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Abstract

Under general (including mixed) boundary conditions, nonsmooth coe�cients

and weak assumptions on the spatial domain, resolvent estimates for second

order elliptic operators in divergence form are proved. The semigroups gener-

ated by them are analytic, map into Hölder spaces, are positivity improving,

and their heat kernels are Hölder continuous in both arguments. We regard

perturbations of the elliptic operator by nonnegative potentials, by �rst or-

der di�erential operators and multiplicative perturbations. Finally the results

provide that the solutions of the corresponding linear and semilinear parabolic

equations are Hölder continuous in space and time.
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1 Introduction

During the last years considerable progress has been made in the investigation

of elliptic di�erential operators in connection with nonsmooth situations. This

concerns results covering Lipschitz domains [22] as well as possibly jumping

coe�cients. In particular, in case of Dirichlet boundary conditions explicit

ranges of p's are known, where �� provides an isomorphism between W 1;p
0

and the dual of W
1;p0

0 . Little e�ort has been made, however, to tackle mixed

boundary conditions, although they play an important role in applied prob-

lems, cf. Amann [2] or Gajewski and Gröger [20] and the references cited

there.

The present work is motivated by the study of reaction�di�usion equations

of the type

@u

@t
� div

�
D(u) grad u

�
= f(u; grad u); (1.1)

where u is a concentration, D(u) a di�usion coe�cient, J = �D(u) grad u

the current, and f represents external sources and reactions, cf. also [2, 20].

In unsmooth situations equations of this type have usually been regarded in

negatively indexed Sobolev spaces, cf. [20] and the references cited there.

The serious disadvantage of this approach is that one does not know in the

end that for any time point the divergence of the current is a function from

Lp; one only obtains that it is a distribution.

However, it would be highly satisfactory to know that the normal �ow over

any part of the Dirichlet boundary is well de�ned by Gauss' theorem, because

the continuity of the normal component of the current plays an essential role

in connecting and embedding of potential �ow systems (1.1), not least in

electronic device simulation, cf. Gajewski [13].

In order to deal with equation (1.1) in a function space we investigate elliptic

di�erential operators in divergence form on Lp. Inspecting existing theories

which can be possibly applied, cf. [1, 3, 26, 28] and the references cited there,

one recognizes that a cornerstone are always resolvent estimates uniform on

the left complex half plane which imply the generation property of an ana-

lytic semigroup in the appropriate space. In fact, the generator property of

an analytic semigroup on Lp for operators div a grad under general boundary

conditions has already been proved by Arendt and ter Elst [4, Sect. 4]. How-

ever, the approach in [4] rests on a Nash�Moser type iteration by Fabes and

Stroock [12], and explicit resolvent estimates are not available. We take a dif-

ferent approach to the problem: By means of recently obtained C� regularity

results of Griepentrog and Recke [17], operating in the conceptual framework

of regular sets in the sense of Gröger [19], and an old estimation technique
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taken from Pazy [28, 7.3 Th.3.6], we are able to give explicit resolvent esti-

mates in terms of the coe�cient function. Moreover, we prove that a �nite

power of the resolvent maps L2 into C�. A fortiori the semigroup operators

map L2 continuously into C�, are nuclear and the corresponding heat kernel is

not only essentially bounded but Hölder continuous in both arguments. This

provides the persistence of the spectral properties of the elliptic operator on

the scale of Lp�spaces, cf. Davies [6]. Moreover, the semigroup is positivity

improving.

The reader will notice that one of the main results, Theorem 4.2, is not only

formulated for operators div a grad but for operators U div a grad, where U

is an L1 function, bounded from below by a strictly positive constant, cf.

also Ouhabaz [27]. This is motivated as follows: In material heterostructures

the concentration u in (1.1) may be given by a function relative to another,

u = ~u=U , where U is a �xed function representing material properties, cf.

e.g. [20]. Multiplying (1.1) by the reference density U leeds to an operator

U div a grad. There are other settings of the problem dealing with reference

functions U from L1, cf. Griepentrog [16, 2]; however, on Lp spaces they

canonically act as multipliers.

Using, that the operator U div a grad generates an analytic semigroup on Lp

and the continuous embedding of the elliptic operators domain into a C��

space, we prove that the solutions of corresponding linear and semilinear

parabolic equations are Hölder continuous in space and time.

2 Notations, de�nitions, prerequisites

In the sequel 
 will always be a bounded domain in Rd and � a part of its

boundary, which may be empty. If p is from [1;1[, then Lp = Lp(
) is

the space of complex, Lebesgue measurable, p�integrable functions on 
, and

W 1;p = W 1;p(
) is the usual Sobolev space on 
. The Lp�Lp
0

duality shall

be given by the extended L2 duality

h 1;  2i =
Z



 1(x) 2(x) dx: (2.1)

L1 = L1(
) is the space of Lebesgue measurable, essentially bounded func-

tions on 
, and C� = C�(
) the space of up to the boundary ��Hölder

continuous functions on 
.

We assume that 
 [ � is a regular set in the following sense:

2.1. De�nition. Let 
 � R
d be a bounded domain and � � @
 be a part

of its boundary. 
 [ � is a regular set if for every point ~x 2 @
 there exist
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two open sets U ;V � R
d and a bi�Lipschitz transformation L from U onto V

such that, ~x 2 U , and L
�
U \ (
 [ �)

�
coincides with one of the three model

sets

E1 = fx 2 Rd : jxj < 1; xd < 0g;

E2 = fx 2 Rd : jxj < 1; xd � 0g;

E3 = fx 2 E2 : xd < 0 or x1 > 0g:

(2.2)




�

E2

E3

E1

2.2. De�nition. We de�ne W
1;p
0 as the closure in W 1;p of the set

C10 (
 [ �)
def
=

n
uj
 : u 2 C10 (Rd); supp(u) \

�

 n (
 [ �)

�
= ;
o
; (2.3)

and W�1;p as the dual space to W
1;p0

0 , where 1=p + 1=p0 = 1.

2.3. Remark. (Cf. [16, 1.1] or [17].) The above concept coincides exactly

with Gröger's de�nition of regular sets, cf. [19], which seems well adjusted

to mixed boundary value problems. N.B. from the de�nition of the regular

set follows that � is relatively open in @
. We can identify � with the

Neumann and @
 n � with the Dirichlet part of the boundary @
. Please

note, that every bounded open set 
 � R
d with a Lipschitz boundary is

regular, but the converse statement is not true, cf. Grisvard [18, 1.2.1.4].

Nevertheless, it is easy to prove the W 1;p extension domain property of 


in Rd, by means of the localization, transformation and re�ection principles,

cf. e.g. [16, 1.1]. Thus one obtains the usual embedding theorems W 1;p ,!
Lq. Futhermore, an adequate concept of surface measure � on the boundary
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can be established by passing the boundary measure from the three model

sets (2.2) via the bi�Lipschitz transformation L to the boundary of 
. In

particular, the embedding

W 1;2 ,! L2(@
; �) is compact, (2.4)

cf. e.g. Goldstein and Reshetnjak [15] or Griepentrog and Recke [17], and

there is a constant M such that

Z
@


j j2 d� �M k kL2

sZ



kgrad  k2
Cd

+ j j2 dx for  2 W 1;2, (2.5)

cf. Griepentrog [16, 1.1].

Throughout this paper B(X;Y ) denotes the space of bounded linear operators

from X to Y , X and Y being Banach spaces.

2.4. De�nition. Let a : 
 �! B(Rd;Rd),

a : 
 3 x 7�!

0
BB@
a1;1(x) a1;2(x) : : : a1;d(x)

a2;1(x) a2;2(x) : : : a2;d(x)

: : : : : : : : : : : : : : : : : : : :

ad;1(x) ad;2(x) : : : ad;d(x)

1
CCA (2.6)

be a measurable mapping into the set of real, symmetric d � d matrices,

satisfying the relations

vraimax
x2


ka(x)kB(Rd;Rd) � a� (2.7a)

and

dX
k;l=1

ak;l(x) �k �l � a�

dX
k=1

�2
k

(2.7b)

for all x 2 
, all � = (�1; : : : ; �d) 2 Rd and two strictly positive constants a�
and a�. Further, let � be a nonnegative function from L1(�; d�).

t
 and t� are the following two sesquilinear forms on W 1;2
0 �W

1;2
0 :

t
[ 1;  2]
def
=

Z



ha grad 1; grad 2iCd dx (2.8a)

t�[ 1;  2]
def
=

Z
�

�  1  2 d� (2.8b)

t is de�ned as the sum of the forms t
 and t�.
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We intend to de�ne an operator on L2 which corresponds to the form t by

the representation theorem of forms. Before doing this, we show

2.5. Lemma. Let t
, t�, and t are according to De�nition 2.4.

i) The forms t
, t�, and t are well de�ned and symmetric on W 1;2
0 .

ii) The quadratic forms associated to t
, t�, and t are nonnegative.

iii) The forms t
 and t are densely de�ned on L2
and closed.

Proof. Ad i. For t
 the statement follows from the boundedness of the func-

tion a; for t� it is implied by (2.5). Indeed, there is

t�[ ; ] �Mk�kL1(�;�) k kL2 k kW 1;2:

Ad ii. The symmetry follows immediately from the coe�cient matrix a be-

ing real symmetric, and from the real valuedness of the function �. The

nonnegativity of t
 follows from (2.7b), that of t� from the nonnegativity of

�.

Ad iii. For the closedness of t
 it is su�cient to prove the closedness of W
1;2
0

in W 1;2, cf. Kato [23, VI.�1 Th. 1.11], but this we have by the de�nition of

W 1;2
0 . Knowing this, for the closedness of t it is su�cient to show that t�

is relatively bounded with respect to t
 with relative bound less than 1, cf.

