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ABSTRACT. In this paper the quasilinear second order parabolic systems of a reaction-
diffusion type in an unbounded domain are considered. Our aim in this article is to study
the long-time behaviour of parabolic systems for which the nonlinearity depends explicitely
on the gradient of the unknown functions. To this end we give a systematic study of given
parabolic systems and their attractors in weighted Sobolev spaces. Dependence of the
Hausdorff dimension of attractors from weight of the Sobolev spaces are considered.
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INTRODUCTION

In this paper the quasilinear second order parabolic equations and systems of a
reaction-diffusion type

(0.1) { Ou — Azu+ f(u, Vau) — dou=g; £ € Q

“‘t:o = Uo, u|aQ =0

are considered.

Here QO C R3 is an unbounded domain in R3® with a sufficiently smooth boundary
(see §1), u = (ul,---,u*) is an unknown vector-valued function, A, is the Laplacian
with respect to x = (z1,2,23), f and g are given functions and ) is a fixed positive
constant.

It is assumed also that the nonlinear term f(u, V,u) satisfies the conditions

1. f € C(R* x R3* R¥)
(0.2) 2. f(u,Vyu)u >0
3. f(u, Veu)| < Clul(l+ |Vzul")(1 + |ulP), p —is arbitrary, 0 < r < 2

Here and below we denote by u.v the inner product in the space R*.

It is well known that in many cases the long-time behaviour of dynamical systems
generated by evolutionary equations of mathematical physics can be naturally described
in terms of attractors of the corresponding semigroups (see [2], [19], [32] and references
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therein). In bounded domains the existence of the attractor is established for a large
class of equations such as reaction-diffusion equations, nonlinear wave equations, 2D
Navier—Stokes system, etc. Under some natural assumptions it is proved that for all
equations mentioned above the attractor has a finite Hausdorff and fractal dimension
(see [2], [19], [32]).

For unbounded domains Q the behaviour of solutions for (0.1) becomes much more
complicated mainly due to the noncompactness of the embedding W12(Q) C L?(Q).
Nevertheless some progress in studying these equations in unbounded domains has been
obtained by using appropriate weighted Sobolev spaces. (see [1], [2], [6], [17], [27], [28],
126])

Indeed, for the case where f(u,V,u) = f(u) the problems of the type (0.1) were
studied (using the scale Wa’)’ of weighted Sobolev spaces with power weights ¢, () =

(1+ |z[2)*/2, & € R) in [2]. Under some natural conditions on the nonlinear term f
the existence of the attractor A, for a € R, but for < 0 only in a weak topology of
the space L%a), was obtained. Moreover, they proved that in the case where o > 0 the
attractor A, has a finite Hausdorff dimension. An example of an infinite dimensional
attractor in the case o < —3/2 was also constructed.

The compact attractor in a strong topology of the space L%a) for o < —3/2 was
considered in [26].

The case with the explicit dependence of the nonlinear term on V,u (f = f(u, V,u))
under essentially more restrictive conditions on the nonlinear term and a > 0 was
considered in [16].

The Kolmogorov’s e-entropy of the attractor of (0.1) for the case where it has infinite
fractal and Hausdorff dimension was studied in [38], [13].

In this paper we give a systematic study of the equations of type (0.1) and their
attractors in weighted Sobolev spaces W;’p . We restrict ourselves by considering only
weight functions ¢(x) which satisfy the condition

(0.3) Ciecl*l < o(z) < Cyetl”!

where ¢ is a sufficiently small positive number which depends on the equation, and
consequently we consider only solutions of (0.1) whose rate of growth with respect to
|z| — oo does not exceed the exponent el

In fact, most of our analytic results (such as a priori estimates, existence of so-
lutions, smoothness, uniqueness, etc.) will be obtained first with the scale W{SEI}’ of

weighted Sobolev spaces with exponential weights ¢} (z) = e~¢l*l with a sufficiently
small positive €. After that, using the technique developed in Section 1 we extend s-
traightforwardly these results to the weighted Sobolev spaces Wa’)’ with power weights,

which are traditional in the attractor industry (see [1], [2], [26]). Notice that our ap-
proach is applicable to a more general classes of weights, for instance for the anisotropic
weights ¢(z) = (L4 |z1|P* + [z2[P2 + |z3[F2)*, a € R.

It is worthwhile to emphasize that the explicit dependence of the nonlinear term on
the gradient (f = f(u, V,u)) leads to the new difficulties especially in the case o < 0.
In this case for instance we are faced with the problem of proving the uniqueness of
solutions of the problem (0.1) ( see §5 for an explanation). To avoid these problems we
use the concept of the trajectory attractor developed in [7-10], [34], [37].

For the convenience of the reader we recall some basic results from the theory of
attractors using equation (0.1) as a model example. Indeed, assume first that the
problem (0.1) has a unique solution for every ug from a certain phase space Dy (It
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is proved in §5 that is true under natural assumptions when g € L%a>(9) with a > 0).
Then equation (0.1) generates a semigroup in the phase space @4

(0.4) Sy @(a) — @(a), Siu(0) = u(t)

The attractor A of the semigroup (0.4) is called the (global) atractor of the equation
(0.1). This means that

1. AC @, is a compact subset of ;.

2. The set A is strictly invariant with respect to S, i.e. S; A = A.

3. The set A is an attracting set for the semigroup S;, i.e. for any bounded subset
B C @, and any neighbourhood O(A) there is a number 7' = T'(O, B) such that

(0.5) S¢B C O(A) for every t > T

There exists however a number of important examples of partial differential equations,
such as 3D Navier-Stokes system, nonlinear wave equations with a strong nonlinearity,
elliptic equations, etc., for which we do not have uniqueness or at least it is not yet
proved. At present there are several approaches which can handle these equations from
the dynamical point of view.

The first approach is based on the concept of multivalued semigroups and their
attractors (see [3], [5]).

The alternative approach which we will use below involves the concept of trajecto-
ry attractor. The applications of this concept to evolutionary equations (such as 3D
Navier-Stokes system and nonlinear wave equations) in bounded domains and for el-
liptic boundary value problems in unbounded domains can be found in [7-10] and [18],
[31], [34], [37] respectively.

We explain now the main idea of the trajectory attractor approach using our equation
as a model example. Indeed let us consider the case when we do not have uniqueness
(g€ L%a>(Q) with o < 0). Denote by K&) the set of all solutions of the problem (0.1)
for all initial values ug € ®(q) such that u(t) € @,y for every t > 0 (it is proved in
Section 5 that this set is not empty for the appropriate 'phase space’ <I>(a>). Since our
equation does not depend explicitly on ¢ then the semigroup {Th,h > 0} of positive
shifts along the t-axis acts on K (J;>:

(0.6) ThK<+a) C K<+a>, h>0, (Thu)(t) = u(t+ h)

We endow the space K Z;> with the appropriate topology (roughly speaking, this topol-
ogy is induced by the embedding K(i) C C"*(R4, ®(4))). By definition the attractor
A" of the semigroup T}, acting in the space K (J;> is called the trajectory attractor of the
equation (0.1). Note that the choice of the topology of local convergence with respect
tote Ry in K ?;t) guarantees the equivalence of the trajectory attractor (A'") and the
global one (A9') in the case of uniqueness. Indeed, let o > 0 then as proved below the
trace operator ITy (ITou = u(0)) realizes a C!-diffeomorphism between the spaces K (J;)

and ®,). Thus, the semigroup S;, defined by (0.4) and the semigroup T}, defined by
(0.6) are conjugated by this diffeomorphism

T, = (IIy) 'S, I1y, ¢t >0
4



Notice that although we formulate our main results about the attractors (see Section 5)
in power weighted spaces W&;’)’ (following tradition), it can be easily extended to other
weighted spaces as well.

The rest of our paper is devoted to the study of the Hausdorf dimension of the
attractor A. This problem is essentially different for the case o > 0 and for the case
a < 0.

In the case when a > 0, we prove that under natural additional assumptions on the
nonlinear term f the attractor .4 has finite dimension. It is worthwile to emphasize that
we obtain finite dimensionality of the attractor in the ordinary (unweighted) Sobolev
spaces W*#P(Q) also. To the best of our knowledge, this result has not been proved
before.

Studying the attractor in the case when o < 0, we restrict ourselves to the gradient
independent case f(u,V,u) = f(u) and Q = R3. In this case we prove that for every
nonlinear term f from our class such that the function f(u)+ Agu is nonmonotonic there
exists the right-hand side g € L%a> such that the dimension of the attractor is infinite.
This Theorem is based on our construction of the infinite dimensional unstable manifold
associated with the equilibrium point 2o of the equation (0.1) (see Section 7). Notice
that in contrast to the case of bounded domains, in our situation the equilibrium point
Zo is not hyperbolic in general, hence the usual theorems on the unstable manifolds do
not work.

Acknowledgements: This work was finished while the second author was enjoying
the hospitality of the WIAS Berlin. He wishes to thank H. Gajewski and J. Fuhrmann
for useful discussions. Both authors have greatly benefitted from helpful comments both
from colleagues mentioned above and B. Fiedler, M. Otani, H. Mantano, M.I. Vishik.

Part 1. The existence of solutions, uniqueness, differentiability.

This part is devoted to study the analytical properties of solutions (such as a priori
estimates, existence, uniqueness, etc.) of (0.1) in unbounded domains.

In Section 1 we introduce a wide class of weights and the corresponding weighted
Sobolev spaces and formulate a number of auxiliary results which will be essentially
used throughout the paper.

The linear equation ( with f(u, V,u) = 0) in weighted Sobolev spaces is considered
in Section 2.

The a priori estimates for the solutions of the nonlinear equation (0.1) are obtained
in Section 3.

Using these estimates we prove in Section 4 the existence of solutions for (3.1).

Section 5 is devoted to study the problems connected with the uniqueness of solutions
and its differentiability with respect to the initial value ug.

§1 WEIGHT FUNCTIONS AND WEIGHTED SPACES.

In this Section we introduce and study the family of weight functions and the corre-
sponding weighted Sobolev spaces which will be used throughout of the paper.

Definition 1.1. A function ¢ € L2 (R™) is called a weight function with the rate of
growth p > 0 if the condition

(1.1) d(z +y) < Cye’"4(y), d(z) >0

is satisfied for every r,y € R™.



Remark 1.1. It is not difficult to deduce from (1.1) that

(1.2) dx +y) > Cyl e olg(y)
are also satisfied for every x,y € R™.

Proposition 1.1. Let ¢1 and ¢ be weight functions with the rates of growth pu, and
o respectively. Then,

1. ady + Boa, max{di, P2}, and min{d1, ¢} are weight functions with the rate of
growth max{u, us} for every a, 3 > 0.

2. ¢1- 2 and ¢ - (¢2)~ 1 are weight functions with the rate of growth ui + us.

3. (¢1)* is weight function with the rate of growth |o|u;.

The assertions of this proposition are immediate corollaries of (1.1) and (1.2).
The following two examples of weight functions are of fundamental significance for
our purposes:

1. ¢<a>(a:) = (1+ |x|2)a/2 9. ¢{6}(x) _ e—s|z|’ a,e € R
(Evidently the second weight has the rate of growth |e| and the first one satisfies (1.1)
for any p > 0).

Definition 1.2. Let Q C R" be some (unbounded) domain in R™ and let ¢ be a weight
function with the rate of growth u. Define the space

LE(Q) = {u e D' () : |lu,Q, [lp),0p = /Qqﬁ|u($)|p dzr < oo}

Analogously we define the weighted Sobolev space Hé’p(Q), l € N as the space of distri-
butions whose derivatives up to the order | inclusively belong to Lg (Q) For the simlicity
of notations we will right troughout of the paper W<sc’!’)’ instead of W(Sl’i|z|2)a/2 and W{sé’}’
instead of W% .

We define also the Sobolev spaces of functions bounded with respect to |x| — oo

WP (Q) = {ue D'(Q) :|u,Q

blp = Sup [lu, 2N Biolh,p < oo}
zgER™

Here and below we denote by BE the ball in R™ of radius R, centred in zo, and ||u, V)i p
means ||ullwi.ev)-

Theorem 1.1. Let u € LZ(Q) where ¢ is a weight function with the rate of growth .
Then for any 1 < q < oo the following estimate is valid

w3 ([ st ([ e lur da:)q dmo)l/q <0 [ p@lula)rdo

for every € > u, where the constant C depends only on e, p and Cy from (1.1) (and is
independent of )

Proof. Let ¢ = 1. Then due to (1.1)
/ / d(zo)e 120l |u(z) [P dz dxy <
eJo

< C¢/ etlz=2olg=elz=20l (1) [u(2)|P d dzzg <
02

<Co([ ey ([ sl <c [ s
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Let now g = oo then applying (1.1) again we obtain

sup.cq {8(a0) [ e lu@)rds | <
zeQ
< C¢>/ SUP,, c {eulw—zole—slz—zol} o(z)|u(z)|P dz <
zeN

<c, [ Ao do

Thus we proved the inequality (1.3) for ¢ = 1 and ¢ = co. For 1 < ¢ < oo it follows
then from the interpolation inequality (see [33])

I llze < 1112201 1275 6=1/q

Theorem 1.1 is proved. [

Corollary 1.1. Let ¢ be a weight function with the rate of growth p < 5, u € L{;(Q)
and R e Ry. Then

(14) (/m{lawbzz} Hao)® (-/Q et utz) dm>q dmo) ) =

<c / 6(z)|u(z) [ dz+
Qﬁ{|z|>R/2}

4+ Ke PR /Q 6(2) [u(z)|? da

for some 3 >0, C >0, K > 0 which depends only on €, u and Cy from (1.1) (and are
independent of R).

Proof. Indeed

q
(1.5) / 6(z0)? < f e_€|z_z°||u(x)|pdx> dzo <
Qn{|zo|> R} Q
q
ch/ ¢(z0)* / e~cle=olly(z)Pdz | dxo+
Qn{|eo|>R/2} Qn{|z|>R/2}

q
ver / b (o) ( / e-E'w-wowu(x)Pdw) dao
QN{|zo|>R} Qn{|z|<R/2}

The first integral in the right—hand side of (1.5) can be estimated by using (1.3) with
QN {|lz| > R/2} instead of Q. So it remains to estimate the second one. If |zo| > R
and |z| < R/2 then

|z — 2| > 1/4|x — 0| + 3/4|z — 0| > 1/4(|z0| — R/2) + 3R/8 > 1/4(|z0| + R)
7



and due to (1.2) ¢a(z) > C, e #7/2¢(0). Hence

q
f 6(wo)" / e=l* =l u(z)Pde | dwo <
Qn{|zo|>R} on{|z|<R/2}
q
< CeeeR/4 / 69(z0)e %1l 4z / u@)Pdz | <
Qn{|zo|>R} on{|z|<R/2}

q
< Cye R/ 4g—apR/2 (/ e—a(e/4—p) 2o d:co) / o(z)|u(z)Pdz | <
n on{|z|<R/2}

<o ([ s@lu@praz)

Corollary 1.1 is proved.

Remark 1.2. The assertion of Corollary 1.1 can be extended to the case u < € (instead
of 4u < €) by replacing R/2 in the estimate (1.4) by R/N for a sufficiently large N =
N(p/e).

