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Abstract

In this work, we will derive a macroscopic model of phase �eld type for supercool-

ing. The phase transition process is described by the evolution of the temperature

and the volume fraction of the liquid phase. This phase �eld model can also be

interpreted as the approximation of some generalized Stefan problem.

We will prove the existence of solutions to an initial�boundary value problem for

the resulting system by using a time discrete scheme.

1 Introduction and derivation of the model

When pure water is cooled down carefully, it often does not freeze at the freezing temper-

ature but stays liquid at some temperatures below the melting point. This supercooled

water freezes if ice seeds are included in the water or if some movement of the water

initiates the freezing process.

We are now going to derive a macroscopic model of phase �eld type for supercooling,

which can also be interpreted as the approximation of some generalized Stefan problem.

The corresponding system of partial di�erential equations will be subsequently discussed

from the point of view of existence of solutions.

1.1 Thermomechanical derivation

We consider the solidi�cation of supercooled water in a smooth bounded domain 
 � R
3

with boundary �. We assume that there are no macroscopic movements and that the

macroscopic density �0 is constant. Moreover, we assume that there are no exterior

forces. Hence, our state quantities are the volume fraction of the liquid phase � and the

absolute temperature �.

Although the macroscopic movements are supposed to be zero, there are microscopic

movements. We want to take into account the power of the microscopic movements during

the phase transition without using a new state quantity. Hence, @t� is the only quantity

which is connected to the microscopic movements. Let pi be the volume density of the

power of the interior forces corresponding to these movements. Following [BFL, FGS98],

we introduce two �elds B and ~H such that

pi = �B@t� � ~H � r@t�; (1.1)
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with the scalar B and the vector ~H representing new interior forces. Hence, the overall

power Pi of the interior forces is

Pi(@t�) =

Z



pi dx = �
Z



�
B@t� + ~H � r@t�

�
dx : (1.2)

We assume that there is no macroscopic power of the microscopic accelerations and that no

work is provided to the system by microscopic actions (as electrical, chemical or radiative

external actions). Using the principle of virtual power, provided ~H is su�ciently smooth

we get

8 � : 0 = Pi(�) = �
Z



�
B�+ ~H � r�

�
dx

= �
Z



�
B � div ~H

�
� dx �

Z
�

~H � ~n� d� ;
(1.3)

where ~n denotes the outward normal vector to �. This leads to the new equations of

motion

div ~H � B = 0; in 
; and ~H � ~n = 0; on �: (1.4)

Let us emphasize that the boundary condition has a physical meaning, since ~H � ~n is the

amount of the work provided to the system by local actions (and with our assumptions

such amount is zero). The vector ~H is a work �ux vector. The energy balance is

@U

@t
+ div ~q = f � pi; (1.5)

where U is the density of the internal energy, ~q is the heat �ux, and f accounts for heat

sources and sinks. To formulate the constitutive laws, a density 	 = 	(�;r�; �) of the
free energy and a pseudo�potential of dissipation � = �(@t�;r�; �) will be introduced.
Let us recall that �(@t�;r�; �) is a pseudo�potential of dissipation whenever it is a non�

negative function, convex with respect to @t�, with value 0 for @t� = 0, i.e., �(0;r�; �) =
0. Now, we specify the constitutive laws

B =
@	

@�
+

@�

@(@t�)
; ~H =

@	

@(r�) ; ~q = ��r�; (1.6)

where � > 0 is the speci�c heat conductivity. Moreover, if S denotes the density of the

entropy, we have the classical state equations

S = �@	
@�

; U = 	+ �S = 	� �
@	

@�
: (1.7)

Therefore, thanks to the constitutive laws in (1.6), it is easy to see that

@U

@t
= �

@S

@t
+

�
B � @�

@(@t�)

�
@t� + ~H � @tr�; ~q � r� � 0: (1.8)
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It results that the energy balance (1.5), the equality (1.1), and the conditions on � yield

that

@S

@t
+ div

�
~q

�

�
� f

�
=

1

�

�
�~q � r� + @�

@(@t�)
@t�

�
� 0; (1.9)

which proves that the second law of thermodynamics is satis�ed. We choose

	(�;r�; �) = � L

�C
(� � �C)� +

�

2
(r�)2 + I[0;1](�)� c0� ln(�); (1.10)

where L is the latent heat of the phase transition, �C > 0 is the melting temperature,

c0 > 0 is the speci�c heat, � > 0 is the interfacial energy coe�cient, and I[0;1] is the

indicator function of the interval [0; 1]. As pseudo�potential of dissipation, we take