Kato [23, VI.�1 Th. 1.33]. Indeed, according to (2.5) there is

t�[ ; ] �Mk�kL1(�;�) k kL2

sZ



kgrad k2
Cd

+ j j2 dx

�Mk�kL1(�;�) k kL2

s
1

a�

Z



ha grad ; grad iCd + a�j j2 dx

�
1

2

Z



ha grad ; grad iCd dx+
�a�
2

+
M2k�k2

L1(�;�)

2a�

�
k k2

L2
:

2.6. De�nition. A2 is the selfadjoint, nonnegative operator on L2 which

corresponds to the form t from De�nition 2.4 by the �rst representation the-

orem of forms, cf. Kato [23, VI.�2 Th. 2.1 and Th. 2.6]. For p > 2, Ap is the

restriction of A2 to L
p.

We will now prove some basic results for A2.
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2.7. Lemma. The resolvent of A2 is compact. The semigroup generated by

�A2 is contractive. If �(@
n�) > 0 or
R
�
� d� > 0, then the operator A2, has

a strictly positive lower bound and the semigroup generated by �A2 is even

strictly contractive.

Proof. For the compactness of (A2+1)�1 it is su�cient to know the compact-

ness of (A2 + 1)�
1
2 . The latter operator provides a topological isomorphism

between L2 and the form domain, W
1;2
0 , which compactly embeds into L2.

Now, as A2 is nonnegative (A2 + �)�1 is compact for every � > 0, cf. [23,

III.�6 Th.6.29]. Moreover, there is

(A2 + �)�1

B(L2;L2)

�
1

�
for all � > 0,

cf. [23, V.�3.5].

Suppose that the lower bound of A2 is not strictly positive. Then, by the com-

pactness of the resolvent, 0 has to be an eigenvalue of A2 with an eigenvector

 6� 0. According to De�nition 2.6,  must satisfy the equation

0 = t[ ; ] =

Z



ha grad ; grad i dx +

Z
�

� j j2 d�

� a�
Z



hgrad  ; grad i dx +

Z
�

� j j2 d�:

Hence, the terms on the right hand side must vanish. This means that grad  

is zero almost everywhere on 
 and, consequently,  must be from the equiv-

alence class of a constant function  over 
, cf. Ziemer [36, Corollary 2.1.9].

N.B. 
 is connected.

If
R
�
� d� > 0, then

R
�
�j j2 d� = 2

R
�
� d� = 0 implies  �  = 0, which is

a contradiction to  6� 0.

If @
 n � has a strictly positive surface measure, then  �  is equivalent to

zero on this set, hence  �  = 0, which again is a contradiction to  6� 0.

The contraction properties of the semigroup follow immediately from the

lower bounds of A2 by means of the spectral theorem.

The following regularity result for elliptic boundary value problems due to

Griepentrog and Recke is the essential ingredient in our subsequent proofs.

2.8. Proposition. (Cf. [17].) Let 
 [ � be a regular set in the sense of

De�nition 2.1, W be a nonnegative L1 function, A2 be according to De�ni-

tion 2.6, and 0 < a� � a� <1 be the constants from (2.7). For every p with

p � 2 and p > d=2 there exist two constants c = c(p; a�; a
�;
;�) > 0 and
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� = �(p; a�; a
�;
;�) 2]0; 1[ such that for every f 2 Lp the solution u 2 W 1;2

0

of the elliptic boundary value problem (A2 +W )u = f is Hölder continuous

up to the boundary, and there is(A2 +W + 1)�1f

C
� � c kfkLp: (2.9)

2.9. Remark. This result corresponds to one being known since long for the

Dirichlet problem, cf. Gilbarg/Trudinger [14, 8.10].

From Proposition 2.8 one easily deduces the following

2.10. Lemma. There is a positive number j such that for any nonnegative

L1 function W the mapping�
A2 +W + 1

�
�j

: L2 �! C� ,! L1 (2.10)

is well de�ned and continuous. If d = 2; 3, then j = 1 does the job; if d = 4; 5,

then j = 3=2 works.

Proof. If d � 3, then (2.10) holds with j = 1, according to Proposition 2.8.

If d 2 f4; 5g, then 2d
d�2

> d

2
and Proposition 2.8 yields

L2 (A2+W+1)�
1
2

��������! dom(t) =W
1;2
0 ,! L

2d
d�2

(A2+W+1)�1

��������! C�:

If d > 5, then by De�nition 2.6 and Proposition 2.8 one has

(A2 +W + 1)
�1

: L2 �! dom(A2) ,! dom(t) = W
1;2
0 ,! L

2d
d�2

(A2 +W + 1)�1 : L
d+1
2 �! C� ,! L1:

Hence, by the Riesz�Thorin interpolation theorem the mapping

(A2 +W + 1)�1 : L
2d
d�2

( d
d�2

)k �! Lq(k) ,! L
2d
d�2

( d
d�2

)k+1

is continuous, for all positive integers k such that

2d

d � 2

� d

d� 2

�
k

�
d+ 1

2
:

Thus, with a �nite resolvent power (A2+W +1)�k one ends up in L
d+1
2 . Now,

applying once more (A2+W +1)�1 one arrives at C�, due to Proposition 2.8.

2.11. Remark. It is not hard to see that j may be taken as 2 for d = 6.
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2.12. Remark. Lemma 2.10 can be equivalently formulated: For each of

the spaces X = C�, 0 � � � �, � according to Proposition 2.8, and X = Lp,

1 � p � 1, there is a constant X such that

k kX � X
(A2 +W + 1)j 


L2

for all  2 dom
�
(A2 +W + 1)j

�
. (2.11)

We recall that A2 provides an isomorphism betweenW
1;p
0 and W�1;p, a result

due to Gröger and Rehberg.

2.13. Proposition. (Cf. [21].) Let 
 [ � be a regular set in the sense of

De�nition 2.1, A2 be according to De�nition 2.6, and 0 < a� � a� <1 be the

constants from (2.7). There is a real constant � = �(
;�; a�; a
�) > 0, such

that (A2 + 1)�1 continuously extends to a topological isomorphism between

W�1;p
and W

1;p
0 for all p 2 [2; 2 + �[. Denoting the inverse of this toplogical

isomorphism by Bp, one has the following resolvent estimate:

(Bp + �)�1

B(W�1;p;W�1;p)

�
Np

j�j
for all � 2 C with <� � 0, (2.12)

where the constant Np depends on 
, �, a�, and a
�
.

2.14. Remark. It should be noticed that in view of the example in Shamir

[30, p.151] one cannot expect in general that � becomes much greater than

zero, even for a smooth domain and constant coe�cients.

3 The operators Ap

In this section we will regard more closely the operators Ap fromDe�nition 2.6

and operators Ap + W , where W is a multiplication operator, induced by

a nonnegative function. W of this type frequently occur as potentials of

Schrödinger operators, cf. e.g. Reed/Simon [29, vol. IV:ch.XIII].

3.a Basic properties of the operators Ap

3.1. Theorem. Suppose p 2]2;1[. For any � > 0 the operator
�
Ap + �

��1
exists and is compact, hence, Ap is closed.

Proof. Let �rst p be greater than d=2. According to Proposition 2.8
�
Ap+�

��1
is a continuous mapping from Lp into a Hölder space, hence it is compact,

viewed as a mapping from Lp into itself. By Lemma 2.7,
�
A2 + �

��1
also is

compact. Thus, using a well known interpolation theorem for Lp spaces, cf.
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Davies [6, Th. 1.6.1], one obtains that
�
Ap + �

��1
exists for p 2]2; d

2
] and is

compact.�
Ap + �

�
�1

is continuous for any � > 0, and, consequently, closed. Thus,

Ap + � and Ap are also closed operators.

For any p 2 [2;1[ let Jp : Lp �! Lp
0

, 1=p + 1=p0 = 1 denote the duality

mapping

Jp :  7�!
1

k kp�2
L
p

 j jp�2 (3.1)

from Lp into Lp
0

. N.B. the duality was de�ned by (2.1) as the extended L2

duality, i.e. antilinear in the second argument. The duality mapping (3.1)

has the following properties.

3.2. Lemma. Suppose p � max
�
4; d+1

2

	
. If  2 dom(Ap), then Jp 2 W

1;2
0

and the (generalized) partial derivatives of Jp may be calculated as

@

@xl
Jp =

1

k kp�2
Lp

�
j jp�2

@ 

@xl
+
p� 2

2
 j jp�4

�
 
@ 

@xl
+  

@ 

@xl

��
: (3.2)

Proof. As p � max
�
4; d+1

2

	
we have  2 C(
) due to Proposition 2.8. More-

over, one has

dom(Ap) � dom(A2) � dom(A
1
2

2 ) = dom(t) = W
1;2
0 : (3.3)

Hence, due to the product rule it is su�cient to prove that j jp�2 is from

W 1;2
0 and its partial derivatives may be calculated as

@

@xl
j jp�2 =

p� 2

2
j jp�4

�
 
@ 

@xl
+  

@ 

@xl

�
: (3.4)

For p = 4, what is permitted in the cases d � 7, the statement follows

immediately by the product rule. Let now p be greater than 4 and not

smaller than d+1
2
. With ' = j j2 the left hand side of (3.4) can be written

as @

@xl

�
'(

p

2
�1)
�
: ' is a positive function from W

1;2
0 \ C(
); we denote its

supremum by M , and de�ne the function g : R�! [0;1[ by

g(x) =

8><
>:
0 if x 2]�1; 0[
x

p

2
�1 if x 2 [0;M + 1]

(M + 1)
p

2
�1 if x 2]M + 1;1[:

(3.5)
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Because the function ' takes its values only in the interval [0;M ], we have

j jp�2 = '
p

2
�1

= g('):

By construction, g is a continuous and piecewise continuously di�erentiable

function with g0 2 L1(R); thus the weak partial derivatives of g(') are

@

@xl
g(') = g0(')

@'

@xl
;

cf. Gilbarg/Trudinger [14, 7.4 Th. 7.8].