Corollary 1.2. Let the assumption of the previous Corollary hold. Then the following
analogues of estimates (1.3) and (1.4) are valid;

(1.6) sup {¢(mo) sup{e—slz—20l|u(;,;)|z'}} < C:lelg{cb(w)IU(w)lp}

o EQ z€Q

and

L7 sup {¢<wo)sup{e—e'w—wowu(xnp}}s

-’EOEQH{|10|>R} zeQ
< Csup,congjz|>r/23{9(2) u(z) P+
Ce PR sup,cq{d(z)|u(z)["}

The proof of this Corollary is the same as the proof of Theorem 1.1 for ¢ = co and
Corollary 1.1.

For a more detailed study of the weighted Sobolev spaces defined above we need
some regularity assumptions on the domain 2 C R™ which are assumed to be valid
throughout the paper.

We suppose that there exists a positive number Ry > 0 such that for every point
z € ) there exists a smooth domain V, C Q such that

(1.8) B nQcV,cBFTNQ

where we denote by Bfo the ball of radius R, centred in xg.
Moreover it is assumed also that there exists a diffeomorphism 6, : Bcl) — V, such
that

(1.9) [6zllow + 167 lov < K

uniformly with respect to z € € for sufficiently large N. (For simplicity we suppose
below that (1.8) and (1.9) hold for Ry = 2.) Notice that in the case when  is bounded
the conditions (1.8) and (1.9) are equivalent to the condition: the boundary 09 is a
smooth manifold, but for unbounded domains the smoothness of the boundary is not
sufficient to obtain the regular structure of Q when |z| — oo since some conditions on
uniformity with respect to x € {2 smoothness are required. It is most convenient for us
to formulate these conditions in the form (1.8) and (1.9).
8



Theorem 1.2. Let the domain Q satisfy the conditions (1.8) and (1.9), the weight
function — the condition (1.1) and let R be some positive number. Then the following
estimates are valid

(1.10) C2‘/Q¢(m)|u(m)|pd:v§/9¢(:co) lu(z) P dz dzy <

R
QNBE

<G [ sl da

Proof. Let us change the order of integration in (1.10);
(1.11) / ¢(m0)/ u(z) P dz dzo =
Q QNBE

:L|U(w)|p (/Q XansE (To)(zo) d-To) dz

Here xonpr is the characteristic function of the set 2N BE,
It follows from the inequalities (1.1) and (1.2) that

(112) C16(c) < infy, e 6(0) < SUP,,epr $(z0) < Cag(2)

and the assumptions (1.8) and (1.9) imply that
(1.13) 0<Cr<p(reQnBY)<Cy

uniformly with respect to zg € Q.
Estimate (1.10) is an immediate corollary of the estimates (1.11)—(1.13). Theorem
1.2 is proved. [

Corollary 1.3. Let (1.8) and (1.9) be valid. Then an equivalent norm in the weighted
Sobolev space H;’p (Q) is given by the following expression:

1/p
(1.14) o ssp = ([ Sao)l, 20 B2, doo)

Here and below ||u, V|1, means ||ul|w.»(vy- In particular we obtain also that the norms
(1.14) are equivalent for different R € R, .

To study the equation (0.1) we need also the weighted Sobolev spaces with fractional
derivatives s € Ry (not only s € Z). For the first we recall (see [33] for details) that if
V is a bounded domain the norm in the space W*P(V), s=[s]+1,0< 1< 1, [s] € Z4

can be given by the following expression
D= P
[ D=y,
yev

— p
115 Vi, = Vi, + Y e

|a|=[s] " 2EV

It is not difficult to prove, arguing as in Theorem 1.2 and using this representation, that
for any bounded domain V with a sufficiently smooth boundary

(1.16) lu, V2, < 01/ lu,V A BE|? dzo < Callu, V2,
zo€EV

This justifies the following definition.



Definition 1.3. Let us define the space Wy'* for any s € Ry by the norm (1.14).

It is not difficult to check that these norms are equivalent for different R > 0.

In the sequel we will use the W;’p -valued functions, so we will formulate a simple
continuity criteria for such functions. To this end we formulate below the continuity
criteria for such functions.

Theorem 1.3. Letu:[0,T] — W () - be some WP —valued function, 1 < p < oo.
Then u € C([0,T], W) if and only if

(1.17) u‘Qnt e C([0,T], Ww*P(Q2n BE))
and uniformly with respect tot € [0, T

(1.18) mp oo [lu(t), 2N {|z] > R}|g,s,p =0

Proof. Indeed let (1.17) and (1.18) be valid. Then

[[u(t1) — ul(t2),

g.s.p < Cllu(ts) — u(tz), 20 {|z] < R}|s p+

+C sup |lu(t), 2N {|z| > R}{4,s,p
te[0,T]

The second term in the right-hand of this inequality can be choosen arbitrary small by
taking R large enough (due to condition (1.18)) and for the fixed R the first one can be
choosen arbitrary small by taking |t; — ¢2| small enough (due to the condition (1.17)).
Thus, u € C([0,T], W, (2)).

Let us suppose now that u € C([0,T], W *(?)). Then (1.17) is evidently holds. It
remains only to verify (1.18). Indeed since u is continious then the set {u(t),¢ € [0,T]}
is compact in W;’p . The estimate (1.18) is an immediate corollary of this compactness.
Theorem 1.3 is proved.

Remark 1.3. Note that if p = oo then Theorem 1.3 gives only a suf ficient condition
for the continuity which evidently not necessary.

Note also, that as a rule we will check the condition (1.18) by using the estimate
(1.4).

We consider now the other class of weighted functional spaces which we significantly
use to obtain adequate a priori estimates of solutions of the equation (0.1). Note that
they are of independent interest.

Definition 1.4. Let Q@ C R" satisfy the conditions (1.8) and (1.9) and let ¢ be the
weight function with the rate of growth u. For every 1 < p < oo, and R > 0 we define
the following spaces

LP=N(Q) = {u €D Q) 1w, QI o0y = / o@)wn By|[f o d < 00}
EAS

For the simplicity of notation we will write below Lgi’;o) and Lg’;’}oo) instead of
Lg’jrz)ma/z and Li’i’;‘ﬁ correspondingly

It can be shown that in fact these spaces are independent of the choice of R > 0.
10



Proposition 1.2. Let the conditions of the previous definition be valid. Then
LP®(Q) C LE,(9), ie.

(1.19) sup{¢(z)|u(z)["} < C/ ¢(x)|lu, 2N B[ o dz
zeQ e

Proof. Let us estimate the left-hand side of (1.19) using the estimates (1.12) and the
inequality sup 21, -, 2k, - - - < Y 1o, 21 for nonnegative z;;

3gg{¢<w)|u< )P} = sup{ sup ¢(z)lu(z)P} < C Y o()llu, 2N B

lezm :I:EBRF] lezn
<c Y ol / lu, 20 BEFE _dr <
lezm z

< ¢, / 6(2)||u, N BEF|E _dz < Cy / 6(z)|lu, 2N BR|Z _da
e zeQ

1/2

Here we assumed, evidently, that R > n"/“. Proposition 1.2 is proved.

Let us note that the weight function
(120) ¢z0,s == e—s|ar:—a:0|

satisfy the conditions (1.1) uniformly with respect to zo € R*. Consequently all
estimates obtained above for the arbitrary weights will be valid for the family (1.20) with
the constants, independent of g € R™ as well. Since these estimates are of fundamental
significance for us we write it explicitly by a number of corollaries formulated below.

Corollary 1.4. Let Q2 be the same as in Proposition 1.2. Then for any € > 0 the
following estimate is valid uniformly with respect o € R™

(1.21) sup{e ele=2ol|y(z)|P} < C/ e~cl"m™ol|ly, N B£||g,oodx
zeQ zEQ

Corollary 1.5. Let u € Ll{’a}(ﬂ) for 0 < d < e, e > 0. Then the following estimate
holds uniformly with respect to y € R*

(1.22) ( /Q e~ 951203l ( /Q e_5|’”_“’°||u(a:)|”d:v)q d:vo)l/qg

< Cs’q/ e 1e=¥ly(z)|P da
Q

Moreover if u € LT3, (Q), 6 <& then
(1.23) sup { —8|zo—y| sup{e” ele— E0||u($)|}} <ngsup{e 8lz— y||u( )|}
zo€Q ze)

and if 46 < e the appropriate analogues of the estimates (1.4), and (1.7) are also valid
uniformly with respect to y € R™.

11



Corollary 1.6. Let u € L(Q) and e > 0. Then

(1.24) sup {/ e—ele20l|yy () P d:c} < C||u,Q||€’l’p
o EQ z€N

Indeed,

sup {/ e~clz=ol |y (z) [P dm} < C sup {/ e~clz=2ol|ly, QN B;|f)’pdw} <
g EQN zeQ zg EQN zeQ ’

< Csup {||lu,2N BL|Z,} sup { / e~ eloeol dx} < Cillu, Qg ,
zeQ Ty €SN zER™

§2 THE LINEAR EQUATION

This Section is devoted to the study of the linear problem of the type (0.1)

(2.1) { Oru — Agzu+ Aou = g(t)

“|t=o =Uo; u|aQ =0

in an unbounded domain  which is assumed to satisfy the conditions (1.8) and (1.9)
formulated in the previous Section. To this end we will use weighted Sobolev spaces
introduced in Section 1.

Theorem 2.1. Let g € L?([0,T], L}, () for some e1 > 0 and let uo € L{,_ ().

Then there exists the unique solution of the problem such that

(2.2) u € Ly([0, T], W2, (@) N WH2([0, T, W, ()

and for any € > €1, the following estimate is valid uniformly with respect to xo € R3:
T
(2.3) |lu(T), 2N B, [l 2 + /T—l lu(t), 2N Bg, [I1 5 + 10u(t), 2N By [|2 p dt <

T
< C(|UO|21€_€|:E—$E0|)e_()\o—€ )T _I_/ e(Ao—E )(t—T)(|g(t)|2,e—5|m—m0|)dt
0

Here and below f;_l means fOT if T < 1.

Proof. We restrict ourselves to obtain only the a priori estimate (2.3) for the solutions
of the problem (2.1). The existence of solutions can be obtained from this estimate in
a standard way.

Let us multiply the equation (2.1) by u(t)e—¢/*~0l and integrate over z € Q

B (1u(®)%, =1 ~0) £ 2o (Ju(t) P, =1 *0) + 2( Vu(t) %, e~/ ~) =
= 2(g, ue—elz—zol) — 2(V,u, uvme—s|z—m0|)
Applying Holder’s inequality to the right—hand side of the last formula and using the
obvious estimate |V e¢/2=%0l| < ge=¢lz—20| we obtain
(2.4) Be(lu(®)|% e~ m0l) + (Ao — ) (Ju(t)[?, e~=1=== )+

+ (IVou(t)?, e=*12=2l) < O(|g|?, e~eleeel)
12



Applying Gronwall’s inequality to the estimate (2.4) we obtain the estimate
T

(2:5) (uD)e =)t [ (V)P e <
T-1

T
g A O T

Taking into account that e—¢l#—%l > C if £ € B;O uniformly with respect to zo € R3
we obtain from (2.5)

T
(2.6) IIU(T),QﬁBiollﬁ,erfT 1||VzU(t),QﬂBiollizdtS

T
< C(|’U,(O)|2, e_6|z—20|)e_()\0—52)T + CA e(Ao—sz)(t—T)(|g(t)|2’ e—5|z—zo|) dt

The estimate of d;u follows now from (2.6) and from the equation (2.1).The estimate
(2.3) is proved. It remains to prove (2.2). Let us take in (2.3) € > 7, multiply it by
e~ct®ol and integrate over zo € Q. Then after using the estimates (1.3) and (1.10) we
obtain that

T

|w(T), Q||%€1},0,2 + |u(t), 9“%51}4,2 + [|0u(t), Q||%E1},_1’2 dt <
T—1

T
— —&? —e2)(t—
< [1u(0), Qlfz, 3,026~ )T+/O e~ Dg(t), Q.. 0,2 d1

Theorem 2.1 is proved. [

Theorem 2.2. Letu be a solution of (2.1) satisfying (2.2). Lete > €1 > 0 be the same

as in previous theorem, and let ug € W{lsf} (Q) and g be the same as in the previous
Theorem. Then

(2.7) u e L*([0,T], Wizf} (@) nWh2([0,T], L, 1 ()

and the following estimate is valid uniformly with respect to xo € R3;
T
(2-8) [[u(T), 2N By, 172+ / lu(t), 2N By, |15 2 + [|0u(t), @ N By, |l5 2 dt <
T-1
< C ([IV2u(0), 20 BE, 12 + (juol?, e~7=™0l) ) e 17+

T
e [0 D (g0, el d
0

for some positive v = y(e) > 0.

Proof. Recall firstly that we assume that the domain Q satisfies the conditions (1.8)
and (1.9) and the constant Ry = 2.

Let us consider the cut—off function 5, (z) € C§°(R®) such that ¢, = 1 if z € B,
and ¢, =0ifz ¢ Bgo and let vy, = ¥z, v. It follows from the equation (2.1) and from
the condition (1.8) that v, is the solution of the following equation

(2 9) 8tv:co - Amvzo + )\Ovmo = wzog - 2Vz¢z0 vzvzo - Azwmovzo = h:co (t)
. Vzo ‘aVzo =03 v|,_o = ¥2ou(0)
13



where the domains V,,, were defined in (1.8) and (1.9).

Multiplying the equality (2.9) by A,v,, and integrating over z € V,,, we obtain after
simple computation involving integration by parts and Gronwall’s inequality that the
following estimate holds uniformly with respect to xg € €2:

T
(2.10) IIUzO(T),VzOII?,2+fT [1Aave0 (£), Vg 10,2+ 10evzg (), Vag llg 0 d2 <

T
< Cilloay(0) Va7 + G [ X0 Dy, Vo[ <
0

T
< Ca|u(0), 2N BE |3 67T + Cy /0 e\ hg,, QN BE |13 , dt

Taking into the account the assumptions (1.8) and (1.9) for the domains V,, we obtain
from the elliptic regularity theorem (see [33]) that

[u(®), 2N By ll2,2 < Cllvag, Vaoll2,2 < Cill Azvag, Vaollo,2
Estimating

(2.11) lhao (), 20 B3 16,2 < Cllg, @0 B2 1[5 2 + lu(t), 2N B |17 2)

€T

and using the estimate (2.3) we obtain now the estimate (2.8). The assertion (2.7) can
be deduced from (2.8) in the same way as (2.2) from (2.3). Theorem 2.2 is proved. [

Corollary 2.1. Let u - be a solution of the problem (2.1) satisfying (2.2). Let us
suppose also that g € L*([0,T), Li(ﬂ)) and ug € W;’Z(Q) for a some weight ¢ satisfying
(1.1) with a sufficiently small rate of growth p (u < €) and € was introduced in Theorem
2.2). Then

(2.12) u € WhH3([0, T, L5(Q)) N L2([0, T], W *(9)) N C([0, T], W, *(2))

and the following estimate is valid
T
(213) [(T) Wz + [ 10(0) D300+ 100, A <

T
< Cllu(0), Qll3, 167" +C/O " Dllg(t), QI3 0,2 dt

for some positive 7.

