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Abstract

We consider a problem related to resistance spot welding. The

mathematical model describes the equilibrium state of an elastic, cracked

body subjected to heat transfer and electroconductivity and can be

viewed as an extension to the classical thermistor problem.

We prove existence of a solution in Sobolev spaces.
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Figure 1: Schematic of the resistance spot welding process.

1 Introduction

In resistance spot welding two workpieces are pressed together by electrodes.

Owing to the Joule e�ect and the high resistivity in the contact area between

the workpieces, the welding current leads to an increase in temperature, until

�nally a weld nugget is formed (cf. Fig. 1).

For a complete description of the process, one has to take into account me-

chanical, thermal and electrical e�ects, as well as the free boundary between

liquid metal and solid. To the knowledge of the authors mathematicalmodels

up to now have only considered the thermal and electrical e�ects, neglecting

mechanics (cf. e.g. [5]).

Obviously, the most important control parameters for the process are the

force, applied to join the work-pieces and the shape of the electrode. To

achieve a uniform current density between the electrodes, �at electrodes

would be desirable. On the other hand, to reduce wear, a domed electrode is

more favourable. Hence, the area of contact between electrode and workpiece

is very important to control the quality of the weld joint.

The aim of the present paper is to initiate the investigation of this contact

problem. Owing to the quadratic Joule heating term in the energy balance a

crucial point for the analysis will be the regularity of solutions for the electric

potential equation. To avoid the additional di�culties, which arise from the

geometric singularity at the boundary of the contact between electrode and

workpiece, we will focus on the simpli�ed problem of a cracked thermoelastic

body.

In the next section we give a precise formulation of the model. An existence

result is proved in Section 3.
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2 Mathematical model

Let 
 � R2 be a bounded domain with smooth boundary �, and � � 


be a smooth curve without sel�ntersections. Denote 
c = 
 n �; Qc = 
c �

(0; T ); Q = 
 � (0; T ); T > 0. Assume that � = �1 [ �2 ;�1 \ �2 = ;,

meas�1 > 0.

Ξ

Ω

Figure 2: The domain 
c.

In the domainQc, we want to �nd a solution u = (u1 ; u2); �; ' of the following

boundary value problem

��ij;j + �2�;i = 0; (1)

�t ���+ �2
@

@t
divu = (�)jr'j2; (2)

div((�)r') = 0; (3)

� = �0 for t = 0; (4)

' = '0; � = 0 on � � (0; T ); (5)

�ijnj = gi on �2 � (0; T ); i = 1; 2; (6)

['] =

�
(�)

@'

@�

�
= 0; [�] =

�
@�

@�

�
= 0 on �� (0; T ); (7)

u = 0 on �1 � (0; T ); [u] � � � 0 on �� (0; T ); (8)

�� � 0; [��] = 0; �� = 0; �� � [u] � � = 0 on �� (0; T ): (9)

Here � is a positive constant describing the thermal expansion,  is a given

C1�function, 1 � (s) � 2; s 2 R; 1; 2 are positive constants, �ij =

�ij(u) denote the stress tensor components, i; j = 1; 2; �ij = aijkl"kl(u) is
the Hooke's law, "kl(u) =

1
2
(uk;l + ul;k) are strain tensor components, elastic
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coe�cients aijkl are smooth and satisfy the usual assumptions of symmetry

and positive de�niteness. We select a unit normal vector � = (�1; �2) to �,

and n = (n1; n2) is a unit normal vector to �,

f�ij�jg = �� + �� � � ; i = 1; 2; � = (��2; �1) :

The mathematical model (1)-(9) describes the equilibrium state of an elastic

body subjected to the heat transfer and electroconductivity. The function

u = (u1; u2) describes the displacement �eld in the body, � is the temperature,

' stands for the electric potential, the brackets [v] = v+�v� mean the jump

of v across �, v+; v� stands for the values of v on �+;��, respectively, where

�+;�� are de�ned for given choice of positive and negative directions of �

on �.
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Figure 3: The cylinder Qc.

The curve � presents the crack in the body, and the second inequality of (8)

corresponds to the mutual nonpenetration condition between the crack faces.

In the following we assume that

�0 2 H
1
0 (
); gi 2 H

1(0; T ;L2(�2)); i = 1; 2; '0 2 L
1(0; T ;H

3

2 (�)) :

Here

H1
0 (
) = fv 2 H1(
)j v = 0 on �g:

The space H
3

2 (�) can be de�ned as the space of traces on � of all functions

from H2(
):

Our aim is to prove an existence theorem for the problem (1)-(9).
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Note that the so-called thermistor problem for �nding the temperature and

electrical potential was considered in [1], [2], [8], [9]. The Stefan problem with

Joule's heating was analysed in [5]. On the other hand, there are many pa-

pers related to equilibrium of elastic bodies with cracks and nonpenetration

conditions imposed on the crack faces (see [14],[13], [12]), and to thermoelas-

tic bodies with linear and nonlinear boundary conditions of Signorini's type

(see [3], [4], [10],[11]). Thermoelastic problems are formulated in terms of

the displacement vector and the temperature.

