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Abstract | Lagrangian stochastic models and algorithms are constructed and justi�ed for

solving the footprint problem, namely, the problem of calculation of the mean concentration

and the ux of particles at a �xed point released from a source arbitrarily situated in the space.

The direct and adjoint Monte Carlo algorithms are suggested, and rigorous justi�cations are

given. Two di�erent backward trajectory algorithms are considered: Thomson's method and a

method based on probabilistic representations of the relevant initial value problem. The cost of

the latter algorithm may increase with time, but it allows to treat the general situation when

a set of reacting species is scattered by the ow. Thomson's approach is extended to general

stochastic di�erental equations which is especially usefull when it is desired to �nd a solution at

a �xed point, and for large time instances.

1 Introduction

The footprint problem as formulated in the literature (e.g., see [18], [3], [4], [5]) essentially

deals with the calculation of the contribution to the mean concentration and its ux at

a �xed point from an arbitrary given source of particles. There are mainly two di�erent

approaches: (1) conventional deterministic methods based on the semiempirical turbulent

di�usion equation and closure assumptions (e.g., see [18]) and (2), stochastic approach

which utilizes trajectory simulations (e.g., see [13], [9], [10], [14]-[21]).

The deterministic approach directly deals with the equation governing the mean con-

centration, but it is restricted by the use of the Boussinesq hypothesis whose applicability

should be additionally studied (e.g., see [1] ). For instance, this hypothesis can not be

true if the concentration is calculated close to the sources [1], [11]. More generally, the

high order closure methods are developed, but di�erent closure hypotheses also should be

made [11] .

Stochastic models do not require any closure hypotheses, and the main di�culty is to

construct adequate Lagrangian trajectories with the desired statistical characteristics.

There are two main approaches in constructing stochastic methods. The �rst one is

based on Monte Carlo simulation of the Eulerian random velocity �elds (e.g., see [8], [13],

[20]). Second approach treats the stochastic Lagrangian trajectories as solutions to the

stochastic generalized Langevin equation (e.g., see [19], [16], [14]) .

The �rst approach is more rigorous, but generally it requires a lot of computer time.

In addition, it needs a detailed information about statistical characteristics of the whole

velocity �eld. In contrast, the second approach needs only one-pont probability density

function (pdf) of the Eulerian velocity �eld, and is much more e�cient in numerical

calculations. It should be noted however, that this approach is rigorously justi�ed only

in the case of stationary isotropic turbulent ow. Even in the case of homogeneous but

nonisotropic turbulence the justi�cation problem remains unsolved; in particular there

are several di�erent stochastic models which satisfy the well-mixed condition [19], [15].

In this paper, we suggest direct and backward Monte Carlo algorithms for solving

the footprint problem by simulation of Lagrangian trajectories as solutions to generalized

Langevin equations. We derive random estimators for the mean concentration and its ux

both for direct and backward schemes. Two di�erent methods are compared: the adjoint

scheme which is based on probabilistic representations of the relevant PDE [6] and the

backward Thomson's scheme [19]. The last approach is extended to general stochastic

di�erential equations.
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2 Formulation of the problem

Let us consider a passive scalar dispersed by the turbulent velocity �eld in the surface

layer of the atmosphere. The passive scalar is assumed to follow the streamlines of the

ow. We assume that the source of particles is quite arbitrary, for instance, it might be

situated on the surface or in the space, or even at given points. Let us denote by q(x; t)

the spatial-temporal density distribution function of the source, i.e, the number of emitted

particles per unit volume in a unit time interval at the phase point (x; t). Initially, the

spatial density of particles is given by q0(x). The particles are transported by the 3D

turbulent velocity �eld u(x; t) in the surface layer D = fx = (x1; x2; x3) : x3 � 0g .

Let us denote by X(t;x0; t0) and V(t;x0; t0) the Lagrangian spatial coordinates and the

velocity, respectively.

The mean concentration at (x; t) is de�ned by [11]:

hc(x; t)i = �c(x; t) =

tZ

0

dt0

Z

D

dx0 q(x0; t0)pL(x; t;x0; t0) +

Z

D

dx0 q0(x0)pL(x; t;x0; 0); (2:1)

where

pL(x; t;x0; t0) = h�(x�X(t;x0; t0))i
is the probability density function (pdf) of the particle's coordinate at the time t which

was started in the point x0 at the time t0, �(�) is the Dyrac delta-function. Here and

throughout the paper we use the notation h�i for the averaging over the samples of the

turbulent velocity �eld. We de�ne also the concentration uxes by

Fi(x; t) = hui(x; t)c(x; t)i; i = 1; 2; 3;

where c(x; t) is the instant concentration.As in the case (2:1), the uxes can be represented

in the integral form (see Appendix A):

Fi(x; t) =

Z

IR
3

du

tZ

0

dt0

Z

D

dx0 uiq(x0; t0)pL(x;u; t;x0; t0)

+

Z

IR
3

du

Z

D

dx0 uiq0(x0)pL(x;u; t;x0; 0):

(2:2)

Here

pL(x;u; t;x0; t0) = h�(x�X(t;x0; t0))�(u�V(t;x0; t0))i (2:3)

is the pdf of the spatial-velocity phase point.

In the analysis, it is convenient to deal with a general quantity, the spatial-velocity

distribution of an ensemble of particles:

p(x;u; t) =

tZ

0

dt0

Z

D

dx0 q(x0; t0)pL(x;u; t;x0; t0)

+

Z

D

dx0 q0(x0)pL(x;u; t;x0; 0):

(2:4)

2



From (2:1), (2:2) and (2:4) we �nd

�c(x; t) =

Z

IR
3

p(x;u; t)du ; Fi(x; t) =

Z

IR
3

ui p(x;u; t)du; i = 1; 2; 3:

It is of practical interest to calculate the mean concentration and relevant uxes for

arbitrarily situated surface sources. In the literature, this problem is called a footprint

problem (e.g., see [18], [3], [5]). Note that in this problem, the mean concentration and

uxes are evaluated at a �xed point. We consider a more general function:

(p; h) =

Z

IR
3

du

TZ

0

dt

Z

D

dx p(x;u; t)h(x;u; t);

where h(x;u; t) is an arbitrary function which can be chosen relevant to the quantity of

interest. For instance, in the case h(y;u; s) = �(y� x)�(s� t) we have (p; h) = �c(x; t). If

h(y;u; s) = ui�(y�x)�(s�t), then (p; h) = Fi(x; t). Thus we concentrate on the problem

of calculation of the function (p; h).

