
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Rate dependence of hysteresis in one-dimensional phase

transitions

Nikolaus Bubner1, Gail Mackin2, Robert C. Rogers3

submitted: December 13, 1999

1 Weierstrass Institute for Applied Analysis and Stochastics,

Mohrenstr. 39, D�10117 Berlin, Germany
2 Department of Mathematics & Computer Science,

Georgia Southern University,

Landrum PO Box 8093, Statesboro, GA 30460-8093, USA

3 Department of Mathematics, Virginia Tech,

Blacksburg, VA 24061-0123, USA

Preprint No. 539

Berlin 1999

WIAS
1991 Mathematics Subject Classi�cation. 73K99, 35Q72, 80A22.

Key words and phrases. hysteresis, numerical simulation, rate-type viscosity, solid-solid phase tran-

sitions, thermal dissipation.

PACS-1995: 81.30.



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Rate dependence of hysteresis in one-dimensional

phase transitions

Nikolaus Bubner
Gail Mackin

Department of Mathematics and Computer Science

Georgia Southern University
PO Box 8093

Statesboro, GA 30460-8093
Telephone: (912) 681-5202

Fax: (912) 681-0654
e-mail: mackin@gsu.cs.gasou.edu

Robert C. Rogers�

Virginia Polytechnic Institute and State University

December 2, 1999

Abstract

Two models for solid-solid phase transitions in one-dimension are ex-

amined. Thermal dissipation and a rate-type viscosity are added to a

stress with strain gradient. Numerical examination of both models reveal

similar results, in particular, stress-strain hysteresis, which is a commonly

observed phenomena, and stability of single-phase boundary solutions.
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1 Introduction

In the wake of Ericksen's seminal work [10] there have been many attempts

to model solid-solid phase transitions using one-dimensional elasticity. Some

representative examples of this work are contained in the following references [1,

�The work of R.C. Rogers has been partially supported by the National Science Foundation

under grant number DMS-9704621

1



2

2, 4, 5, 9, 12, 6, 19, 20, 21, 22]. In general, these works share the common feature

of a nonmonotone stress-strain law while comparing a variety of dissipative

mechanisms. These terms serve to regularize the mathematical problem and

thus act as physical selection mechanisms that pick out particular solutions

from the many that are admitted by the nonmonotone stress-strain law.

In this paper we examine the e�ects of a higher order gradient term known

variously as a couple stress, strain-gradient, Ginzburg, capillarity, or interfacial

contribution to the stress. The characterization of solutions of the elastostatic

problem with displacement boundary conditions is well understood [9].

� A �nite collection of solutions of the balance laws exists. Solutions can

have multiple interfaces, but solutions with more than one interface are

unstable; the energy of such solutions can be decreased by moving the

interface. (Moving the interface is a \small" motion in the natural norm

of the problem.)

� The stable solutions are either single phase (no interface) or two phase with

one interface and a constant stress on the Maxwell line of the nonconvex

stress-strain law.

This last feature, the absence of stress-strain hysteresis, can be considered

a defect in a model of solid-solid transitions. Hysteresis is very common in

observations of these phenomena and can be quite large (see, e.g. [3, 14]). In

this paper we examine the e�ect of adding two types of dynamic dissipative

mechanisms (thermal dissipation and a rate-type viscosity) to a stress with

strain gradient. We perform numerical simulations to examine the behavior of

these models under cyclic loading. Our main results are as follows.

� We �nd the two mechanisms induce similar hysteresis e�ects. They display

stress-strain hysteresis loops whose size increases with the frequency of the

loading function. The size of the loop is limited by the peaks and valleys

of the nonmonotone local stress-strain law.

� Despite similar global behavior as described by hysteresis loops, there

are signi�cant di�erences in the local behavior of the models including

stability of the center (Austenite) well at temperatures close to transition

and the nucleation of phase transitions at this temperature.

� We also �nd that adding small material inhomogeneities to certain prob-

lems can stabilize numerical computation of solutions. We discuss the

relationship of these numerical experiments with some similar analytic

results.