Lemma 3.2 allows to characterize the numerical range of the operators Ap:

3.3. Theorem. Suppose p � max
�
4; d+1

2

	
. If  2 dom(Ap), then

���=
Ap ; Jp 
���� � a�

a�

p � 2

2
p
p � 1

<


Ap ; Jp 

�
: (3.6)

In particular, �Ap is dissipative, and �Ap is the in�nitesimal generator of a

strongly continuous semigroup of contractions.

Proof. By Proposition 2.8 and our assumption on p, dom(Ap) is contained

in L1. Hence, the Lp�Lp
0

duality hAp ; Jp i is equal to the scalar product

between Ap and Jp in L2. Further,  2 dom(Ap) implies by (3.3) and

Lemma 3.2 that  and Jp belong to W
1;2
0 = dom(t). Hence, due to (3.2)

there is



Ap ; Jp 

�
= t[ ; Jp ] =

1

k kp�2
Lp

�Z



dX
k;l=1

ak;l
@ 

@xk

�
j jp�2

@ 

@xl
+
p� 2

2
 j jp�4

�
 
@ 

@xl
+  

@ 

@xl

��
dx

+

Z
�

� j jp d�
�

(3.7)

We notice:

i) As far as the relation between the real and imaginary part of t[ ; Jp ]

is concerned the factor 1=k kp�2
Lp

on the right hand side of (3.7) may be

omitted, what we will do in the sequel.

ii) If one neglects the (positive) term
R
�
� j jp d�=k kp�2

Lp
; then the real

part of the right hand side of (3.7) decreases.
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We split

j j
p�4

2  
@ 

@xk

def
= 'k + i�k

into the real and imaginary parts and write down what remains on the right

hand side of (3.7), thereby observing that the coe�cient matrix (2.6) is real

symmetric:

Z



X
k;l

ak;l
�
'k + i�k

� ��
'l + i�l

�
+
p� 2

2

��
'l + i�l

�
+
�
'l + i�l

���
dx

=

Z



X
k;l

ak;l

�
(p� 1)'k 'l + �k �l + i(p� 2)'k �l

�
dx: (3.8)

By means of (2.7b), the real part of (3.8) may be estimated from below by

a�

�
(p� 1)

dX
k=1

Z



'2
k
dx +

dX
k=1

Z



�2
k
dx
�
� 0; (3.9)

while the absolute value of the imaginary part of (3.8) can be estimated due

to (2.7a) and (3.9) as follows:

(p� 2)

����
Z



dX
k;l=1

ak;l 'k �l dx

���� � a�(p � 2)

vuutZ



dX
k=1

'2
k
dx

vuutZ



dX
k=1

�2
k
dx

� a�
p� 2

2

 p
p � 1

Z



dX
k=1

'2
k
dx +

1
p
p� 1

Z



dX
k=1

�2
k
dx

!

� a�
p � 2

2
p
p � 1

�
(p � 1)

dX
k=1

Z



'2
k
dx +

dX
k=1

Z



�2
k
dx
�
;

what proves the assertion (3.6). Now (3.6) implies immediately the dissipa-

tivity of �Ap, cf. Pazy [28, 1.4 Def. 4.1], and this together with Theorem 3.1

ensures by the Lumer�Phillips theorem [28, 1.4 Th. 4.3] , that �Ap is the in-

�nitesimal generator of a strongly continuous semigroup of contractions.

3.4. Remark. The proof of Theorem 3.3 follows exactly the proof of Pazy

[28, 7.3 Th. 3.6] for the case of smooth domains, smooth coe�cients and

homogeneous Dirichlet boundary conditions. Indeed, the crucial part of the

proof in our setting is to show that the duality mapping Jp maps the domain

of the operator Ap into the form domain of t.
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Theorem 3.3 permits an essential conclusion:

3.5. Theorem. If p is any number from [2;1[ then dom(Ap) is dense in L
p
.

Proof. At �rst let p be not smaller than max
�
4; d+1

2

	
. According to a well

known theorem, cf. Pazy [28, 1.4 Th. 4.6] it su�ces to show that 1 +Ap has

the whole space Lp as its range. Indeed, for any � > 0 the operator Ap+ � is

surjective, because, due to the compactness of the resolvent, cf. Theorem 3.1,

in the opposite case � would be an eigenvalue of �Ap. But, this is impossible

because �Ap is dissipative.

Thus, the assertion is proved for p � p0 = max
�
4; d+1

2

	
. Let now p be from

[2; p0[. There is

dom(Ap0
) � dom(Ap) for all p 2 [2; p0[.

Hence, as dom(Ap0
) is dense in Lp0 and Lp0 is dense in Lp, dom(Ap) must be

dense in Lp.

Theorem 3.5 justi�es the following de�nition, supplementing De�nition 2.6:

3.6. De�nition. For p < 2, Ap is the adjoint of Ap0, where p = p0=(p0 � 1).

We will now reproduce the statements on Ap for the case p 2]1; 2[.

3.7. Theorem. Suppose p 2]1; 2[. Ap is closed and densely de�ned. The

restriction of Ap to L
2
is equal to A2. For any � > 0 the operator

�
Ap+ �

��1
exists and is compact, hence, its spectrum is discrete.

Proof. In a re�exive space an operator is densely de�ned and closed if its

adjoint is, cf. Kato [23, III.�5 Th. 5.29]. Thus the �rst assertion follows from

Theorem 3.1 and the fact that Lp is dense in L2 for all p > 2.

The second assertion follows from the selfadjointness of A2.

The compactness of the resolvent of Ap follows from Theorem 3.1 and [23,

III.�5 Th. 5.30], and there is

�
Ap + �

�
�1

=

��
A p

p�1
+ �
�
�1
�
�

(3.10)

for any � > 0.

3.8. Remark. According to Theorem 3.1 and Theorem 3.7, the operator�
Ap + 1

��1
is compact. Hence, dom(Ap) equipped with the graph norm

k kdom(Ap) = k(Ap + 1) kLp embeds compactly into Lp for all p 2]1;1[.
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Now we may conclude the dissipativity of all the operators �Ap:

3.9. Theorem. Suppose p 2]1;1[ and � > 0. There is

�Ap + �
�
�1

B(Lp;Lp)
�

1

�
; (3.11)

hence, �Ap is dissipative.

Proof. In view of (3.10) it su�ces to prove (3.11) for p 2 [2;1[. For p = 2

and p � max
�
4; d+1

2

	
the inequality follows from the dissipativity of �Ap and

the surjectivity of Ap+ � and a well known theorem, cf. Pazy [28, Th. 1.4.2];

for p 2]2;max
�
4; d+1

2

	
[, (3.11) follows by interpolation and the dissipativity

of �Ap follows again from [28, Th. 1.4.2].

3.b Ap: Perturbations by nonnegative potentialsW

For Ap+W to generate a strongly continuous semigroup of contractions and

to allow resolvent estimates it is su�cient to know that the multiplication

operator induced by the function W is relatively compact with respect to

the operator Ap. First we prove a general lemma about relatively bounded

perturbations of Ap + 1.

3.10. Lemma. Suppose p 2]1;1[ and let T : dom(Ap) �! Lp be relatively

bounded with respect to Ap + 1:

kT kLp � ak kLp + bk(Ap + 1) kLp for all  2 dom(Ap). (3.12)

If � > 1, then

kT kLp � ak kLp + 2bk(Ap + �) kLp for all  2 dom(Ap). (3.13)

Moreover, if b < 1=2, then the operators Ap and Ap+T have the same domain

dom(Ap), are closed and the resolvent of Ap + T is compact.

Proof. (3.13) results by means of (3.11) from the inequality(Ap + 1) 

Lp
�

(Ap + 1)(Ap + �)�1

B(Lp;Lp)

(Ap + �) 

Lp

�
�
1 + (�� 1)

(Ap + �)�1

B(Lp;Lp)

�(Ap + �) 

Lp

� 2
(Ap + �) 


Lp
:
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Due to Theorem 3.1 and Theorem 3.7, Ap is closed. If b < 1, then the

operators Ap and Ap + T have the same domain dom(Ap) and are closed, cf.

[23, IV.�1 Th. 1.1],

According to Theorem 3.1 and Theorem 3.7 Ap+ � is is compactly invertible

for all � > 0, and there is (3.13). If b < 1=2, then by (3.11)

a
(Ap + �)�1


B(Lp;Lp)

+ 2b �
a

�
+ 2b < 1;

for � su�ciently great. Hence, the resolvent of Ap + T is compact, cf. [23,

IV.�2 Th. 1.16].

3.11. Theorem. Suppose p 2]1;1[, and let W be a nonnegative, measurable

function on 
 with lower bound W�. If the multiplication operator, induced by

W on Lp is relatively compact with respect to Ap, then dom(Ap +W ) equals

dom(Ap), the operator Ap +W is closed, its resolvent is compact, and

�Ap +W + �
��1

B(Lp;Lp)
�

1

�+W�
for all � > �W�. (3.14)

Moreover, the operator �(Ap+W ) generates a strongly continuous semigroup

of contractions on Lp. If �(@
 n �) > 0, or
R
�
� d� > 0, or W� > 0, then this

semigroup is even strictly contractive.