3 Stochastic Lagrangian algorithm

To construct algorithms based on the representations given above, we need samples of

the Lagrangian trajectories X(t) = X(t;x0; t0), t � t0. Ideally, if we had samples of the

velocity u(x; t), the trajectories could be simulated by solving the problem

dX(t)

dt
= u(X(t); t); t > t0 X(t0) = x0 :

In practice one uses approximate models of the velocity �eld. For instance, randomized

models of the Gaussian velocity �elds are used (e.g., see [13]). This approach is well

developed and justi�ed only in the case of homogeneous turbulence while inhomogeneous

case requires further development. In general nonhomogeneous case one uses another

approach based on stochastic di�erential equation of Langevin type governing directly

the Lagrangian trajectory. This equation has the form (see, for instance, [19], [16], [15]):

dX(t) = V(t)dt;

dV(t) = a(t;X(t);V(t))dt+
q
C0�"(X(t); t) dW(t);

(3:1)

where the function a is to be de�ned in each speci�c situation, C0 is the universal Kol-

mogorov constant (C0 � 4 � 6), and �"(x; t) is the mean dissipation rate of the kinetic

energy of turbulence, and W(t) is the standard 3D Wiener process. In this section, we

deal with the general scheme.

Remark 3.1. Note that to complete the description of the Lagrangian stochastic model,

we need to de�ne the behaviour of (X(t);V(t)) in the neighbourhood of the boundary

� = fx = (x1; x2; x3) : x3 = 0g. We assume that the boundary is impenetrable, i.e., that

u3(x)jx2� = 0. This implies that the Lagrangian trajectories satisfying (3:1) do never

reach �. Therefore it is reasonable to require that the same property holds for X(t), the

solutions to (3:1). This can be realized by special choice of the function �"(x; t) (see for

details Sec. 4).
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3.1 Direct Monte Carlo algorithm

Let X(t;x0; t0), V(t;x0; t0), t � t0 be solutions to (3:1) satisfying the initial condition

X(t0) = x0 with V(t0) = u0, where u0 is a random velocity whose pdf coincides with

pE(u0;x0; t0), the pdf of the Eulerian velocity u(x0; t0).

It is convenient to use the representation (p; h) = I + I0, where

I =

Z

IR
3

du

TZ

0

dt

Z

D

dxh(x;u; t)

tZ

0

dt0

Z

D

dx0 q(x0; t0)pL(x;u; t;x0; t0)

=

TZ

0

dt0

Z

D

dx0q(x0; t0)

Z

IR
3

du

TZ

t0

dt

Z

D

dx h(x;u; t)pL(x;u; t;x0; t0);

and

I0 =

Z

D

dx0q0(x0)

Z

IR
3

du

TZ

0

dt

Z

D

dxh(x;u; t) pL(x;u; t;x0; 0):

From this representations we can write down the Monte Carlo estimators for I and I0.

Let

Q =

Z

D

dx

TZ

0

dt q(x; t); Q0 =

Z

D

q0(x)dx;

and let (~x; ~t) be a random point distributed in D� [0; T ] with the pdf q(x; t)=Q, and ~x0 is

a random point distributed in D with q0(x)=Q0. Standard arguments of the Monte Carlo

theory [13] yield

I = QIE(~x;~t)IEW (�)

Z T

~t
h(X(t; ~x; ~t);V(t; ~x; ~t); t)dt; (3:2)

I0 = Q0IE~x0IEW (�)

TZ

0

h(X(t; ~x0; 0);V(t; ~x0; 0); t) dt: (3:3)

Here IE(~x;~t)IEW (�) means averaging, �rst, over all starting points (~x; ~t) and, second, over all

solutions of (3:1); these two averagings are taken independently. Similar notation is used

in (3:3).

From the probabilistic representations (3:2),(3:3) we can construct the direct Monte

Carlo algorithm. For this we need a numerical scheme for solving the stochastic di�erential

equation (3:1). For simplicity, we choose the Euler scheme.

The algorithm can be described as follows. The mathematcal expectation in (3:2) is

usually calculated as

I ' 1

N

NX
i=1

�i;

where N is the number of samples and �i, i = 1; : : : ; N , are independent samples of the

random estimator

� = Q

TZ

~t

h(X(t; ~x; ~t);V(t; ~x; ~t); t)dt:
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First we choose the time step of integration as �t = T=Nt, Nt is the total number of

steps. Then the calculation of �i is as follows.

Step 0.

S := 0, and sample the random point (~x; ~t) in D � [0; T ]

from the density q(x; t)=Q; sample ~u0 in IR3 from the density pE(u0; ~x; ~t);

put t := ~t, X := ~x, V := ~u;

Step 1.

S := S +Q�th(X;V; t);

Sample a 3D standard gaussian random vector �;

put X := X+V�t;V := V + a(t;X;V)�t+
q
C0�"(X; t)�t�; t := t+�t;

if t > T , then go to step 2. Otherwise go back to start the step 1.

