�ij(t; X)dW j(t)); t � t0; i = 1; :::; m;

with suitable coe�cients �i and �ij:

For such a model the construction of a hedging strategy leads to a corresponding Cauchy

problem as well (not to a boundary value problem).
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Remark 1.3. Let us consider a model consisting of a cash bond B(s) and a stock X(s)
(we take only one stock for notational simplicity), where the price of the stock satis�es

the equation

dX = �(s;X)ds+ �(s;X)dW (s):(1.16)

Let 0 � �1 < �2; �1 < x < �2; � = �t;x = T ^ inffs : Xt;x(s) =2 [�1; �2]; t � s � Tg (we
put inf to be equal1 for an empty set). We now consider an example of a barrier option.

The option is speci�ed by a payo� equal to zero if � < T and equal to f(Xt;x(T )) if � = T ,

where f(x) is a function de�ned on [�1; �2]. We note that a more rigorous notation for

(1.16) would be

dX = 1f�>sg�(s;X)ds+ 1f�>sg�(s;X)dW (s);

but we use the simpli�ed notation as long as it doesn't lead to any confusion. In addition,

we assume that f(x) is equal to zero in some neighborhood of �1 and �2 respectively.

Then, it is not di�cult to show that the portfolio value V (t) of the hedging strategy is

equal to v(t; X(t)) where v(t; x) satis�es the following boundary value problem

@v

@t
+

1

2
�2(t; x)

@2v

@x2
+ r(t)x

@v

@x
� r(t)v = 0; t0 � t < T; �1 < x < �2;(1.17)

v(T; x) = f(x); v(t; �1) = v(t; �2) = 0(1.18)

and as before we have

V (t) = v(t; X(t)) = 'tB(t) +  tX(t);

with

't =
1

B(t)
(v(t; X(t))� @v

@x
(t; X(t))X(t));  t =

@v

@x
(t; X(t)):

Note that for this example we did not use the multipliersX i (see (1.1)) in the stock model.

2. Evaluation of a hedging strategy

Frequently, works in numerics for �nance (see, e.g., [13] and references therein) are de-

voted to the evaluation of a portfolio value v(t; x). Of course, in case v(t; x) is known, it
is possible to �nd @v(t; x)=@xi approximately as

[v(t; x1; :::; xi+�xi; :::; xm)�v(t; x1; :::; xi; :::; xm)]=�xi (or as [v(t; x1; :::; xi+�xi; :::; xm)�
v(t; x1; :::; xi � �xi; :::; xm)]=2�xi) but such an approach requires very accurate calcula-

tions for v. In this sequel we give special attention to the probabilistic evaluation of the

deltas @v(t; x)=@xi and other Greeks.

Usually, in many-dimensional cases (in reality for m � 3) it is impossible to �nd v(t; x)
for all (t; x) because of the complexity of problem (1.10)-(1.11). However, for constructing

the hedging strategy we only have to �nd at any instant t the individual values v(t; X(t))
and @v(t; X(t))=@xi; i = 1; :::; m, where X(t) is the known state of the market.

The probabilistic approach for the evaluation of a particular value v(t; x) is well known.
It turns out that for speci�c (t; x) the values @v(t; x)=@xi; i = 1; :::; m, can be found

e�ectively by a probabilistic approach as well. Let us recall the probabilistic representation

for the solution of the Cauchy problem (1.10)-(1.11), where now we take r(t; x) in (1.10)

instead of r(t).
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In fact, the solution to problem (1.10)-(1.11) has various probabilistic representations:

v(t; x) = E[f(Xt;x(T )) � Yt;x;1(T ) + Zt;x;1;0(T )]; t � T; x 2 Rm
+ ;(2.1)

where Xt;x(s); Yt;x;y(s); Zt;x;y;z(s); s � t; is the solution of the following system of

stochastic di�erential equations:

dX = (b(s;X)� �(s;X)h(s;X))ds+ �(s;X)dW (s); X(t) = x;(2.2)

dY = �r(s;X)Y ds+ h>(s;X)Y dW (s); Y (t) = y;(2.3)

dZ = c(s;X)Y ds; Z(t) = z:(2.4)

Here h(t; x) = (h1(t; x); :::; hm(t; x))>; hi are fairly arbitrary functions, Y and Z are

scalars. In what follows we assume that all the coe�cients in (1.10)-(1.11) and in (2.2)-

(2.4) and the solution of (1.10)-(1.11) are su�ciently smooth and satisfy necessary growth

conditions for large jxj, so that we may apply the theory of weak methods for numerical

integration of SDEs. The usual probabilistic representation (see, e.g., [1], [2]) follows

from (2.1)-(2.4) for h = 0. The representation for h 6= 0 is a consequence of Girsanov's

theorem.

We introduce the notation

uk(t; x) =
@v

@xk
(t; x); k = 1; :::; m:(2.5)

The functions v and uk; k = 1; :::; m; satisfy the Cauchy problem for the following system

of m + 1 linear parabolic equations consisting of (1.10)-(1.11) and

@uk

@t
+

1

2

mX
i;j=1

aij(t; x)
@2uk

@xi@xj
+

mX
i=1

bi(t; x)
@uk

@xi
� r(t; x) � uk(2.6)

+
1

2

mX
i;j=1

@aij

@xk
(t; x)

@uj

@xi
+

mX
i=1

@bi

@xk
(t; x)

@v

@xi
� @r

@xk
(t; x) � v + @c

@xk
(t; x) = 0;

uk(T; x) =
@f

@xk
(x); k = 1; :::; m:(2.7)

The Cauchy problem (1.10)-(1.11), (2.6)-(2.7) belongs to the class of problems, which so-

lutions has probabilistic representations given in [8] . However, we obtain a representation

from (2.1)-(2.4) directly by di�erentiating (2.1) with respect to xk: We get

uk(t; x) =
@v

@xk
(t; x)(2.8)

= E

"
mX
i=1

@f

@xi
(Xt;x(T )) � �kX i(T ) � Yt;x;1(T ) + f(Xt;x(T )) � �kY (T ) + �kZ(T )

#
;

where

�kX
i(s) := �kX

i
t;x(s) :=

@X i
t;x(s)

@xk
; �kY (s) := �kYt;x;1(s) :=

@Yt;x;1(s)

@xk
;(2.9)

�kZ(s) := �kZt;x;1;0(s) :=
@Zt;x;1;0(s)