Proof. The multiplication operator induced by W maps dom(Ap) compactly

into Lp. N.B. dom(Ap) equipped with the graph norm compactly embeds into

Lp, cf. Remark 3.8. Further, the multiplication operator induced on Lp by

the function 1=(1+W ) is continuous and injective, becauseW is nonnegative,

i.e.

dom(Ap)
W����!

compact

Lp
1

1+W�����������!
continuous, injective

Lp:

According to Ehrling's lemma, cf. e.g. [35, I.�7 Satz 7.3], for every b > 0

there is an a > 0, such that

kW kLp � a
 W

1 +W
 

Lp

+ b
 

dom(Ap)
� a k kLp + b

(Ap + 1) 

Lp
:

Thus, the multiplication operator, induced by W on Lp is relatively bounded

by Ap + 1 with bound zero, and the assertions about Ap + W follow from

Lemma 3.10.

The multiplication operator, induced byW �W� on Lp is dissipative. Indeed,
one easily checks the de�nition [28, 1.4 Def. 4.1] by means of (3.1) thereby

observing the nonnegativity of W �W�.
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According to Theorem 3.3 �Ap is the in�nitesimal generator of a strongly

continuous semigroup of contractions, and with the up to now obtained prop-

erties of W �W� a perturbation theorem for such generators, cf. Pazy [28,

3.3 Cor. 3.3], applies. Hence,�
�
Ap+W�W�

�
is the in�nitesimal generator of

a strongly continuous semigroup of contractions, and in particular dissipative.

Now the criterion [28, 1.4 Th. 4.2] for dissipativity provides

�Ap +W �W� + �
�
 
 � � k k
for all � > 0 and  2 dom(Ap +W �W�), (3.15)

i.e. the operator Ap +W �W� + � is injective. Due to the compactness of

the resolvent Ap+W �W�+� is also surjective. Consequently, (3.15) implies

(3.14).

If �(@
 n �) > 0, or
R
�
� d� > 0, then the semigroup generated by �(A2 +

W�W�) on L2 is strictly contractive, cf. Lemma 2.7. Because the semigroups

generated by �(Ap+W �W�) on Lp are at least contractive, it follows by in-
terpolation that the semigroups must be strictly contractive for all p 2]1;1[.

If W� > 0, then the strict contractiveness follows from [28, 1.3 Cor. 3.8].

3.12. Remark. The question, whether �(Ap+W ) generates a strongly con-

tinuous semigroup of contractions on L1 and L1 will be answered in Theo-

rem 3.17.

3.c Ap +W : spectral properties

The question arises whether the spectra of the operators Ap +W may di�er

for di�erent p from each other or not. Later on we will establish ultracontrac-

tivity of the generated semigroup, which allows to answer this question, cf.

Davies [6, Th. 1.6.3]. Here we will give a direct proof of the invariance of the

spectrum. For the sake of technical simplicity we allow bounded potentials

W only.

3.13. Theorem. Suppose p 2]1;1[, and let W be a nonnegative L1 func-

tion. The spectrum of Ap +W coincides with the spectrum of A2 +W and

the geometric multiplicities are the same. For every eigenvalue � of Ap +W

the algebraic multiplicity equals the geometric multiplicity, or, in other words,

there are no nontrivial Jordan chains.

Proof. According to Theorem 3.11 Ap+W has a compact resolvent, hence its

spectrum consist only of eigenvalues. We prove that the sets of eigenvalues

are identical for all p 2]1;1[. Let p be �rstly from ]1; 2[. From Theorem 3.7
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follows that all eigenvalues of A2 +W are also eigenvalues of Ap +W . Con-

versely, let � be an eigenvalue of Ap+W . Then �� has to be an eigenvalue of

A p

p�1
+W , hence, of A2+W , and due to the selfadjointness of A2+W , there

is �� = �. This argument also applies to the geometric multiplicities, because

the geometric multiplicities for the eigenvalue � for Ap +W is identical with

the geometric multiplicity of �� as an eigenvalue of A p

p�1
+W , cf Kato [23,

III.�6 Rem. 6.23]. The case p > 2 is proved by the inversed duality argument.

Now we show the second assertion. If p > 2, then no eigenvalue � can have a

nontrivial Jordan chain, because a Jordan chain in Lp also would be a Jordan

chain in L2 and this is impossible due to the selfadjointness of A2+W . Hence,

for p > 2 the dimension of the eigenprojection for an eigenvalue � must be

equal to the geometric multiplicity of �. Let now p be smaller than 2 and �

be an eigenvalue of Ap +W . The dimension of the eigenprojection of � in

Lp equals the dimension of the corresponding eigenprojection for A p

p�1
+W ,

which is equal to the geometric multiplicity of �.

3.14. Theorem. Let W be a nonnegative L1 function. For any eigenvalue

� the corresponding eigenspaces of Ap+W are identical for all p 2]1;1[. The

set of eigenvectors of the operator Ap +W is total in Lp for all p 2]1;1[.

Proof. If p < q, then any eigenspace of Aq is included in the correspond-

ing eigenspace for Ap, and by Theorem 3.13 the eigenspaces have the same

dimension.

The second statement is clear for L2, due to the selfadjointness of A2 +W .

As the sets of eigenvectors for Ap and A2 are identical this set is also total in

Lp for p 2]1; 2[, because in that case L2 is dense in Lp.

Let now p be from ]2;1[ and let j be the resolvent power exponent from

Lemma 2.10. Because �(Ap +W + 1) generates a strongly continuous semi-

group of contractions on Lp, cf. Theorem 3.11, dom
�
(Ap+W +1)j

�
is dense

in Lp, cf. Pazy [28, 1.2 Th.2.7]. Hence, it su�ces to show that any element

from the space dom
�
(Ap + W + 1)j

�
� Lp may be approximated by lin-

ear combinations of eigenvectors of Ap +W . Let for this purpose p be the

embedding constant

p = sup

0 6='2dom

�
(Ap+W+1)j

� k'kLp
k(Ap +W + 1)j'kL2

(3.16)

of 1 : dom
�
(Ap + W + 1)j

�
! Lp; which is �nite due to Remark 2.12.

Further, let  2 dom
�
(Ap + W + 1)j

�
and � > 0 be given. Because the

system of eigenvectors of A2 + W is total in L2, there is a �nite sequence
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f rgr of eigenvectors of A2+W , �r being the corresponding eigenvalues, and

a �nite sequence f�rgr of complex numbers such thatX
r

�r  r � (Ap +W + 1)j 

L2
<

�

p
: (3.17)

As

X
r

�r  r � (Ap +W + 1)j = (Ap +W + 1)j

 X
r

�r

(�r + 1)j
 r �  

!

(3.17) implies by de�nition (3.16) of p:X
r

�r

(�r + 1)j
 r �  


Lp

< �;

i.e. the eigenvectors of Ap+W form a total set in dom
�
(Ap+W +1)j

�
.

3.d Integral kernel properties

The next results a�ect kernel properties for resolvent powers of A2 +W and

the semigroup operators generated by �(A2 +W ). We will regard bounded

potentials W only.

3.15. Theorem. Let W be a nonnegative L1 function, � be the Hölder

exponent from Proposition 2.8, and j the resolvent power exponent from

Lemma 2.10.

i) (A2 +W + 1)�j : L2! L2
is a Hilbert�Schmidt operator.

ii) (A2 +W + 1)�2j : L2 ! L2
extends to a continuous mapping from L1

into C� ,! L1.

iii) (A2 +W + 1)�2j is an integral operator, the kernel K of which is es-

sentially bounded. If �̂ is smaller than the Hölder exponent � from

Proposition 2.8, then

kKkL1(
;C�̂) =
(A2 +W + 1)�2j


B(L1;C�̂)

:

Proof. Ad i. The Hilbert�Schmidt property follows from the Pietsch factor-

ization theorem, cf. Diestel/Jarchow/Tonge [8, 2.13 item iv], and Lemma 2.10.

Indeed, there is a factorization over L1:

(A2 +W + 1)�j : L2 (A2+W+1)�j

��������! C� ,! L1 ,! L2:
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Ad ii. From Lemma 2.10 follows by duality that (A2 +W + 1)�j : L2 !
C� ,! L1 extends to a continuous operator from L1 into L2. N.B.A2+W+1

is selfadjoint.

Ad iii. This assertion follows from the abstract representation theorem of

compact operators on L1, cf. Diestel/Uhl [9, III.2 Th. 2]. Indeed, (A2+W +

1)�2j : L1 ! C� ,! C �̂ is compact, hence representable. N.B. the embedding

C� ,! C �̂ is compact for �̂ < �.

3.16. Theorem. Let W be a nonnegative L1 function, � be the Hölder ex-

ponent from Proposition 2.8.

i) Each semigroup operator e�t(A2+W )
, t > 0, maps L2

continuously into

C� ,! L1, i.e. in particular the semigroup
�
e�t(A2+W )

	
t>0

is ultracon-

tractive, cf. Davies [6, 2.1].

ii) Each semigroup operator e�t(A2+W ) : L2 ! L2; t > 0, is nuclear and,

consequently, an integral operator. The corresponding kernels are even

from C�(
� 
;R).