Proof. Indeed let us multiply the estimate (2.8) by ¢(zo) and integrate over 2. Then
using the estimates (1.3) and (1.10) we obtain (2.13). Thus, we have proved that
u € L*=([0,T], W; 2(Q2)) and it remains to prove continuity. To this end we use Theorem

1.3. Multiplying (2.8) by ¢(zo) and integrating over Q N {|zg| > R} we obtain using
(1.4) that
lu(t), 2N {|z| > R}|[3,1,2 — 0

when R — oo uniformly with respect to ¢t € [0,7]. So we should prove only that
u|Qﬂ{|z|<R} € C([0, T, Wh2(2n {|z| < R})). But it follows from a well known inter-

polation theorem for unweighted Sobolev spaces (see [25]) that
c([o,T],w"?) c L*([0, T), W**) n Wh2([0, T}, L?)
Corollary 2.1 is proved. [
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Theorem 2.3. Let u be a solution of the problem (2.1) which satisfies (2.2), e > €1 > 0
such as in Theorem 2.2, ug € W{té}m (Q) and g € C’([O,T],L%El}(ﬁ)) for some0 < 6 < 1.
Then

(2.14) ue C([0,T), W P*(Q)) n C'=*/2([0, T), L3, 4 ()

and the following estimate is valid uniformly with respect to xo € R3:

(2.15) [[u(T), 2N By, ll3_52 + ||U||%~1—6/2([T_1,T],L2(mB;O)) <

=C (”“(0)7 QN B 15-52+ (lu(0), e_€|”’_””0|)) T

T
+ [ D Tl g ) el )
0

for some positive constant vy

The proof of this Theorem is based on the following result for the auxiliary problem
(2.9)

Lemma 2.1. Let vy, be the solution of the problem (2.9) and let v, (0) € W2=%2n
Wy? (Vi) and hy, € C([0,T), L*(Vy,). Then

(2.16) vay € C([0,T], W %2(V,,)) N C=*/2([0,T], L2(Va,))
and the following estimate is valid uniformly with respect to xo € €2

(217) (o0 (T), Vao 5.2 + [ullBs—s/a r—1, p2(vs, ) <

T
< Cllveg (0), Vo ll3—s,26 7" + C1 /0 Dt — 7102 gy, Vi 5 o dt

Proof. Let A = Ay, = —A; + XAo. Then from the variation of constants formula we
obtain that

T
(2.18) Ve (T) = e ATy, + / eAt=Dh, (t)
0

Let us derive the estimate of W2~%2 norm. The Holder continuity for v,, can be
obtained analogously.

It is well known that the operator A generates a holomorphic semigroup in L?(V,,).
Then, for > 0, s > 0 the following estimates are valid, (see [33], [11], [20])

(2.19) le= % lwe-s2pp2—s2 < Ce 2% ; ||APeA%|| 2,2 < Crs Pe0s

and due to the regularity conditions (1.9), the constants C and C; do not depend on
xg € .
15



Thus, |e™4T vz, (0), Vaylla_s2 < Ce 20T ||lvy, (0), Vi, |l2_s,2 and using Holder’s in-

equality we obtain after simple transformations

T T
| / Mgy (8) dt]|yya—ss < / 1AM 2726400 2, o[y (2), Vo llo,2 dt <
0 0

T

T 1/2
C/ er(t—T)|t _ T|—1+5/2||hz07Vm0||072 dt < C (/ eAO(t—T)|t _ T|—1+5/2 dt)
0 0

1/2

T
x (/ e)\o(t—T)|t_T|—1+5/2||hz0,vm0||g’2 dt) <
0

T 1/2
S Cl (/ er(t—T)|t _ T|_1+5/2||h$0,V10||8,2 dt)
0

Lemma 2.1 is proved.

The proof of Theorem 2.3. Tt follows from Lemma 2.1 that
(2.20) ||u||2‘1*5/2([T—1,T],L2(90B;0)) +[[u(T), 2N BY|3_52 <

< C (102, Vaol3-s2 + 100 2 -s/2er 1,102, ) <

T
<Ci (”U-’Bo (0), Vao ll3 5,067 " +/0 oDt —T|714/2 ||y, (t)’vzo||(2),2})

We used here the notations of Theorem 2.2.
Estimating the last integral in (2.20) by the estimates (2.11) and (2.8) we obtain the
inequality (2.15) after some evident calculations. Hence it remains to obtain only that

u € C([0,T], W{ZE_}‘S’Z(Q)). This continuity can be proved using the ’tail estimates’ (1.4)
and Theorem 1.3 as in Theorem 2.2 and Corollary 2.1. Theorem 2.3 is proved. [

Corollary 2.2. Let u — be a solution of the problem (2.1) satisfying (2.2). Let us
suppose also that g € C([O,T],Li(ﬂ)) and ug € qu_m(ﬂ), 0 <6 <1 and¢ is the
same as in Corollary 2.1. Then

(2.21) u € C([0, T], Wy~"*(®)) n C*~%3([0, T, L(9))
and the following estimate is valid

(2:22)  1[u(T), Q3 g0 + Il a7,y < Clla(0), QU 550677+

+C sup {7 D)|g(t),Q]5,0,2}
te[0,T]

The proof of this Corollary is the same as Corollary 2.1, only instead of the estimate
(2.8) we should use the estimate (2.15).

Corollary 2.3. Let the condition of the previous Theorem be valid, 6 < 1/2 and uy = 0.
Assume also that dimQ =n < 3. Then

(2'23) |u(ta J’.O) |2 S Supte[O’T]{e'y(t_T) (|g(t) |2, e_slm_"EOl)}
16



for some positive vy

Indeed, the estimate (2.23) follows immediately from (2.15), Sobolev’s embedding
theorem W2~%2 C C for § < 1/2 and the following simple inequality

T
(2.24) /EW(t_T)It—T|_1+5/2(Ig(t)|2,6"‘“'“”‘”"“')dtS
0

< Csuprepon{e” 2 (lg(0)], e~}

Theorem 2.4. Let the conditions of Theorem 2.3 be valid, § < 1/2 and dimQ =n < 3.
Then

(2.25)  |u(T,z0)|* < sup,ecq {e_sla’_”’°| lu(0, a:)|2} e T

+ supepory{e” ) (|g(8)]2, el el)}
for some v >0

Proof. Due to Corollary 2.3 it is sufficient to prove (2.25) only for g = 0.
Let us consider the function 9 (z) € C>°(R3) such that

{ IVatp(2)| < Cep(z) 5 |Astp(z)] < Ce?y(z)
Y(z) > 0; ¢(z) = el for [z| > 1
It is not difficult to prove that such a function exists.

Let us consider also the function wg,(¢t,x) = ¥(x — zo)u(t, ). It follows from (2.1)
that this function satisfies the equation
(2.27) OtWzy — DgWzy + AWz, — K1(2)wzy — Ka(2)Vawg, =0
and due to the condition (2.26) sup,cgs |Ki(z)| < Ce, @ = 1,2. Hence for sufficiently
small € > 0 the maximum principle is valid for the equation (2.27) (see, [23]). Thus

(2.28) |we, (¢, )| < sulg)z [wg, (0, )|
z€

(2.26)

for some v > 0. Taking z = z( in (2.28) we obtain (2.25) for g = 0. Theorem 2.4 is
proved. [l

We finish this Section with a version of the comparison principle for parabolic equa-
tions in weighted Sobolev spaces.

Theorem 2.5. Let a function u satisfy (2.7) for a certain e, > 0, u(0) = 0 and let the
following inequality be valid almost everywhere in [0,T] x Q:

(2.29) Oru — Agu + Aou >0

Then almost everywhere in [0,T] x Q  wu(t,x) > 0.

Proof. Let us consider the functions u, (¢, 2) = max{0, u(¢, x)},

u_(t,x) = uy(t,z) — u(t,z). By using the technique of [3] it is not difficult to prove
that

(230) U_, Uy € Wl’z([07 T]a L%e}(Q)) N L2([Oa T]7 W{léi(ﬂ))

for € > 1 and the following equalities are valid almost everywhere

(231)  (Beut(t), u—(8)){er = (Bpu—(t), u4(t)) ey = (Vou(t), Vou—(t)){ey =0

Let us multiply (2.29) by u_ and integrate over 2. Then due to (2.31) we obtain
(2.32)  —1/20[u—(t), Qlfey,0,2 — Aollu—(8), Qll{ey 02 — €°[lu—(2), Qlfey,0,2 > 0
Applying Gronwall’s inequality to the estimate (2.32) and taking into account that

u_(0) = 0 we obtain that ||u_(t),Q||{c},0,2 = 0 almost everywhere, i.e. u > 0 almost
everywhere. Theorem 2.5 is proved.

17



§3 THE NONLINEAR EQUATION. A PRIORI ESTIMATES.

In this Section we consider the parabolic boundary problem:

(3.1) { Owu — Azu + f(u, Vzu) + Aou = g(z)

ul,_o = t0; Ulpg =0

in the unbounded domain €2 which is assumed to be 3-dimensional (2 C R®) and to
satisfy the conditions (1.8) and (1.9) formulated in Section 1.

Recall that u = (ul,---,u*), A\g > 0 — is some positive number, f = (f,---, f¥),
g=(g%,---,g") and the nonlinear term f satisfies the following conditions

1. flu,Vzu)u>0
(3.2) 2. |f(u, Vzu)| < Clul(1+ |Veul") (1 + |ulP), p > 0 —is arbitrary
3. f € C(RF x R ; R¥) and r < 2

We suppose in this Section that the right-hand side ¢ = g(z) is from the space
OS>OL%E} (©2) and that the initial date ug is from the space ﬂs>0Hi;5’2(Q) (where the
exponent 0 < § = §(r) < 1/2 will be defined below).

A solution of the equation (3.1) is defined to be a function u from the space
Ne>0C([0, T], W2%%(Q)) which satisfies the equation (3.1) in a distribution sense.

{e}
The main aim of this Section is to prove a number of a priori estimates for the

solutions of (3.1) which will be used below in order to prove the existence of solutions,
their uniqueness, etc.

Note that all results formulated below remain valid for g € L%E}(Q), up € ng}s’z(ﬁ)

and u € C([0,T], W{25_}6’2(Q)) with a sufficiently small positive e which depends on the
equation (3.1).

Theorem 3.1. Let u be the solution of (3.1). Then the following estimate is valid
uniformly with respect to xo € Q2

T
(3.3) llu(T),2n B Il5 2+ /T ) lu(t), 20 By [1i ; + 18su(t), 2N By |12, 2 dt <
< C(|uo|2,e—s|m—zo|)e—~yT + C(|g|2,e—s|m—zo|)

for some positive v > 0 and sufficiently small € > 0.

The proof of this Theorem is the same as the proof of Theorem 2.1 (the nonlinear
term disappears in the estimates due to the first condition of (3.2)).

Theorem 3.2. Let u be the solution of (3.2). Then the following estimate is valid
uniformly with respect to g € Q

(34)  [u(T,z0)|” < Csupgeqfe 70! |u(0, ) *}e " + C(|g[?, eI2720)

for some positive v > 0 and sufficiently small € > 0.
Proof. Let us consider the function w(t,z) = u(t, z).u(t,z). Then due to the equation
(3.1)

(3.5) Ow — Agw + 2 ow = =2V ,u.Vau — 2f (u, Vau).u + 2g.u < 2g.u = hy,(t)
18



We consider also the auxiliary linear problem
(3.6) { Opv — Azv + 2Xgv = hy(t)

U‘t:o = w‘tzo = ug-Uo
Due to the comparison principle (Theorem 2.5),
(3.7) w(t,z) <v(t,z), (t,z)€[0,T]xQ
Applying Theorem 2.4 to the linear equation (3.6) and using (1.23) we obtain
(3.8) sup,cqfe ==/ [w(T, ) P} < sup,cqfe 2= =l [v(T,2) %} <

< Csup,cafe 1l ug(z) 1o 27T+

+C SuPte[o,T]{eh(t_T) (|hu(t) |2a e~ eIzl )}

Denote Z, (T) = sup,cq{e 212~ |w(T, )|?} and estimate the last term in the right—
hand side of (3.8)

(3.9) (R, e 22=2) < C(lu(b)?g]?, e le20l) <

< C sup {e~ 1w (t, 2) [}(|g/*, e™77*)) < uZay (1) + Cullgl?, e7177=0))?
ToE

and the estimate (3.9) is valid for every p > 0.
It follows from the inequalities (3.8) and (3.9) that

(3.10)  Zsy (T) < Csup,eqfe >l jug(z)[*}e 27" + Cy(|g[?, e #1770 )2+
+ wsup,epo,r{e?”" ) Zs, (1)}
To complete the proof of Theorem 3.2 we need the following Lemma

Lemma 3.1. Let the function Z,,(t) be a solution of the following inequality

(3.11) Z5o(T) < C1e™PT + Cy + o sglpT]{eﬂ‘t‘T’Zzo (1)}
te|o,

and let p <1/2 and B8 > 0. Then
(3.12) Z4y (T) < 2C1e7PT 420,
Proof. Multiplying the inequality (3.11) by e’T and taking the supremum Suppe(o,s) Of
the both sides of the inequality we get after simple calculations

supreio s){€” Zao(T)} < C1 + Cae”® + psuprepy g{€”” Zz, (T)}
Taking into account that u < 1/2 we get

supte[O,T]{eﬁtho t)} <20, + 2C,ePT

Replacing the last term in (3.11) by this estimate we obtain (3.12).

The end of the proof of Theorem 3.2. Applying the result of Lemma 3.1 to the estimate
(3.10) we will get for sufficiently small x> 0

Zzo (T) < Csupmeg{e—%h—mol|u0(m)|4}e—2fyT + C’,L(|g|2, e—€|m—:1:0|)2

Taking the square root of the both sides of the last inequality and taking x = z¢ in the
left side of it we obtain the inequality (3.4). Theorem 3.2 is proved. [
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Corollary 3.1. Under the assumptions of the previous Theorem the following estimate
is valid uniformly with respect to xy € Q2

3.18) [T,z < Ce [ e wlu(0), 00 B o do -+ C(lgl, =)
e

Indeed the estimate (3.13) is an immediate corollary of (3.4) and (1.21).

Theorem 3.3. Let u be the solution of the problem (3.1) and let 0 < 6 <2 —r. Then
the following estimate is valid uniformly with respect to xo € Q

(3-14) [[u(T), 2N B, 1555 < Ce T (/ e 1=l |lug, QN B35 dz +
zEQ

K
[ et an B+ { [ el a0 Bl de} )+
zEQ ’ zEQN ’

K
+0 [ fglo)e izt c ( / |g<x)|2e—€'"~'—w°')
€N zEQN

Where K = K (r,p,0) = % and vy > 0, € > 0 are sufficiently small.