3 Existence theorem and proof

To prove the existence of a solution to (1)-(9) we substitute the function

� = � in (3) and determine the function ' from (3) and the �rst conditions of

(5),(7), respectively. Then we consider (�)jr'j2 as a given function in the

right-hand side of (2) and solve the equations (1), (2) along with all boundary

and initial conditions. In such a way we �nd the functions u; �. Next step of

the proof is to show that the mapping

� �! �

admits a �xed point in an appropriate functional space. To this end we use

the Schauder �xed point theorem.

Let � 2 L2(0; T ;H
3

2 (
c)) be any �xed function. Consider the following prob-

lem

div(
�
�)r'

�
= 0 in Qc; (10)

' = '0 on �� (0; T ); (11)

['] = 0;

�

�
�
� @'
@�

�
= 0 on �� (0; T ): (12)

Here, t plays the role of a parameter. Note �rst that the conditions � 2

H1(
c); [�] = 0 on � provide the inclusion � 2 H1(
):
Consider the problem (10), (11) with the �rst condition of (12). The solution

of this problem can be de�ned as follows

' 2 L1(0; T ;H1(
));Z
Q

(�)r' � r = 0 8 2 L2(0; T ;H1
0(
))

(13)

with the condition (11). It is easy to obtain the estimate for the function

' by choosing  = ' � �0: Here we take �0 as an element of the space

L1(0; T ;H2(
)) such that �0 = '0 on ��(0; T ): From the condition imposed

on '0 it follows that such an extension of '0 in the domain Q exists. As a

result of the substitution we have the equalityZ
Q

(�)r' � (r'�r�0) = 0
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which provides the estimate

1

Z
Q

jr'j2 � 2

Z
Q

jr' � r�0j:

Hence the above inclusion ' 2 L1(0; T ;H1(
)) follows. Existence of the

solution is proved by the standard variational method. Moreover, the second

condition of (12) is ful�lled since the equation (10) holds in Q (compare [13],

[14]). Indeed, in the domain Q, consider the zeroth distribution div((�)r').

Denote by h�; �i the value of a distribution at the point �. We divide 
c into

two subdomains 
1;
2 by extending the curve �. In so doing we assume that

the extended curve crosses the boundary � at two points, and the boundaries

@
i; i = 1; 2; with unit external normals �1; �2; respectively, to possess the

Lipschitz property. We have in Q;

hdiv((�)r'); �i = 0; � 2 C1

0 (Q):

Consequently,

hdiv((�)r'); �i = �

Z

1�(0;T )

(�)r' � r� �

Z

2�(0;T )

(�)r' � r� =

= hdiv((�)r'); �i
1�(0;T ) + hdiv((�)r'); �i
2�(0;T )+

+

Z
T

0

h[(�)
@'

@�
]; �i�;1=2dt = 0:

Here we use the following well-known fact. Let D � R2 be a bounded domain

with a Lipschitz boundary @D: Then the conditions u 2 H1(D); div(aru) 2
L2(D); a 2 L1(D) imply a@u

@�
2 H�1=2(@D); and the Green formula holds

Z
D

div(aru)� = ha
@u

@n
; �i1=2 �

Z
D

aru � r� 8� 2 H1(D);

where h�; �i1=2 is the duality pairing between H�1=2(@D) and H1=2(@D): This
implies the second condition of (12),

Z
T

0

h[(�)
@'

@�
]; �i�;1=2dt = 0;

which holds in the sense

Z
T

0

h(�)
@'

@�1
; �i@
1 ;1=2dt+

Z
T

0

h(�)
@'

@�2
; �i@
2;1=2dt = 0; � 2 C1

0 (Q):

Hence we obtain the following boundary value problem for ',

div(
�
�
�
r') = 0 in Q; (14)

' = '0 on �� (0; T ): (15)
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Now we aim to show an additional regularity for ': First note that for any

given g 2 W 1
p
(
); p > 1; the solution w of the problem

div(rw + g) = 0 in 
;

w = 0 on �

exists and the following estimate holds,

krwkLp(
) � �pkrgkLp(
) (16)

with the positive constant �p depending on p.