Proof. Let j be the resolvent power exponent from Lemma 2.10. There ise�t(A2+W )

B(L2;C�)

�
(A2 +W + 1)

�j

B(L2;C�)

(A2 +W + 1)je�t(A2+W )

B(L2;L2)

:

The �rst factor on the right hand side is �nite according to Lemma 2.10; the

second one is �nite due to the spectral theorem. Thus, there is a factorization

of e�t(A2+W ) over L1

e�t(A2+W ) : L2 e
�t(A2+W )

������! C� ,! L1 ,! L2

for every t > 0, and according to the Pietsch factorization theorem, cf. Dies-

tel/Jarchow/Tonge [8, 2.13 item iv], all the semigroup operators e�t(A2+W ) :

L2 ! L2; are Hilbert�Schmidt. Splitting up

e�t(A2+W ) =
�
e�

t
2
(A2+W )

�2
this yields the nuclearity of e�t(A2+W ).

Let now f�rg1r=1 be the sequence of eigenvalues of A2 + W , counting mul-

tiplicity, and f rg1r=1 a corresponding complete, orthonormal system of real

eigenfunctions. Such a system may always be found because A2 +W com-

mutes with the complex conjugation on L2. We prove that the series

1X
r=1

e�t�r  r 
  r (3.18)
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converges absolutely in C�(
�
;R): This implies that the series represents

the integral kernel of e�(A2+W )t, because for any eigenfunction  r one obtains

the correct image under e�(A2+W )t. First, it follows from Lemma 2.10 that

all eigenfunctions  r belong to C� because they belong to \1
l=1 dom

�
(A2 +

W )l
�
, thus in particular to dom

�
(A2+W )j

�
. Further, it is easy to check the

inequality

k 
 'k
C�(
�
) � 2k kC� k'kC� for all  ;' 2 C�. (3.19)

Now one can estimate the terms of the sum (3.18) by means of (3.19) and

(2.11) as follows:

k r 
  rkC�(
�
;R) � 2 2
C
�

(A2 +W + 1)j r
2
L2
� 2 2

C
� (�r + 1)2j :

(3.20)

N.B. the  r are L
2�normalized. According to Theorem 3.15 (A2 +W + 1)�j

is a Hilbert�Schmidt operator, hence (A2+W +1)�2j must be nuclear. Thus,

the series

1X
r=1

(�r + 1)�2j

is convergent and due to (3.20) the series (3.18) converges absolutely in

C�(
 �
;R).

3.e Ap +W : Semigroups on L1 and L1

Next we will regard the semigroup
�
e�t(A2+W )

	
t>0

with a nonnegative, bounded

potential W on the spaces L1 and L1.

3.17. Theorem. Let W be a nonnegative L1 function. Then the semigroup

e�t(A2+W )
, t > 0 induces semigroups of contractions on L1 and L1

. The latter

semigroup is strongly continuous, while the �rst is not.

Proof. According to Theorem 3.16 there is e�t(A2+W ) 2 B(L1; L1); and�
e�t(A2+W )

	
t>0

obviously forms a semigroup on L1. It remains to show

the contractivity of e�t(A2+W ) on L1. Indeed, due to the contractivity of

e�t(A2+W ) for all p 2 [2;1[, there is for all  2 L1

e�t(A2+W ) 

L1

1 p

 ���
e�t(A2+W ) 


Lp
� k kLp

p!1

���! k kL1:

N.B. if  2 L1, then k kL1 = limp!1k kLp:
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Now we regard the semigroup operators e�t(A2+W ) on L2, but L2 equipped

with the L1 norm. We state that they also have a norm not greater than 1. If

this were not so, then there would exist a t > 0 and an element  2 L2 with

k kL1 = 1 such that
e�t(A2+W ) 


L
1 > 1. By the Hahn�Banach theorem

there would be a  ̂ 2 L1 with k ̂kL1 = 1 such that

1 <
e�t(A2+W ) 


L1

= he�t(A2+W ) ;  ̂i = h ; e�t(A2+W ) ̂i

�
e�t(A2+W ) ̂


L1
k kL1 � k kL1 k ̂kL1 = 1:

N.B.  ;  ̂ 2 L2, and e�t(A2+W ) is selfadjoint on L2 and contractive on L1.

This is a contradiction to
e�t(A2+W ) 


L1
> 1,

The operators e�t(A2+W ) extend by continuity from L1jL2 to the whole space
L1; they are there contractive and satisfy the semigroup property. We now

prove the strong continuity: for  2 L2 the continuity of the mapping

R+ 3 t 7�! e�t(A2+W ) 2 L1

follows immediately from the strong continuity of the semigroup in L2. For

 2 L2, � 2 L1, and s; t 2 [0;1[ there is, due to the contractivity of the

semigroup on L1

e�t(A2+W )�� e�s(A2+W )�

L1

� 2 k� �  kL1 +
e�t(A2+W ) � e�s(A2+W ) 


L1
:

The expression on the left hand side becomes arbitrarily small provided  is

su�ciently close to � with respect to the L1 norm and provided s is su�ciently

close to t.

Why is the semigroup not strongly continuous on L1? If it were, its generator

would be densely de�ned in L1 according to the Hille�Yosida theorem, cf.

Pazy [28, 1.3 Th. 3.1]. On the other hand, due to Proposition 2.8, dom(A1+

W ) is contained in a Hölder space C�, never being dense in L1.

3.18. Remark. In particular, Theorem 3.17 together with Theorem 3.15

implies that the semigroup generated by �(A2 +W ) is hypercontractive, cf.

[29, vol. II:X.9].

3.19. Remark. With respect to the dual semigroup, cf. Pazy [28, ch. 1

Th. 10.4], it is an interesting question what the closure of dom(A�1) in L
1 is.

The authors believe that if d = 2, then

dom(A�1)
L
1

= C(
) \
�
 :  j

@
n�
= 0
	
;

but have no idea for the higher dimensional cases.
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3.f Ap +W : positivity preservation

We now turn to the question: Do the semigroups generated by Ap + W

preserve positivity? Before we can give the � a�rmative � answer, we have

to prove a technical lemma:

3.20. Lemma. If  is a real�valued function from W
1;2
0 , then the positive

part  +
of  also belongs to W 1;2

0 .

Proof. It is well known, cf. Evans/Gariepy [11, 4.2.2 Th. 4.iii], that for any

real�valued function  2 W 1;2 the positive part  + also belongs to W 1;2 and

@ +

@xk
=

(
@ 

@xk
a.e. on f > 0g,

0 a.e. on f � 0g.
(3.21)

Hence, the nontrivial part of Lemma 3.20 is to prove that the functions  +

also have the stated boundary behaviour. To that end, we show �rstly:

If  2 C10 (
 [ �;R), then  + 2 W 1;2
0 . (3.22)

By de�nition (2.3) of C10 (
 [ �) the support of  , and a fortiori that of  +,

does not intersect 
 n (
[�), hence, it has a positive distance � to the latter
set, which is closed, cf. Remark 2.3. Passing to molli�cations of  +, cf. e.g.

[11, 4.2.1], one observes that the support of the regularized functions also

does not intersect 
 n (
 [ �), provided the molli�cation parameter being

smaller than �. Additionally, the regularized functions converge towards  +

in W 1;2(Rd), hence in W 1;2.

Assume now  to be an arbitrary, real�valued function fromW
1;2
0 . By De�ni-

tion 2.2 of W 1;2
0 there is a sequence f rg1r=1 from C10 (
[�) which converges

to  in the W 1;2
0 topology. Obviously, the functions  r may be taken real�

valued, and without loss of generality, possibly passing to a subsequence, we

may assume that this sequence converges pointwise to  almost everywhere.

It is easy to see that the sequence f +
r
g1
r=1 is bounded in W 1;2 and converges

pointwise almost everywhere to  +. This implies that f +
r
g1
r=1 in fact weakly

converges to  + in W 1;2. Because we already know that the elements  +
r

belong to W
1;2
0 ,  + also does.

3.21. Theorem. If W is a nonnegative L1 function, then the semigroup

operators e�t(A2+W )
, t > 0 are positivity preserving.

Proof. One has to show two things, cf. Liskevich/Semenow [25, Proposi-

tion 1.6], namely
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i) Each operator e�t(A2+W ), t > 0maps real�valued functions from L2 onto

real�valued functions.

ii) The Phillips condition

(A2 +W ) ; +

�
� 0 for all  2 dom(A2) \ L2

(
;R) (3.23)

holds,  + being the positive part of  .

By Theorem 3.16 the operators e�t(A2+W ) are integral operators with real�

valued kernel; this implies the �rst property.

We show (3.23): for real�valued functions  from dom(A2) � W
1;2
0 the cor-

responding positive part  + belongs due to Lemma 3.20 to W
1;2
0 , the form

domain of A2 +W . Hence, one obtains by means of (3.21)



(A2 +W ) ; +

�
=

Z





a grad ; grad +

�
Rd + W  + dx +

Z
�

�  + d�

=

Z





a grad +; grad +

�
Rd + W

�
 +
�2
dx +

Z
�

�
�
 +
�2
d� � 0:

3.22. Remark. From Theorem 3.16 and Theorem 3.21 follows immediately

that the operators A2 +W generate Markov semigroups.

3.23. Remark. The integral kernelsKt belonging to operators e�t(A2+W ), cf.

Theorem 3.16, are nonnegative. This follows immediately from the Markov

property and the ultracontractivity, cf. Davies [6, Lemma 2.1.2].

3.24. Remark. According to the �rst Beurling�Deny criterion, cf. Davies

[6, Th. 1.3.2], Theorem 3.21 implies that the resolvent of A2+W is positivity

preserving.