1.1 Balance laws

We begin by introducing a model that includes a couple stress and both of the

dynamic dissipative e�ects we wish to study (thermal and viscous). We consider
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a bar of unit length and let u(x; t) represent the longitudinal displacement and

�(x; t) the average absolute temperature at time t 2 [0;1) of the cross section

of the bar with reference position x 2 [0; 1]. We consider the following form of

the balance of linear momentum.

�utt = �x + �uxxt� �xx: (1)

Here � > 0 represents the uniform density of the bar, � the stress under uniform

deformation, � > 0 the viscosity coe�cient, and � the couple stress. The balance

of energy takes the form

�et + qx � �uxt � �uxxt: (2)

Here e denotes the speci�c internal energy and q the heat 
ux.

1.2 Constitutive assumptions

We use Fourier's law to describe the heat 
ux

q = ���x; (3)

with � > 0. We introduce the speci�c free energy ~F (ux; uxx; �; x) and de�ne

� := �
@ ~F

@ux
; (4)

� := �
@ ~F

@uxx
; (5)

and

e := ~F + �s (6)

where

s := �
@ ~F

@�
(7)

is the speci�c entropy. We note that under these assumptions the Clausius-

Duhem inequality holds

�st � �

�
q

�

�
x

:

In our numerical experiments we consider a free energy density of the form

~F (ux; uxx; �; x) = ~F0(�) +G(ux; �) +
�

2
u
2

xx
; (8)

where

G(ux; �) =



2
(� � �0)u

2

x
�
�

4
u
4

x
+
�

6
u
6

x
: (9)
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Here �, �, and 
 are material constants. The temperature �0 is the critical value

below which the uniform strain ux = 0 (which one can think of as \Austenite")

is unstable. We have included a Ginzburg or capillarity term in the form of
�

2
u
2

xx
. The function ~F0 is assumed to have the form

~F0(�) = ce�

�
1� log

�
�

~�

��

where ce is the speci�c heat and ~� is a material constant.

Under these assumptions, our balance laws become

�utt = (
(� � �0)ux � �u
3

x
+ �u

5

x
)x + �uxxt� �uxxxx

ce�t = ��xx + 
�uxuxt:
(10)

1.3 Boundary conditions

The bar will be dynamically loaded

u(0; t) = 0 (11)

u(1; t) = m(t) (12)

where m(t) is a periodic loading function. We prescribe vanishing strain gradi-

ents on the boundary

uxx(0; t) = uxx(1; t) = 0: (13)

Boundary conditions for the temperature are an insulated left end and a

radiating right end. These are given by

�x(0; t) = 0 (14)

���x(1; t) = ��(�(1; t)� ��): (15)

Here �� is the heat transfer coe�cient and �� is the exterior temperature.

In [7], Bubner and Sprekels proved the existence of a unique classical solution

to the system without viscosity e�ects (� = 0) such that � remains positive for

any time T > 0.

2 Numerical calculations on the system with ther-

mal e�ects

In [8], Bubner used numerical simulations to study the system without viscosity

e�ects (� = 0). In these experiments cubic spline �nite elements are used to

discretize the spatial derivatives. The weak formulation of the system is dis-

cretized with respect to the time derivative in such a way as to decouple the

two balance equations. The discretized version of the balance of momentum is
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solved �rst, followed by the discretized version of balance of energy. The non-

linear terms in G are approximated by using a method developed by Niezg�odka

and Sprekels [18] for similar phase transition model. The resulting nonlinear

equation is solved using a Newton method.

Bubner obtained values for the parameters �; �; 
; � and �0 from the exper-

iments performed by Glasauer [13] on CuZnAl crystals. The values for � and

ce are taken from [11]. The value for � is taken from [16] and �� is chosen as

large as necessary to simulate a bath at the right boundary. In summary, the

parameters are:

� = 2:49 � 108
J

cm3
� = 8:23

g

cm3

� = 2:343 � 106
J

cm3
ce = 3:1274

J

cm3K


 = 190:18
J

cm3K
� = 2:39

W

cm K

� = 1
J

cm
�� = 109

W

cm2K

�0 = 348:75K.