Step 2.

put �i := S;

3.2 Adjoint algorithm

Clearly, the direct algorithm is not practically applicable in general situation if the func-

tion h(x;u; t) is concentrated on small domains. In this case, an adjoint scheme is prefer-

able. For this purpose we need the probabilistic representation for p(x;u; t). In what

follows, we use the summation convention. The function pL(x;u; t;x0; t0) de�ned in (2:3)

satis�es the Kolmogorov-Fokker-Planck equation for the stochastic di�erential equation

(3:1):

@pL

@t
+
@(uipL)

@xi
+
@(aipL)

@ui
=

1

2
C0�"(x; t)

@
2

@ui@ui
pL(x;u; t;x0; t0);

with the initial conditions

pL(x;u; t;x0; t0)jt=t0 = �(x� x0)pE(u;x0; t0):

From this, using (2:4) we �nd

@p

@t
+
@(uip)

@xi
+
@(aip)

@ui
=

1

2
C0�"(x; t)

@
2
p(x;u; t)

@ui@ui
+ q(x; t)pE(u;x; t)

and

p(x;u; t)j
t=0 = q0(x)pE(u;x; 0):

Using the probabilistic representation given in Appendix B we get

p(x;u; t) = IE(x;u;t)

8<
:

tZ

0

q(X̂
x;u;t
t0

; V̂
x;u;t
t0

; t0) pE(V̂
x;u;t
t0

; X̂
x;u;t
t0

; t0)

� exp

0
@�

tZ

t0

�(X̂
x;u;t

t0
0

; V̂
x;u;t

t0
0

; t
0

0)dt
0

0

1
A dt0 (3:4)

+ q0(X̂
x;u;t

0 )pE(V̂
x;u;t

0 ; X̂
x;u;t

0 ; 0) exp

0
@�

tZ

0

�(X̂
x;u;t

t0
0

; V̂
x;u;t

t0
0

; t
0

0)dt
0

0

1
A
9=
; :
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where �(x;u; t) =
@ai(x;u;t)

@ui
, and X̂(t0) � X̂

x;u;t
t0

, V̂(t0) � V̂
x;u;t
t0

; t0 � t is the adjoint

trajectory determined as the solution to the equation:

dX̂(t0) = V̂(t0)dt0;

dV̂(t0) = a(t0; X̂(t0); V̂(t0))dt0 +

q
C0�"(X̂(t0); t0) dŴ(t0);

with the terminal conditions

X̂(t0)
���
t0=t

= x; V̂(t0)
���
t0=t

= u :

Note that here a(�) is the same function as in (3:1), and Ŵ(t0) is a standard 3D Wiener

process.

From the probabilistic representation (3:4) we get

(p; h) =

Z

IR
3

du

TZ

0

dt

Z

D

dx h(x;u; t)

�IE(x;u;t)

8<
:

tZ

0

q(X̂
x;u;t
t0

; V̂
x;u;t
t0

; t0)pE(V̂
x;u;t
t0

; X̂
x;u;t
t0

; t0)e
t0
� (x;u; t) dt0

+ q0(X̂
x;u;t

0 ) pE(V̂
x;u;t

0 ; X̂
x;u;t

0 ; 0) e0�(x;u; t)

9=
;

where

e
�
�(x;u; t) = exp

0
@�

tZ

�

�(X̂
x;u;t

t0
0

; V̂
x;u;t

t0
0

; t
0

0)dt
0

0

1
A :

Now we are in position to write down the Monte Carlo estimator for Î and Î0.

Let �(x;u; t) be an arbitrary probability density function in D � IR3 � [0; T ] which

satis�es the condition

�(x;u; t) 6= 0 if h(x;u; t) 6= 0:

Let (x̂; û; t̂) be a random point distributed in D � IR3 � [0; T ] with density �. Then

(p; h) = IE(x̂;û;t̂)IEŴ(�)
�̂;

where

�̂ =
h(x̂; û; t̂)

�(x̂; û; t̂)

2
64

t̂Z

0

n
q(X̂t0 ; t0)pE(V̂t0 ; X̂t0 ; t0)e

t0
� (x̂; û; t̂)

o
dt0

+ q0(X̂0)pE(V̂0; X̂0; 0)e
0
�(x̂; û; t̂)

3
5 :

Here we used a brief notation,

X̂t0 � X̂
x̂;û;t̂
t0

; V̂t0 � V̂
x̂;û;t̂
t0

:
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The calculations are carried out according to

(p; h) ' 1

N

NX
i=1

�̂i;

where N is the number of samples, �̂i, i = 1; : : : ; N , are independent samples of the

random estimator �̂.

The algorithm of calculation of the sample �̂i:

Step 0.

S := 0; sample the random point (x̂; û; t̂) in D � IR3 � [0; T ] from the density �(x;u; t);

Q :=
h(x̂;û;t̂)

�(x̂;û;t̂)
; put t := t̂, X := x̂, V := û; � := 1:

Step 1.

S := S +�tq(X; t)pE(V;X; t)�;

Sample a 3D standard gaussian random vector �;

put X := X�V�t;V =: V� a(t;X;V)�t+
q
C0�"(X; t)�t �;

� := � exp(��(X;V; t)�t); t := t��t;

if t < 0, then go to step 2. Otherwise go back to start the step 1.

Step 2.

put �̂i := Q[S + q0(X)pE(V;X; 0)�].

4 Impenetrable Boundary

Note that to complete the description of the Lagrangian stochastic model, we need to

de�ne the behaviour of X(t);V(t), the solution to (3:1) in the neighbourhood of the

boundary � = fx : z = x3 = 0g. We assume that the boundary is impenetrable, i.e., that

w = u3 = 0 at the boundary of �. This implies that the true Lagrangian trajectories do

never reach �. Therefore it is reasonable to require that the same property holds for X(t),

the solutions to (3:1). This can be done by special choice of the function �"(z; t). Indeed,

in the neighbourhood of �, it is reasonable to consider the ow as neutrally strati�ed.

Therefore, pE(w) is gaussian, with constant �w, and the vertical pro�le of �"(z) is given by

[11]

�"(z) =
u
3
�

�z
; � ' 0:4; z > z0: (4:1)

Here � is the Karman constant, and z0 is the roughness height.