@xk
; t � s � T:
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Let �kX = (�kX
1; :::; �kX

m)>: The functions �kX(s); �kY (s) and �kZ(s) satisfy the fol-

lowing system of �rst order variation associated with (2.2)-(2.4) (we remind that we keep

k �xed),

d�kX =
mX
l=1

@(b(s;X)� �(s;X)h(s;X))

@xl
� �kX lds(2.10)

+
mX
l=1

@�(s;X)

@xl
� �kX ldW (s); �kX

l(t) = 0; if l 6= k; and �kX
k(t) = 1;

d�kY = �
mX
l=1

@r(s;X)

@xl
� �kX l � Y ds� r(s;X)�kY ds(2.11)

+
mX
l=1

@h>(s;X)

@xl
� �kX l � Y dW (s) + h>(s;X)�kY dW (s); �kY (t) = 0;

d�kZ =
mX
l=1

@c(s;X)

@xl
� �kX l � Y ds+ c(s;X)�kY ds; �kZ(t) = 0:(2.12)

We underline here that there is an opportunity of parallelizing: one can consider m
problems (2.8), (2.2)-(2.4), (2.10)-(2.12) for every �xed k = 1; :::; m separately.

Remark 2.1. The solution of the boundary value problem (1.17)-(1.18) for the barrier

option has the following probabilistic representation

v(t; x) = E1f�t;x=Tg[f(Xt;x(T )) � Yt;x;1(T )];(2.13)

where

dX = (r(t)X � �(s;X)h(s;X))ds+ �(s;X)dW (s); X(t) = x;(2.14)

dY = �r(t)Y ds+ h(s;X)Y dW (s); Y (t) = 1;

and

@v

@x
(t; x) = E1f�t;x=Tg

�
@f

@x
(Xt;x(T )) � �X(T ) � Yt;x;1(T ) + f(Xt;x(T )) � �Y (T )

�
;(2.15)

where the equations for �X(T ) and �Y (T ) are analogous to (2.10), (2.11).

The option under consideration is known as nulli�ed barrier option [6]. For more general

barrier options the boundary value conditions are nonzero and instead of (1.18) we have

v(T; x) = f(x); v(t; �1) = v1(t); v(t; �2) = v2(t):(2.16)

Let � denote the set where the condition (2.16) is speci�ed. Then (2.16) can be written

as

v j�= g;(2.17)

where g(T; x) = f(x); g(t; �1) = v1(t); g(t; �2) = v2(t):

Instead of (2.13) we may write

v(t; x) = E[g(�t;x; Xt;x(�t;x)) � Yt;x;1(�t;x)]:(2.18)
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We note that in this case there is no expression for @v(t; x)=@x such as (2.15) because the

dependence on x is more complicated now due to the presence of �t;x and the problem of

e�ective numerical construction of a hedging strategy requires special examination.

Thus, to �nd v(t; x) and @v=@xk(t; x) we need to evaluate the expectations (2.1) and

(2.8). Let us consider (2.1). Usually it is impossible to simulate the random variables

Xt;x(T )); Yt;x;1(T ); Zt;x;1;0(T ) directly and we are forced to simulate some approximate

random variables X t;x(T )); Y t;x;1(T ); Zt;x;1;0(T ): To this aim we may use weak methods

for numerical integration of SDEs (see [5], [7]). The error of such a weak approximation

is of order of O(hp) where p is the order of weak convergence, depending on the speci�c

method, and h is a time discretization step. For simplicity we consider equidistant parti-

tions of the time interval [t; T ] : t = t0 < t1 < ::: < tL = T with step size h = (T � t)=L.
For example, the Euler method with simpli�ed simulation of Wiener processes applied to

system (2.2)-(2.4) gives

X(t) = x; X(tl+1) = X(tl) + (bl � �lhl) � h+ �l � �l
p
h;(2.19)

Y (t) = 1; Y (tl+1) = Y (tl) � rlY (tl) � h+ h>l Y (tl) � �l
p
h;

Z(t) = 0; Z(tl+1) = Z(tl) + clY (tl) � h; l = 0; :::; L� 1;

where bl; �l; hl; rl; and cl are values of the corresponding functions (scalar, vector or

matrix) at (tl; X(tl)) and �l = (�1l ; :::; �
m
l )> is a vector of two-point random variables �

j
l

distributed by the law P (�jl = �1) = 1=2 and independent in j = 1; :::; m; l = 0; :::; L�1:

We obtain the usual Euler method if �
j
l are simulated as N(0; 1)-distributed random

variables. In either case the order of weak convergence is equal to 1, i.e., the following

relation

jv(t; x)� E[f(X(T )) � Y (T ) + Z(T )]j = O(h)

is ful�lled for a su�ciently large class of functions f .

Among methods with a higher order of weak convergence let us consider the Talay-

Tubaro extrapolation method [16]. We denote an approximation (2.19) with step size

h by X
h
; Y

h
; Z

h
. According to the Talay-Tubaro method we have in particular,

jv(t; x)� 2E[f(X
h=2

(T )) � Y h=2
(T ) + Z

h=2
(T )] + E[f(X

h
(T )) � Y h

(T ) + Z
h
(T )]j = O(h2):

The value E[f(X(T )) � Y (T ) + Z(T )] can be evaluated by the Monte-Carlo method

E[f(X(T )) � Y (T ) + Z(T )] ' 1

N

NX
n=1

[f(X
(n)
(T )) � Y (n)

(T ) + Z
(n)
(T )];(2.20)

where X
(n)
(tl); Y

(n)
(tl); Z

(n)
(tl); n = 1; :::; N; are independent approximate trajectories

(generally in weak sense) of the solution of system (2.2)-(2.4).

The statistical error in (2.20) is usually de�ned by (D�(T )=N)1=2, where �(T ) = f(X(T )) �
Y (T ) + Z(T ):
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Thus, we have

v(t; x) ' E[f(X(T )) � Y (T ) + Z(T )] ' 1

N

NX
n=1

[f(X
(n)
(T )) � Y (n)

(T ) + Z
(n)
(T )]:(2.21)

The �rst approximate equality in (2.21) involves an error due to the approximate inte-

gration, whereas the second approximate equality involves a statistical error due to the

Monte-Carlo method.

Of course the same consideration holds with respect to the evaluation of @v=@xk(t; x).

3. Variance reduction

This section is concerned with two methods of variance reduction in connection with

the Monte Carlo approach for the linear parabolic Cauchy problem: with the method of

importance sampling [3], [7], [10], [11], [17], and with the method of control variates [10],

[11] (for the initial-boundary value problem see [7], [12]). We consider variance reduction

for the evaluation of the portfolio as well as for the evaluation of the deltas.