Proof. Let us multiply the equation (3.1) by ¥, (z), the same as in the proof of Theorem
2.2 and denote vy, = Yz, u

(3.15) Orvgy — Agvgy + AUz, = —VYao f (U, Vau) — 2V 1y Vou — Apthp,u + g = hy, (t)
Then due to the estimate (2.17)
(3.16) [[u(T), 2N By, lI3_52 < Cllvay, Vaoll3 52 <

T
< C1(]|vay (0), Vo ll3 526" + Cz/o 1Dt — T2 gy (8), Viol[5 2 dit

Let us estimate the right-hand side of (3.16). It follows from the definition of h,, that
(3.17) 1haqs Vaollo,a < ClLf (u, Vatu), Vag lI6,0 + Cllt, Vao 175+ 119 Vao 13,2

Due to the second condition of (3.2)
2(p+1 r
(3818)  [1f(w, Vo), Vagl32 < C (I, Vao oo + 1, Vo 6% (It Vo 13720 + 1)

Using the interpolation inequality (see [33]) we obtain that

(3.19) 1, Vao ll1,2 < Cllu, Vi llosollt, Vio 13,2

where § = 525 € (0,1). It follows from the condition § < 2 — r that 2rf < 2. Hence

(3.20) [|f(w, Vou), Vaollg2 <

1
2(p+1 2r(1—0)\ T-r0
< Cullu, Vaol3 o + C (I Vao 8% s, Vag I35 ™") 777 + bl Vay 352 <

0,00

< Cuu (Il Vo 13,00 + 112, Ve l1500) + Hilles, Vg l13 62
20



Here p > 0 is an arbitrary positive number. Indeed

2p+1+r(1—0) _2r(p+1+r(1-9))

2K
1—r0 2—r—94¢ <

Using the estimates (3.17)—(3.20) we obtain from (3.16) that
(3:21) [[u(T), 2N Bz, [13_5,2 < Cillvag (0), Vo ll3 50677 +

T
e / g _ T[4/ ((u, Vi |
0

600 T 14, Vi l5750) dt+

T
+u / 1T |t — T 714072y (1), V|25 dt
0

Applying the estimate (3.13) to the right-hand side of the inequality (3.21) and using
the evident inequality

T
/ ev(t—T)|t _ T|—1+5/2e—71t dt < Ce_’YlT, <
0

we will have

lu(T), 2N BL |34, < c#e-ﬂ(num),vmn%_m

K
[ eoelu), 20 BYR o+ { [ esemliu), a0 B;n%oodm}
zEQ ’ z€EN ’

K
+C, (/ e_Ellz_z°||g(m)|2d:v + {/ e_€1|2_$°||g(m)|2d:c} ) +
zeN zeEN

T
o / 1T |t — T 14872 u(8), Vi |[2 5, dt
0

for 41 < v and &; small enough. Multiplying this estimate by e K¢l#o—¥l with Ke <
€1, integrating over zy € ) and using the inequalities (1.22) we obtain after simple
calculations that

(3.22) / e Kelv—l|u(T), 1 BL3_ s do <
z€EQN

< Cpe T ( / O R A
Q
K
[ e ), 20 BLJR o da + { [ =), an B3 dm}
zeQ ’ zEN ’

K
+C, (/ e~¢l==l|g(z)|2dz + {/ e_sl”’_y||g(m)|2da:} ) +
rzeN zEN

T
+p / Dt — |7 / e K lu(t), Vall3 s, do dt
0 A9
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Let us estimate the last integral into the right—hand side of inequality (3.22). It follows
from the inequality (1.16) that uniformly with respect to z € Q,

(3.23) lu Val2 s < C / lu, 20 BY2 s, dz
zeV,

Multiplying the estimate (3.23) by e ®¢l¥=2| and integrating over z € Q we obtain due
to Theorem 1.2 (with u(2) := ||u, 2N BL||2_s2, p = 2 and ¢ = e~ Kcle=¥l) that

(3.24) / e~ Kely==l||y, Vz||§_5,2 dr < C/ e~ Kelv==l|lu, Qn B;Hg—a,z dz
e zeN

Replacing the last integral in the right—hand side of (3.22) by the estimates (3.24) and
(2.24) and using Lemma 3.1 with

2,T) = [ e e uT), 2 B 5, do
zeN ’
we obtain that for sufficiently small 4 > 0, >0 and v >0

(3.25) / e Kelv=2l||y(T), QN B2 s, do <
Q

< CreT ( / e Kele14(0), Va|2_s » da-+
Q

K
[ et @00 Bl wds+ { [ 0,00 Bl o do )
z€Q zeQ2

+C, ( / . ezl |g(z)|2dz + { /z n e~el==yl] g(m)|2d:v}K)

uniformly with respect to y € 2.
It is not difficult to prove using (3.23) that

(3.26) lu(T), 20 By ll3-52 < C/Q e~ eV =2l|u(T), QN BLll3 s 2 do

uniformly with respect to y € Q. The estimate (3.14) follows from the estimates (3.25)
and (3.26). Theorem 3.3 is proved. [

Corollary 3.2. Let u be the solution of (3.1) and let the assumptions of previous The-
orem be valid. Then

(3:27) |If(w(T), Vou(T)), 2N B, 5,2 <

< Ce T ( / e=cl==20l|lug, 2 N BY|2_, , do+
zeN ’

K
[ et lu©,00 Bl ado { [ et llu),00 BR . de
zeN ’ zeEN ’

K
e (/ e—flz—mowg(wnzdw{ / e—e'w—wowg(m)Pd:c})
z€eQ zEQ

Indeed (3.27) follows from the estimates (3.20), (3.14) and (3.13).
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Corollary 3.3. Let u be the solution of (3.1) and let the assumptions of previous The-

orem be valid. Then u € C*—%/2(R, L%E} (Q)) and

(328) ||u||%’1—5/2([T,T+1],L2(QﬂBi0)) <

< Ce T ( / el==0l|lug, 2 N BY|2_, , dt
e ’

K
/ e=<l==20l|[u(0), 2 N B2, dz + { f e—s'm—%'nu(m,anB;n%ood:c}
zeN ’ zeN ’

K
e (/ e—flm—mowg(wn?dw{ / e-elz—w°'|g<m)|2d:c})
zEN z€EN

Indeed, let us rewrite the equation (3.1) in the form
(3.29) 0w — Agu+ Aou = —f(u, Vyu) + g

The equation (3.29) has the view (2.1) with the right-hand side f(u, Vyu) + g Thus,
applying Theorem 2.3 (the assertion(2.14) and the estimate (2.15)) to the equation

(3.29) and taking into account the estimate (3.27) we easily obtain all of the assertions
of Corollary 3.3. O

Corollary 3.4. Let u be a solution of (3.1) and suppose that the assumptions of The-
orem 3.3 hold. Then for every fizred 0 < §; < 9, € > 0 and arbitrary T > 1
(3.30) we C(T,T+1], W{25_}51’2(Q)) NC'4/2(IT, T + 1], L}4(9))

and the following estimate is valid

2 2
(3.31) ||u||C([T,T+1],W2—51’2(QOB;O)) + ||U||cl—61/2([T,T+1],L2(QnB;O)) <

< CyeT ( / e“lo=20l||ug, QN B2, dzt
zEQ ’

K
/ e=<l==20l|[u(0), 2 N BL|2 .. dz + { f e-slz-zo'nu(m,nnB;n%oodm}
zEQ ’ z€EQN ’

K
+Cy (/ e=clemeol|g(z) Pdz + {/ e_5|m_“’°||g(m)|2d:c} )
FIS3Y) zEN

where the constants Cy = C1(81) and Cy(81) are independent of x¢ and T > 1.
Indeed, introduce the function w(t) = (¢t — T + 1)u(t). Then

Ow—Azw+dw=Et—-T+1)g— (t—T+1)f(u, Vzu) + u = h(t)

w|

(3.32) {

per 1 =0 W[y =0

Note, that the equation (3.32) has the form of (2.1) and due to (3.14) and (3.27) the
right-hand side h € C([T'—1,T+1], L%E}(Q)). Applying Theorem 2.3 (with é = ;) and
using the estimates (3.14) and (3.27) we obtain the estimate (3.31) and the assertion
(3.30). O
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§4 THE NONLINEAR EQUATION. EXISTENCE OF SOLUTIONS.

In this Section we prove the existence of solutions for the problem (3.1). To this
end we prove first the existence of solutions for the problem (3.1) in a smooth bounded
domain 2 and after that by approximating the initial unbounded domain by bounded
ones, we extend this result to every domain which satisfies (1.8) and (1.9).

Theorem 4.1. Let Q be a smooth bounded domain in R® and let up € W2=%2(Q) N
{u0|aQ = 0}, 6 < min{1/2,2 — r}, where r was defined by (0.2). Then for any T > 0
there exists at least one solution

(4.1) ue W = C'/2(0,T], L3()) N C([0, T], W2=52(Q) N W*())

of the problem (3.1)

Proof. Let P be the inverse operator of the parabolic operator

(4.2) Lu = 0u — Azu+ Aou; u|t:0 =0; ujyq=0
Then, due to Lemma 2.1,
(4.2) P=L""':C(0,T],L*(Q)) — W for every § >0

Let us introduce the function w(t) = e*(4= =)y, as the solution of linear homogeneous

parabolic problem. Then Lemma 2.1 implies that w € W and

sup [lw(t), Qlla—s,2 + [[wllci-s/2((0,17,22(0)) < Clluo, Al2—s.2
t€[0,T]

We rewrite the equation (3.1) with respect to a new variable v(¢) = u(t) —w(t) and apply
the operator P to both sides of the obtained equation. After these transformations we
get the following equation in the space W

(4.3) v+F(v)=h,veW
Here h = Pg € W and the nonlinear operator F is given by the following expression
(4.4) Flv)=—-Pf(v+w, Vv + Vw) : W — W.

We are going to apply the Leray—Schauder fixed—point principle (see [29], [36]) to the
equation (4.3). First we check that the operator F' is compact. Indeed, let £, € W be
some bounded sequence in W. Then due to the compactness of embedding

(4.5) W cc C([0,T), W2=°=*2(Q)) for every a > 0

and due to the Sobolev embedding theorem W2 C C if y > 3/2 and W2-5-*2 C
W12" for sufficiently small o > 0 (here r the same as in the condition (3.2)), we can

suppose without loss of generality that the sequence (£g, V&) — (€, V£) in the space
C([0,T],C(Q) x L?>"(2)). But due to the conditions (3.2) the Nemitskij operator

f(u,v): C([0,T],C(Q) x L*"(Q)) — C([0,T], L*(Q))
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is continuous (see [22]). Hence the sequence

in the space C([0,T], L?(Q)). Thus F (&) — F(€) in W and consequently F is compact.
Due to the Leray—Schauder principle it is sufficient to prove now that for a sufficiently
large ball B in the space W

(4.6) v+ sF(v) # h for s € [0,1], v € 8B.

Let us prove (4.6). Indeed let us suppose that (4.6) is not valid for some s = sg € [0, 1].
Then denoting u = v + w we obtain that

(47) { Ou — Agu+ Aou + sof(u, Veu) =g

“|t=0 = Uo, u‘an =0

The equation (4.7) has the form of (3.1). Then due to Theorem 3.3 and Corollary 3.3,
llu|lw < C(up) uniformly with respect to so € [0,1]. Hence for a sufficiently large ball
in W the inequality (4.6) is valid.

Thus due to the Leray—Schauder fixed—point principle, the equation (4.3) has at least
one solution v € W. Theorem 4.1 is proved. []

Theorem 4.2. Let Q satisfy the conditions (1.8)— (1.9) and the nonlinear term

f(u, Vyu) — conditions (3.2). Let us suppose also that ug € Ngso € W{2€_}5’2(Q) for

some 6 < min{1/2,2 —r} and g € 05>0L%6}(Q). Then the problem (3.1) has at least
one solution

(48) u € Neso {10, T), WES#(@) N €920, ), L3,,(2) }

Proof. Let Qn, N =1,2,--- be a sequence of smooth bounded domains which satisfies
the conditions (1.8) and (1.9) uniformly with respect to N € N and such that

Qn CQ CcCQ; Q=U3_,02
(4.9) { N N+1 N=1N

QNBY c Qy c QN Byt

It is not difficult to check that such a sequence exists.
Let us introduce the sequence of cut—off functions ¥ (z) € C§°(R?) such that

Yn(z) =1ifz € BY " and ¢n(z) = 0if z ¢ BY and |[¢n|c> < C

Let un be a solution of the following problem

(4.10) { Oruny — Azun + doun + f(un, Veoun) =g

UN[0, =05 un|,_o = ¥nuo

Since the conditions (1.8) and (1.9) holds for Qx uniformly with respect to N € N
then (due to Theorem 3.3 and Corollary 3.3) the estimates (3.14) and (3.28) with u
replaced by uy are also valid uniformly with respect to NV € N. Thus, for every M € N
the sequence u N| QnBM N > M is bounded in the space

(4.11) Cc=3/2([0,T), L2 (2 n BM)) n c([o, T], W* 2 (e n BM))
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Let us extract from the sequence ux a subsequence (which we denote by uy also for
simplicity) converging *-weakly to u in L>([0, T], W2~%2(Q n B})) for every M € N
(it is possible to do using the Cantor diagonal procedure). Hence due to the embedding
(4.5) we obtain as in the previous Theorem that

(4.12) { u — u strongly in C([0,T] x 21 Bt) N C([0, T), W@ BY)

flun, Voun) — f(u, Vyu) strongly in C([0, T], L?(2 N B3))

The assertions (4.12) imply immediately that the function u satisfies the equation (3.1).
So it remains to prove that (4.8) holds. To this end we prove that uy — u strongly in
the space (4.11). Indeed

(4.13) Oi(Ymun) — Az(¥mun) = by (un) = —¥Ym f(un, Agun)—
— 2V Voun — Aghmrun — Aomun + ¥umg, Ymun|yg =0

It follows from (4.12) that hps(un) — har(u) in C([0, T], L%(2as)) consequently due to
the regularity theorem, applied to the linear problem (4.13), uy — u strongly in the
space (4.11).

Passing to the limit N — oo in the estimates (3.14) and (3.28) (with u replaced by
un) we obtain that the limit function u also satisfies these estimates. Moreover we
obtain also that u belongs to the space (4.11) for every M > 0. Let us fix a sufficiently
small 4 > 0, multiply the estimates (3.14) and (3.28) by e #/#o| and integrate over
zo € Q. Then using our assumptions on ug and g and the estimate (1.3) we obtain as
in the proof of Corollaries 2.1 and 2.2 that

u € L2([0, T, W, (@) N C'=22([0,T], L 3 ()

The continuity of u (u € C([0, T, W{ } ?)) can be proved using the ’tail estimates’ (1.4)

and Theorem 1.3. Thus, (4.8) holds and consequently « is a solution of the problem
(3.1). Theorem 4.2 is proved. [

§5 THE NONLINEAR EQUATION. UNIQUENESS OF
SOLUTIONS. DIFFERENTIABILITY WITH RESPECT TO ug.

In this Section we study the uniqueness problem for equation (0.1). We require the
nonlinear term to satisfy (3.2) and the assumptions

1. feCYR: x R3*; RF)
(5.1) 2. |fi(u, Vzu)| < C(1+ |ulP)(1+ |Vzul"), where r < 2
3. f9,u(u, Vo) < C(1+ [ufPFH) (1 + [Vou|™h)

Note that under these assumptions we can prove the uniqueness only in the case where
the right-hand side g and the initial value uy are bounded with respect to |z| — oo (see
Remark 5.1).

Theorem 5.1. Let the nonlinear term satisfy the assumptz’ons (3.2) and (5.15) and

let the initial data ug € W2 %2(Q) for some § < min{l — 7,1} (see Definition 1.2).
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Suppose also that the right-hand side g € L2(Y). Then the problem (3.1) has a unique
solution in the class N5 C(Ry, W 2 52(9)).