We can rewrite the problem (14), (15) in the form

div

�
1 + 2

2
rv + ~(�)rv + (�)r�0

�
= 0 in Q; (17)

v = 0 on �� (0; T ): (18)

Here v = '��0 is unknown function, ~(s) = (s)� 1+2
2
: Note that j~(s)j �

2�1

2
; s 2 R:

Take any function v0 2 L1(0; T ;W 1
4 (
)) and apply the iteration method for

solving the problem (17), (18):

div

�
1 + 2

2
rvn+1 + ~(�)rvn + (�)r�0

�
= 0 in Q; (19)

vn+1 = 0 on � � (0; T ); (20)

where n = 0; 1; 2; ::: Assume that the oscillation of the function  is small

enough so that � < 1; � = 2�1

1+2
�4: According to (16) for almost all t 2

(0; T ) we have the estimate

krvn+1kL4(
) � �krvnkL4(
) + �kr�0kL4(
); � =
22�2

1 + 2
:

Consequently, for almost all t 2 (0; T ) this implies

krvn+1kL4(
) � krvnkL4(
) +
�

1� �
kr�0kL4(
); n = 0; 1; 2; :::

Whence the following estimate is obtained,

krvnkL1(0;T ;L4(
) � c (21)

being uniform in n: Taking the di�erence vn� vl; n > l; we easily derive that

kr(vn � vl)kL1(0;T ;L4(
) � �l
kr(vn�l � v0)kL1(0;T ;L4(
):

By (21), it follows that the sequence vn is fundamental, and we can assume

that as n!1
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vn ! v in L1(0; T ;L4(
):

This allows us to pass to the limit in (19), (20) as n ! 1. Hence the

problem (17), (18) (or, what is the same, the problem (14), (15)) has the

solution which satis�es the inclusion v 2 L1(0; T ;W 1
4 (
)): Consequently,

r' 2 L1(0; T ;L4(
)): (22)

This implies that


�
�
�
jr'j2 2 L2(Qc);

and we can consider the following initial-boundary value problem in Qc for

unknown functions u = (u1 ; u2); �:

��ij;j + �2�;i = 0;

(23)

�t ��� + �2
@

@t
divu = 

�
�
�
jr'j2;

(24)

u = 0 on �1 � (0; T );�ijnj = gi on �2 � (0; T ); i = 1; 2;

(25)

[u] � � � 0; �� � 0; [��] = 0; �� = 0; �� � [u] � � = 0 on �� (0; T );
(26)

� = 0 on � � (0; T );
(27)

[�] =

�
@�

@�

�
= 0 on �� (0; T );

(28)

� = �0 for t = 0:
(29)

The problem (23)-(29) with the given right-hand side h = 
�
�
�
jr'j2 2

L2(Qc) can be solved for small � (see [3], [7]), with the following estimates

k�tkL2(Qc) + k�kL2(0;T ;H1(
c)) � c1�kukH1(0;T ;H1(
c)) + c2khkL2(Qc) ; (30)

kukH1(0;T ;H1(
c)) � c3�k�kH1(Qc) + c4kgkH1(0;T ;L2(�2)) + c5k�0kH1(
); (31)

and the constants ci are independent of �, � : This solution (u; �) satis�es

the variational inequality

Z
Qc

�ij"ij(u� u)� �2
Z
Qc

�div(u� u) �

Z
�2�(0;T )

gi(ui � ui) 8u 2 K ;

(32)
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and the identity

Z
Qc

�
�t + �2

@

@t
divu� 

�
�
�
jr'j2

�
� = �

Z
Qc

r� � r� 8� 2 L2(0; T ;H1
0(
)):

(33)

Here

K = fv 2 L2(0; T ;H1(
c)jv = 0 on �1 � (0; T ); [v] � � � 0 on �� (0; T )g:

In fact, the presence of the estimates (30)-(31) allows us to �nd �0 such that

for all � � �0 the problem (23)-(29) is solvable. In what follows we �x any

� � �0 which provides the solvability of (23)-(29). The solution of (23)-(29)

satis�es the following inclusions

�t 2 L
2(Qc); � 2 L

2(0; T ;H1(
c)); u 2 H
1(0; T ;H1(
c)):

Actually, the function � has a higher regularity. To see this we write the

equation (33) in Qc in the following form

��� = ��t � �2
@

@t
divu+ 

�
�
�
jr'j2 (34)

with the right-hand side ��t � �2 @

@t
divu + 

�
�
�
jr'j2 belonging to L2(Q):

Of course, the derivative @

@t
divu is de�ned with respect to the domain Qc:

Conditions (28) provide that the equation (34) holds in Q: In this case we

can argue as in the case of the boundary value problem (10)- (12) which, in

fact, removes the singularity surface �� (0; T ). Consequently, by (27),

� 2 L2(0; T ;H2(
) \H1
0 (
)) :

Note that the estimate

k�kL2(0;T ;H2(
)\H1

0
(
)) � c6

for the solution to the system (32)-(33) is also independent of the norm

k�k
L2(0;T ;H

3

2 (
c))
. The constant c6 depends on Q and the L2�norm of the

right-hand side of (34).