We introduce the variables

�(s) := v(s;Xt;x(s)) � Yt;x;1(s) + Zt;x;1;0(s);(3.1)

�k(s) :=
mX
i=1

@v

@xi
(s;Xt;x(s)) � �kX i(s) � Yt;x;1(s) + v(s;Xt;x(s)) � �kY (s) + �kZ(s):(3.2)

Clearly

� := �(T ) = f(Xt;x(T )) � Yt;x;1(T ) + Zt;x;1;0(T );(3.3)

�k := �k(T ) =
mX
i=1

@f

@xi
(Xt;x(T )) � �kX i(T ) � Yt;x;1(T ) + f(Xt;x(T )) � �kY (T ) + �kZ(T ):

(3.4)

Because D� (D�k) is close to D� (D�k), the error of a Monte Carlo evaluation of v(t; x)
depends on the variance of the random variable �; see (2.1) whereas the Monte Carlo error

of an evaluation of uk(t; x) = @v(t; x)=@xk depends on the variance of �k, see (2.8).

The method of evaluating v(t; x) by importance sampling coincides with the method

described in [7]: it is clear that E� does not depend on the choice of h: At the same

time, the variance D� = E�2� (E�)2 does depend on h. Therefore it is natural to regard
h1; :::; hm as controls and to choose them such that the variance D� is minimal. This

problem is solved in [7]. It turns out that the variance can be reduced to zero.

Proposition 3.1. Let the solution v(t; x) of the problem (1.10)-(1.11) be positive. Let

hj = �1

v

mX
i=1

�ij
@v

@xi
:(3.5)
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Suppose that for any (t; x); t0 � t � T; x 2 Rm
+ ; there is a solution of the system

(2.2)-(2.4), with hj as in (3.5), for t � s � T: Then, � in (3.3), computed according to

(2.2)-(2.4) with h as in (3.5), is deterministic, i.e., D� = 0:

Proof. By using Itô's formula and taking into account Lv + c = 0 we derive

d[v(s;Xt;x(s)) � Yt;x;1(s) + Zt;x;1;0(s)] = (Lv + c) � Y ds�
mX
i=1

@v

@xi
(�h)i � Y ds

+
mX
i=1

@v

@xi
� Y (�dW (s))i + v � Y h>dW (s) +

mX
i=1

@v

@xi
(�dW (s))i � Y h>dW (s)

= Y � (
mX
i=1

@v

@xi
(�dW (s))i + vh>dW (s)) = Y �

mX
j=1

(
mX
i=1

�ij
@v

@xi
+ vhj)dW j(s);

whence

v(s;Xt;x(s)) � Yt;x;1(s) + Zt;x;1;0(s) = v(t; x) +

Z s

t

Y �
mX
j=1

(
mX
i=1

�ij
@v

@xi
+ vhj)dW j:(3.6)

For h in (3.5), equation (3.6) becomes an identity with respect to s; x; ! (! 2 
);

�(s) := v(s;Xt;x(s)) � Yt;x;1(s) + Zt;x;1;0(s) � v(t; x);(3.7)

i.e., �(s) is deterministic. Moreover, �(s) is independent of t � s � T . In particular, by

(1.11), we get for s = T;

�(T ) = � = f(Xt;x(T )) � Yt;x;1(T ) + Zt;x;1;0(T ) = v(t; x):(3.8)

The proposition is proved.

>From the proof of the proposition above we obtain the following corollary.

Corollary 3.1.For an arbitrary h (of course, the usual conditions of smoothness and

boundedness are supposed) the variance D�(T ) is equal to

D�(T ) = E

Z T

t

Y 2
t;x;1(s) �

mX
j=1

(
mX
i=1

�ij
@v

@xi
+ vhj)2ds;

where the functions �ij; @v=@x
i; v; hj have s;Xt;x(s) as their arguments.

Remark 3.1. Of course, the hj; j = 1; :::; m; cannot be constructed without knowing the

function v. Nevertheless, the obtained result establishes that, in principle, it is possible to

reduce the variance D� arbitrarily by conveniently choosing the functions hj. The results
can be used, e.g., in the following situation. Let all the parameters of the considered

problem be close to those one for which the solution is known and equal to v0: By taking

hj as in (3.5) equal to

hj = � 1

v0

mX
i=1

�ij
@v0

@xi
;(3.9)

the variance D�; although not zero, will be small. Also, it is shown in [15] that in

certain situations it is optimal to precompute a rough approximation for the solution of
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the Cauchy problem by some �nite di�erence method and next to proceed with variance

reduced Monte Carlo where the controls hj are computed from the rough approximation.

Remark 3.2. If the condition v > 0 in Proposition 3.1 is not satis�ed, but e.g., if

v > �K; K > 0; then we consider ev = v +K as a solution of the problem

Lev +Kr + c = 0; ev(T; x) = f(x) +K

and consider instead of (2.4),

d eZ = (Kr(s;X) + c(s;X))Y ds; eZ(t) = z:

Next, taking

ehj = � 1

v +K

mX
i=1

�ij
@v

@xi
= �1ev

mX
i=1

�ij
@ev
@xi

in (2.2)-(2.3) leads to e� = (f(Xt;x(T ))+K) �Yt;x;1(T )+ eZt;x;1;0(T ); as being a deterministic

variable.

A remarkable fact now is that the variables �k; k = 1; :::; m; for hj as in (3.5) are

deterministic as well.

Proposition 3.2. Under the hypotheses of Proposition 3.1 the variables �k = �k(T ); k =
1; :::; m; in (3.4), computed according to (2.2)-(2.4) and (2.10)-(2.12) with h as in (3.5)

are deterministic.

Proof. By di�erentiating (3.7) with respect to xk we get

@v

@xk
(t; x) =

mX
i=1

@v

@xi
(s;Xt;x(s)) � �kX i

t;x(s) � Yt;x;1(s) + v(s;Xt;x(s)) � �kYt;x;1(s) + �kZt;x;1;0(s):

Thus, we have proved that the variables �k(s) (see (3.2)) are deterministic (moreover they

do not depend on s; t � s � T ). Therefore all �k(T ) are deterministic. Proposition 3.2 is

proved.