�(@t�;r�; �) =
1

2
�(�;r�)(@t�)2; (1.11)

where � : R � R
3 ! [0;1) is some given non negative relaxation parameter function,

so that the conditions for a pseudo�potential of dissipation are satis�ed. Combining the

constitutive laws (1.6) and the equations of motion (1.4), we get

0 3 �(�;r�)@t� � ��� + @I[0;1](�)�
L

�C
(� � �C); in 
; (1.12)

@�

@n
= 0; on �: (1.13)

The energy balance (1.5), the equality (1.1), the constitutive laws (1.6), and the state

relations (1.7) give

c0@t� + L
�

�C
@t� � ��� = f + �(�;r�) (@t�)2 ; in 
: (1.14)

Within the small perturbation assumption

�

�C
� 1; �(�;r�) (@t�)2 � 0; (1.15)

we get the �nal equation

c0@t� + L@t� � ��� = f; in 
: (1.16)

Remark 1.1. This classical small perturbation assumption has been widely used, for in-

stance, to replace the material derivatives de

dt
by the partial derivatives @t�.

Remark 1.2. For a constant �, the system (1.12), (1.16) is a special version of the standard

phase �eld system, which has been investigated in a number of papers, see [BE93, BE94,

Cag86, Cag89, CL87, EG94] to name only a few.

Systems like (1.12), (1.16) and similar systems with � depending on the direction of

r� have been investigated, for example in [EG96, WMS93], to simulate the dendritic

solidi�cation of liquids when one takes into account the latent heat of solidi�cation.

If the temperature � is supposed to be a known function, one needs only to consider the

equation (1.12). If one adds the term � 1
�
� on the left�hand side of (1.12), one gets a

double�obstacle Allen�Cahn equation. This equation with � depending on the direction

of r� is considered in [EGK96, EPS96, ES97].
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1.2 Derivation as approximation of a generalized Stefan problem

The above system can also be interpreted as the approximation of a generalized Stefan

problem. In the context of a Stefan problem, we assume that at every time t there are

open disjoint smooth subsets 
liq(t), 
ice(t) of 
, such that 
liq(t) [ 
ice(t) = 
, 
liq(t)

is �lled with liquid, and 
ice(t) is �lled with ice. Hence, we see that ice and water are

separated by a freezing surface �(t) = @
l(t) \ @
i(t).

As in [Fré95], we assume that the normal velocity of the thin interface is temperature�

dependent and consider the following model for the solidi�cation of an supercooled liq-

uid. Let

c0@t� � ��� = f in the water and in the ice; (1.17)

�
@�

@n

����
water

� �
@�

@n

����
ice

= �LWN on �(t); (1.18)

c(�)WN =
L(�C � �)

�C
on �(t); (1.19)

where WN is the normal velocity of the phase interface with respect to the normal vector

pointing into the liquid phase and c : R! [0;1) is a given function, supposed to describe

the temperature dependence of the normal velocity of the freezing line. In the case c � 0,

the above problem corresponds to the classical Stefan problem.

De�ning � = 0 in ice and � = 1 in water, we have

(@t�; �)D0(
T )�D(
T )
= �

Z T

0

Z
�(t)

WN� d�(t) dt; (1.20)

for all � 2 D(
T ) = C1
0 (
T ), where 
T := 
� (0; T ) and T > 0 denotes the �nal time.

Hence, we can rewrite (1.17) and (1.18) as

c0@t� + L@t� � ��� = f in D0(
T ); (1.21)

and (1.19) leads to

(@t�; �)D0(
T )�D(
T )
=

Z T

0

Z
�(t)

L

�C

� � �C

c(�)
� d�(t) dt; 8� 2 D(
T ): (1.22)

Since � jumps from 0 to 1 on the freezing line �(t), in a formal way we have

(jr�(�; t)j2 ; �)D0(
)�D(
)
=

Z
�(t)

� d�(t); 8� 2 D(
); (1.23)

where j�j2 denotes the Euclidean norm in R3. Combining (1.22) and (1.23), by a naive

computation we should get

@t� �
L

�C

� � �C

c(�)
jr�j = 0 in D0(
T ): (1.24)
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A rigorous derivation of (1.24) from (1.18) and (1.19) can be found in [FGS98]. This

equation leads to

c(�)

jr�j2
@t� =

L(� � �C)

�C
in D0(
T ): (1.25)

In order to impose the constraint 0 � � � 1, equation (1.25) will be approximated

by adding @I[0;1](�) on the left�hand side, where I[0;1] is the indicator function of [0; 1].