The equation of vertical motion Z(t) = X3(t); W (t) = V3(t) then is

dZ =W dt; dW (t) = � a

Z
W (t)dt+

bp
Z
dB(t); (4:2)

where

a =
C0u

3
�

2��2w
; b =

�C0u
3
�

�

�1

2

:
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If we assume that the formula (4:1) is true for all z > 0, then all the solutions to (4:2)

do not reach the boundary �. Indeed, let � be a random time (wich depends on the

trajectory Z(t)) de�ned by

�(t) =

tZ

0

ds

Z(s)
:

Then, the vertical velocity W (�) in new time variable � satis�es the equation

dW (�) = �aW (�)d� + b dB(�):

Therefore, from
dZ

d�
=

dZ

dt

dt

d�
= W (�)Z(�)

we have

Z(�) = Z(0) expfS(�)g; S(�) =

�Z

0

W (� 0) d� 0:

The functionW (�) is an Uhlenbeck-Ornstein process with continuous samples. Therefore,

jS(�)j <1 with probability one for arbitrary � > 0. This implies that Z(�) > 0 provided

that Z(0) > 0. Thus the function Z(�) never reaches the boundary �. The same is true

for Z(t). To show this, it is su�cient to note that t(�)!1 as � !1. Let us show this

property. We have

t(�) =

�Z

0

dt

d� 0
d�

0 =

�Z

0

Z(� 0) d� 0 = Z(0)

�Z

0

expfS(� 0)g d� 0:

In [9] it is shown that with probablity one,

1Z

0

expfS(�)g d� =1:

This implies that with probability one t(�)!1 as � !1.

In numerical implementation, it is convenient to simulate the trajectory in the neigh-

bourhood of � by numerical solution to

d lnZ(�)

d�
= W (�);

dW (�) = �aW (�) + b dB(�)

dt(�)

d�
= Z(�):

The Euler scheme reads

Z(� +��) = Z(�) expfW (�)��g;
W (� +��) = W (�)� aW (�)�� + b

p
�� �;

t(� +��) = t(�) + Z(�)��;

where �� is the discretization step, and � is a standard normal random number.

Note that by construction, this scheme ensures that the boundary is impenetrable,

i.e., Z(�) > 0 for all � .
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5 Reacting Species

In this section we show that the backward trajectory technique can be extended to the

case when a set of reacting species is in play. Assume that in the domain D with a

boundary � which is impenetrable there are K reacting species governed in Lagrangian

formulation by the system

dX(t) = V(t)dt;

dV(t) = a(t;X(t);V(t))dt+
q
C0�"(X(t); t) dW(t); (5:1)

dNk

dt
= fk(t;X;N); k = 1; 2: : : : ; K

with the initial conditions:

X(0;x0) = x0; V(0;x0) = v0; Nk(0;x0) = qk(x0); k = 1; : : : ; K;

where v0 is the initial random velocity whose pdf is pE(v;x0), and qk(x0) is the initial

spatial distribution of the species, N = (N1; : : : ; NK). The Eulerian concentration of k-th

specie is given by

nk(x; t) =

Z

D

dx0qk(x0)�(x�X(t;x0)); k = 1; : : : ; K:

Then the mean is

hnk(x; t)i =
Z

IR
3

dv

Z
dn

Z

D

dx0nkpL(x;v;n; t;x0); k = 1; : : : ; K;

where

pL(x;v;n; t;x0) = h�(x�X(t;x0))�(v �V(t;x0))�(n�N(t;x0))i:
This pdf satis�es the Kolmogorov-Fokker-Planck equation

@pL

@t
+

@

@xi
(vipL) +

@

@vi
(aipL) +

@

@nk
(fkpL) =

C0�"

2

@
2
pL

@vi@vj

with the initial condition:

pL(x;v;n; 0;x0) = �(x� x0) pE(v;x0)�(n� q(x0)):

Here q(x0) = (q1(x0); : : : ; qK(x0)). The ux of k-th specie in i-th direction is given by

(k = 1; : : : ; K):

hvi(x; t)nk(x; t)i =
Z

IR
3

dv

Z
dn

Z

D

dx0vink pL(x;v;n; t;x0):

Generally, the integral

Ih(x; t) =

Z

IR
3

dv

Z
dn

Z

D

dx0 h(x;v;n; t) pL(x;v;n; t;x0) (5:2)
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is to be evaluated for a given function h. Let

�(x;v;n; t) =

Z

D

dx0 pL(x;v;n; t;x0):

Then this function satis�es

@�

@t
+

@

@xi
(vi�) +

@

@vi
(ai�) +

@

@nk
(fk�) =

C0�"

2

@
2
�

@vi@vj

and the initial condition

�(x;v;n; 0) = pE(v;x)�(n� q(x)):

The probabilistic representation given in Appendix B in this case yields:

�(x;v;n; t) = IE pE(V
x;v;t

0 ;X
x;v;t

0 ) exp

8<
:�

tZ

0

@ai

@vi
(s;Xx;v;ts ;V

x;v;t
s )ds

9=
;

� exp

8<
:�

tZ

0

@fk

@nk
(s;Xx;v;ts ;N

x;v;n;t
s )ds

9=
; �(N

x;v;n;t

0 � q(X
x;v;t

0 ));

(5:3)

where X(s) = X
x;v;t
s , V(s) = V

x;v;t
s and N(s) = N

x;v;n;t
s , 0 � s � t are the adjoint

Lagrangian processes de�ned as the solutions to

dX(s) = V(s)ds;

dV(s) = a(s;X(s);V(s))ds+
q
C0�"(X(s); s) dW(s);

dNk

ds
= fk(s;X;N); k = 1; 2: : : : ; K

with the terminal conditions

X(t) = x; V(t) = v; Nk(t) = nk; k = 1; : : : ; K:

The expectation IE is taken over all backward Lagrangian trajectories. From (5:2) and

(5:3) we �nd

Ih(x; t) =

Z

IR
3

dv

Z
dn h(x;v;n; t)

�IEpE(Vx;v;t0 ;X
x;v;t

0 )Qa(x;v; t)Qf(x;v;n; t)�(N
x;v;n;t

0 � q(X
x;v;t

0 ));

where

Qa(x;v; t) = exp

8<
:�

tZ

0

@ai

@vi
(s;Xx;v;ts ;V

x;v;t
s )ds

9=
; ;

Qf(x;v;n; t) = exp

8<
:�

tZ

0

@fk

@nk
(s;Xx;v;ts ;N

x;v;n;t
s )ds

9=
; :