We now proceed to the method of control variates. In (2.2)-(2.4), we consider h to be

�xed and introduce the new random variable

�F (T ) = �(T ) +

Z T

t

Yt;x;1(s) �
mX
j=1

Fj(s;Xt;x(s))dW
j(s);(3.10)

where Fj(s; x) are rather arbitrary functions depending on (s; x):

Clearly, the expectation E�F (T ) is equal to E�(T ) and does not depend on the choice of

F . At the same time, the variance D�F (T ) does depend on F . Also in this situation it

turns out that the variance can be reduced to zero.

Proposition 3.3. Let h in (2.2)-(2.4) be a �xed function. Then for

Fj(s; x) = �(
mX
i=1

�ij(s; x)
@v

@xi
(s; x) + v(s; x)hj(s; x)); j = 1; :::; m;(3.11)

the variable �F (T ) is deterministic, i.e., D�F (T ) = 0:



12

Proof. The proposition is a consequence of the following equality (see (3.6))

�F (T ) = f(Xt;x(T )) � Yt;x;1(T ) + Zt;x;1;0(T ) +

Z T

t

Yt;x;1(s) �
mX
j=1

Fj(s;Xt;x(s))dW
j(s)

= v(t; x) +

Z T

t

Yt;x;1(s) �
mX
j=1

(
mX
i=1

�ij
@v

@xi
+ vhj)dW j(s) +

Z T

t

Yt;x;1(s) �
mX
j=1

FjdW
j(s);

where the functions �ij; @v=@x
i; v; hj; F j have s;Xt;x(s) as their arguments.

Clearly,

D�F (T ) = E

Z T

t

Y 2
t;x;1(s) �

mX
j=1

(
mX
i=1

�ij
@v

@xi
+ vhj + Fj)

2ds(3.12)

which is equal to zero for Fj according to (3.11). Proposition 3.3 is proved.

Of course, a remark similar to Remark 3.1. applies here as well.

The method of control variates in the case h = 0 was �rst considered by N.J. Newton

[10]. Following [10], let us look for F = (F1; :::; Fm) of the form

Fj(s; x) =
mX
i=1

�ij(s; x)
lX

r=1

cr
i
r(s; x);(3.13)

where r = (1r ; :::; 
m
r ); r = 1; :::; l; are known row vectors and cr are constants. According

to (3.12) we have

D�F (T ) = E

Z T

t

Y 2
t;x;1(s) �

mX
j=1

(
mX
i=1

�ij[
@v

@xi
+

lX
r=1

cr
i
r] + vhj)2ds:

However, determination of cr directly by minimization of the right-hand-side of this rela-

tion is impossible because the functions v and @v=@xi are unknown. But by using

v(s;Xt;x(s)) = E(�(T ; s;Xt;x(s)) j Xt;x(s));

@v

@xi
(s;Xt;x(s)) = E(�i(T ; s;Xt;x(s)) j Xt;x(s));

where

�(T ; s;Xt;x(s)) = f(Xs;Xt;x(s)(T )) � Ys;Xt;x(s);1(T ) + Zs;Xt;x(s);1;0(T );

�i(T ; s;Xt;x(s)) =
mX
k=1

@f

@xk
(Xs;Xt;x(s)(T )) � �iXk

s;Xt;x(s)
(T ) � Ys;Xt;x(s);1(T )

+f(Xs;Xt;x(s)(T )) � �iYs;Xt;x(s);1(T ) + �iZs;Xt;x(s);1;0(T );
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it is not di�cult to show that the mentioned minimization problem is equivalent to the

following one

E

Z T

t

Y 2
t;x;1(s) �

mX
j=1

(
mX
i=1

�ij[�i(T ; �) +
lX

r=1

cr
i
r] + �(T ; �)hj)2ds! min

c1;:::;cl
;(3.14)

where the functions �ij; 
i
r; �(T ; �); �i(T ; �) have s;Xt;x(s) as their arguments.

The solution of the problem (3.14) provides optimal values for c and leads to reduced

variance.

To conclude we consider the following system

dX = (b(s;X)� �(s;X)h(s;X))ds+ �(s;X)dW (s); X(t) = x;(3.15)

dY = �r(s;X)Y ds+ h>(s;X)Y dW (s); Y (t) = 1;(3.16)

dZ = c(s;X)Y ds+ F>(s;X)Y dW (s); Z(t) = 0;(3.17)

and the random variables �(s); �k(s) according to (3.1), (3.2). Of course, the equation

for �kZ becomes of the following form (instead of (2.12))

d�kZ =
mX
l=1

@c(s;X)

@xl
� �kX l � Y ds+ c(s;X)�kY ds(3.18)

+
mX
l=1

@F>(s;X)

@xl
� �kX l � Y dW (s) + F>(s;X)�kY dW (s); �kZ(t) = 0:

Note that the variables �(s) and �k(s) depend on h and F and a more correct notation

would be, for example, �h;F (s) instead of �(s) but the accepted notation does not lead to

any confusion.

The following proposition can be proved analogously to the previous ones.

Proposition 3.4. Let h and F be such that
mX
i=1

�ij
@v

@xi
+ vhj + Fj = 0; j = 1; :::; m:(3.19)

Then �(T ) from (3.3) computed according to (3.15)-(3.17) and�k(T ) in (3.4) computed

according to (2.10)-(2.11), (3.18) are deterministic.

Example 3.1. Let all the parameters r; �i; �ij; c; r
i be independent of x, i.e., they are

known deterministic functions of t, and let the payo� function be a sum

f(X(T )) = f1(X
1(T )) + ::: + fm(X

m(T )):

Then the system (2.2)-(2.4) becomes of the following form (we put h = 0):

dX i = X i � (r(s)� ri(s))ds+X i �
mX
j=1

�ij(s)dW
j(s); X i(t) = xi; i = 1; :::; m;

dY = �r(s)Y ds; Y (t) = 1;
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dZ = c(s)Y ds; Z(t) = 0; t � s � T:

We derive explicitly

X i
t;x(T ) = xi � ki(t) � exp(

Z T

t

mX
j=1

�ij(s)dW
j(s)) = xi � ki(t) � exp(�i�i(t));

where

ki(t) = exp(

Z T

t

(r(s)� ri(s))ds� 1

2

Z T

t

mX
j=1

�2ij(s)ds);

�i(t) = (

Z T

t

mX
j=1

�2ij(s)ds)
1=2;

and �i is a normal random variable with zero mean and variance 1.