Divide next the domain 
c into two subdomains 
1;
2 with Lipschitz bound-

aries as before, and notice that the space

�t 2 L
2(0; T ;L2(
i)); � 2 L2(0; T ;H2(
i))

is compactly imbedded in the space [15]

� 2 L2(0; T ;H
3

2 (
i)) ; i = 1; 2:

Consequently, the space

�t 2 L2(0; T ;L2(
c)); � 2 L2(0; T ;H2(
c))
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has a compact imbeddeding in the space

� 2 L2(0; T ;H
3

2 (
c)) :

This means that if � belongs to any ball in the space L2(0; T ;H
3

2 (
c)), i.e.

k�k
L2(0;T ;H

3

2 (
c))
� R

for R su�ciently large, the solution � belongs to the same ball, and the

mapping L2(0; T ;H
3

2 (
c)) 3 � �! � 2 L2(0; T ;H
3

2 (
c)) is compact. So

we can apply the Schauder �xed point theorem to assure the existence of a

solution to the problem (1)-(9). As a result we have the following existence

theorem.

Theorem 3.1 Assume that all assumptions concerning gi; ; '0; �0; aijkl are

satis�ed. Then for small � there exists a solution to the problem (1)-(9) such

that

�t 2 L
2(Qc); � 2 L2(0; T ;H1(
c)); u 2 K; u 2 H1(0; T ;H1(
c));

(35)

' 2 L1(0; T ;H1(
c));
(36)Z

Qc

�ij"ij(u� u)� �2
Z
Qc

�div(u� u) �

Z
�2�(0;T )

gi(ui � ui) 8u 2 K;

(37)Z
Qc

�
�t + �2

@

@t
divu�  (�) jr'j2

�
� = �

Z
Qc

r� � r� 8� 2 L2(0; T ;H1
0(
));

(38)Z
Q

(�)r' � r = 0 8 2 L2(0; T ;H1
0 (
)):

(39)

Note that, in fact, we have some additional regularity for the solution of (35)-

(39), in particular,

� 2 L2(0; T ;H2(
) \H1
0 (
)) : (40)

The inclusion (40) follows from the equation

��� = ��t � �2
@

@t
divu+  (�) jr'j2

and the given bounary conditions for � on � � (0; T ) and �� (0; T ): Recall

that the boundary conditions on � � (0; T ) remove the singularity surface

�� (0; T ):
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Boundary conditions (6),(9) are included in the variational inequality (37).

It can be shown (see [7]) that the displacement u also has an additional

regularity, in particular, for any x 2 � there exists a neighbourhood V such

that

u 2 L2(0; T ;H2(V \ 
c)):

Consequently, from the variational inequality (37) it follows that boundary

conditions (9) hold for almost all (x; t) 2 �� (0; T ).

We can state an additional smoothness of ' provided that j0(s)j < 3; 3 =

const: Namely,

' 2 Lq(0; T ;H2(
)) ; q < 4: (41)

Indeed, the equation (39) reads

�' = �
0 (�)

 (�)
r� � r' in Q: (42)

According to [15] the space

�t 2 L
2(0; T ;L2(
)); � 2 L2(0; T ;H2(
))

has (compact) imbeddeding in the space

� 2 Lq(0; T ;H
3

2 (
)) ; q < 4:

Consider the right-hand side of the equation (42). Since the imbedding

H1=2(
) � L4(
) is continuous for the two dimensional case we have

r� 2 Lq(0; T ;L4(
)) : (43)

Consequently, by (22), (43),

r' � r� 2 Lq(0; T ;L2(
)) :

The right-hand side of the equation (42) belongs to Lq(0; T ;L2(
)); and

�0 2 L
1(0; T ;H2(
)); hence the inclusion (41) follows.

It is clear that to prove the existence theorem we can choose the function

� 2 L2(0; T ;H
3

2 (
)) satisfying the additional conditions
�
�
�
=

h
@�

@�

i
= 0 on

� � (0; T ). In this case the proposed scheme of the proof also works since

the solution � of the problem (32), (33) is smooth , i.e. �t 2 L2(Q); � 2

L2(0; T ;H2(
)); and consequently, we obtain a compact imbedding of the

space L2(0; T ;H
3

2 (
) into itself.

Also, note that to prove the theorem it su�ces to require a weaker regulariry

assumptions on '0: We can assume that '0 is a trace on � � (0; T ) of a

function �0 2 L
1(0; T ;W 1

4 (
)):
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