10



Hence,

Ih(x; t) = IE

Z

IR
3

dvpE(V
x;v;t

0 ;X
x;v;t

0 )Qa(x;v; t)

�
Z
dnQf (x;v;n; t)h(x;v;n; t)�(N

x;v;n;t

0 � q(X
x;v;t

0 )):

(5:4)

To evaluate the last integral in (5:4) we use the following known formula. Let F be a

function of x = (x1; : : : ; xm), and g be a vector-function g(x) = (g1(x); : : : ; gm(x)), whose

inverse g�1 exists, and let b = (b1; : : : ; bm) be a �xed vector. Then

Z
F (x)�(g(x)� b) dx =

F (xb)

J(xb)
; (5:5)

where xb = g
�1(b), and

J(x) = Det

�����
�����
@gi(x)

@xj

�����
�����

is the Jacobian of the transformation x ! g(x). Applying (5:5), we can evaluate the

last integral in (5:4). Indeed, the transformation g : N ! N
x;v;n;t

0 has the Jacobian

Qf (x;v;n; t). Choosing b = q(X
x;v;t

0 ) we �nd that g�1(b) = N(t;b) where N(s;b) is the

solution to

dN

ds
= f(N;X

x;v;t
s ; s); N(0;b) = b:

Thus we have

Ih(x; t) = IE

Z

IR
3

dvpE(V
x;v;t

0 ;X
x;v;t

0 )Qa(x;v; t)h(x;v;n(t;q(X
x;v;t

0 )); t):

Now we can formulate the backward algorithm for solving the problem (5:1). Introduce

a probability density function r(V) > 0 in IR3, and use the notation ~V for a sample from

this density. We write for simplicity ~Xt0 = X
x; ~V;t
t0

and ~Vt0 = V
x; ~V;t
t0

. We denote by ~N(s)

the solution to
d ~N

ds
= f( ~N; ~Xs; s); ~N(0) = q( ~X0):

The random estimator has the form:

�(x; ~V; t) =
1

r( ~V)
pE( ~V0; ~X0)Qa(x; ~V; t)h(x; ~V; ~N(t); t);

hence,

Ih(x; t) = IE ~V
IE �(x; ~V; t):

Here IE ~V
means averaging over the samples ~V, and IE is the averaging over the trajectories

~Xs;
~Vs, 0 � s � t.
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6 Numerical simulations

Numerical simulations are carried out for the following problem. A horizontally homo-

geneous, stationary, neutrally strati�ed surface layer is considered. The source starts

to generate particles at the time t = 0. It is uniformly distributed over the plane at the

height z = zs. In this section we use the SI metric system of units. We calculate the mean

concentartion and its vertical ux at a �xed point at the height z = zd by three methods:

the direct Monte Carlo described in Sect.3.1, and two backward in time Monte Carlo

algorithms presented in Sect.3.2 and in Appendix C: the adjoint algorithm based on the

probabilistic representation, and the backward method due to Thomson [19]. Comparison

of the cost of these three methods is given.

Since our problem is described by horizontally homogeneous parameters, it is governed

by one-dimensional stochastic model (4:1), (4:2).

First, let us present the details of random estimators for the direct estimator of the

type (3:2). In our case it takes the form:

�c(zd; t) = Q IE

�t(zd)X
j=1

1

jW (�j)j (6:1)

for the mean concentration, and

F (zd; t) = Q IE

�t(zd)X
j=1

W (�j)

jW (�j)j (6:2)

for the vertical concentration ux. Here (Z(�);W (�)) is the solution to (4:2) with the

initial condition Z(0) = zs, W (0) = w0 where w0 is a random velocity distributed with

the Eulerian gaussian pdf pE(w) = expf�w2
=2�2wg=

q
2��2w. The values �j are random

times at which the process Z(s) intersects the level z = zd, and �t(zd) is the total number

of such events in the interval 0 � s � t. The constant Q is the strength of the surface-area

source.

The derivation of the estimator (6:1) can be obtained as folllows.

Note that

�c(zd; t) =

1Z

�1

dw

tZ

0

dt0

1Z

0

dz0�(z0 � zs)

1Z

�1

dw0pE(w0)pL(zd; w; t; z0; w0; t0)

=

1Z

�1

dw

tZ

0

dt0

1Z

0

dz0�(z0 � zs)

1Z

�1

dw0pE(w0)

�
1Z

0

dz�(z � zd)pL(z; w; � ; z0; w0; t0) = IE

tZ

0

�(Zzs; ~w0

� � zd) d�:

Here ~w0 is a random number distributed with pE(w0), Z
z;w
t is the solution to the system

(4:2) with the initial deterministic condition Z
z;w

0 = z, W
z;w

0 = w. It remains to note that

for arbitrary continuously di�erentiable function Z(�)

tZ

0

�(Z(�)� z) d� =

�t(z)X
j=1

1���dZ(�j)
d�

��� ;

12



where �t(z) is the number of intersections of the level z by the trajectory Z(�) in the

interval 0 � � � t, and �j are the intersection times.

The random estimator of Thomson's backward algorithm used in [5] is constructed on

the solutions to backward-time stochastic di�erential equation:

dẐ(t0) = Ŵ (t0)dt0; dŴ (t0) =
a

Ẑ
Ŵ (t0)dt0 +

bq
Ẑ

dB(t0);

with terminal condition Ẑ(t) = zd; Ŵ (t) = ŵ where ŵ is a random number distributed

with gaussian pE(w) given above. Here

a =
C0u

3
�

2��2w
; b =

�C0u
3
�

�

�1

2

:

The random estimators read

�c(zd; t) = Q IE

�t(zs)X
j=1

1

jŴ (�j)j
; (6:3)

for the mean concentration, and

F (zd; t) = Q IE

�t(zs)X
j=1

Ŵ (t)

jŴ (�j)j
; (6:4)

for the vertical concentration ux.

Here the values �j are random times at which the process Ẑ(t0) (0 � t0 � t) intersects

the level z = zs, and �t(zs) is the total number of such events in the interval 0 � t0 � t.