Moreover, the equation is molli�ed by including the term ���� on the left�hand side,

and replacing
c(�)

jr�j
2

by some continuous approximation �(�;r�), e.g.

�(�;r�) = c(�)

jr�j2 + �
or �(�;r�) = c(�)q

jr�j22 + �

; (1.26)

where � > 0 is some small parameter. Thus, we obtain

�(�;r�)@t� � ��� + @I[0;1](�) 3
L

�C
(� � �C); a.e. in 
T ; (1.27)

which coincides with (1.12). Hence, it is clear that (1.16) and (1.12) can be considered

as approximation of the generalized Stefan problem in (1.17)�(1.19), but until now no

convergence result to the Stefan problem could be derived.

Remark 1.3. In [FGS98], one deals with the energy balance (1.16) combined with a mod-

i�ed version of (1.27), in which � � 1 and the right�hand side is replaced by W (�) jr�j2
for some continuous function W : R! R having compact support.

2 Main results

This section is concerned with the system of PDE's which has been discussed above. Now,

we add boundary and initial conditions for both variables, give a precise formulation of

the problem, and state our main existence theorems. Then, we deal with the system (P):

c0@t� + L@t� � ��� = f; a.e. in 
T ; (2.1a)

�(�;r�)@t� � ��� + � =
L

�C
(� � �C); a.e. in 
T ; (2.1b)

� 2 [0; 1]; � 2 @I[0;1](�); a.e. in 
T ; (2.1c)

��@�
@n

= �(� � �ext);
@�

@n
= 0; a.e. in �� (0; T ); (2.1d)

�(�; 0) = �0; �(�; 0) = �0; a.e. in 
: (2.1e)

Here � > 0 is a constant, �ext : �� (0; T )! R is the external temperature, and �0; �0 are

initial values.

The following assumptions will be used.
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(A1): There exists a positive constant C� such that

� : R� R
3 ! (0; C�] is continuous;

�0 2 H1(
); 0 � �0 � 1; a.e. in 
:

(A2): There exists a positive constant B� such that

�(u;~v) � B�; 8 u 2 R; ~v 2 R3;

�0 2 H1(
); �ext 2 L2(0; T ;H
1

2 (�)) \ H1(0; T ;L2(
)); f 2 L2(0; T ;L2(
)):

Under these assumptions, we can show the validity of the following existence result.

Theorem 1. If assumptions (A1) and (A2) are satis�ed, then there exists a strong

solution (�; �; �) to the system (P) in the sense that

�; � 2 H1(0; T ;L2(
)) \ C0([0; T ];H1(
)) \ L2(0; T ;H2(
)); (2.2a)

� 2 L1(0; T ;L2(
)); (2.2b)

and (2.1) hold.

Note that if �(�;r�) yields some approximation of
c(�)

jr�j
2

as in (1.26), then (A2) is not

ful�lled. Hence, we consider also the alternative assumption below and introduce there

the functional F , which is used in the generalized weak formulation (2.5a) of the energy

balance. Actually, this formulation coincides with the normal weak formulation of (2.1a),

if F is de�ned by

(F (t); v)
H1(
)��H1(
) =

Z



f(t; x)v dx + �

Z
�

�ext(t; �)v d� ;

8 v 2 H1(
); for a.e. t 2 (0; T );

(2.3)

with f 2 L2(0; T ;L2(
)) and �ext 2 L2(0; T ;L2(�)).

(A3): There is a positive constant B�
� such that

�(u;~v) (j~vj2 + 1) � B�
� ; 8 u 2 R; ~v 2 R3;

�0 2 L2(
); F 2 L2(0; T ;H1(
)
�
):

In the case when (A3) substitutes (A2), we can only prove the existence of a weak

solution to (P).