>From (2.1) we obtain

v0(t; x1; :::; xm) =
mX
i=1

E
�
fi(X

i
t;x(T )) � Yt;x;1(T ) + Zt;x;1;0(T )

�

=
1p
2�

mX
i=1

Z 1

�1

fi(x
iki(t) exp(��i(t))) � exp(��2=2)d� � exp(�

Z T

t

r(s)ds)

+

Z T

t

c(s) exp(�
Z T

s

r(s0)ds0)ds;

whence the derivatives @v0=@xi; i = 1; :::; m; can be found explicitly as well.

In case the parameters of an original problem do not di�er too much from the considered

ones above, we can use the recommendation of Remark 3.1 and, for example, take hj

according to (3.9) with Fj = 0 or hj = 0 with Fj = �Pm

i=1 �ij(s; x)@v
0(s; x)=@xi.

4. Gamma, vega, theta

Clearly, di�erentiation with respect to xj in (2.8) gives the probabilistic representation

for the gammas @2v(t; x)=@xk@xj ; i; k = 1; :::; m: The representation involves along with

the �rst variations �kX
i; �kY; �kZ the second ones

�kjX
i(s) :=

@2X i
t;x(s)

@xk@xj
; �kjY (s) :=

@2Yt;x;1(s)

@xk@xj
; �kjZ(s) :=

@2Zt;x;1;0(s)

@xk@xj
; t � s � T:

Let us write down the system for these variables. For notational simplicity we restrict

ourselves to the case m = 1: In this case X; b; h; � and W in (2.1)-(2.4) are scalars. We

have for the delta

u(t; x) =
@v

@x
(t; x)(4.1)

= E

�
df

dx
(Xt;x(T )) � �X(T ) � Yt;x;1(T ) + f(Xt;x(T )) � �Y (T ) + �Z(T )

�
;
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where (together with (2.2)-(2.4))

d�X =
@(b(s;X)� �(s;X)h(s;X))

@x
� �Xds+ @�(s;X)

@x
� �XdW (s); �X(t) = 1;(4.2)

d�Y = �@r(s;X)

@x
� �X � Y ds� r(s;X) � �Y ds(4.3)

+
@h(s;X)

@x
� �X � Y dW (s) + h(s;X) � �Y dW (s); �Y (t) = 0;

d�Z =
@c(s;X)

@x
� �X � Y ds+ c(s;X) � �Y ds; �Z(t) = 0:(4.4)

We introduce the notation

X(s) :=
@2Xt;x(s)

@x2
; Y (s) :=

@2Yt;x;1(s)

@x2
; Z(s) :=

@2Zt;x;1;0(s)

@x2
;

and obtain for the gamma

u(t; x) :=
@2v

@x2
(t; x) = E

�
d2f

dx2
(Xt;x(T )) � [�X(T )]2 � Yt;x;1(T )

�
(4.5)

+E

�
df

dx
(Xt;x(T )) � [X(T ) � Yt;x;1(T ) + 2�X(T ) � �Y (T )] + f(Xt;x(T )) � Y (T ) + Z(T )

�
;

where

dX =
@(b(s;X)� �(s;X)h(s;X))

@x
� Xds+ @�(s;X)

@x
� XdW (s)(4.6)

+
@2(b(s;X)� �(s;X)h(s;X))

@x2
� [�X]2ds+

@2�(s;X)

@x2
� [�X]2dW (s); X(t) = 0;

dY = �@r(s;X)

@x
� X � Y ds� r(s;X) � Y ds+ @h(s;X)

@x
� X � Y dW (s)(4.7)

+h(s;X) � Y dW (s)� @2r(s;X)

@x2
[�X]2 � Y ds� 2

@r(s;X)

@x
�X � �Y ds

+
@2h(s;X)

@x2
� [�X]2 � Y dW (s) + 2

@h(s;X)

@x
� �X � �Y dW (s); Y (t) = 0;

dZ =
@c(s;X)

@x
� X � Y ds+ c(s;X) � Y ds(4.8)

+
@2c(s;X)

@x2
� [�X]2 � Y ds+ 2

@c(s;X)

@x
� �X � �Y ds; �Z(t) = 0:

Thus, to calculate the gamma one needs to evaluate the expectation (4.5) by virtue of the

system consisting of equations (2.2)-(2.4), (4.2)-(4.4)), and (4.6)-(4.8).

One can prove that the gammas for hj as in (3.5) are deterministic as well.
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Clearly, if the problem under consideration depends on some parameter �, then v =
v(t; x;�) and it is possible to �nd @v(t; x;�)=@� in the same way as above. Let us

�nd, for example, the vega @v(t; x;�)=@� in the case of the one-dimensional model (1.1)

(m = 1), where instead of �(t; x) = x�(t; x) we have �(t; x;�) = �x�(t; x): We have

v(t; x;�) = E[f(Xt;x(T ;�)) � Yt;x;1(T ;�) + Zt;x;1;0(T ;�)];(4.9)

where

dX = (b(s;X)� �(s;X;�)h(s;X;�))ds+ �(s;X;�)dW (s); X(t) = x;(4.10)

dY = �r(s;X)Y ds+ h(s;X;�)Y dW (s); Y (t) = y;(4.11)

dZ = c(s;X)Y ds; Z(t) = z:(4.12)

Therefore

@v

@�
(t; x;�) = E

�
df

dx
(Xt;x(T ;�)) � ��X(T ;�) � Yt;x;1(T ;�)

�
(4.13)

+E[f(Xt;x(T ;�)) � ��Y (T ;�) + ��Z(T ;�)];

where

��X(s;�) =
@Xt;x(s;�)

@�
; ��Y (s;�) =

@Yt;x;1(s;�)

@�
; ��Z(s;�) =

@Zt;x;1;0(s;�)

@�

satisfy the following system

d��X =
@(b � �h)

@x
� ��Xds+

@�

@x
� ��XdW (s)� @(�h)

@�
ds+

@�

@�
dW (s); ��X(t) = 0;

(4.14)

d��Y = �@r
@x

� ��X � Y ds� r � ��Y ds(4.15)

+
@h

@x
� ��X � Y dW (s) + h��Y dW (s) +

@h

@�
Y dW (s); ��Y (t) = 0;

d��Z =
@c

@x
� ��X � Y ds+ c��Y ds; ��Z(t) = 0:(4.16)

Let us now point out how to �nd theta; um+1(t; x) := @v(t; x)=@t. The above way of

di�erentiation under the expectation sign is now impossible because of the nondi�erentia-

bility of Xt;x(s) with respect to t (e.g., the problem dX = dW (s); X(t) = x; s � t; has
the solution Xt;x(s) = x+W (s)�W (t) which is evidently nondi�erentiable with respect

to t). Of course, one can evaluate theta by to the initial equation (1.10) after �nding the

deltas and the gammas. But if we do not need the gammas, this way is irrational. It

is better to consider the system of m + 2 parabolic equations consisting of (1.10)-(1.11),