Proof. Let u1,us be two solutions of (3.1). Then applying sup, .o to both sides of
(3.14) and using the boundedness of the initial condition ug and the right-hand side g
and the estimate (1.24) we obtain that

(5.2) |lui(T), Qllba-s2 < Cllluo, Qlp 2—5,2 + [luo, 2

2712{ az)e_aT"‘
+C(|lg, Q”b 0,21 g, Q“b 0,2)

for i=1,2. Thus, under our assumptions, all solutions are also bounded with respect to
|z| — oo.
Let v(t) = ua(t) — u1(¢). Then

0 — Agv + Agv = —fl(t, z)v — Ez (t,z)Vgv
(5.3)
U‘tzo = u2(0) — u1(0)
Here
(5.4) thm fof' (u1 + v, Vauy + 0V ,v) db
. tha: fOfVuul—l—HvVul—l—HV v) df

It follows from the condition (5.1) that
(5.5) Li(0)] < C(L+ [u(@)|P + [Vou(®)]" + [u(®) P Vou(t)]")
L2 ()| < C(L+ [u(@®)PT + [Vau(t)["™ + |u() P Vou(t)|)

We denote here by [u(t)[P = |u1(£)|? + [u2(2)|P, [Voui(£)]" = [Va Ul( )™+ [Vaua(£)]"
After multiplying the equation (5.3) by v in the space L (Q) for sufficiently small
€ > 0 we obtain after simple transformations

( ) | ( ) {E}’072 ( ) {6}51’2 A ( ) {6}!0’2
~ ~ <

Let’s estimate the two nonlinear terms in (5.6) separately.
It follows from the estimate (5.2) and Sobolev’s embedding theorem that
lui(t,x)| < C for all t € [0,T], z € Q. Hence

(5.7) L(t) = |{L1v,v) | £ C((v,0) (o3 + ([uffv,0) 0 +
+ ([Vou|"v, v) oy + ([ulP|Vaul v, v) ) <
< Ci(llv(t), Qlifey 02 + (I Varl"v,v) )

Let us estimate the last integral at the right-hand side of (5.7). To this end we use a
trick based on (1.10), Holder inequality and embedding Theorem W2 C LS. Indeed,

(58) (| Voulv,v)., < c/ e=eleol|[y - v - [Vaul", Vi [lo.1 dao <
Q
< Cl““agnz,l,&'/ e_glm(]l“’v’Vzo”O,ZHU,Vzo”O,G d-'L'O <
Q

< Cu”an”z,l,Sr/S;e_slm(]'“vavzo”(z),z dzo+

f <1700, Vi |2 5 do <
Q

< Cullu, Q||Z,1,3r||v(t)a Q”%s},og + pllu, Q||€,1,3r||v(t)a Q“%e},m
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Taking into account the condition § < 1 — 1 and using the Sobolev embedding theorem
and inequality (5.2) we obtain that

(5.9)  [u(), s < Cmax{lui(t), Qpz—sz, i=1,2} < C: for t € Rs
Hence

(5.10) L(t) < Cullo(®), A2y 02 + Hllo@®)l2ey 1.2
Analogously

(5.11) IL(t) = <E2Vzv,v>{ ) < C((v, Vav) oy + <|u|P+1VzU,U>{E} +
r—1 1 r—1
+ (|Vaul meu,v>{€} + (JulP TV ul Vzv,v>{€}) <
< C'IJ'”’Ua Q”%s},OJ + NHU, Q”%s},lﬁ +C <|V;E’U/(t)|7‘_1vm’u, ’U>{€}
Arguing as in (5.8) and using the interpolation inequality (see [33])
(5.12) v, Vagllos < Cllo, Vgl /2,2 < Cllv, Qlol3 1o, 15
we obtain using that 6(r — 1) < 3r

(5.13)  (|Voul""to, Vau) < c/ e~lZol|| ju] - |Vl - [Vaul""2, Vi |01 dzo <
Q
< Cillu, QU o 1)/ ~l0llv, Vag ll1,2110; Vo llo,3 do <
—e|z 3/2 1/2
< Cullu b, | &, Ve 2510, Vi 15 doo <

<Cy [ oo, Va3 oo+ 1 [ € o0, Vi 2 dao <
Q Q

< Cullv(?), Q”%s},O,Z + wljv(t), Q||%s},1,2

Hence

(5.14) L(t) < Cullv(®), Qllfey 0,2 + #llv(®), ATy 1.0

Replace the integrals I; and I in (5.6) by their estimates (5.10) and (5.14).
(5.15) Bellv(t), Ql{ey 0,2 + Bllv(8), Qlley 1,2 < Cllv(@), Qllfey0,2

Applying the Gronwall inequality to (5.15) we obtain that v(¢) = 0. Theorem 5.1 is
proved. [l

Corollary 5.1. Let the conditions of Theorem 5.1 be valid and let uq(0),u2(0) €
sz _5’2(9). Then the following estimate is valid uniformly with respect to o € Q0

T
(5.16) |IU1(T)—Uz(T),QﬂBiOH?J,ﬁ/O lur(T) — ua(T), 2N By I3 » <

< Ce T (emele=2ol |y (0) — uz(0)[?)

Here the constants C and C; depend on ||u;(0),

The proof of the estimate is the same as the prove of Theorem 5.1 but instead of
multiplying by ve~¢l*| we should multiply the equation (5.3) by ve=¢|*—2ol.

Our main task now (after proving the uniqueness) is to establish some regulari-
ty properties for the corresponding semigroup. They are formulated in the following
propositions.
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Proposition 5.1. Under the assumptions of previous Theorem the following estimate
is valid:

T
(5.17)  |lur(T) — ua(T), 2N B, I3 , +/0 lui(t) — ua(t), 2N B |35 dt <
< C’eClT/ e cl7=20l||u; (0) — u2(0), 2N B[}, dz
zeEN

Here the constants C and Cy depends on ||u;(0), Q2

lb,2—s,2 and € > 0 is sufficiently small.
Proof. Applying the estimate (2.8) to the equation (5.3) we get

T
(5.18) (D), QN B[+ [ o), 20 B, e <

< C/ e_€|m—mo|||v(0), Qn B};“% 2d£U—|—
z€Q ’
T - —~
+ C/ (|L1(t)v(t)|2 + |L2(t)vmfu(t)|2, e_5|m—-’bo|) dt
0

It can be shown analogously with (5.8) and (5.13) using the Sobolev embedding theorems
W3/22 ¢ W3 and W?2-%1:2 C C for §; < 1/2 and the appropriate Holder inequality
that there exists 1/2 > §; > ¢ such that

(5.19)  (ILa(t)v(t)* + |L2(t) Vav(t)?, e <127 %0) <

< Cllu(®). QA sz [ o), 20 B[ s, do
z€

Indeed, let us estimate only the most complicated term in the left-hand side of the
inequality (5.19). The rest of the terms can be esimated analogously

/e—s|z—zo||Vzu|2(r—1)|vzv|2 dr <
Q

= C/ 6_6|z_$0|” |Vfﬂu|2(r_1) ’ |Vzv|2’ VIHO,l dr <

Q
< [ el RS, o, Vel do <
Q
2(r—1 e|z—
< Callu QU5 [ e, Vel o

According to the interpolation inequality

I+ llo-s,,2 < C| -

5211 llo” < Cull -

|g,2 + pff - g,z

we obtain that
6200 [ el i, pdo <
zeN ’

< C# /EQ e—e|a:—zo|||v,Qﬁ B;||(2),2 dr +M/€Q e—€|z—$0|||v,Qﬂ B;”%J dzr
x T
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Replacing the last integral on the right—hand side of the estimate (5.18) by the estimates
(5.19) and (5.20) and using (5.2) and (5.16) we obtain after some calculations that

T
(5.21) |o(T), 2N B |2, + f (), 20 BL 12,5 dt <

< C'HeclT/ e_€|”"_”°|||'u(0),QﬂB,i,||i2 dz+
zEN

T
+u / / e=<l===0l||u(t), @ N B2, da dt
0 z€EN ’

Multiplying the estimate (5.21) by e~*t1%0~¥%l ¢, < ¢, integrating over the zo € Q and
arguing in the following as at the end of the proof of Theorem 3.3 we get the inequality
(5.17). Proposition 5.1 is proved.

Proposition 5.2. Under the assumptions of the previous theorem the following esti-
mate is valid

(5:22) ur(T) = wa(T), 90 BLIB 50 + 1 = allZa-ssoqosry (s, ) <

< CeClT/ ecl7=70l||u; (0) — u2(0), QN BL||3_52 d
ze)

The proof of Proposition 5.2 is analogous to the prove of Proposition 5.1 only instead
of the estimate (2.8) we use the estimate (2.15) and the interpolation inequality

v, 20 Bzl3-s,,2 < Cullv, QN Bellg 2 + pllv, @0 Bell3_s5,2

on the left hand side of the inequality (5.19).
We will need the smoothing property below for the equation (3.1) in the following
form.

Proposition 5.3. Under the assumptions of the previous theorem the following esti-
mate is valid:

(5:23)  [[ua(T) = ua(T), QN Bg, ll5-5,2 + llur — w2llga o202, 1201, y) <
1 —E|T—XT
< L CeT /meﬂe 2204 (0) = up(0), 21 Bl o do
forT > 0.
Proof. Let us denote w(t) = tv(t) = t(u1(t) — ua(t)) then
(5.24) Bew — Agw — Ly (t)w — Lo(t)Vaw = v(t); w|,_o =0

The equation (5.24) has the form of (5.3) with the right-hand side v € C([0,T], L?)
hence arguing as in the prove of Proposition 5.2 we obtain the estimate

(5.25) [[w(T), 2N By, I35,z + lwllgr-s/2(7, 74112202081 ) <

T
<C [ D g T () 2, el
0

Estimating the last term in (5.25) by the inequality (5.16) we obtain the assertion of
the Proposition.
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Remark 5.1. Note that we cannot guarantee the uniqueness in the class of solutions
growing when |z| — oco. Indeed, let us consider the linear parabolic equation in R3 in
the simplest form

(5.26) 0w = Agv, 0

v‘t:O =
It is known (see for instance [23]), that the problem (5.26) has a nontrivial solution
v(t, ) with the rate of growth when |x| — oo not exceeding elel®, Making the change of

variables § = e~ 121"y we obtain the equation
(5.27) 00 = A+ K1(z)8 + Ky(z)V,0, 6(0)=0

where the coefficients K1 and Ky have a polynomial rate of growth as |x| — oo.

This example shows that the uniqueness can be lost (even in the class of bounded
solutions) when the coefficients growth polynomially at |x| — oo. It remains to note
that the equation (5.27) is very similar to the class of equations of variation which we
obtain from our nonlinear equation when solutions u with polynomial growth as |z| — oo
are admitted.

We mention now that if the nonlinear function does not depend on V,u and satisfies
the following condition

(5.28) { 1. f(ua vmu) = f(u) € Cl(Rk7Rk)

2. f'(u) > —C Vu € RF

we have uniqueness without the requirement ||g, Q|| 2,5 < co.

Proposition 5.4. Let the conditions (5.28) be valid. Then the problem (3.1) has a
unique solution in class (4.8) and the estimate (5.16) is valid for the solutions u; from
the class (4.8). Moreover, the constants C,Cy in it are independent of u;.

The proof of this Proposition is analogous to the prove of Theorem 5.1 but simpler
because in our case Ly = 0 and the term with L; possesses the following estimate

<E1’U,’U>{ } > _C”an”%E},O,Z

Hence the inequality (5.15) follows immediately from this inequality and inequality (5.6)
and C does not depend on u;. Proposition 5.4 is proved. [J
We conclude this Section by considering the problem of differentiability with respect
to the initial data for the solutions of (3.1) under the assumptions of Theorem 5.1.
Let us consider first the (formal) equation of variation for the problem.

(5.29) { drw — Agw + Aow + fr, (u1, Vaur)w + f3_, (w1, Vour)Veow = 0

w|,_o=wo; wlyg =0

Here u;(t) is a solution of the problem (3.1).
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Lemma 5.1. Let uq(0) € W3_5’2 and wg € ﬂ5>0L%€} (Q). Then there exists the unique

solution of the problem (5.29) which satisfies (2.2) for any €1 > 0 and the following
estimate s valid:

T+1
(530) [w(T), 2N BL |2, + /T lw(T), 2N BL |2, <

T

< CeClT(e_5|‘”_z°|, |w0|2)

where the constants C and C1 depend only on ||u1(0), Q||2—s52,5-

Indeed the equation (5.29) has the form of (5.3), so the estimate (5.30) can be proved
in the same way as the estimate (5.16). The existence of the solution can be deduced
from the a priori estimates (5.30) in a standard way.

Theorem 5.2. Let the nonlinear term f(u, Vyu) satisfy the following additional con-
ditions:
(5.31) |fu(p1, 1) — fu(p2,q2)| <

< Q1| + [pal) (1 + laa|” + g2[") (Ip1 — p2|” + |1 — 2|”)

(5.32) |fy,u(P1,q01) — fo, u(P2,q2)| <
< Q(lprl + Ip2)) (L+ @' + la2["") (Ipr — p2l” + &1 — @2/”)

for any p1,ps € R¥, q1,q0 € R3*, some fized 0 < B < 1 and for a certain monotonic
function Q. Let us suppose also that us(t) and ui(t) are two solutions of the problem
(3.1) which satisfy the conditions of Theorem 5.1 and let w(t) be the solution of the
problem (5.29) with the initial condition wo = us(0)—u1(0). Then the following estimate
is valid uniformly with respect to xy € R:

(5.33) [lua(T) — ua(T) —w(T), 2N By, [l » <
146

< CeOT (Ju1(0) — ua(0) %, e~¥1=0])
for sufficiently small € > 0 and Cy, Cy depending only on ||u;(0), 2||2-s2,6 -
PT‘OOf. Let us denote by Ll(t) = fu(ul(t)avzul(t))a LZ(t) = fVmu(ul(t)a Vzul(t)) and
0(t) = ua(t) — u1(t) — w(t). Then the function 6 satisfies the following equation
(5.34) 0:0 — A0+ Aob + L1(t)8 + Lo(t) V.0 =
= (L1(t) — L1(t))v + (La(t) — La(t)) Vv ; 0(0) =0
where El and fg are defined by (5.4).

It can be easily obtained using the conditions (5.31) and (5.32) and inequalities (5.2)
that

(5.35) { L1(8) = Lu(8)] < COU+ Vo ()] + [Vouz(8)]) (0] + [Vav]?)
Lo (t) — La(t)| < C(1 + |Vaur (8)[" " + [Vaua (8)"1) (Jv]? + |V20[?)

where the constant C' depends only on ||u, 2||2—s,2,.
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Let us multiply the equation (5.34) by e~¢/2~20l§ and integrate over z € Q. Then we
get

(5:36) 0u(10(2) %, e~==0)) + (1V,0(0)2, el==0l) + 3o (102, el ~=1) <
< (L)1 1% ezl ) 4 (|La(8)] - [VaB(t)] - 18(t)], eI ) +
(12108 = Tu@lle@)][6()], €121} + (|La(t) = La(8)][Vav(®)][6(2)], e~1==])

Arguing as in the proof of Theorem 5.1 we obtain the following estimates for the first
two terms of the right—hand side of (5.36)

(537)  (ILu@)]- 0@, e el==01) + (Lo ()| Va8(2)]6(2)], e~1===])
< Cu (16()2, el==1) 41 (1V26(2)]2, ¢!

for an arbitrary positive y. Let us estimate the other two terms. Due to the inequality
(5.35) we get

(5:38)  (|Z2(t) = Lo(0) Va0 (1) 18], e=~!) <
< C/ e~elrmol (1w w1t + 1) (|v|? + |V4v[P) | Voo (6] do
zeQ
Let us estimate the most complicated term in the right-hand side of (5.38) using Holder
inequality with the exponents 6, 2/(1+ () and [ (1/l =1/3 — 3/2), the estimate (5.9),

the fact that I(r — 1) < 6(r — 1) < 3r if 8 < 1 and Sobolev embedding W% C LS.
Indeed,

(5.39) /0 (|Vzu(t)|r_1|vzv(t)|1+ﬂ,|0(t)|e_€|z_‘”°|) dt <

T
<c [ el [ VLo () 6(0), Velloa dedo <
e 0

< Cy SUPte[O,T]{”u’ Q”Z,_l,ll(r—l)}><

- 1/2 T (1+8)/2
/ e~¢le—aol (/ 16(£), Va3 dt) (/ [v(t), Vall? 2 dt) dz <
zeQ 0 0
T 1+8
S Cp,/ e—€|z—10| (/ ||U(t),Vz||i2 dt) d.’13+
z€e 0

T
+ u/ / e~ela=20l |9, V|12 , dar dit
0 z€

Using the estimate (5.16) and the estimate (1.3) we get

T (1+8)
/ o—cla—ao] / o(t), Vil|2., dt dz <
zeQ 0 ’

< CeT (Jur(0) — ua(0) 2, e=21===!)
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where €, = ﬁ Thus,

T
f (IVau®) "~ Vo (®) 12, 6() =171} dt <
0
148 T
< Cue®™ (s ©) ~ @)= l) " [ (Va0 et a
0

Estimating the rest of the terms in the expression (5.38) in the same way we will get

(5.40) /O ' <|L2(t) — Ly(8)[|Vou(t)16(2)], e—s|z_zo|) dt <
< Cpe®? (lul(o) —ua(0) )%, e—fl'm—wol) "y u/T (Ivmo(t)lz, e—flw—wol) dt

The third term in the right—hand side of (5.36) can be estimated analogously

G [ " (121(0) ~ Ba®llo) (0, &) e <
< G (Jus (0) — up(0) 7, e==e==0l) 7 / (.00l

Integrating the inequality (5.36) over ¢t € [0,T] and replacing the right—hand side of
it by the estimates (5.37),(5.40) and (5.41) for sufficiently small y > 0 we obtain the
estimate (5.33). Theorem 5.2 is proved.