Finally, let us consider the adjoint estimator based on probabilistic representation.

The probabilistic representation (3:4) in our case (1D) reads

p(z; w; t) = IEz;w

tZ

0

�( ~Z(t0)� zs)pE( ~W (t0)) exp

8<
:

tZ

t0

b ds

~Z(s)

9=
; dt0; (6:5)

where ~Z(t0) = Z
z;w
t0

; ~W (t0)) =W
z;w
t0

, 0 � t0 � t is the adjoint trajectory de�ned by

d ~Z(t0) = ~W (t0) dt; d ~W (t0) = � a

~Z
~W (t0)dt0 +

bp
~Z
dB(t0);

with terminal condition ~Z(t) = z; ~W (t) = w.

Now, substitute (6:5) in

�c(zd; t) =

+1Z

�1

p(zd; w; t) dw :

This yields

�c(zd; t) =

+1Z

�1

dwIEzd;w

~�t(zs)X
j=1

pE( ~W (�j))

j ~W (�j)j
exp

8><
>:

tZ

�j

b ds

~Z(s)

9>=
>; : (6:6)
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Here we used the relation

tZ

0

�( ~Z(t0)� zs)pE( ~W (t0)) exp

8<
:

tZ

t0

b ds

~Z(s)

9=
; dt0 =

~�t(zs)X
j=1

pE( ~W (�j))

j ~W (�j)j
exp

8><
>:

tZ

�j

b ds

~Z(s)

9>=
>; ; (6:7)

where ~�t(zs) is the number of intersections of the level z = zs by the trajectory Z
zd;w
t0

,

0 � to � t, and �1; : : : ; �j; : : : are the intersection times.

The resulting estimator is

�c(zd; t) = IE

8><
>:

1

r( ~w)

~�t(zs)X
j=1

pE(W
zd; ~w
�j

)

jW zd; ~w
�j j exp

8><
>:

tZ

�j

b ds

Z
zd; ~w
�

9>=
>;

9>=
>; ; (6:8)

where r(w) is a pdf which is positive in (�1;+1), and ~w is a random number distributed

with r(w).

Analogous arguments lead to the random estimator for the vertical concentration ux:

F (zd; t) = IE

8><
>:

~w

r( ~w)

~�t(zs)X
j=1

pE(W
zd; ~w
�j

)

jW zd; ~w
�j j exp

8><
>:

tZ

�j

b ds

Z
zd; ~w
�

9>=
>;

9>=
>; : (6:9)

In numerical calculations, one takes a cut-o� in the integral over w in (6:6), and

integrates from, say, �A to A, A being su�ciently large; in our case we have chosen

A = 5�w. Further parameters in calculations are: �w = 1:25 u�, u� = 0:4, the function �"

is de�ned in (4:1).

As to the penetrable boundary conditions, in calculations it cannot be satis�ed strictly.

In the numerical scheme it is convenient to follow the trajectories till some reection

height z = zr < z0 and then reect them according to some reection law. In calculations

we found that beginning from zr < z0=5, the results are stable with respect to further

decreasing of the reection height zr. The perfect reection (symmetric to the plane

z = zr) was used.

It should be noted that usually (e.g., see [3]) one reects the trajectories at the height

z = z0 which does not a�ect the calculations at large (compared to z0) heights, but at

height of several z0 the error may be about 10-30 %.

In Table 1 we present the mean concentration and its vertical ux obtained by the

direct (6:1), (6:2), the adjoint (6:8), (6:9), and the backward method (6:3), (6:4). The

calculations are made for four time instances t = TL(zs), 2TL(zs), 4TL(zs) and 8TL(zs),

for zd = 1, zs = 0:5. The unit source strength uniformly distributed over the plane

z = zs was taken. The Lagrangian time scale TL = TL(zs) is given by [16] TL(zs) =

2�2w=C0�"(zs) = zs=a = 0:39. The error shown in the table is the statistical error measured

as 3� standard deviation=
p

number of samples, the cost means the computer time of a

233 MHz PC computer.

The results presented in the table show that in this special case of horizontally ho-

mogeneous problem the direct and backward methods have approximately equal cost and

are both much more e�cient than the adjoint method. It should be emphasized however

that this is because our model problem is actually one-dimensional and the source is sta-

tionary. In general case of 3D problems with a source generating particles during a short

period of time the backward algorithm is much more e�cient.
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Table 1. Comparison of di�erent methods.

method t = TL t = 2TL t = 4TL t = 8TL

�c 2:08e� 3� 1:95e� 4 8:94e� 2� 3:90e� 3 0:467� 0:031 1:26� 0:11

Direct F 2:71e� 3� 2:47e� 4 6:48e� 2� 1:60e� 3 0:213� 0:006 0:4� 0:015

cost 200 [sec] 200 [sec] 85 [sec] 60 [sec]

�c 1:95e� 3� 1:40e� 4 8:42e� 2� 3:70e� 3 0:471� 0:032 1:19� 0:15

Adjoint F 2:51e� 3� 2:00e� 4 6:10e� 2� 3:30e� 3 0:216� 0:022 0:34� 0:075

cost 400 [sec] 1800 [sec] 2000 [sec] 2200 [sec]

�c 1:95e� 3� 1:77e� 4 9:03e� 2� 3:69e� 3 0:468� 0:017 1:21� 0:11

Backward F 2:50e� 3� 2:37e� 4 6:58e� 2� 3:35e� 3 0:205� 0:010 0:37� 0:06

cost 180 [sec] 300 [sec] 300 [sec] 40 [sec]

As to the adjoint method, although our calculations show that it requires a lot of computer

time, it has the following important advantages. The method allows to solve problems

of transport of reacting species as described in Sect.5. Another advantage of the adjoint

method is in treating the problems with boundary conditions. It should be noted that it

is not evident how to extend the backward method described in Appendic C to the case

of boundary value problems.

7 Conclusion

A generalized footprint problem is treated as a calculation of an integral over space,

velocity and time of the space-velocity distribution of ensemble of particles in a turbulent

ow. The Lagrangian stochastic description is used to solve this problem. As important

particular cases, the mean concentration and its ux are analysed in details.