(2.6)-(2.7) and

@um+1

@t
+

1

2

mX
i;j=1

aij(t; x)
@2um+1

@xi@xj
+

mX
i=1

bi(t; x)
@um+1

@xi
� r(t; x) � um+1(4.17)
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+
1

2

mX
i;j=1

@aij

@t
(t; x)

@uj

@xi
+

mX
i=1

@bi

@t
(t; x)

@v

@xi
� @r

@t
(t; x) � v + @c

@t
(t; x) = 0;

um+1(T; x) = �1

2

mX
i;j=1

aij(T; x)
@2f

@xi@xj
(x)�

mX
i=1

bi(T; x)
@f

@xi
(x)(4.18)

+r(T; x) � f(x)� c(T; x) := g(x);

and to use the probabilistic representations from [8] consequently.

Let us consider a model in which the coe�cients �ij (and consequently aij) do not depend
on t. In such a case we have a system of parabolic equations consisting of two equations

for v and um+1 only. Namely, (1.10)-(1.11) and the following equation

@um+1

@t
+

1

2

mX
i;j=1

aij(t; x)
@2um+1

@xi@xj
+

mX
i=1

bi(t; x)
@um+1

@xi
� r(t; x) � um+1(4.19)

+
mX
i=1

@bi

@t
(t; x)

@v

@xi
� @r

@t
(t; x) � v + @c

@t
(t; x) = 0;

um+1(T; x) = g(x);(4.20)

with g(x) as in (4.18) and aij(T; x) = aij(x):

The probabilistic representation for the solution of the Cauchy problem (1.10)-(1.11),

(4.19)-(4.20) has the following simple form (see [8]). Introduce the system of stochastic

di�erential equations

dX = (b(s;X)� �(s;X)h(s;X))ds+ �(s;X)dW (s); X(t) = x;(4.21)

dY 1 = �r(s;X)Y 1ds� @r(s;X)

@s
Y 2ds+ h>(s;X)Y 1dW (s); Y 1(t) = y1;(4.22)

dY 2 = �r(s;X)Y 2ds+ h>(s;X)Y 2dW (s)(4.23)

+(��1(s;X)
@b(s;X)

@s
)>Y 2dW (s); Y 2(t) = y2;

dZ = c(s;X)Y 1ds+
@c(s;X)

@s
Y 2ds; Z(t) = 0;(4.24)

and the random variable

�t;x;y1;y2 = f(Xt;x(T )) � Y 1
t;x;y1;y2(T ) + g(Xt;x(T )) � Y 2

t;x;y1;y2(T ) + Zt;x;y1;y2;0(T );(4.25)

where Y 1 and Y 2 are scalars.

Then the required solution v(t; x); um+1(t; x) can be found from the relations

v(t; x) = E�t;x;1;0 ; um+1(t; x) = E�t;x;0;1 :(4.26)

This fact can be veri�ed in the following way. We show by Itô's formula that

v(s;Xt;x(s)) � Y 1
t;x;y1;y2(s) + um+1(s;Xt;x(s)) � Y 2

t;x;y1;y2(s) + Zt;x;y1;y2;0(s)(4.27)
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�v(t; x) � y1 � um+1(t; x) � y2

=

Z s

t

�
F>
1 (#;Xt;x(#) � Y 1

t;x;y1;y2(#) + F>
2 (#;Xt;x(#) � Y 2

t;x;y1;y2(#)
�
dW (#);

where F1 and F2 are some known vector-functions. From this the relations (4.26) follow

immediately.

5. The Jamshidian LIBOR rate model

In this section we drop the assumption of an instantaneous saving bond numeraire and

consider a system of assets (we now use the notation from [4] which di�ers a little from

the one used in the previous sections)

dBi

Bi

= �idt+ �i � dW = �idt+
mX
k=1

�ikdWk; t0 � t � T; i = 1; :::; m;(5.1)

under the arbitrage free condition [4]:

�i = r + �i � '; i = 1; :::; m;

for some processes r and ': We assume that the system is nondegenerate, i.e., rank(�i �
�j) = m almost surely.

A portfolio ( ;B) is said to be a self-�nancing trading strategy when

V (t) :=
mX
k=1

 k(t)Bk(t) = V (0) +

Z t

0

 k(s)dBk(s):(5.2)

We consider self-�nancing trading strategies ( ;B) where  has the form  =  (t; B): So
the corresponding portfolio value is of the form V = V (t; B) as well and we have

mX
i=1

Bi

@V

@Bi

= V;(5.3)

@V

@t
dt+

1

2

mX
i;j=1

@2V

@Bi@Bj

dBidBj = 0:(5.4)

Indeed, the self-�nancing property implies
P

kBkd k = 0 and consequently

0 = (
mX
k=1

Bkd k)(
mX

k
0

=1

Bk
0d k0 ) = (

mX
k=1

mX
l=1

Bk

@ k

@Bl

dBl)(
mX

k
0

=1

mX
l
0

=1

Bk
0

@ k0

@Bl
0

dBl
0 )

=
mX

k;k
0

=1

mX
l;l

0

=1

Bk

@ k

@Bl

Bk
0

@ k0

@B
l
0

dBldBl
0 =

mX
l;l

0

=1

�l � �l0
mX
k=1

Bk

@ k

@Bl

mX
k0=1

Bk
0

@ k0

@B
l
0

dt:

Then by non-degeneracy it follows that
P

k Bk@ k=@Bl = 0; or,

 l =
mX
k=1

@( kBk)

@Bl

=
@V

@Bl

; l = 1; :::; m;(5.5)



19

which gives (5.3). Next, by expanding dV by Itô's formula, by the self-�nancing property

and (5.5) we get (5.4). From (5.3) we conclude that the value of this self-�nancing portfolio

is homogeneous of degree 1 in B; i.e.

V (t; �B) = �V (t; B) � > 0:

Therefore it is clear that any path-independent self-�nancing portfolio must satisfy this

homogeneity condition [4].