For each of our simulations, we have a constant initial temperature �0

throughout the entire bar. The temperature surrounding the bar is �� =

373:1K. This temperature places the center (Austenite) well slightly below

the two outer wells.

The initial displacement is chosen to be

u(x; 0) =

8<
:

0:09x 0 � x < 0:25

0:045� 0:09x 0:25 � x < 0:75

�0:09 + 0:09x 0:75 � x � 1

; (16)

that is, the bar is initially in the phases corresponding to the outer wells. The

loading function m(t) consists of �ve equal lengths over the total time, T :

m(t) =

8<
:

0:45

T
t 0 � t <

T

5

0:18� 0:45

T
t

T

5
� t <

3T

5

�0:36 + 0:45

T
t

3T

5
� t � T

: (17)

In Figure 1, the strain ux is plotted with respect to x and t with T = 2sec.

At t = 0 there are two phase boundaries. These boundaries move towards each

other as the rod is extended until the entire bar is in the phase corresponding

to the right outer well of our three well potential. As the rod is pushed in the

opposite direction, a single phase boundary between the right outer well to the

left outer (\Martensite") well propagates from the right side of the rod to the

left side. This phase transition is reversed when the rod begins to expand again.
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Figure 1: Calculated strain in a system with thermal dissipation. Piecewise

linear periodic displacement loading at one end. Initial condition has two inter-

faces, but a single interface is seen after a \training" period.
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Figure 2: Simulation 4. Temperature, �, vs x and t.
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Note that despite the fact that we have chosen an ambient temperature at

which the Austenite (ux = 0) well lies below the outer Martensite wells, the

simulation shows phase transitions between the two outer wells with no signi�-

cant portion of the bar in the Austenite phase. This was discussed extensively

in [8]. The phenomenon is attributed to a decrease in temperature at the point

of phase transition as the strain goes over an energy barrier and kinetic energy

is converted brie
y to potential energy (see Figure 2).

Hysteresis curves for these experiments are examined below.

3 The system with prescribed thermal e�ects

3.1 The reduced system

We wish to compare the thermal dissipative mechanisms of the last section with

a rate-type viscosity. To do this we consider a system in which thermal e�ects

are \ignored." In this model we make two assumptions.

� We think of the temperature as a �xed, prescribed function �̂(x). Most

authors assume the temperature to be constant. As we note below, there

are good reasons to allow for more general prescribed distributions.

� We ignore the balance of energy equation. (Alternately, we could assume

the existence of an external heat supply so that it is satis�ed identically,

but this seems a bit precious.)

Under these assumptions the balance of momentum becomes

�utt = (
(�̂(x)� �0)ux � �u
3

x
+ �u

5

x
)x + �uxxt� �uxxxx: (18)

Our numerical calculations are based on a transformed version of equation

(18). We consider the case �
2
> 4� (in which viscosity dominates capillarity)

and de�ne

v := ut � �
2

2
uxx

w := ux

where

�
2

1
:=

�

2
�

r
�2

4
� �

�
2

2
:=

�

2
+

r
�2

4
� �:

Using this transformation, we consider the system

wt = vx + �
2

1
wxx (19)

�vt = Gw(w; �̂(x))x + �
2

2
vxx; (20)
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where

Gw(w; �̂) := 
(�̂ � �0)w � �w
3 + �w

5
:

We choose the initial conditions

w(t0; x) = w0(x) (21)

v(t0; x) = v0(x) (22)

and boundary conditions

wx(t; 0) = 0 wx(t; L) = 0 (23)

v(t; 0) = 0 v(t; L) = g(t); (24)

where g 2 C(0;1) is a periodic forcing function and w0 : [0; L] ! IR and

v0 : [0; L]! IR are continuous.