Three di�erent algorithms are presented: (1) direct Monte Carlo, (2) adjoint Monte

Carlo, and (3) backward Monte Carlo algorithms. The direct Monte Carlo algorithm is

quite general but it is not e�cient in estimation of local functions like, e.g, the concen-

tration and its ux at a �xed point.

The adjoint method is also general and is especially convenient for evaluation of local

functionals. The method is based on the well developed probabilistic representations for

the boundary value problems. Therefore, it allows to solve problems with quite general

boundary conditions. Unfortunately, the method requires a lot of computer time because

the variance increases with time very fast.

The backward algorithm originally presented by Thomson is extended to more general

case when the transport in the phase space is described by a general stochastic di�erential

equation. This extension allows to treat problems with absorption of particles, which is

of our current interest.
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Appendix A. Flux representation

Here we derive the representation (2:2). By the de�nition, the instant concentration

is

c(x; t) =

tZ

0

dt0

Z

D

dx0 q(x0; t0)�(x�X(t;x0; t0)) +

Z

D

dx0 q0(x0)�(x�X(t;x0; 0)):

From this,

Fi(x; t) = hui(x; t)c(x; t)i =
tZ

0

dt0

Z

D

dx0 q(x0; t0)hui(x; t)�(x�X(t;x0; t0))i

+

Z

D

dx0 q0(x0)hui(x; t)�(x�X(t;x0; 0))i: (A1)

Since

ui(x; t)�(x�X(t;x0; t0)) = ui(X(t;x0; t0); t)�(x�X(t;x0; t0))

= Vi(t;x0; t0)�(x�X(t;x0; t0));

then

hui(x; t)�(x�X(t;x0; t0))i = hVi(t;x0; t0)�(x�X(t;x0; t0))i
=

Z

IR
3

dV

Z

D

dXVi�(x�X)pL(X;V; t;x0; t0) =

Z

IR
3

VipL(x;V; t;x0; t0) dV:

From this we get in view of (A1) the desired representation (2:2).

Appendix B. Probabilistic representation

Let us write down the probabilistic representation of the function �(y; t) = �(y1; : : : ; yn; t),

the solution to the following general parabolic equation

@�

@t
+ Ai(y; t)

@�

@yi
+
1

2
Bij(y; t)

@
2
�

@yi@yj
+ �(y; t)� + f(y; t) = 0; t 2 [0; T );

with the terminal condition

�(y; t)j
t=T = f0(y):

The probabilistic representation to this problem has the form [6]:

�(y; t) = IE(y;t)

8<
:

TZ

t

f(Yy;ts ; s) exp
� sZ

t

�(Yy;t� ; �)d�
�
ds + f0(Y

y;t

T ) exp
� TZ

t

�(Yy;t� ; �)d�
�9=
; ;

(B1)
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where Yy;ts � Y(s), s � t solves the problem

dYi(s) = Ai(Y(s); s)ds+ �ij(Y(s); s)dWj(s); s > t; Y(s)j
s=t = y: (B2)

Here �ik�jk = Bij. In (B1), IE(y;t) stands for the expectation taken over all trajectories

(solutions to (B2)) starting from y at time t.

Note that the solution to the equation

@�

@t
+ Ai(y; t)

@�

@yi
+ �(y; t)� =

1

2
Bij(y; t)

@
2
�

@yi@yj
+ f(y; t); t 2 [0; T );

satisfying �(y; 0) = f0(y), has the probabilistic representation:

�(y; t) = IE(y;t)

8<
:

tZ

0

f(X
y;t

t0
; t0) exp

�
�

tZ

t0

�(X
y;t

t0
0

; t
0

0)dt
0

0

�
dt0

+ f0(X
y;t

0 ) exp
�
�

tZ

0

�(X
y;t
t0
; t0)dt0

�9=
; ;

where X
y;t

t0
� X(t0), 0 � t0 � t solves the problem

dXi(t0) = Ai(X(t0); t0)dt0 + �ij(X(t0); t0)dWj(t0); 0 � t0 � t;

X(t0)jt0=t = y:

Appendix C. Forward and Backward trajectory esti-
mators

In this Appendix we treat the evaluation of the integral:

Ih;q =

Z

D

dy

TZ

0

dt

Z

D

dy0

tZ

0

dt0h(y; t)q(y0; t0)p
f(y; t;y0; t0); (C1)

where D is a domain in IRn, T > 0, h and q are functions de�ned in D � [0; T ], and

p
f(y; t;y0; t0) = h�(y � Y

y0;t0
t )i is the transition density of the n-dimensional di�usion

process Y
y0;t0
t , the solution to

dYi(t) = Ai(Y(t); t)dt+ �ij(Y(t); t)dWj(t); t > t0; Y(t)j
t=t0

= y0: (C2)

We assume that the boundary of D is impenetrable, i.e., the trajectories determined by

(C2) do not reach the boundary. The Direct Monte Carlo estimator for evaluating the

integral (C1) is straightforward:

Ih;q =

Z

D

dy0

TZ

0

dt0

Z

D

dy

TZ

t0

dt h(y; t)q(y0; t0)p
f (y; t;y0; t0)

= IE
n q(~y0; ~t0)

p0(~y0; ~t0)

TZ

~t0

h(Y
~y0;~t0
t ; t) dt

o
:
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Here p0(y0; t0) is an arbitrary pdf in D � [0; T ] consistent with the function q(y0; t0) in

the sense that p0(y0; t0) > 0 if q0(y0; t0) 6= 0, and the expectation is taken over all sample

points (~y0; ~t0) and sample trajectories Y
~y0;~t0
t , ~t0 � t � T ; the random points ~y0; ~t0 are

distributed with p0(y0; t0).