We now assume in addition that the process B is an Ito di�usion, i.e. � and � are functions
of (t; B); hence

dBidBj = BiBj�ij(t; B)dt;

where �ij(t; x) := (�i � �j)(t; x): Then (5.3)-(5.4) can be rewritten in the form

mX
i=1

xi
@V

@xi
= V;(5.6)

@V

@t
+

1

2

mX
i;j=1

�ijxixj
@2V

@xi@xj
= 0;(5.7)

We assume also that

�i(�x) = �i(x);(5.8)

for all � > 0; x > 0; i = 1; :::; m:

The (abstract) LIBOR process is de�ned as the m� 1 dimensional process given by

Li := ��1i (
Bi

Bi+1

� 1); i = 1; :::; m� 1;

where the constants �i are so called �daycount fractions�. For the LIBOR dynamics we

can derive straightforwardly (an empty sum is de�ned to be 0)

dLi = �
m�1X
j=i+1

�jLiLji � j
(1 + �jLj)

dt+ Lii � ('� �m)dt+ Lii � dW;(5.9)

where

i := ��1i L�1i (1 + �iLi)(�i � �i+1):(5.10)

It is possible to write

dLi = (Li + ��1i )(�i � �i+1) � ('� �i+1)dt+ (Li + ��1i )(�i � �i+1) � dW
but we prefer the representation (5.9) since the class of LIBOR market models, speci�ed

by deterministic or even constant i is of high practical importance.

Since the value V (t; B) of a path-independent portfolio is homogeneous of degree 1 in B;
we assume a payo� function g(B(T )) to be homogeneous of degree 1 as well. The function
V (t; B) can be expressed as

V (t; B) = Bm(t)v(t; L)
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and therefore

g(B(T )) = Bm(t)f(L(T ))

for some functions v(�; �) : R�Rm�1 ! R and f(�) : Rm�1 ! R:

Hence,

V (t; x) = V (t; x1; :::; xm) = xmv(t; �
�1
1 (

x1

x2
� 1); :::; ��1m�1(

xm�1

xm
� 1))

= xmv(t; y1; ::; ym�1) = xmv(t; y);

where (yk corresponds to Lk)

yk = ��1k (
xk

xk+1
� 1); k = 1; :::; m� 1;

and

v(T; y) = f(y):

Let us derive a partial di�erential equation for v.

Using (5.6), we deduce from (5.7) straightforwardly

@V

@t
+

1

2

m�1X
i;;j=1

�ij(x)xixj
@2V

@xi@xj
= 0;(5.11)

where

�ij = �ij � �im � �jm + �mm = (�i � �m) � (�j � �m):

For i; j < m we have

@V

@xi
= xm

m�1X
k=1

@v

@yk

@yk

@xi

and

@2V

@xi@xj
= xm

m�1X
k;l=1

@2v

@ykyl

@yl

@xj

@yk

@xi
+ xm

m�1X
k=1

@v

@yk

@2yk

@xi@xj
:

Hence (5.11) yields

@v

@t
+

1

2

m�1X
i;;j=1

�ij(x)xixj

(
m�1X
k;l=1

@2v

@ykyl

@yl

@xj

@yk

@xi
+

m�1X
k=1

@v

@yk

@2yk

@xi@xj

)
= 0

or

@v

@t
+

1

2

m�1X
k;l=1

@2v

@ykyl

m�1X
i;;j=1

�ij(x)xixj
@yl

@xj

@yk

@xi
+

1

2

m�1X
k=1

@v

@yk

m�1X
i;;j=1

�ij(x)xixj
@2yk

@xi@xj
= 0:
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Next observe that
m�1X
i;;j=1

�ij(x)xixj
@yl

@xj

@yk

@xi
= �lk(x)xlxk

@yl

@xl

@yk

@xk
+ �l+1;k(x)xl+1xk

@yl

@xl+1

@yk

@xk
+

�l;k+1(x)xlxk+1
@yl

@xl

@yk

@xk+1
+ �l+1;k+1(x)xl+1xk+1

@yl

@xl+1

@yk

@xk+1
=

[�lk(x)� �l+1;k(x)� �l;k+1(x) + �l+1;k+1(x)]
��1k ��1l xkxl

xk+1xl+1
=

(�l � �l+1) � (�k � �k+1)
(1 + �kyk)(1 + �lyl)

�k�l
= ykyl k � l

and

1

2

m�1X
i;;j=1

�ij(x)xixj
@2yk

@xi@xj
=

m�1X
i;;j=1;i<j

�ij(x)xixj
@2yk

@xi@xj
+

1

2

m�1X
i=1

�ii(x)x
2
i

@2yk

@x2i

= �k;k+1(x)xkxk+1
@2yk

@xk@xk+1
+

1

2
�k+1;k+1(x)x

2
k+1

@2yk

@x2k+1

= [��k;k+1(x) + �k+1;k+1(x)]�
�1
k

xk

xk+1
= ���1k (1 + �kyk)(�k � �k+1) � (�k+1 � �m)

= �yk k � (�k+1 � �m) = �
m�1X
p=k+1

yk k � (�p � �p+1) = �
m�1X
p=k+1

�pypyk

1 + �pyp
k � p:

We thus �nd

@v

@t
�

m�1X
k=1

m�1X
p=k+1

@v

@yk

�pypyk

1 + �pyp
k � p +

1

2

m�1X
k;l=1

@2v

@yk@yl
ykyl k � l = 0:

Note that because of assumption (5.8) i are functions of y indeed.

We introduce

�k(t; y) = �
m�1X
p=k+1

�pypyk

1 + �pyp
k � p;

�kl(t; y) = ykyl k � l:

So the Cauchy problem for v reads;

@v

@t
+

m�1X
k=1

�k(t; y)
@v

@yk
+

1

2

m�1X
k;l=1

�kl(t; y)
@2v

@yk@yl
= 0;(5.12)

v(T; y) = f(y):(5.13)
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Next, we will derive a representation for the hedge quantities  i: For i < m we have

@V

@xi
= xm

m�1X
k=1

@v

@yk

@yk

@xi
= �xm

@v

@yi�1
��1i�1

xi�1

x2i
+ xm

@v

@yi
��1i

1

xi+1
(5.14)

= � @v

@yi�1
��1i�1 � (1 + �i�1yi�1)

m�1Y
k=i

1

1 + �kyk
+
@v

@yi
��1i �

m�1Y
k=i+1

1

1 + �kyk
:= 'i(t; y)

and

@V

@xm
= v(t; y)� 1

xm

m�1X
i=1

xi
@V

@xi
= v(t; y)�

m�1X
i=1

m�1Y
k=i

(1 + �kyk)'i(t; y) := 'm(t; y):(5.15)

Therefore the hedging strategy is constructed by

V (t) =
mX
i=1

'i(t; L(t))Bi(t):(5.16)

According to (5.14) and (5.15), for calculating 'i(t; L(t)); i = 1; :::; m; we have to �nd v
and @v=@yi; i = 1; :::; m � 1: Clearly they can be found by solving the Cauchy problem

(5.12)-(5.13) in the same manner as it was done in the previous sections.