3.2 Remarks about the e�ects of inhomogeneity

In conducting our numerical experiments on the temperature independent sys-

tem, we repeatedly saw extreme instabilities when computing very \clean" prob-

lems (e.g. materially homogeneous problems starting from homogeneous initial

conditions and with �(x) held constant in (18)). We were unable to predict the

number or location of nucleation of interfaces which could change drastically

with small changes in the problem. These instabilities sometimes disappeared

after a \training period" of several cycles.

Of course, this is not completely unexpected. The basic underlying problem

(minimizing a multiwell potential) is extremely unstable. For example, the

problem of minimizing Z
1

0

(1� u
2

x
)2

subject to the boundary conditions u(0) = u(1) = 0 can be solved by taking

any set S � [0;1] with measure 1=2, setting u
0(x) = 1 on S and u

0(x) = �1 on

it's complement. (Of course, the main goal of investigations such as this paper

is to explore the e�ects of various \selection mechanisms" such as capillarity,

viscosity, and thermal e�ects to determine their physical relevance.)

It was interesting, though, that these instabilities rarely occurred (and were

much less pronounced when they did occur) in the simulations of the system

with thermal e�ects and in some similar calculations performed on a system

with an order parameter [17]. We were led to the conjecture that perhaps the

material inhomogeneities introduced by the variations in the temperature or

order parameter were stabilizing the system. The stabilizing e�ect of material

inhomogeneity has been observed before. For example, James [15] showed that

the e�ects of a gravitational body force on an otherwise homogeneous bar under

a dead load results in absolutely stable solutions with at most one phase bound-

ary. Without the gravitational force, there exists an in�nite family of solutions
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Figure 3: Simulation of a materially homogeneous system with rate-type vis-

cosity and no temperature e�ects. Contour plot of ux with loading function

g(t) = 0:09 sin(2�t). Note the multiple phase boundaries that persist in the

solution.

with the number of phase boundaries unlimited. More generally, discussions

of the physics of hysteresis often revolve around \dirt," \inclusions", \pinning"

and other e�ects of material inhomogeneity. Unfortunately, the mathematical

problems we consider are often too \clean" to re
ect this physics.

In the case of our system without thermal e�ects, we found that by introduc-

ing inhomogeneities using a prescribed temperature with small spatial variations

we were able to eliminate almost all of the instabilities in the homogeneous prob-

lem. For example, in Figure 3 we observe a simulation of a homogeneous bar

with homogeneous initial conditions. Our simulation shows solutions with an

erratic nucleation of multiple phase boundaries. On the other hand, in Figure 4

we show a simulation under the same conditions except that we have introduced

a �xed variation in the speci�ed temperature of 1� about 373:1� Kelvin. We see

a much more regular pattern, with a single interface selected.

3.3 Numerical Simulations

In [17], Mackin used numerical simulations to study a Gurtin-Fried type model

for solid-solid phase transition in one space dimension including an order param-

eter. Eliminating the order parameter in this model results in the system with

prescribed thermal e�ects (19) and (20). An outline of the Crank-Nikolson-

Galerkin method applied to this system is as follows. Piecewise linear �nite
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Figure 4: This �gure shows the same model and boundary conditions as the

previous �gure, but with a small inhomogeneous perturbation in the constitutive

function. Note that this slight inhomogeneity stabilizes a solution with a single

phase transition.

elements are used to discretize the x derivatives. The weak formulations of

the system is then discretized symmetrically about t
n�

1

2

with respect to the

t derivatives. The nonlinear terms are linearized using the previous two time

steps, necessitating a predictor/corrector method to initialize the algorithm.

We use the values of �; �; 
; � and �0 listed in (2). We also choose �2
1
= 1

cm
2

sec

and �
2

2
= 1

g

cmsec
to re
ect the previous choice of � = 1 in Section 2, which in

turn implies that � = 2
g

cmsec
. For each of our simulations, we have the initial

state w(x; 0) = ux(x; 0) where u(x; 0) is de�ned in (16). The loading function

is also the same, that is, v(1; t) = g(t) = m
0(t), where m(t) is de�ned in (17).