Theorem 2. If assumptions (A1) and (A3) are satis�ed, then there exists a solution

(�; �; �) to the generalized weak formulation of problem (P), i.e., we have

� 2 H1(0; T ;H1(
)
�
) \ C0([0; T ];L2(
)) \ L2(0; T ;H1(
)); (2.4a)

� 2 H1(0; T ;L
4

3 (
)) \ L1(0; T ;H1(
)) \ L2(0; T ;H2(
)); (2.4b)
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p
�(�;r�)�t 2 L2(0; T ;L2(
)); (2.4c)

� 2 L1(0; T ;L2(
)); (2.4d)

and the equations and conditions

c0 (@t�; v)H1(
)
�
�H1(
) +

Z



L (@t�) v dx +

Z



�r� � rv dx +

Z
�

��v d�

=(F; v)
H1(
)��H1(
) ; 8 v 2 H1(
); a.e. in (0; T );

(2.5a)

@�

@n
= 0; a.e. in �� (0; T ); (2.5b)

(2.1b), (2.1c), and (2.1e) hold.

Remark 2.1. If we replace in (A1) the assumption that there is a uniform upper bound

for �, by the weaker assumption that there is a positive constant C�
� with

�(u;~v) � C�
�(u+ j~vj2 + 1); 8 u 2 R; ~v 2 R3; (2.6)

we can still show existence by considering �rst the problem with � modi�ed by some cut�o�

function, then deriving uniform a priori estimates, and afterwards carring out some limit

procedure. Since we can still obtain (2.4a), (2.4c), (2.4d) as well as � 2 L1(0; T ;H1(
)),

then by comparison we just get �� 2 L2(0; T ;L
4

3 (
)), whence � 2 L2(0; T ;W 2; 4
3 (
)),

while it is no longer clear whether the last inclusion in (2.4b) holds.

Remark 2.2. Until now, we do not know of any uniqueness result for the system (P) .

Remark 2.3. The asymptotic behaviour of our solution to (P) as � ! 0 or as �(�;r�)
converges in some sense (cf. (1.26)) to

c(�)

jr�j
2

remains an open question. The authors wonder

whether if would be possible to show that the limit of such sequences is a viscosity solution

of some problem.

3 Proof of Theorem 2

3.1 A time discrete scheme

In this section, we assume that (A1) and (A3) hold, and we deal with K 2 N su�ciently

large, in order that

h :=
T

K
<
c20�

2
C

4L4
: (3.1)

We consider the scheme (DK):
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For 1 � m � K, �nd �m 2 H1(
) , �m 2 H2(
), �m 2 L2(
) such thatZ



�
c0
�m � �m�1

h
+ L

�m � �m�1

h

�
v dx + �

Z



r�m � rv dx + �

Z
�

�mv d�

= (Fm; v)H1(
)��H1(
) 8 v 2 H1(
);

(3.2a)

�
�m +

p
h
� �m � �m�1

h
� ���m + �m =

L

�C
(�m�1 � �C); a.e. in 
; (3.2b)

�m 2 [0; 1]; �m 2 @I[0;1](�m); a.e. in 
; (3.2c)

@�m

@n
= 0; a.e. on �; (3.2d)

�0 := �0; �0 := �0; a.e. in 
; (3.2e)

where, for 1 � m � K, Fm 2 H1(
)
�
and �m 2 L1(
) are de�ned by

Fm :=
1

h

mhZ
(m�1)h

F (t) dt ; (3.3)

�m(x) := � (�m�1(x);r�m�1(x)) > 0 for a.e. x 2 
: (3.4)

Let us point out that the explicit treatment of the right�hand side of (3.2b) is similar

to those considered for the approximation of the standard phase �eld model in [EG96].

Instead, we remark that in the approximation of the Penrose�Fife system (see [Hor93,

Kle]), one has to deal with an implicit coupling term to get a priori estimates.

For the scheme (3.2), we can prove the following statement.

Lemma 3.1. The scheme (DK) has a unique solution.

Proof. By (A1) and (A3), we see that (3.2e) de�nes �0 2 L2(
) and �0 2 H1(
) uniquely.