Set

ui :=
@v

@yi
;

then di�erentiating with respect to yi yields

@ui

@t
+

m�1X
k=1

@�k

@yi
uk +

m�1X
k=1

�k(t; y)
@ui

@yk
+

1

2

m�1X
k;l=1

@�kl

@yi

@uk

@yl
+

1

2

m�1X
k;l=1

�kl(t; y)
@2ui

@ykyl
= 0:

(5.17)

If we have a Cauchy problem (5.12)-(5.13) for v; we have also a Cauchy problem for the

ui :

ui(T; y) =
@f

@yi
:(5.18)

6. Applications to European LIBOR derivative claims

Now, in practice we are given a �xed time tenor structure T1 < T2 < ::: < Tm; where

�i = Ti�Ti�1 and a system of zero-coupon bonds Bi which mature at Ti with Bi(Ti) = 1.
In [4] it is shown that when k(t; L) are measurable, bounded and locally Lipschitz in

L; such a zero-coupon bond system always exists. However, although this system is not

uniquely determined it turns out that the price and hedge of LIBOR derivatives does not

depend on a particular choice of the bond system. Moreover, it is not di�cult to see that

it is possible to identify a system of bonds which is an Ito di�usion and thus Markovian.

Indeed, for given Bm(t0) > 0; de�ne Bm as follows (an empty product is de�ned to be 1):

Bm(t) = �0(t)Bm(t0) + �1(t)
1Qm�1

j=1 (1 + �jLj(t))
; t � T1;
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Bm(t) = �1(t)Bm(T1) + �2(t)
1Qm�1

j=2 (1 + �jLj(t))
; T1 < t � T2;

: : : : : : : : : : : :

Bm(t) = �m�1(t)Bm(Tm�1) + �m(t); Tm�1 < t � Tm;

where the functions �j(t); 0 � j � m; are smooth and such that for any t0 � t � Tm

�j(t) � 0; j = 0; :::; m;
mX
j=0

�j(t) = 1;

�j(t) + �j+1(t) = 1; j = 0; :::; m� 1;

�0(t0) = �j(Tj) = 1; j = 1; :::; m:

Then the system B = (B1; :::; Bm) where

Bi = Bm

m�1Y
j=i

(1 + �jLj(t)); t0 � t � Ti; i = 1; :::; m� 1;

is arbitrage free and satis�es Bi(Ti) = 1 (see [4]). In addition it is easily seen that the

system B thus constructed is an Ito di�usion on the probability space given by the L
process.

The developed general probabilistic method for the price and hedge of a European claim

can be applied to certain European LIBOR derivatives. We discuss two examples: the

�swaption� and the �callable� reverse �oater. For a LIBOR market model, in [14], one

factor analytical approximation formulas are derived both for the swaption and for the

callable reverse �oater. Clearly these analytical approximation can be used for variance

reduction in the Monte Carlo method presented in this sequel.

6.1. The European swaption. A swap contract with maturity T1 and strike � on a loan
of $1 over the period [T1; Tm] obliges to pay a �xed coupon � and receive spot LIBOR at

the settlement dates T2; :::; Tm. From a standard portfolio argument it is obvious that the

present value of this contract is equal to

Swap(t) = B1(t)� Bm(t)� �

m�1X
j=1

�jBj+1(t); t0 � t � T1:

The swap rate S(t) is now de�ned as that �xed coupon which sets this contract value to

zero:

S(t) :=
B1(t)�Bm(t)Pm�1
j=1 �jBj+1(t)

:

A swaption contract with maturity T1, strike � and principal $1 gives the right to contract
at T1 to pay a �xed coupon � and receive spot LIBOR at the settlement dates T2; :::; Tm.
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Equivalently, one can contract for receiving the T1�swaprate and one can show that the

payo� of the swaption is equivalent to a T1 cash�ow of

Swpn(T1) =
m�1X
j=1

1ABj+1(T1)(Lj(T1)� �)�j;(6.1)

where A denotes the FT1 measurable event fS(T1) > �g and the swaprate S(T1) is given
by (see [14])

S(T1) :=
B1(T1)� Bm(T1)Pm�1

j=1 �jBj+1(T1)
=

�1 +Qm�1
i=1 (1 + �iLi(T1))Pm�1

j=1 �j
Qm�1

i=j+1(1 + �iLi(T1))
:

>From (6.1) we see that the swaption cash�ow is homogeneous of degree one. Therefore we

may compute the swaption price and the corresponding hedge by Monte Carlo simulation

of the probabilistic representations for (5.12), (5.17) with �nal value conditions (5.13),

(5.18), with f given by

f(y) :=
m�1X
j=1

1A(y)(yj � �)�j

m�1Y
k=j+1

(1 + �kyk);(6.2)

where

A =

(
y :

�1 +Qm�1
k=1 (1 + �kyk)Pm�1

k=1 �k
Qm�1

i=k+1(1 + �iyi)
> �

)
and, for instance, use variance reduction from a one factor approximation formula derived

in [14].

6.2. The callable reverse �oater. Let K;K 0 > 0: A reverse �oater (RF) contracts for

receiving Li(Ti) while paying max(K � Li(Ti); K
0) at time Ti+1 for i = 1; ::; m� 1, with

respect to a unit principal. A callable reverse �oater (CRF) is an option to enter into a

reverse �oater at T1: In [14] it is shown that in a LIBOR market model the reverse �oater

can be evaluated analytically and for K 0 = 0 the reverse �oater contract is equivalent

with a T1�cash�ow of

RF (T1) = B1(T1)�Bm(T1)�
m�1X
i=1

Bi+1(T1)Fi(T1; K);(6.3)

where Fi(T1; K) is known explicitly as a Black-type formula, only involving T1; K and the

deterministic i; i = 1; :::; m� 1; [14]. So the payo� of the CRF, being

CRF (T1) = max(RF (T1); 0);

is clearly homogeneous of degree one and the reverse �oater price and hedge may be

computed by Monte Carlo simulation of the probabilistic representations for the system

(5.12), (5.17) with �nal value conditions (5.13), (5.18) and f given by an expression similar

to (6.2). Moreover, in [14] a one factor approximation formula is derived which can be

used for variance reduction.
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