Proposition 5.5. Under the assumptions of the previous theorem the following esti-
mate is valid

(5.42) [Jus(T) — wa(T) — w(T) o5z <
148
<o ([ el o) - ua(0), BB 5,do)
z€EQ

Where the constants C and C; depends only on ||u;(0), Q||2—s2,5-

The proof of this Proposition is analogous to the proof of Propositions 5.1 and 5.2
only instead of the estimate (5.16) we should use the estimate (5.33).

Part 2. The attractors.

This part of the paper is devoted to a study of the long-time behaviour of solutions
of (0.1) in weighted Sobolev spaces.

The attractors A,y of the problem (0.1) in the scale of weighted Sobolev spaces Wa’)’
are constructed in Section 6.

In Section 7 we present a new construction of the infinite dimensional unstable man-
ifold which does not require hyperbolicity of the corresponding equilibrium point.

This construction allows us to construct in Section 8 a large number of equations of
the form (0.1) which possess the infinite dimensional attractors.

The finite dimensionality of the attractors in the case where a > 0 will be proved in
Section 9.
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§6 ATTRACTORS OF THE NONLINEAR EQUATION IN WEIGHTED SOBOLEV SPACES.

In this Section we obtain the existence of the attractor for the equation (3.1) in
weighted Sobolev spaces. Following the tradition we restrict ourselves by considering
only the case of power weighted Sobolev spaces W;;’; and consequently we suppose that

(6.1) g€ L?a)(Q) for a some o € R

Definition 6.1. Let us define the phase space for the problem (3.1) by the following
expression

(6-2) By (Q) = W2 (Q) ifa >0
and
(6.3) ® 0y (Q) = Clayay () N LEN Q) N W P(Q) ifa <0

Here the constant § > 0 and K > 1 were defined in Theorem 3.3.

Note that all results of this Section can be straightforwardly extended to the case
g € Li(Q) for any weight function ¢ with the rate of growth u if u is small enough.
The phase space ®4 in this case is given by

B4(2) = Cyy2(2) NLE(92) N Wg—&?(n)

with $(a¢) = min{¢(z), #(z)X}. But for simplicity we consider below only the case
where ¢(z) = ¢(oy(z) = (1 + z|?)e/2.

Theorem 6.1. Let the conditions of Theorem 3.3 hold, (6.1) be valid and ug € ®(o)()
for some a € R. Then any solution u of the problem (3.1) satisfied (4.8) belongs to the
space Cp(Ry, ®(,y(Q)) and the following estimate is valid for some v > 0

(6.4) [lu(T), QllF < C([lu(0), 3 + [lu(0), Q/IFF)e™ "+
+C(llg, Alfay,0,2 + llg: UlEa) 0,2)

Moreover the following estimate holds uniformly with respect to R — oo for some 3,y >
0

(6.5) [lu(T), 2N {|z| > R}[5 < C(I[u(0), 213 + [lu(0), 2|F¥)e™ "+
+C(J|lu(0), 2N {|z| > R/2}3 + [[u(0), 2N {|z] > R/2}|5")e™"" +
+ Ci(llg, Q”(a) 0,2 T g, Q”(a) 0, 2)e ARy
+Ca(llg, 2N {[z] > B/2} 7y 0,2 + 19, 20 {Iz] > R/2}17) 0.2)

Proof. Let us suppose first that o < 0. Then multiplying the estimate (3.4) by ¢(a)(z0)
and taking supg, of both sides of the obtained inequality we will have

SuD,1 000y (@0)| (T, 20)|} <
< sy, 0 { Bt (an) sup e 1u(0,2)} 7+
zE

+ C'sup,, co{d(a) (z0) |9/ e ¢}
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Applying the estimates (1.6) and (1.3) with ¢ = oo to the obtained inequality we will
have

[a(DZ, a2y < CuO)IZ, o e +ClsllEz )

which coincides with the part of (6.4) for the C(,/9)—norm.

Analogously, multiplying the estimate (3.13) by ¢(q) (o) integrating over {2 and using
the estimate (1.3) we obtain the part of (6.4) for the Lgi’)oo)—norm.

Multiplying the estimate (3.14) by ¢(a)(z0)*, integrating over 2 and using the evi-
dent inequality ¢(qy > qﬁffl  (since & < 0) we will have

./ 9 ta) (o) [lu(T), 21 B;o ||§—6,2 dzg <
zoEQ
< Ce ™ ( / b (K a)(T0) / =120l |lug, @ N BL|12_s , de dzo+
zo €N zEQ

+ / B(a) (Z0) / e~cle=20l||y0, QN B;Hg,oo dz dzo+
29 EQ zeQ

K
+ / B(a) (z0)¥ {/ e_‘sl“”'_“”""||uo,QﬂB;H(z,,oo da:} dzo | e T+
zo€EQ z€Q

+C P (e (Zo0) / lg(z)|2ec1*=20l dz dzo+
z€eQ

o EN
K
w0 [ ste ([ lo@pe i mld) dng
z9 €N z€Q

Applying the estimate (1.3) to this inequality we obtain

(T, Uy 52 <
< G ([u(0), icay,os + 11800), ALty 00 + 14(0), S (3,0)) +

+C1 (Ilg, Uy 02 + g, QS 0.2)

which coincides with the W2, %2

(Ko “Part of the estimate (6.4). Thus, the estimate (6.4) is

proved when o < 0.
Let us suppose now that a > 0. In this case ¢(,) < qﬁﬁ) = ¢(k«) hence we could
multiply the inequality (3.14) by ¢(4y(%o) and integrate over Q. Then after using the

estimates (1.3) and Sobolev embedding theorem W?2~%2 C C we obtain the inequality
(6.4) for o > 0.

The estimate (6.5) could be proved analogously, only instead of integrating over 2
we should integrate over 2N {|z| > R} and use the estimates (1.4) and (1.7) instead of
(1.3) and (1.6).

Thus we proved that u € L®(Ry, ®4)(Q)).

The continuity of u follows immediately from the continuity of u|Qﬁ BE for every

R > 0, the estimate (6.5) and the result of Theorem 1.4. Theorem 6.1 is proved. [
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Proposition 6.1. Let the conditions of the previous Theorem be valid. Then
u € 01_5/2(R+,L%Pa>(9)) where P = 1 fora > 0 and P = K for a < 0 and the
following estimate is valid:

(66) ulZmsqrriu 3, ) < CUIO), QU3 + [u(0), AF)e"T+
+ C(llg, Q”(a) 0,2 T g, Q”(a) 0, 2)

Moreover the following estimate is valid uniformly as R — oo for some 3,7 > 0

2 2
6.7) lulcr-sroqr,rin, 2, @ngie>ry) < Cu0), Qs+
+ [|u(0), QIIE*)e " PR+
+C(llu(0), 20 {lz| > R/2}[13 + [u(0), 2N {|z] > R/2}[|3")e "+
+Ci(llg, Qay,0,2 + g, QU5 0,206+
+Callg, 2N {lz > B/2}7ay 0.2 + g, @0 {|z] > R/2}I35 0,2)-

The proof of this Proposition is analogous to the proof of Theorem 6.1, only instead
of the estimate (3.14) we should use its analogue for the C'=%/2([T, T + 1], L?)-norm,
obtained in Corollary 3.3.

Now we are in position to study the long-time behaviour for the solutions of the
problem (3.1). As we mentioned in the previous Section we do not have uniqueness

when o < 0, in general. Therefore we will use the concept of a trajectory attractor
developed in [9], [10], [34].

Definition 6.2. Let us define the space 6?—01) by the following expression

(6.8)  Of, =0, [Rs,Q) = Cloc(Ry, B(a) (2)) N Cioe™* (Re, L,y ()

where the constant P is the same as in previous Proposition.

Evidently the space (6.8) is a metrizable F—space and the system of seminorms in it
is given by the following expression

(6.9) s [T, T + 1], Qe+ = llul .y lot, qrrm,0 T € Ry
Here
(6.10) @ZLa>([T, T +1],Q) = C([T,T + 1], ®4y) N C*%/%([T, T + 1], Lipay(9)))

The following assertion is an immediate corollary of Theorem 6.1 and Proposition
6.1

Corollary 6.1. Let u be a solution and let the assumptions of Theorem 6.1 be valid.
Then u € @2:0 and

(6.11) lu, [T, T + 1], 23+ < C(Ilu(0), QI + [lu(0), 2UIF)e ™"+

+ C(llg, Q“(a) 02T g, Q”(a) 0, 2)-
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Moreover the following estimate is valid uniformly with respect to R — oo for some
B,y >0

(6.12) |ju, [T, T +1],2N{|z| > R}||%+ <
< O([u(0), QI3 + [lu(0), |FF)e " PR+
C(llu(0), 2N {|z| > R/2}(|3 + [|u(0), 2N {|z| > R/2}[|F¥)e " +
+ Ci(llg, Q”%a),O,Z + llg, Q”%S,o,z)e_ﬁR"‘
+Ca(llg, 2N {lz] > R/2}H7ay 0,2 + l9, 20 {z] > R/2}ITS 0,2)
Indeed the estimates (6.11) and (6.12) follow immediately from the estimates (6.4)—
(6{)et us denote by K <+) the set of all solutions of the problem (3.1) with an arbitrary

initial condition ug € ®4y(£2). We endow the set K &) by the topology induced by the
embedding

Since the equation (3.1) is translation invariant with respect to ¢ then the semigroup
{Ts,s > 0} of positive shifts along the ¢ axis acts in the space K Z(;), ie.

(6.14) T.K} y C K} s>0, (Tsu)(t) =u(t+s)

(a (@) 7
Definition 6.3. The attractor < >of the semigroup T, acting in the metric space K< )
is called the trajectory attractor of the equation (3.1), i.e. the set A<a) C K<a) is the
trajectory attractor for the problem (3.1) if

1. The set 2T> is compact in K?‘;)

2. The set .At’") is strictly invariant under the T;—action, i.e. T, A<a) A’é;) for
every s > 0.

3. The set AZx) is an attracting set for the semigroup T,, i.e. for every bounded
subset of solutions B C Ka;) and for every neighborhood (’)(Azz)) of the set .A’éz) there
exists the number S = S(B, O) such that

(6.15) TsB C O( €2>) for every s > S

Theorem 6.2. Let the conditions of Theorem 6.1 be valid. Then the equation (3.1)
possesses the trajectory attractor in the space 6?:1) which could be represented in the

following form
(6.16) Alny =TT K

where Koy means the set of all bounded solutions u € Cy(R, ®(4)()) and I, - the
restriction operator to the semiazis R, .

Proof. The proof of this Theorem is based on the theorem from [2], [19], [32] which
gives sufficient conditions for the existence of an attractor for abstract semigroups. To
apply this theorem to our semigroup T, we should check the following conditions:

1. The semigroup T : K" (e ) — K (@ is continuous for every fixed s > 0.

)
2. The semigroup T, : K} (@) K?;) possesses a compact attracting set P in the
space O ()
The continuity of T is evident. Thus it remains to verify only the existence of the

compact attracting set. To this end we need the following Lemma.
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Lemma 6.1. Let the above assumptions be valid. Then

€ C(IT,T + 1], Wipa! X)) N C=4(IT, T + 1], Lipey (Q)) = Wr(Q)

for any T > 1. Here P is the same as in Proposition 6.1. Moreover, the following
estimate is valid

(6.17)  llulliyp @) < Ca(llu(0), i3 + [[u(0), QUIF*)e™ "+
+ Cu(llg, Q”(a) 0,2 T g, Q”(a) 0, 2)

The proof of this Lemma is the same as the proof of Theorem 6.1 only instead of the
estimate (3.14) one should use the estimate (3.31).

The end of the proof of Theorem 6.2. Let us define the set
(6.18) P ={ue @+ : lu, [T, T + 1], 20 {|z| > R}||3+ <
< 2M201(||97 Q”(a) 0,2 T g, Q”(a) 0, 2)e PRy
+2M*Ca(llg, 2N {|z| > R/2}{ay 0,2+
+llg, @ {lzl > R/2}|35 0,2), VT € Ry; Re Ry}
Here the constants C1, Cy and 3 are the same as in the estimate (6.12) and M > 0 is

a sufficiently large positive number which will be defined below. Let us introduce also
the set

(6.19) ={ueof, : lulliyy o < 2M>Cullg, Qlia,o0.
+ ||g’Q||%¢£{),O,2) 1T € R+}
where the constant Cy is the same as in (6.17).

We claim that the set P = P NPy C @Ta) with a sufficiently large M is the compact

attracting set for the semigroup 7s on K (tv)' Indeed, since

0/, (T, T + 11,21 By") CC Wr(QN By)

for every T > 0 and R > 0 then due to (6.19) the restriction P| €OnBE of the set P

to any ball BE is compact in @z;)‘ Moreover, since g € L<a>(Q) then (6.18)

T EQﬁBé%
implies that

(6.20) P, [T, T+ 1],2N {|z| > R}||le+ — 0 when R — oc.

Thus, the set P is compact in @<+a>(§2). So, it remains to check that P is the attracting

set for Ts on K <+) To this end we introduce the family of cut-off functions ¥r(z) €
C$(R3), 0 <1 <1, R> 1 such that

(6.21) Yr(z) =11if |z| <R -1, ¢¥g(z) =0if |z| > R and ||[¢g||c2 < C

with C independent of R and the corresponding family of cut-off operators IIgpv = Y rv.
Then since C in (6.21) is independent of R then there exists a constant M such that
the following estimates are valid uniformly with respect to R > 1and T > 0

(6.22) e llwr@)—wr@ <M, ||HR||@<+Q)([T,T+1],Q)—)G)<+a)([T,T+1],Q) <M
39



Let us consider now the arbitrary bounded subset B C K (J;). It means particulary that

the set By = {u(0) : u € B} is bounded in the phase space ® ). Moreover, it follows
from the estimates (6.12), (6.17) and (6.22) and from our choice of the set P that for
every R > 1 there exists S = S(R, B) such that

Ir(TsB) C Pfor s > S
and consequently for s > S and any T' € R,

(6.23) diSt{TSB’P}@<+a>([T,T+1],Q) < (1 -Tg)(T:B), [T, T + 1], Qe+ <
< M||TsB, [T, T+ 1],Qn{|z| > R — 1}||e+ =
— M||B,[T+5,T+s+1],20{lz| > R—1}]o

Here we denote by dist{X, Y}y the Hausdorff distance between the sets X,Y C H, i.e.
(6.24) dist{X,Y } g = sup,c x infyey ||z — y||a

Note, that the estimate (6.12) together with the boundedness of By imply that the right-
hand side of (6.23) could be taken arbitrary small by choosing R and s large enough.
Thus, P is a compact attracting set for the semigroup {7s,s > 0} on K <+a). This proves

Theorem 6.2. [

One might naturally ask the relationship between the trajectory attractor and a
global attractor in the case of uniqueness.