3.g Ap +W : positivity improvement

It turns out that the semigroup operators e�t(A2+W ), t > 0 and the resolvents

of A2 + W are not only positivity preserving but positivity improving. In

view of Reed/Simon [29, vol. IV:XIII.12 Th. XIII.44] we prove

3.25. Lemma. Let W be a nonnegative L1 function, and let A2 be the op-

erator from De�nition 2.6.

�1 = min

n

(A2 +W ) ; 

�
:  2 W 1;2

0 ; k kL2 = 1

o
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is the smallest eigenvalue of A2 + W , and the minimum is attained for a

function  1 2 W
1;2
0 , positive within 
, which solves (A2 +W ) 1 = �1 1.

If  2 W 1;2
0 is any solution of the equation (A2 +W ) = �1 , then  is a

multiple of  1.

Proof. As A2 + W is a nonnegative, selfadjoint operator with compact re-

solvent, cf. De�nition 2.7, �1 indeed is the smallest eigenvalue of A2 + W .

Moreover, one can choose a real valued eigenfunction to �1 and according

to Theorem 3.14 and Proposition 2.8 any eigenfunction of A2 +W is Hölder

continuous. If  2 W 1;2
0 , then

(A2 +W ) = �1 () h(A2 +W ) ; i = �1k k2L2:

Let us assume

(A2 +W ) = �1 ; k kL2 = 1;  2 W 1;2
0 (
;R):

Since  +;  � 2 W 1;2
0 and due to (3.21) we have the relation

h(A2 +W ) +;  �i = 0:

Accordingly, by the minimizer property of �1 we get

�1 = h(A2 +W ) ; i = h(A2 +W ) +;  +i + h(A2 +W ) �;  �i

� �1k +k2
L2

+ �1k �k2L2 = �1:

Hence, this inequality must in fact be an equality, and again by the minimizer

property it follows

h(A2 +W ) +;  +i = �1k +k2
L2

and h(A2 +W ) �;  �i = �1k �k2L2:

But this is equivalent to (A2 + W ) + = �1 
+ and (A2 + W ) � = �1 

�.

Hence, for all nonnegative ' 2 C10 (
) there holds

h(A2 +W ) +; 'i � 0 and h(A2 +W ) �; 'i � 0;

in other words,  +,  � are (weak) supersolutions of the equation (A2+W )v =

0. Now, we can distinguish three cases.

Case vraimin



 + > 0: Then,  =  + is positive within 
.

Case vraimin



 � > 0: In the same style  = � � is negative within 
.

Case vraimin



 + = vraimin



 � = 0: Noticing, that 
 is an open, connected

set, we conclude in the following way. Because of the property of  + and  �
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to be supersolutions of the equation (A2+W )v = 0 and the nonnegativity of

W 2 L1 we can apply the strong maximum principle, cf. Gilbarg/Trudinger

[14, 8.7], to get the validity of the following two alternatives:

 + = 0 or vraimin
K

 + > vraimin



 + = 0 for every compact K � 


and

 � = 0 or vraimin
K

 � > vraimin



 � = 0 for every compact K � 
:

Because of  6= 0 this is only possible if

 + = 0 and vraimin
K

 � > 0 for every compact subset K � 


or

 � = 0 and vraimin
K

 + > 0 for every compact subset K � 
:

Because  � as an eigenfunction � is from C�, so are  + and  �, hence the

essential in�ma of  + and  � over compact sets K are in fact minima.

Summing up the results of the considered cases we have proved, that if  2
W

1;2
0 is a solution of (A2 +W ) = �1 , then either

 is positive within 
 or  = 0 or  is negative within 
: (3.24)

Two functions, each satisfying one of the conditions of (3.24), cannot be

orthogonal to each other; thus, the eigenspace must be one dimensional.

3.26. Remark. The proof of Lemma 3.25 follows the ideas of Evans [10,

2.6.5.1 Th. 2] for the case of smooth coe�cients and homogeneous Dirichlet

boundary conditions.

According to [29, vol. IV:XIII.12 Th. XIII.44] the statements of Lemma 2.7,

Theorem 3.21, and Lemma 3.25 now imply immediately

3.27. Theorem. Let W be a nonnegative L1 function, and A2 be the oper-

ator from De�nition 2.6.

i) (A2 +W + �)�1 is positivity improving, hence ergodic, at least for all

� > � vraimin



W .

ii) e�t(A2+W )
is positivity improving, hence ergodic, for all t > 0.
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4 The operators UAp

Now we turn to the investigation of operators U div a grad, where U is a

positive L1 function, bounded from below by a strictly positive constant.

These operators generate analytic semigroups on Lp. This property is stable

with respect to perturbations by �rst order di�erential operators, at least for

certain p.

4.a Resolvent estimates

This section is devoted to resolvent estimates for operators UAp +W , where

Ap is according to De�nition 2.6 and De�nition 3.6. W is a nonnegative

measurable function, and U is a positive, essentially bounded function, which

is bounded from below by a strictly positive constant, i.e. U�1 2 L1. For the
sake of technical simplicity we assumeW 2 L1; this assures that Lemma 3.10

applies. By W� we denote the essential in�mum of W on 
. In the sequel H

will always be the closed complex right half plane. We abbreviate

�p =
a�

a�
2
p
p � 1

p � 2
; if p 2

�
max

�
4; d+1

2

	
;1
�
, (4.1)

cf. Theorem 3.3.

4.1. Theorem. Let U and W be nonnegative, essentially bounded functions.

If U�1 2 L1, then for any p 2]1;1[ there is a constant Mp such that

�Ap + WU�1 + �U�1
��1

B(Lp;Lp)
�

Mp kUkL1
j�j+W�

for all � 2 H n f0g.

The constant Mp can be speci�ed as follows:

i) If p = 2, then M2 =
p
2.

ii) If p 2
�
max

�
4; d+1

2

	
;1
�
, then Mp =

p
1 + � 2

p

minf1; �pg
:

iii) If p 2
�
2;max

�
4; d+1

2

	�
, then Mp = 2

1��p

2

 p
1 + � 2

minf1; �g

!
�p

;

where � = �
max

�
4;
d+1
2

	 and �p is de�ned by

1

p
=

�p

max
�
4; d+1

2

	 +
1� �p

2
: (4.2)
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iv) If p 2]1; 2[, then Mp =M p

p�1
.

Proof. We regard �rstly the selfadjoint case p = 2. Let  be the lower form

bound for t, which is nonnegative, cf. Lemma 2.5.

�A2 +WU�1 + �U�1
�
 

L2
k kL2 �

���t
[ ; ] +
Z



�
� +W

�
U�1j j2 dx

���
�
���� + �+W�

kUkL1

���� k k2L2 � j�+W�j
kUkL1

k k2
L2
�
j�j+W�p
2kUkL1

k k2
L2
; (4.3)

i.e. the operator A2+WU�1+�U�1 is injective. If one can show additionally

the surjectivity of A2+WU�1+�U�1, then (4.3) implies the assertion. Indeed,

(W + �)U�1 is a bounded linear operator on L2, hence it is A2�bounded with

bound equal zero. Thus Lemma 3.10 applies and provides that A2+WU�1+

�U�1 has a compact resolvent, hence, it is surjective as it is injective.

Now, let p be from [max
�
4; d+1

2

	
;1[, p0 = p=(p � 1), and �p according to

(4.1). For � 2 H n f0g we de�ne

�̂ =

(
1 + �pi if � > 0,

1 � �p sign(=�)i if � 2 H nR.
(4.4)

If  2 dom(Ap) and � 2 H n f0g, then due to (3.1) and (3.6)

q
1 + � 2

p

�Ap + (W + �)U�1
�
 

Lp
k kLp

= j�̂j
�Ap + (W + �)U�1

�
 

Lp
kJp kLp0

�
����̂ 
�Ap + (W + �)U�1

�
 ; Jp 

����
� <

�
�̂

�
Ap + (W + �)U�1

�
 ; Jp 

��
= <

�
�̂
�
<hAp ; Jp i+ i=hAp ; Jp i

��
+<

�
�̂ �
�

U�1 ; Jp 

�
+ <

�
�̂
�

WU�1 ; Jp 

�
� <hAp ; Jp i � �p

��=hAp ; Jp i
�� + <� + �pj=�j+W�

kUkL1
k k2

Lp

� minf1; �pg
j�j+W�

kUkL1
k k2

Lp
:
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Hence,

k kLp �
kUkL1�
j�j + W�

� p1 + � 2
p

minf1; �pg
�Ap + (W + �)U�1

�
 

Lp

for all  2 dom(Ap) and all � 2 H n f0g. (4.5)

Now the assertion follows in the same way as in the case p = 2.

If p 2
�
2;max

�
4; d+1

2

	�
, then interpolation between the cases p = 2 and

p = max
�
4; d+1

2

	
with the Riesz�Thorin theorem provides the stated result.

If p 2]1; 2[, then one obtaines the assertion by duality. From the De�nition 3.6

of Ap follows

Ap + (W + �)U�1 =
�
A p

p�1
+ (W + �)U�1

�
�

:

This yields, cf. Kato [23, III.�5 Th. 5.30]�
Ap + (W + �)U�1

��1
=

��
A p

p�1
+ (W + �U�1)

��1��
;

and then the already proved cases imply the assertion.

4.2. Theorem. Let U and W be nonnegative, essentially bounded functions.

If U�1 2 L1, then for any p 2]1;1[ the operator UAp+W is closed, has the

same domain as Ap, and �(UAp + W ) is the in�nitesimal generator of an

analytic semigroup on Lp. More precisely, for any � 2 H n f0g one has(UAp +W + �)�1

B(Lp;Lp)

� Mp kUkL1kU�1kL1
1

j�j+W�
; (4.6)

where the constants Mp are those from Theorem 4.1.