We de�ne a �ctitious temperature, �, as a function of x by

�(x) = �1 + � sin(6�x):

The role of this function is simply to place a small material inhomogeneity in our

constitutive functions. As described in the previous section, the homogeneous

bar(� = 0) exhibits multiple phase transitions that are not stable with respect

to small perturbations in �. Introducing slight variations in � by setting � = 1�

results in stable single phase transitional solutions for ux, see Figure 5, and we

have used this material inhomogeneity in our hysteresis calculations below.
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Figure 5: Strain calculated for the system with rate-type viscosity with small

material inhomogeneity.

4 Comparison of the Two Models

In some ways, solutions of the system with rate-type viscosity and no temper-

ature e�ects have much the same behavior as the system with thermal dissipa-

tion: both systems favor single phase transitions between regions of essentially

constant strain. However, we can observe a few signi�cant di�erences.

� While the model with thermal dissipation exhibited transitions between

the two Martensite wells, the model with rate-type viscosity displays phase

transitions between Austenite and one of the Martensite wells depending

on the applied load. The latter behavior is far more in keeping with a qua-

sistatic analysis. A phase plane analysis similar to that of Carr, Gurtin,

and Slemrod [9] shows, that in the ambient temperature range we consider,

the only solutions to the steady-state problem have phase transitions be-

tween the center well and one of the outer wells, never between the two

outer wells. This emphasizes that the dynamics of the thermal e�ects are

responsible for the Martensite-Martensite transitions in Section 2.

� The nucleation of hysteresis was quite di�erent in the simulations produced

for this paper. In the model with thermal dissipation, phase transitions

consistently nucleated at the right end (x = 1). This is the end at which

the time-dependent displacement and the radiating temperature condition

are placed. In contrast, the end at which the phase transition nucleates
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Figure 6: Right-end stress vs. right-end displacement for model with thermal

dissipation. Simulation 1. Period of loading function: 0.5 sec.

alternates in the model with rate-type viscosity. While the radiating end

condition is the most obvious di�erence between the boundary conditions

of the two models, we have no analytic explanation for the di�erence in

nucleation.

The hysteresis loops produced by the two models exhibited a similar depen-

dence on rate.

� Systems loaded with a very long period (e.g. Figures 8 and 12) exhibit

very little hysteresis, with stress-strain curves close to the Maxwell line.

This is similar to the quasistatic calculations of [21, 22].

� For smaller periods, faster loading, the hysteresis loops grow. For the

smallest periods we calculate, the loops are close to the width that would

be described by the local maximum and minimum values of the uniform

stress-strain function @G

@ux
. However, at this point inertial e�ects begin to

cause the hysteresis loop to break up.
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Figure 7: Right-end stress vs. right-end displacement for model with thermal

dissipation. Simulation 2. Period of loading function: 2 sec.

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−250

−200

−150

−100

−50

0

50

100

150

200

250
Simulation 3

m(t) [cm]

S
tr

es
s(

1,
t)

  [
10

0N
/c

m
2 ]

Figure 8: Right-end stress vs. right-end displacement for model with thermal

dissipation. Simulation 3. Period of loading function: 4 sec.
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viscosity. Simulation 4. Period of loading function: 0.5 sec.
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Figure 10: Right-end stress vs. right-end displacement for model with rate-type

viscosity. Simulation 5. Period of loading function: 1.0 sec.
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Figure 11: Right-end stress vs. right-end displacement for model with rate-type

viscosity. Simulation 6. Period of loading function: 2.0 sec.
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Figure 12: Right-end stress vs. right-end displacement for model with rate-type

viscosity. Simulation 7. Period of loading function: 4.0 sec.
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Average Width

Simulation Period of Hysteresis Model

1 0.5 123 Thermal dissipation

2 2 70 Thermal dissipation

3 4 66 Thermal dissipation

4 0.5 110 Rate-type viscosity

5 1 85 Rate-type viscosity

6 2 51 Rate-type viscosity

7 4 27 Rate-type viscosity

Table 1: Width of hysteresis as a function of loading period. Loading functions

are piecewise linear.
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