Consider now the case a > 0 and suppose that the conditions of Theorem 5.1 are
valid. Then the problem (3.1) has the unique solution u € C(R;,®)). Hence one
could define the semigroup S; : ® () — P4 by the formula

(6.25) Siu(0) = u(t) , u is the solution of the problem (3.1)

Corollary 6.2. Let a > 0 and the conditions of Theorem 5.1 be valid. Then the
semigroup (6.25) possesses a (global) attractor Ay = .A*‘Zi) in the space ®(,y. Moreover

gl _ atr
Indeed, multiplying the estimate (5.22) by ¢(q)(%0) and integrating over zo € Q we
obtain after simple calculations that

lur = ua, [T, T + 1], Qg+ < Ce™|ua(0) —u2(0)3,,

for every two solutions u; and uy and for certain positive constants C and K (which de-
pend in general on the @,y norms of the initial values u;(0) and u3(0)). This estimate
implies that the trace operator Il : @2;) — @4 defined by the formula Iou = u(0) re-

alizes a Lipshitz continuous homeomorphism between the spaces K Zl;) and ®,). More-

over under the conditions of Theorem 5.2 this homeomorphism will be in fact a C*-
diffeomorphism (it can be derived analogously, using the estimate (5.42)). Thus, the
semigroups Sy and T}, defined by (6.25) and (6.14) correspondingly, are conjugate by
homeomorphism and consequently the assertion of Corollary 6.2 follows immediately
from Theorem 6.2.
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Remark 6.1. In the case when we do not have the uniqueness theorem for the equa-
tion (3.1). The set .A< y defined by (6.26), could be interpreted as the attractor of a

multivalued semigroup, defined by (6.25) (see [3], [5])-

Let us consider now the dependency on « for the attractors AZI)

Theorem 6.3. Let the assumptions of Theorem 3.3 be valid and let
(6.27) 9 € Li,y(9).

Then any solution u € Ne>oCh(R, W{2 }5 %(Q)) belongs to the space

(6.28) u € Cb(R, @<a> (Q))

Moreover the following estimates are valid uniformly with respect tot € R and g € R:

(6.29) u(®), 20 BL, 1355 < C ((lgf2, e7l==01) + (1g[2, e=</=—=0l) )
' lu(t, zo)[2 < C(|g|?, e~ 2€I=—=0)

Here K is the same as in Theorem 3.3.

Proof. The estimates (6.29) follow from (3.14) and (3.4) by passing to the limit 7" — oo.
The assertion (6.28) follows from the estimates (6.29) as in the proof of Theorem 6.1.

Corollary 6.3. Let the assumptions of Theorem 3.8 be valid and let
(6.30) g € L (D).
Then any solution u € Ne>oCh(R, W{2 }5 %(Q)) belongs to the space

(6.31) u € Cy(R, W22 ().
Moreover the following estimate is valid uniformly with respect tot € R and o € R:
(6.29) lu(?), 2N Bl ||2 5,2 <C (”97 Q“o 2,p T g, Q||0,2,b)

Here K is the same as in Theorem 3.3.
Corollary 6.3 is evident and we leave its proof to the pedant reader.

Corollary 6.4. Let the conditions of Theorem 6.3 be valid and let g € L<a y () N
L?,,, (). Then

tr _ — l
(632) <a1> = (az) and A(a y = A!{a2>

Indeed the equalities (6.32) follow immediately from the representation (6.16) and
from the assertion of the previous Theorem.

Remark 6.2. The equalities (6.32) mean that the attractors A” are independent of
a. Thus we sometimes omit below the index (o) and write A" mstead of .A<a)
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§7 THE UNSTABLE SETS.

In this Section we study the unstable sets of the equilibrium points for the equation
(3.1). For simplicity we restrict ourselves to a scalar case (k = 1) and assume that the
nonlinear term f is independent of V,u,

(7.1) f(u, Vau) = f(u) € C3(R).

Let zg be an equilibrium point for the problem (3.1), i.e.

(7.2) { —Ag20 + f(20) + Aoz0 = g

20‘69:0

Moreover the right-hand side g is assumed to belong to the space LZ(Q) and conse-
quently zo € W*(Q).
Let us consider a function w = u — z5. Then

(7.3) { Oyw — Agw + f'(20)w + dow = —[f(w + 20) — f(20) — f'(z0)w] = F(w)

w|aQ:O'

Notice, that by the definition of F,
(7.4) F(0) = 0 and F’(0) = 0 consequently F(w) = ®(z, w)w?

where ® € C(Q2, C1(R)).

Definition 7.1. The unstable set of the equilibrium point zq is defined to be the follow-
ing set:

(7.5) Mt (2) = {wo € WH2(Q)NC(Q) : Fw € C(R_, WH2(Q) n C(Q)),
w(0) = wy, w- satisfies (7.3) and , lim w(t) =0}

——o00

The main task of this Section is to prove that under natural assumptions the unstable
set M™T(29) contains C'-manifolds of an arbitrary large dimension. We shall use this
result in the next Section to construction examples of equations (3.1) with infinite
dimensional attractors.

We are going to apply the implicit function theorem to the equation (7.3). To do it
we study first the linear nonhomogeneous problem of view (7.3)

(7.6) Oyw + Lw = h(t)
Here L = —A, + f'(20) + Ao. For every v € R we introduce the spaces

H=wh2(Q)nC(Q)
(7.7) Cy(H) ={ue CR_,H): [lully =sup,er_e"|lu(t)||z < oo}
Cy(L?) ={u € CR_,L*(Q)) : [lully =sup;er_ e™||u(t)]|L> < oo}
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Lemma 7.1. Suppose that v € R does not belong to the spectrum of L in L%(Q). Let
also P be the spectral projector—valued measure, which corresponds to the selfadjoint
operator L in L?(Q) (see [14]). Then for any h € C,(L?) the problem (7.6) with the
initial condition P((—oo,vy])w = 0 has a unique solution w € Cy(H), i.e. this problem
defines the linear continuous mapping

(7.8) R : Cy(L?) = Cy(H), Ry(h) = w

Proof. The assertion of this Lemma can be derived by standard arguments. For the
convenience of the reader we give below a sketch of this proof.

According to the spectral theorem for selfadjoint operators (see [14]), there exists
a measured space (M, v), a measured function [(m) and a unitary transformation U :
L?(Q) — L?(M, v) such that ULU™! = I(m)-, i.e. the operator L is equivalent to the
multiplication operator I(m) in the space L?(M,v). Applying the operator U to the
equation (7.6) we obtain an equivalent equation in the space M.

(7.9) 8, W (t) + I(m)@(t) = h(t)

where w = Uw, h=Uh.

Without loss of generality we can assume that v = 0 ¢ o(L). Let My = {m €
M, l(m) > 0} and M_ = {m € M, I(m) < 0}. Since 0 ¢ o(L) then there exists p > 0
such that I(m) > p > 0 for almost all m € M and I(m) < —u < 0 for almost all
m € M_ and the condition P((—o0,))w(0) = 0 is equivalent to @w(0) = 0 for m € M_.

Moreover, it is easy to verify that W, *(Q) = L?(M, |I|v) and

(7.10) )2, = /M 111@[2(dm).

Let us consider the equation (7.9) separately for m € M, and for m € M_. First let
m € M. Then all solutions of the problem (7.9) are given by the following expression

t
(7.11) @(t) = Ce 1Mt 4 / e {mME=9)p(s)ds, C e R

Let us estimate the integral I (t) = fioo e~ (m)(t=9)}(s) ds on the right-hand side of
(7.11) by the Holder inequality

t

t
(7.12) L2 < / (B (s) 2e=1m)(E=2) gg / elm)(t=2) gs <

— 00 — 00

t
< i(m)"! / h(s) Ze=ht=) g

Consequently,

t

(7.13) / (m) |12 (8) v (dm) < / 1A($)]12 56 ds < C|[Rl|y(z2)-
M+ oo

Thus, the unique solution of (7.9) for m € M, which is bounded with respect tot — —oo
is given by (7.11) with C = 0.
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Let us consider now the equation (7.9) for m € M_. Then the unique solution with
zero initial conditions is given by

0
(7.14) B(t) = / e~Um)(E=2)5(5) ds.

t
Arguing as in the derivation of the estimate (7.13) we obtain that

(7.15) - / 1(m)|@(#) P(dm) < C|lhllcy -

The estimates (7.13), (7.15) and (7.10) imply that our problem has a unique solution
w € Cy(W,’?) and the following estimate is valid

(7.16) [wllgywa2y < Cllbllcoz2)-

To prove the lemma it is sufficient to deduce from (7.16) the estimate for the C-norm
of w. Let us consider wy(t) = (¢t —T — 1)w(t), T < 0. Then

Oywy — Agwi + dowy = —(t —T — 1) f(z0)w + w(t) + h(t) , wi(—-T —1) =0

Applying the estimate (2.25) for this equation at the point ¢ = T and using the fact
that zp € Cp(Q2) we obtain that

(7.17) SUPeq [w (T, z)|* < S T]{||w(t)||(2),2 +11h()1I6,2}

b

The assertion of the Lemma is an immediate corollary of the estimates (7.16) and (7.17).
This proves Lemma, 7.1.

Definition 7.2. Let 2y be an equilibrium point of the equation (3.1), i.e. let 2y be a
solution of (7.2). Then the unstable index Ind,, of the equilibria point zy is defined to
be the dimension of the spectral subset of L which corresponds to the negative part of
the spectrum

(7.18) Ind,, = dim Im P(—o0,0) = dim L*(M_, v)
(see Lemma 7.1).

Theorem 7.1. Let (7.1) hold and zy be the equilibria point of (3.1) such thatInd,, = occ.
Then the instable set MT(z) contains C'-submanifolds of H with an arbitrary large
dimension. (Note that the hyperbolicity of zy is not assumed.)

Proof. Let Yess = inf{A : XA € 0ess(L)}. Then Ind,, = oo implies that yess < 0. First
consider the case when 7y.ss = 0. Then the negative part of the spectrum o (L) consists
of a countable infinite number of normal eigenvalues with finite multiplicities. Moreover
the set 0.(L) = {\ € (L) : A < —¢} contains only a finite number of eigenvalues for
any € > 0. Using the standard technique (see [2]) one can prove that for any € > 0,
—e ¢ o(L) and for a sufficiently small 5 > 0 the set

M:’ (20) = {wo € H: Fw e C(R_,WH%(Q) n C(Q)), w(0) = wo,
w— satisfies (7.3), , lim e % ||w(t)||g < oo and ||w(t)||z < B}
——o0

is a C'-manifold in H with dim M;"ﬁ(zo) = dimIm P(o.(L)). The evident assertion
dim Im P(o.(L)) — oo when &€ — 0 proves Theorem in this case.

Thus, the main problem is to prove the Theorem in the case when 7.5 < 0 (especially
in the case when L has only continuous spectrum without lacunas). To this end we need
one more lemma.
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Lemma 7.2. Lety € R and let H; = P((—o0,7])L*(Q). Then the problem

Bow + Lw = 0
(7.19) {tw v

P((=00,7])w(0) = wo

has a unique solution w € C,(H). Thus, the problem (7.19) defines the linear continuous
mapping

(7.20) Sy: H — Cy(H), Sywo=w

The assertion of this Lemma can be derived analogously to the proof of the previous
Lemma but even more simply and hence we omit the proof here.

The end of the proof of Theorem 7.1. Recall that it remains to consider the case Vess < 0.
Let us fix Yess < Yo < 0 such that 2vp < 7ess and 27y ¢ o(L). It is possible to do this
because the part of o(L) which satisfies A < 7z is discrete. Moreover due to g > Yess,
dim H. = oo. We are going to prove that the set Mtvo, s is an infinite dimensional
manifold in H for sufficiently small g > 0.

We should find the solutions of the equation (7.3) in C.,. To this end we rewrite this
equation in the following form:

(7.21) W = Sy, Wo + Ry, F(w)

where wo € H_ . Indeed it follows from (7.4) that F(w) € Ca,,(L?) for w € C, (H).
Moreover simple checking implies that every solution w of the equation (7.3) from the
space C., (H) satisfies (7.21) with an appropriate wo and the inverse assertion also holds.

Let us apply the implicit function theorem to equation (7.21). To be more rigorous,
define a function

®:C(H) x H ) — Cy(H), ®(w,wo) = w — Syywo — Ray, F(w)
It is not difficult to check using (7.4) that ® € C! and that 8,,%(0,0) = Id. Hence due
to the implicit function Theorem (see, for instance [36], [29]), there exist neighborhoods
Hp C H and Vg C C,,(H) such that the unique solution to the problem (7.21) in Vp
is given by the function W : Hg — V3 i.e.

(7.22) (W (wo), wo) = 0

Consider the function M (wg) = W(wo)‘t=0 : Hg — H. Then it follows from (7.22) that
M € C'(Hg, H) and

P(A < 70)Duwy M(0) = Id, P(A > 79)Dyy M(0) =0

and consequently, the set M;ro 3(20) = M(Hp) is an infinite dimensional C'-manifold,
diffeomorphic to H_ . Theorem 7.1 is proved.
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§8 A DIMENSION OF THE ATTRACTOR. THE CASE OF INFINITE DIMENSION.

In this Section we will study the dimension of the attractor A,y of the equation (3.1)
in the case a < 0. It is also assumed throughout this Section that the equation (3.1) is
scalar (k = 1) and the nonlinear term f is independent of V,u and satisfies (7.1).

For the reader’s convenience we recall shortly the definition Hausdorff dimension and
some simple properties of it.

Definition 8.1. Let X be a compact set in metric space H. Then for anye > 0,d >0
Hausdorff (d,e)-measure is defined to be the following number:

(8.1) pr(X,d,e) =inf{) rl: X C U2, B, |ri| <e}
=1

B7i means a ball of radius r; centered in x; € H and the infinum is taken over all
coverings of the set X.

The Hausdorff d-measure pup(X,d) of X and the Hausdorff dimension dimg(X) is
defined to be the following numbers:

(8.2) { pr(X,d) = sup,q pu(d,e) € [0,00]

dimg (X) = inf{d : pg(X,d) =0} € [0, ]

A detailed study of the concept of Hausdorff dimension is given for instance in (see
[32] and the references therein).