Proof. The operator U is bounded and boundedly invertible on Lp. Thus, the

operators UAp +W and Ap + U�1W have the same domain and are closed

simultaneously, i.e. UAp+W is closed and has the domain dom(Ap) according

to Theorem 3.1 and Theorem 3.7.

Let � be in H nf0g. According to Theorem 4.1 Ap+(W+�)U�1 is continuously

invertible, hence, UAp +W + � is continuously invertible and(UAp +W + �)�1

B(Lp;Lp)

�
�Ap + (W + �)U�1

��1
B(Lp;Lp)

U�1
B(Lp;Lp)

=
�Ap + (W + �)U�1

��1
B(Lp;Lp)

U�1
L1
:

Thus, the asserted inequality (4.6) follows immediately from Theorem 4.1.

(4.6) implies that UAp+W is the in�nitesimal generator of an analytic semi-

group on Lp, cf. e.g. Pazy [28, 2.5].
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4.3. Remark. If �(@
 n �) > 0 or
R
�
� d� > 0, or W� > 0, then the singu-

larity at � = 0 in (4.6) can be avoided.

4.b Perturbations by �rst order di�erential operators

Our next aim is to investigate the in�uence of perturbations upon an op-

erator UAp by �rst order di�erential operators. Again Ap is according to

De�nition 2.6 and De�nition 3.6, and U is a positive, essentially bounded

function on 
 with a strictly positive lower bound.

4.4. Theorem. Let b1, b2, : : : , bd, and c be essentially bounded functions

on 
. We regard the �rst order di�erential operator:

Tp :W
1;p
0 �! Lp Tp :  7�!

dX
k=1

bk
@ 

@xk
+ c : (4.7)

Let � be the constant from Proposition 2.13; if p 2] 2d
d+2

; 2 + �[, then

i) dom(UAp) compactly embeds into dom(Tp) = W
1;p
0 . Tp is relatively

bounded with respect to UAp and the bound is equal zero.

ii) UAp + Tp has the same domain as Ap, and is closed.

iii) UAp + Tp generates an analytic semigroup on Lp.

iv) The resolvent of UAp + Tp is compact.

Proof. Ad i. According to Theorem 4.2 there is dom(Ap) = dom(UAp): Let

M � Lp be a set such that (Ap + 1)M is bounded in Lp. Thus, (Ap + 1)M
is a precompact set in W�1;p. If p 2 [2; 2 + �[, then Proposition 2.13 implies

that M is precompact in W
1;p
0 . If p 2] 2d

d+2
; 2[, then the compactness of the

embedding Lp ,!W�1;2 provides the precompactness of (Ap+1)M inW�1;2.

Knowing this, the Lax�Milgram lemma implies the precompactness ofM in

W 1;2
0 and, by embedding, also in W 1;p

0 . Thus, taking into accountTp 
Lp
� max

�
kckL1; kb1kL1; : : :kbdkL1

	
k kW 1;p for all  2 W 1;p

0 ,

the �rst assertion is proved. The second one is implied by Ehrling's lemma,

cf. [35, I.�7 Satz 7.3]: as the domain dom(Ap) of Ap equipped with the

graph norm k kdom(Ap) = k(Ap + 1) kLp compactly embeds into W 1;p
0 , for

any p 2] 2d
d+2

; 2 + �[ we have

dom(Ap)
1����!

compact

W 1;p
0

1�����������!
continuous, injective

Lp;
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and for every b > 0 there is an a > 0, such that

k kW 1;p � a k kLp +
b

kU�1kL1
kAp kLp � a k kLp + b kUAp kLp

for all  2 dom(Ap). (4.8)

Ad ii and iii. These claims follow from i), thereby observing Theorem 4.2,

from abstract perturbation theorems, cf. Kato [23, IV.�1 Th. 1.1 and IX.�2

Th. 2.4] and Pazy [28, 3.2 Th. 2.1].

Ad iv. If a and b < 1 are two constants such that (4.8) applies, then

according to (4.6) there is for some � > 0

a
(UAp + �)�1


B(Lp;Lp)

+ b � Mp kUkL1kU�1kL1
a

�
+ b < 1;

and this implies by the theorem on the stability of bounded (and compact)

invertibility, cf. Kato [23, IV.�1 Th. 1.16], that the resolvent of UAp + Tp is

compact as UAp has a compact resolvent, cf. Theorem 4.2.

4.5. Remark. Theorem 4.4 is primarily relevant in the low dimensional

cases d = 2; 3; 4 where the permitted interval for p intersects the p�interval

where dom(Ap) continuously embeds into a space C�, cf. Proposition 2.8.

Further, Theorem 4.4 is in correspondence to the results of Arendt and ter Elst

[4], which also require restrictions on the �rst order di�erential operators.

5 A2 on fractional Sobolev and Besov spaces

The operator �A2 induces analytic semigroups on Lp spaces, cf. Theorem 3.3

and on certain spaces W�1;q, cf. Proposition 2.13 and Gröger/Rehberg [21].

By interpolation it induces analytic semigroups also on fractional Sobolev

spaces and on Besov spaces.

5.1. Theorem. Let � be the constant from Proposition 2.13; if

q 2 [2; 2 + �[; p 2]1;1[; � 2]0; 1[; s 2 [1;1[; (5.1)

then the operator �A2, cf. De�nition 2.6, induces an analytic semigroup in

any of the interpolation spaces

�
W�1;q; Lp

�
�;s

and
�
W�1;q; Lp

�
�
: (5.2)
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Proof. Let Ap be the operators on L
p from De�nition 2.6 and De�nition 3.6,

letBq be the operators onW
�1;q from Proposition 2.13, and let H be again the

closed complex right half plane. The resolvent estimates for the in�nitesimal

generators in the interpolation spaces, which imply the analyticity of the

semigroups, cf. [28, 2.5], result by interpolation due to the following facts:

i) W�1;q and Lp are an interpolation couple, because both embed contin-

uously into W�1;r, r = minfp; qg.

ii) For any � 2 H the operators (Ap+1+ �)�1 and (Bq + �)�1 coincide on

Lmaxf2;pg. This set is dense in Lp and W�1;q; thus (Ap + 1 + �)�1 and

(Bq + �)�1 may be viewed as the same operator.

iii) Real and complex interpolation are exact interpolation functors of type

�, cf. e.g. Triebel [32, 1.2.2].

It remains to show that the domain of the operator on the corresponding

interpolation space is dense in this space: one knows, cf. [32, 1.6.2 and 1.9.3],

that W�1;q \ Lp is dense in
�
W�1;q; Lp

�
�;s

and in
�
W�1;q; Lp

�
�
. (Because

this is not necessarily true for the (real) interpolation index (�;1), cf. [32,

Rem. 1.6.2] one has to exclude this index in the assertion.) Further, the norm

max
�
k kLp; k kW�1;q

	
(5.3)

onW�1;q\Lp is stronger than the induced norm from any of the interpolation

spaces, cf. Triebel [32, 1.3.3 and 1.9.3].

Let now p0 � maxf2; pg be chosen, such that Lp0 continuously embeds into

Lp and W�1;q. Clearly, then one has dom(Ap0
) � dom(ApjW�1;q\Lp) and the

images under the embedding mappings Lp0 ,!W�1;p and Lp0 ,! Lp are dense

in both spaces. By Theorem 3.5 dom(Ap0
) is dense in Lp0 and, consequently,

is dense in W�1;q \ Lp in the norm (5.3).

5.2. Remark. According to duality theorems from interpolation theory, cf.

Triebel [32, 1.11], there is

�
W�1;q; Lp

�
�;s

=

��
W 1;q0

0 ; Lp
0
�
�;s0

��
for s 2]1;1[;

�
W�1;q; Lp

�
�

=

��
W 1;q0

0 ; Lp
0
�
�

��
;

where p0 = p=(1 + p), q0 = q=(1 + q), s0 = s=(1 + s).
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6 Applications to parabolic equations

The property of �UAp to be an in�nitesimal generator of an analytic semi-

group on Lp paves the way for treating the corresponding parabolic equations

on Lp, cf. Amann [3], Lunardi [26], Pazy [28]. With respect to the results

obtained by Arendt and ter Elst [4] the basic �nding in our context is the

Hölder continuity of solutions to the parabolic equation in space and time,

which rests on Proposition 2.8. Before we expatiate upon this, we prove a

preparatory technical lemma:

6.1. Lemma. Suppose p > d

2
and p � 2. Let Ap be an operator according to

De�nition 2.6, and let U 2 L1 be a positive function with a strictly positive

lower bound. Further, let � be the Hölder exponent from Proposition 2.8.

There are numbers � 2]0; 1[ and 0 < ~� < �, such that

dom
�
(UAp + 1)�

�
,! C ~�: (6.1)

Any function u 2 C1
�
S;Lp

�
\ C

�
S; dom(UAp)

�
; where S = [T0; T ] is an

interval of the real (time) axis, is Hölder continuous in space and time, more

precisely u 2 C1��
�
S;C ~�

�
,! C�(S � 
):

Proof. Let � be in ]0; 1[. If � < �, then the embeddings

dom
�
(UAp + 1)�

�
,!
�
dom(UAp + 1); Lp

�
1��;1

,!
�
dom(UAp + 1); Lp

�
1��;1

are continuous, cf. Triebel [32, 1.15.2 and 1.3.3]. The chain of continuous

embeddings may be continued by applying Proposition 2.8 and [32, 1.10.3]

�
dom(UAp + 1); Lp

�
1��;1

=
�
dom(Ap); L

p
�
1��;1

,!
�
C�; Lp

�
1��;1

,!
�
C�; Lp

�
1��

:

Thus, it remains to show that�
C�; Lp

�
1��

=
�
Lp; C�

�
�
,! C ~�; for some ~� > 0.: (6.2)

By means of the localization, transformation and re�ection principles, cf. e.g.