A backward estimator can be obtained by a generalization of Thomson's approach

[19]. Assume that we have a positive function �(y; t) de�ned on D � [0; T ] as a solution

to the equation
@�

@t
+

@

@yi
(Ai�) =

1

2

@
2 (Bij�)

@yi@yj
; (C3)

where �ik�jk = Bij. Let pb(y0; t0;y; t) = h�(y0 � Z
y;t
t0
)i be the transition density of the

di�usion process Z
y;t

t0
, 0 � t0 � t which is de�ned by

dZi = A
�

i (Z; t0) dt0 +Bij(Z; t0); t0) dWj(t0); t0 < t; Z(t) = y: (C4)

Here

A
�

i (y; t) = Ai(y; t)� 1

�(y; t)

@

@yj
(Bij(y; t)�(y; t)):

We assume again, that the solutions to (C4) do never reach the boundary of D. Then the

following relation is true:

�(y0; t0)p
f (y; t;y0; t0) = �(y; t)pb(y0; t0;y; t): (C5)

To prove it, we �rst remark that the function p
b and

F (y0; t0;y; t) =
�(y0; t0)

�(y; t)
p
f(y; t;y0; t0)

satisfy the equations

Ly0;t0F = 0; Ly0;t0pb = 0

where the operator Ly0;t0 acts on a function g(y0; t0) as follows:

Ly0;t0g =
@g

@t
+

@

@y0i
(A�

i g) +
1

2

@
2(Bijg)

@y0i@y0j
:

Since the values of the functions F and p
b at t0 = t coincide:

p
b(y0; t;y; t) = F (y0; t;y; t) = h�(y � y0)i; (C6)

we conclude that F � p
b, provided that the equation Ly0;t0g = 0 with initial condition

g(t;y0) = �(y0 � y) has a unique solution. This implies that (C5) is true. Now we note

that Ly0;t0pb = 0 is true indeed, since it is the �rst Kolmogorov equation for pb. The

equality Ly0;t0F = 0 then follows from (C3), the inverse Kolmogorov's equation

@p
f (y; t;y0; t0)

@t0
+ Ai(y0; t0)

@p
f

@y0i
+
1

2
Bij(y0; t0)

@
2
p
f

@y0i@y0j
= 0 ;

and the expression for A�

i (y0; t0) through Ai and Bij given above.
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Now, we present the backward Monte Carlo algorithm based on the property (C5).

We proceed as follows: substitute the expression for pf from (C5) into (C1), then

Ih;q =

Z

D

dy

TZ

0

dt

Z

D

dy0

tZ

0

dt0h(y; t)q(y0; t0)
�(y; t)

�(y0; t0)
p
b(y0; t0;y; t): (C7)

Let r(y; t) be a probability density in D � [0; T ] consistent with h�, i.e., r > 0 if h� 6= 0.

Then from (C7) we get

Ih;q = IE

8><
>:
h(~y; ~t)�(~y; ~t)

r(~y; ~t)

~tZ

0

q(Z
~y;~t
t0
; t0)

�(Z
~y;~t
t0
; t0)

dt0

9>=
>; : (C8)

Here the expectation is taken over the random points (~y; ~t) distributed in D� [0; T ] with

density r(y; t), and backward trajectories Z
~y;~t
t0
, 0 � t0 � ~t.

Another backward trajectory estimator which generalizes the estimator presented in

Sect.3.2 can be obtained as follows. Let

�(y; t) =

Z

D

dy0

tZ

0

dt0q(y0; t0)p
f(y; t;y0; t0):

This function solves the problem

@�

@t
+
@(Ai�)

@yi
=

1

2

@
2(Bij�)

@yi@yj
+ q(y; t); �(y; 0) = 0: (C9)

From the probabilistic representation given in Appendix B we get

�(y; t) = IE

8<
:

tZ

0

q(X
y;t
t0
; t0) exp

n
�

tZ

t0

R(Xy;ts ; s) ds
o
dt0

9=
; ;

where the expectation is taken over the backward trajectories

X
y;t

t0
, 0 � t0 � t determined from

dXi(t0) = Âi(X(t0); t0) dt0 +Bij(X(t0); t0) dWj(t0); t0 � t; X(t) = y:

Here

Âi(x; t) = Ai(x; t) + 2
@Bik(x; t)

@xk
;

and

R(x; t) =
@Ai(x; t)

@xi
+
@
2
Bij(x; t)

@xi@xj
:

Thus we have

Ih;q =

Z

D

dy

TZ

0

dt h(y; t)�(y; t)

=

Z

D

dy

TZ

0

dt h(y; t)IEX

8<
:

tZ

0

q(X
y;t
t0
; t0) exp

n
�

tZ

t0

R(Xy;ts ; s) ds
o
dt0

9=
; :
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Here IEX stands for averaging over trajectories X
y;t
t0
, 0 � t0 � t. From this we �nd:

Ih;q = IE

0
B@h(~y; ~t)
r(~y; ~t)

8><
>:

~tZ

0

q(X
~y;~t
t0
; t0) exp

n
�

~tZ

t0

R(X
~y;~t
s ; s) ds

o
dt0

9>=
>;

1
CA ; (C10)

where ~y; ~t is a random point distributed in D � [0; T ] with density r(y; t) consistent

with h(y; t). The notation IE means the expectation over the random points ~y; ~t and

trajectories X
~y;~t
t0
, 0 � t0 � ~t.

Remark. In this appendix, we assumed that the boundary is impenetrable. However

in practice one treats also situations where a part of boundary (say, the upper bound of

a layer) can be reached by the Lagrangian trajectories. In this case boundary conditions

should be given. For instance, an absorption, reection or other behaviour at the boundary

can be considered. For the direct algorithm this can be taken into account by simulating

the relevant behaviour of the trajectories of (C2) at the boundary (e.g., the trajectories

are absorbing at the absorbing boundary, reecting at the reection boundary, etc.). In

the backward algorihm based on (C5) the situation is more complicated. Indeed, it is not

clear how to arrange the behaviour of trajectories, the solutions to (C4), to guarantee

that (C5) is ful�lled. Note that in the approach based on (C10) there is a need in the

generalization of probabilistic representation of the solution to (C9) with the relevant

boundary conditions. This can be done on the basis of the well known probabilistic

representations [6].
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