To prove the existence of a unique solution to the scheme by induction, let �m�1 2 L2(
),

�m�1 2 H1(
) be given for some m 2 f1; : : :Kg.
We can rewrite the discrete order parameter equation (3.2b), (3.2c), the boundary condi-

tion for �m in (3.2d), and the regularity conditions for �m and �m as

1p
h
�m +

�m

h
�m + A�m 3 L

�C
(�m�1 � �C) +

�m +
p
h

h
�m�1; (3.5)

�m =
L

�C
(�m�1 � �C)�

�
�m +

p
h
� �m � �m�1

h
+ ���m; a.e. in 
; (3.6)

where A : D(A) � L2(
)! 2L
2(
) is the nonlinear operator de�ned by

Au = ���u+
�
v 2 L2(
) : v 2 @I[0;1](u) a.e. in 


	
; (3.7)

D(A) =

�
u 2 H2(
) : 0 � u � 1 a.e. in 
;

@u

@n
= 0 a.e. on �

�
: (3.8)
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Applying [Bré71, Cor. 13], we see that this operator is maximal monotone. In the light of

(3.4), as �m 2 L1(
), we see that L2(
) 3 � 7! �m� is a continuous monotone operator

from L2(
) to L2(
). Thanks to a theorem on the sum of monotone operators (see, e.g.,

[Bar76, Chap. II, Cor. 1.3]), we deduce that D(A) 3 � 7! 1
h
�m� + A� is a maximal

monotone operator as well. Owing to maximality, we see that (3.5) has a unique solution

�m 2 H2(
). Subsequently, �m 2 L2(
) is uniquely determined by (3.6).

Next, thanks to the Lax�Milgram lemma, we conclude that the discrete energy balance

(3.2a) has a unique solution �m.

Therefore, the lemma is completely proved.

3.2 Uniform estimates

Now, we are going to derive some uniform a priori estimates for the solution to the scheme.

In the sequel, Ci, for i 2 N, will always denote generic positive constants, independent of
K. We will use k�k2 for the L2(
)�norm and k�k2;3 for the the (L2(
))

3
�norm.

The following norm equivalence is well known: there exists two positive constants C1; C2

such that

C1 kvk2H1(
) � � krvk22;3 +
�

2
kvk2

L2(�) � C2 kvk2H1(
) ; 8 v 2 H1(
): (3.9)

Lemma 3.2. There is a positive constant C3 such that

max
0�m�K

�
k�mk22 + k�mk2H1(
)

�
+

KX
m=1

h k�mk2H1(
) +

KX
m=1

h





p�m �m � �m�1

h





2
2

+
p
h

KX
m=1

h





�m � �m�1

h





2
2

+

KX
m=1

k�m � �m�1k22 +
KX

m=1

k�m � �m�1k2H1(
) � C3: (3.10)

Proof. We consider (3.2a) with v = h�m, test (3.2b) by �C (�m � �m�1), and add the

two equations. Afterwards, we apply (AP.6) (see the Appendix), (3.2d), (3.4), (3.2c),

0 2 @I[0;1](�m�1); and Young's inequality to obtain

c0

2

�
k�mk22 � k�m�1k22 + k�m � �m�1k22

�
+ �h kr�mk22;3 + �h k�mk2L2(�)

+ �Ch





p�m �m � �m�1

h





2
2

+
p
h�Ch





�m � �m�1

h





2
2

+
�

2
�C

�
kr�mk22;3 � kr�m�1k22;3 + kr (�m � �m�1)k22;3

�
+ �C k�m (�m � �m�1)kL1(
)

= h (Fm; �m)H1(
)��H1(
) + L

Z



(�m�1 � �C � �m) (�m � �m�1) dx

9



� h
1

2C1

kFmk2H1(
)
� + h

C1

2
k�mk2H1(
)

� L

Z



�C (�m � �m�1) dx +
c0

4
k�m � �m�1k22 +

1

c0
L2 k�m � �m�1k22 :

Summing this inequality from m = 1 to m = k and using (3.9), (3.3), (3.2e), (A1), (A3),
and (3.2c) we get

c0

2
k�kk22 +

c0

4

kX
m=1

k�m � �m�1k22 +
1

2
C1

kX
m=1

h k�mk2H1(
) +
p
h�C

kX
m=1

h





�m � �m�1

h





2
2

+ �C

kX
m=1

h





p�m �m � �m�1

h





2
2

+
�

2
�C k�kk2H1(
) +

�

2
�C

kX
m=1

kr (�m � �m�1)k22;3

� C4 +

p
hL2

c0�C

p
h�C

kX
m=1

h





�m � �m�1

h





2
2

:

Applying (3.1), (3.2e), (A1), and (A3), we conclude that (3.10) is satis�ed.