[16, 1.1], one can construct a simultaneous extension operator for

C� �! C�(Rd) and Lp �! Lp(Rd);

cf. [34, 1.2.2 Th. 1.2]. Hence, it is su�cient to prove�
Lp(Rd

); C�
(R

d
)
�
�
,! C ~�

(R
d
);
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cf. e.g. [32, 1.2.4] instead of (6.2). According to [33], [31, VI.2.2] the space

C�(Rd) is identical with the Besov space B�

1;1
(Rd): Further, the interpola-

tion space with Lp coincides with a Lizorkin�Triebel space, and continuously

embeds into a Hölder space. More precisely,h
Lp(Rd); B�

1;1
(Rd)

i
�

= F ��
p

1��
;

2
1��

(Rd) ,! C ~�(Rd);

if ~�
def
= �� � (1 � �)

d

p
> 0;

cf. [33] and [32, 2.8.1] respectively. By choosing � and � su�ciently close to

1 one always �nds a strictly positive ~�.

Let now u be from the space C1
�
S;Lp

�
\ C

�
S; dom(UAp)

�
and let s, t be

di�erent numbers from the interval S. We have by the �rst statement of this

lemma

ku(s)� u(t)kC ~�

js� tj1��
� k1kB(dom((UAp+1)�);C ~�)

(UAp + 1)�
�
u(s)� u(t)

�
Lp

js� tj1��
:

There is a constant , such that this inequality may be prolonged, cf. Pazy

[28, 2 Th. 6.10], as follows

� 
(UAp + 1)

�
u(s)� u(t)

��
Lp

�
ku(s)� u(t)kLp
js� tj

�1��

:

Due to the supposition on u, the expression on the right hand side is uniformly

bounded for all s 6= t 2 S.

We will now draw some conclusions for parabolic equations, starting with the

linear case.

Let us regard an initial�boundary value problem

@u

@t
� U div a grad u = f; u(0) = u0; and boundary conditions.

If we regard this equation in Lp, then �U div a grad gets the precise meaning

of the operator UAp, cf. �4, and the fully elaborated existence, uniqueness

and regularity theory for parabolic equations

@u

@t
+ UAp u = f; u(0) = u0: (6.3)

related to the in�nitesimal generator of an analytic semigroup applies, cf.

Amann [3], Lunardi [26], Pazy [28].

For convenience, we formulate the new and essential fact for operators with

mixed boundary conditions as
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6.2. Theorem. Suppose p > d

2
, p � 2, and T > 0. Let Ap be an operator

according to De�nition 2.6, and U 2 L1 be a positive function with a strictly

positive lower bound. If the right hand side f of (6.3) is Hölder continuous

as a mapping from [0; T ] into Lp, then for any T0 2]0; T [ the solution of (6.3)

is Hölder continuous on the set [T0; T ]� 
. If, in addition, the initial value

u0 is from dom(UAp) = dom(Ap), then the solution is Hölder continuous on

[0; T ]� 
.

Proof. The proof results from Lemma 6.1 and classical regularity results, cf.

Pazy [28, 4.3].

6.3. Remark. The Hölder continuity of solutions of (6.3) on [0; T ]�
 also

has been obtained by Griepentrog [16, 2.3] in a completely di�erent way.

If U � 1, then the suppositions on the right hand side may be considerably

relaxed:

6.4. Theorem. Let Ap be an operator according to De�nition 2.6, W be a

nonnegative essentially bounded function, and T > 0. Then for any q 2]1;1[

the operator Ap +W satis�es q�regularity; in other words: for any q 2]1;1[

the operator
@

@t
+Ap +W provides a topological isomorphism between

Lq
�
[0; T ]; dom(Ap)

�
\
�
v 2 W 1;q

�
[0; T ];Lp

�
: v(0; �) � 0

	
and Lq

�
[0; T ];Lp

�
:

Moreover, if p > d

2
, p � 2, and f is from L1

�
[0; T ];Lp

�
, then the solution u

of the initial value problem

@u

@t
+ (Ap +W )u = f; u(0) = u0 (6.4)

is Hölder continuous in space and time.

Proof. The �rst statement follows from the positivity of the operator A2+W ,

Theorem 3.17 and a result of Lamberton, cf. [24]. Let � be the Hölder ex-

ponent from Proposition 2.8. From the trace method in interpolation theory,

cf. Ashyralyev and Sobolevskii [5, 1.3] or Triebel [32, 1.8.2], follows for any

q 2]1;1[ the existence of a continuous embedding

Lq
�
[0; T ]; dom(Ap)

�
\W 1;q

�
[0; T ];Lp

�
,! C

�
S; (dom(Ap); L

p) 1
q
;q

�
,! C

�
S; (C�; Lp) 1

q
;q

�
: (6.5)

We choose q great enough, so that
�
C�; Lp

�
1
q
;q
continuously embeds into a

space C� with some � > 0, and � small enough, so that we still have an
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embedding
�
C�; Lp

�
�;s
,! C for some  > 0; both is possible by Lemma 6.1.

De�ning � by

� = � +
1��

q
; (6.6)

we have by the reiteration theorem for real interpolation

�
C�; Lp

�
�;s

=

��
C�; Lp

�
1
q
;q
; Lp
�
�;s

and by the suppositions on q; � the continuity of the embedding��
C�; Lp

�
1
q
;q
; Lp
�
�;s

,!
�
C�; Lp

�
�;s
,! C;

cf. Triebel [32, 1.10.3]. Using the corresponding interpolation inequality, one

can estimate for any t1; t2 2 [0; T ]:

ku(t1)� u(t2)k(C�;Lp)�;s

jt1 � t2j
�� 1

q

� �
ku(t1)� u(t2)k

�

Lp

jt1 � t2j
�� 1

q

ku(t1)� u(t2)k1��(C�;Lp) 1
q ;q

� �

 R t2
t1
u0(� ) d�

�
Lp

jt1 � t2j��
1
q

�
2 sup
�2[0;T ]

ku(� )k(C�
;L

p) 1
q ;q

�1��

� �

� R
t2

t1
ku0(� )kq

L
p d�

� �
q jt1 � t2j

�

q0

jt1 � t2j
�� 1

q

�
2 sup
�2[0;T ]

ku(� )k(C�;Lp)1
q ;q

�1��
:

By the de�nition (6.6) of � we have �

q0
= �� 1

q
; what proves the boundedness

of the right hand side, independently from t1; t2 2 [0; T ].

Next we will regard the semilinear case.

6.5. Theorem. Let F : [0; T ]� C �! C be a function which is Hölder con-

tinuous in the �rst argument and locally Lipschitz continuous in the second.

(For t 2 [0; T ] we identify the function F(t; �) with the induced Nemytzkij oper-

ator on L1.) We assume the existence of a uniform Hölder exponent for every

bounded set of z 2 C , and that the local Lipschitz constants may be taken uni-

form over [0; T ]. Suppose p > d

2
and p � 2. Let Ap be an operator according

to De�nition 2.6 and � 2]0; 1[ be a number such that dom
�
(Ap+1)�

�
,! C ~�

for some ~� > 0. (Such numbers � and ~� exist according to Lemma 6.1.)

Then the equation

@u

@t
+ UApu = F(t; u); u(0) = u0 2 dom((Ap + 1)�) (6.7)
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has a unique local solution

u 2 C
�
[0; T1[;L

p
�
\ C1

�
]0; T1[;L

p
�
\ C

�
]0; T1[; dom(Ap)

�
;

which, by Lemma 6.1, is Hölder continuous in space and time on any set

[T0; T2]� 
, 0 < T0 < T2 < T1.

Proof. The local existence, uniqueness and asserted regularity follow from

standard results, cf. Pazy [28, 6.3 Th. 3.1 and 4.3 Th. 3.5], provided one can

prove that

[0; T ]� dom((Ap + 1)�) 3 (t;  ) 7�! F(t;  ) 2 L1 ,! Lp

is Hölder continuous in the �rst variable and Lipschitzian in the second. But

this follows immediately from our supposition dom
�
(Ap + 1)�

�
,! C ~� and

the suppositions on F .

6.6. Remark. Much more could be said about �ne properties of solutions

of (6.3), (6.4) and (6.7) in dependence of the initial values u0 and F(0; u0),
respectively; for particulars we refer to Lunardi [26]. We do not expatiate

this here because in our highly nonsmooth constellation it is impossible in

general to determine dom(Ap) or dom
�
(AP + 1)�

�
explicitely, or to say how

regular F(0; u0) is.

As mentioned in the introduction, we are interested primarily in reaction�

di�usion equations, especially in semiconductor equations. This requires a

solution theory for coupled evolution equations, where, among others, the

following two problems, cf. e.g. Pazy [28, 5.6], arise:

6.7. Problem. Under what conditions on two L1(
;B(Rd;Rd)) functions

a and ~a with strictly positive lower bounds a� and ~a� the domains of the

corresponding operators Ap and ~Ap coincide? Do, at least the domains of

fractional powers of Ap and ~Ap coincide?

6.8. Problem. Let t 7�! at be a function from [0; T ] into L1(
;B(Rd;Rd))

and let Ap;t be the operator corresponding to at, according to De�nition 2.6.

What can be said about Hölder continuity, in an appropriate sense, of the

function t 7�! Ap;t; cf. e.g. Pazy [28, 5.6].
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