Proposition 8.1. The following properties of Hausdorff dimension can be easily de-
duced from Definition 8.1:
1. Let X1,X5 CH and let X1 C X5. Then

(8.3) dimpy(X;) < dimpg(Xs)

2. Let X be a Lipshitz manifold in H with dimension N. Then
(8.3) dimy(X)=N

3. Let L : H — H1 be a Lipshitz mapping ( H,H1 are metric spaces). Then
(8.4) dimyr (L(X)) < dimpr(X)

Let us suppose now that the assumptions (7.1) and (3.2) are valid and suppose the
right-hand side g of the equation (3.1) satisfies the following condition:

(8.5) g9 € Ly(Q) N L,y ()

for a certain & < 0. Then according to Theorem 6.2 the problem (3.1) possesses a
trajectory attractor A!" in the space @?FOO(Q) defined by (6.8). Let us define also the
set A9 by formula (6.26). Then Corollary 6.3 implies that A9 is a bounded set in
w2 ~%2(Q). Hence it follows from Theorem 5.1 that the solving operator S for the
problem realizes a one-to-one correspondence between A9 and A"

(8.6) S A% AP
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(it means particularly that the problem (3.1) has a unique solution for any ug € A9).
Moreover if we endow the attractors A9 and A!" with the topology induced by the
embeddings A9 C D4y () and A" C @?’a) respectively then Proposition 5.2 implies
that (8.6) is a Lipshitz continuous isomorphism (see also the proof of Corollary 6.2) and
consequently, due to Proposition 8.1,

(8.7) dimy (A", 0L, (T, T +1],9)) = dimy (A7, &)

T, T+1]xQ’

for any T' € R, . Thus, instead of studying the dimension of trajectory attractor A’Z’;)
in the space @Zx)’ we will to study the dimension of A9 in the space D0y (2)-

Theorem 8.1. Let the above assumptions be valid and let Ind,, = co for some equilib-
rium point of the equation (3.1). Then the attractor A9' of the equation (3.1) has infinite
Hausdorff dimension in ®,y. Moreover for every N € N it contains a C'-manifold M
of dimension N.

Proof. This Theorem is a corollary of Theorem 7.1. Indeed, according to Theorem 7.1
for every N € N the unstable set M™(zp) (see Definition 7.2) contains a C'-manifold
My of dimension N. To complete the proof it remains to verify that M™(z9) C A9
Let ug € M*(20). By definition it means that there exists a solution u(t) for ¢ < 0 for
the equation (3.1) such that u(t) — 2o € Cp(R_, W12(Q) N C(Q)) and u(t) — 2o when
t — —oo. Recall also that due to Theorem 6.3 2o € ®(5)(Q2) N Cp(£2). Since o < 0
then u € Cp(R_, W(loj(Q) N Cp(2)). Rewriting the equation (3.1) in the form of a linear
equation

(8.8) Ou = Agzu — Aou — h(t) with A(t) = f(u(t)) —g, t <0

and applying the smoothing property for the equation (8.8) (as in the proof of Propo-
sition 5.3 one can easily obtain that u € Cy(R_, ®(4)(£2)). Consequently, ug € @4 ().
Hence, according to Theorems 4.2 and 6.1 there exists a solution u(t), t > 0, u(0) = ug
of the problem (3.1) and u(t) € Cp(Ry,®(,)(R2)). Thus, we construct a solution
u € Cy(R, ®()(2)) and u(0) = up. Theorem 6.2 implies now that ug € A9. The-
orem 8.1 is proved.

We conclude this Section by constructing explicit examples of the equations in (3.1)

which have an infinite dimensional attractor. For simplicity we assume below that
QO=R3

Theorem 8.2. Let Q = R3, a < 0 and the nonlinear term f satisfy (7.1). Let us
suppose also that the equation (3.1) is nonmonotonic, i.e. there exists £ € R such that

(8.9) f1(€) + X <0.

Then there ezists a right-hand side g € L%a)(ﬂ) N L2(Q) of the equation (3.1) such that

the attractor of this equation A9 has an infinite dimension in ®0) ().

Proof. Due to the previous Theorem it is sufficient to construct the right-hand side
g in such way that the equation (3.1) possesses an equilibrium point zy with infinite
unstable index.

We begin by constructing an equilibrium 2y and afterwards we define the right-hand
side g by the formula

(810) g = —AzZO + )\OZO + f(Zo)
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For every R > 0 consider a smooth function Qr(z), z € R such that Qr(z) = 1 for
|z2| <R, Qr(z) =0for |[z] > R+1and 0 < Qgr(z) <1 for R < |z| < R+ 1. Consider
also a sequence {T, }nen, Zn € R3 such that

(8.11) |.T,'—$j| > 2R + 2 for ¢ # j.

Define the equilibrium point zg by the formula

(8.12) 20(z) =€) Qr(lz — zal)

Then due to conditions (8.11), zg € Cp(R3) and |zo| < &.
Lemma 8.1. The unstable indezx Ind,, of the operator
(8.13) L., = =g+ f'(20) + Ao

is equal to oo for sufficiently large R and for an arbitrary sequence {x,} which satisfies
(8.12).

Proof. We will use the min-max principle (see [32]) for the calculation of the unstable
index of the self-adjoint operator L, in the following form: suppose there exists IN-
dimensional subspace Vy C W12(R3) such that for a certain € > 0

(8.14) (Lzyv,v) +€(v,v) <0 for any v € V.

Then Ind,, > N.
For k > 0 consider the function

sin(z1/k) sin(zy/k) sin(z3/k) if z € [0, kn]3
(8.15) ve(z) = ) 3
0 if z ¢ [0, k]
Then it is not difficult to verify vy € W12(R3) and
3
(8.16) (Amvk, Uk) = —ﬁ(vk, Uk).

Let us fix now the constant k such that % + Xo + f/(£) < 0 and let the constant R
be chosen such that 37k < R. Fix also a sequence {z,} satisfying (8.11) and define a
sequence of functions

(8.17) en(z) = vp(z — z,)

Then supp e; Nsuppe; = & for 1 # j and 2o(z) = £ when z € supp e,,. Consequently
3

(8.18)  —(Lagen,en) = ((Az —a— f'(€))vr, v) = =(55 = Ao = f'(€)) (R, vi) > 0

Taking Vv = span{es,---,en} and applying (8.14) we obtain that Ind,, = co. Lemma
8.1 is proved.

To complete the proof of Theorem 8.2 it remains to fix the sequence {z,} in such a
way that the function g defined by (8.10) belongs to the space L%a) (R3).

Lemma 8.2. Let z1 = (1,1,1) and z, = Re™z, for n > 1 (R was defined in Lemma
8.1). Then the function g defined by (8.10) belongs to the space L%a)(Q) for any o < 0.

The proof of this Lemma is based on the fact f(0) = 0 and can be obtained by a
direct computation. Lemma 8.2 is proved. Theorem 8.2 is proved.
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§9 A DIMENSION OF THE ATTRACTOR. THE CASE OF FINITE DIMENSION.

In this Section, under some natural assumptions on the nonlinear term f(u, V u) we
prove that in the case when the right—hand side g of the equation (3.1) belongs to the
space L%a)(Q) for a some o > 0 the attractor A9 of this equation has finite Hausdorff
dimension in ®,). For simplicity we will consider below only the case when o = 0 and
Q = R3. The case a > 0 could be treated analogously.

Let us suppose that the assumptions of Proposition 5.3 are valid. Then, integrating
the estimate (5.23) over o € Q = R" and using the estimates (1.3) and (1.10) with o = 0
we obtain that the following estimate holds uniformly with respect to u;(0), uz(0) € A9,

at

e
(9.1) lus (t) — u2(t), B|l3_5,5 < C - [u1(0) — u2(0), R |[5,2-

Here u;(t), i = 1,2 are solutions of the problem (3.1). Using the invariance property of
the attractor (S;A9' = A9') and the third assertion of Proposition 8.1 one can easily
deduce from (9.1) that

(9.2) dimp (A9, &0y (R?)) = dimp (A%, L*(R?)).

So, instead of estimating the dimension of A9 in the space ®(g)(R®) = W2 %2(R?)
we estimate below its dimension in a simpler space L?(R3). To this end we need the
following definition

Definition 9.1. A map S : A — A where A is a subset of certain Banach space X is

called uniformly quasidifferentiable on A if for any x € X there exists a linear operator
S'(z) : X — X (quasidifferential) such that

(9:3) 1S(z +v) — S(z) — S (z)v]lx =0(||v]lx)
holds uniformly with respect to x € X, x +v € X.

The estimation of the dimension of the attractor A is based on the following theorem.

Theorem 9.1 [32]. Let S; be a semigroup in a certain Hilbert space H and let A C H
be a compact strictly invariant set of this semigroup (S A = A). Let us suppose also
that Sy is uniformly quasidifferentiable on A for any fized t and the following inequality
holds for some T > 0

(9.4) wa(A) = sup wq (S7(z)) < 1
z€EA
where wq(L) = ||A2L||pay is the norm of d-th exterior power of the operator L in

Hilbert space A®H (see [32]). Then the Hausdorff dimension of the set A is finite in
H. Moreover,

(9.4) dimg (A, H) < d

Lemma 9.1. Let all of the assumptions of Theorem 5.2 be valid and let g € L2(Q) then
the semigroup S; : ® gy — @0 generated by the equation (3.1) is uniformly quasidiffer-
entiable in the space L2(Q) on the attractor A.

Proof. The assertion of the lemma is a corollary of the estimate (5.33). Indeed let
u1(0),u2(0) € A and let w(t) be the solution of the problem (5.29) with w(0) = u1(0) —
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u2(0). Then integrating this estimate over zy € R3 we obtain after simple computations
that

95)  Jlur(T) — ua(T) — w(T),R3|2 5 < C1e%T[|us (0) — uz(0), R3[| 347

where the constants C; and Cy depends only on norms ||u; ()| which remain bounded
on the attractor.

The estimate (9.5) implies by definition that the semigroup S; is uniformly quasidif-
ferentiable on the attractor in the space L?(R®) and its quasidifferential coincides with
a solving operator for the problem (5.29). Lemma 9.1 is proved.

Thus, to estimate the dimension of the attractor it remains to estimate d-th exterior
powers of the solving operator for the problem (5.29).

Lemma 9.2. Let the assumptions of Lemma 9.1 be valid. Then
(9-6) wa (St (o)) < efo Trallu(®)} at

where u(t) is a solution of (3.1) with u(0) = ug € A,

(9.7) L(0) = Az — Xo — fu(0, Vb)) — fo,u(0, Vb))

and Trq means a d-dimensional trace of the upper semibounded linear operator L, i.e.

d
(9.8)  Tra(L) =sup{d _(Lvi,vi) : ||villoa =1, i =1..d; (vi,v;) =0 fori# j}
=1

The proof of this Lemma can be found for instance in [32].

Lemma 9.3. Let the operator L(-) be defined by formula (9.7). Then for any 6 =
0(x) € A and for any d € N the following estimate is valid:

Aod
(9.9) Tra{L(6)} < —% +Q(llg, ®[lo,2) lg, R[5 2

where @ is a certain monotonic function independent of d

Proof. Let {v;}¢_; be the orthonormal system in the space L?(R3). Then, due to the
Holder inequality,

i=1

_ f1(8(x), VLb(x)) (Z |v,(x)|2) dr—

=1

_ /RS f9,u.(0(z), V2b(2)) (Z vai(x)vi(m)> dz <
a %/}Rs (Z |Vzvi(m)|2> dz — Ao /RS (Z |Uz(x)|2> dz+

1=1

, 1, 2 a 2
+ /R 3 (—fuw(a:),vze(a:)) + 5 1F¢.u(0(z), Vob(2))| ) (Z [vi(=) ) dz.

i=1
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Let us estimate the last term in the right-hand side of (9.10). To this end we note that
the first assumption of (3.2) implies that

(9.11) £(0,0) > 0 and fv,.(0,0) = 0.

Since f € C" then there exists 8 > 0 such that 3| £/ (u,v)|® — f.,(u,v) < Ao/2 for |u| < 3
and |v| < B. Let us fix such 8 > 0 and introduce the set

(9.12) Qp={z e R3 : |8(z)| < B,|V.l(z)| < B}.

Then, by definition

(9.13) I(z) = %|f’vmo(9(w), Vab(2))|* = f5(8(2), Vo () < Xo/2

for every x € Qg. Therefore, using (9.13), Lieb-Thirring inequality (see [24])

o Eoner) weso | (§rmnirr)e

and Holder inequality with the exponents 5/3 and 5/2 we obtain that

d
(9.14) ./]RS I(x) (Z |’ul(:c)|2> dr < AO/2A (z |’U1(:1:)|2) dz+
n /R ] (; |vz-<a:)|2> dz <

d

< A0/2/Rs (Z|v,-(x)|2) dx+1/2/ (Zw vilz )dw-i—

=1
+/ |I(a:)|5/2da:
R3\Qp

Thus, it remains to estimate the last integral into the right-hand side of (9.14). To this
end we recall that 6 € A, since according to (6.29) we infer that

(9.15) { 16, R[13.2 + V20, BR[| 5 + (|16, R?||3_5, < Qu(llg, R®

16, R%[jo,00 < Cllg, B®|lo,2

for a certain monotonic function Q1.
The estimates (9.15) imply that

(9.16) mes (R*\Q5) < Q2(/lg, R®|lo,2)ll9, R[5 -

Moreover, it follows from the assumptions (5.1) that

(917)  [I(2)*? < QI8, R®llo,e0) (1 + [V28(2) *"7?) < Q3(llg, R [lo,2) (1 + [VH]')
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with [ = max{2,5r/2}. Estimating the last integral in the right-hand side of (9.14)
using (9.16) and (9.17) we will have

(9.18) / 1(2)]5/2 < Q3 mes{R*\Qs} + Qs / V.6(z)|'dz
R3\Qp R3

< Qs(llg, Rllo,2)llg, R*[I5,2 + Qsll6, R* ||y,
< Qa(llg, ®llo,2) g, R2[I5,2 + CQsl6, RP[l3_5, < Q(llg, B®[lo,2)llg, B3 2

Here we also use the Sobolev embedding W' C W?2~%2 which holds since § < 1 — 1,
and the estimate (9.15).
Combining the estimates (9.10), (9.14) and (9.18) we obtain that

d
Xod
(9.19) D (Lo, v) < —% +Q2(llg, B llo,2)llg, B

=1

0,2

The estimate (9.9) is an immediate corollary of (9.19) and (9.8). Lemma 9.3 is proved.

Theorem 9.2. Let the previous assumptions be valid. Then the attractor A9 has the
finite Hausdorff dimension:

(9.20) dim (A7, L*(R%)) < Q(llg, R®[lo,z2) |9, R®

’

The assertion of this Theorem is an immediate corollary of Theorem 9.1 and Lemmata
9.1,9.2 and 9.3.

Remark 9.1. Let us consider now a slighty modified equation of the form (3.1)

where v > 0 is a small parameter. Then arguing as in the proof of Theorem 9.2 one can
obtain the following estimate for the Hausdorff dimension of the attractor A, of (9.21):

Q(llg, ®llo,2)llg, B°|
vP

2
(9.22) dim(A,, L3(R®) < 9,2

where the monotonic function Q is independent of v and the exponent P = P(r) can be
expressed explicitly.

Remark 9.2. If the nonlinear term f(u,Vzu) is independent of Vyu (f(u,Vzu) =
f(u)) then arguing as in the proof of Theorem 9.2 we can obtain a sharper estimate for
the dimension of the attractor to the equation (9.21) (see [15]).

lg, R[5 2

(9.23) dim(A,, L*(R%)) < C; 72

Moreover, this estimate cannot be improved, i.e. there exists a sequence of right—hand
sides g, € L2(R3), v — 0 such that

”gw R3
’
(9.24) Cf Y

B2 _ .. 190, BR[| 5
< dim(A,, L*(R%)) < Cr =3
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