Lemma 3.3. There is a positive constant C5 such that

max
1�m�K

k�mk22 +
KX

m=1

h





�m � �m�1

h





2
4

3

+

KX
m=1

h





�m�m � �m�1

h





2
2

� C5: (3.11)

Proof. Testing formally (3.2b) by �m and using (3.2d), (3.2c), (3.4), 0 2 @I[0;1](�m�1);

and Young's inequality, we deduce

k�mk22 �
L

�C

Z



(�m�1 � �C)�m dx � 1

2
k�mk22 +

L2

2�2C
k�m�1 � �Ck22 : (3.12)

For a rigorous derivation of this inequality, one has to replace in (3.2c) the maximal

monotone graph @I[0;1] by its Yosida approximation (see, e.g., [Bré71, p. 104]), test the

modi�ed version of (3.2c) by the approximations of �m and �m, consider the passage to

the limit, and use [Bar76, Chap. II, Prob. 1.1(iv)] .

Using (3.4), (A3), and Hölder's inequality, we get





�m � �m�1

h





 4

3

4

3

� 1�
B�
�

� 2
3





p�m �m � �m�1

h





 4

3

2

0@Z



(jr�m�1j2 + 1)
2
dx

1A
1

3

:

Combining this with (3.12), (3.10), and �m � C�, we see that (3.11) is proved.

Lemma 3.4. There is a positive constant C6 such that

KX
m=1

h





�m � �m�1

h





2
H1(
)

�

+

KX
m=1

h k�mk2H2(
) � C6: (3.13)
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Proof. Considering the terms in (3.2a) and the terms in (3.2b) and using (3.10), (3.9),

(3.3), (A3), and Young's inequality, it is not di�cult to verify that

KX
m=1

h





c0 �m � �m�1

h
+ L

�m � �m�1

h





2
H1(
)�

� C7; (3.14)

�2

KX
m=1

h k��mk22 � C8 + 2

KX
m=1

h k�mk22 + 2

KX
m=1

h





�m�m � �m�1

h





2
2

: (3.15)

Hence, combining (3.14), (3.11), (AP.2), (3.15), (3.2d), and (AP.4) leads to (3.13).

3.3 Convergence of the time�discrete scheme

From the solution to (DK), we de�ne b�K and b�K in H1(0; T ;L2(
)) as the piecewise

linear�in�time interpolation on [0,T] of �0; : : : ; �K and �0; : : : ; �K respectively, i.e., func-

tions linear in time on [(m � 1)h;mh] for m = 1; : : : ; K such that b�K(�; mh) = �m andb�K(�; mh) = �m respectively for m = 0; : : : ; K.

Let �K 2 L1(0; T ;L2(
)) be the piecewise constant�in-time interpolation of �1; : : : ; �K,

i.e., we de�ne �K(�; t) = �m for all t 2 (tm�1; tm] and m = 1; : : : ; K. The functions

�
K 2 L2(0; T ;H1(
)), �

K 2 L2(0; T ;H2(
)), and F
K 2 L2(0; T ;H1(
)

�
) are speci�ed

analogously. Also, let �K and �K in L1(0; T ;L2(
)) be the piecewise constant�in�time

interpolation of �0; : : : ; �K�1 and �0; : : : ; �K�1 respectively, i.e., we have �K(�; t) = �m�1
and �K(�; t) = �m�1 for all t 2 (tm�1; tm] and m = 1; : : : ; K.

Hence, we can rewrite (3.2a)�(3.2e) as�
c0@tb�K + L@tb�K; v�

H1(
)��H1(
)
+ �

Z



r�K � rv dx + �

Z
�

�
K
v d�

=
�
F
K
; v
�
H1(
)

��H1(
)
; 8 v 2 H1(
); a.e. in (0; T );

(3.16a)

�
�
�
�K;r�K

�
+
p
h
�
@tb�K � ���

K
+ �K =

L

�C

�
�K � �C

�
; a.e. in 
T ; (3.16b)

�
K 2 [0; 1]; �K 2 @I[0;1]

�
�
K
�
; a.e. in 
T ; (3.16c)

@�
K

@n
= 0; a.e. in �� (0; T ); (3.16d)b�K(�; 0) = �0; b�K(�; 0) = �0; a.e. in 
: (3.16e)

Thanks to (A3) and (3.3), as K !1 we have the strong convergence

F
K �! F in L2(0; T ;H1(
)

�
); (3.17)

11



which can be veri�ed by a density argument, for instance. In the light of the last three

terms in estimate (3.10), let us point out that


phb�K


2
H1(0;T ;L2(
))

� 1p
K
C9; (3.18)


�K � b�K


2

L2(0;T ;L2(
))
+



�K � b�K


2

L2(0;T ;H1(
))
� 1

K
C10: (3.19)

Then, using (3.10), (3.11), and (3.13), standard compactness arguments (see, e.g., [Zei90,

Prop. 23.7, 23.19, Prob. 23.12]) allow us to deduce the existence of three functions �; �; �

in L2(0; T ;L2(
)) such that, as K !1, at least for some subsequence,

b�K �! � weakly�star in H1(0; T ;H1(
)
�
) \ L1(0; T ;L2(
)); (3.20)

�
K �! � weakly�star in L1(0; T ;L2(
)) \ L2(0; T ;H1(
)); (3.21)b�K �! � weakly�star in H1(0; T ;L

4

3 (
) ) \ L1(0; T ;H1(
)); (3.22)

�
K �! � weakly�star in L1(0; T ;H1(
)) \ L2(0; T ;H2(
)); (3.23)

�K �! � weakly�star in L1(0; T ;L2(
)): (3.24)

Now, we are going to show that the triplet (�; �; �) is a solution of the generalized weak

formulation of (P) introduced in Theorem 2. In view of the above convergences, we see

that the regularity conditions (2.4b), (2.4d), and

� 2 H1(0; T ;H1(
)
�
) \ L2(0; T ;H1(
))

are proved. From the last inclusion, for instance by interpolation, (2.4a) follows. Owing to

(3.17) and (3.20)�(3.22), the passage to limit in (3.16a) yields (2.5a). Combining (3.16d)

and (3.23), we get (2.5b). Recalling (3.16e), the weak convergences in (3.20), (3.22), and

the regularity condition (2.4a) lead to (2.1e).

For K 2 N, we consider ~�K 2 H1(0; T ;H1(
)) with

~�K(x; t0) := �
K
(x; t0); ~�K(x; t) := b�K(x; t); 8 t0 2 [0; h); t 2 [h; T ]; x 2 
: (3.25)

Using (3.10) and (3.13), it is straightforward to deduce that this sequence is uniformly

bounded in L2(0; T ;H1(
)) and in H1(0; T ;H1(
)
�
). Moreover, in view of the last part

of estimate (3.10), we conclude (similarly as in the derivation of (3.19)) that


~�K � b�K


2
L2(0;T ;L2(
))

+



~�K � �K




2
L2(0;T ;L2(
))

� C11

1

K
: (3.26)

Using the Aubin Lemma (c.f., e.g., [Sim87, Cor. 4]), we see that f~�KgK2N is relatively

compact in L2(0; T ;L2(
)). Combining this with (3.20) and (3.26), we obtain, at least

for the selected subsequence, that, as K !1,

�K �! � strongly in L2(0; T ;L2(
)): (3.27)

12



De�ning ~�K 2 H1(0; T ;H2(
)) analogously to ~�K and using (3.10), (3.11), and (3.13), we

see that this sequence is uniformly bounded in H1(0; T ;L
4

3 (
) ) \ L2(0; T ;H2(
)) and

that 


~�K � �
K



2
L2(0;T ;H1(
))

+



 ~�K � �K




2
L2(0;T ;H1(
))

� C12

1

K
: (3.28)

Applying again the Aubin Lemma, from (3.23) and (3.28) we get, at least for the selected

subsequence,

�
K �! �; �K �! � strongly in L2(0; T ;H1(
)); (3.29)

as K ! 1. Thanks to (3.27) and (3.29), we can �nally �nd a subsequence of the

subsequence such that, as K !1,

�K �! �; r�K �! r� a.e. in 
T : (3.30)

Considering this subsequence, by (A1) and the Lebesgue dominated convergence theorem

we obtainq
�
�
�K;r�K

�
�!

p
� (�;r�); �

�
�K;r�K

�
�! � (�;r�) strongly in Lp(
T )

as K ! 1, for all p 2 [1;1). Now, for 0 < " � 1
3
arbitrary, we recall (3.22) and (3.18)

to show that, for this subsequence, as K !1,q
�
�
�K;r�K

�
@tb�K �!

p
� (�;r�)@t� weakly in L2�"(0; T ;L

4

3
�"(
)); (3.31)�

�
�
�K;r�K

�
+
p
h
�
@tb�K �! � (�;r�) @t� weakly in L2�"(0; T ;L

4

3
�"(
)): (3.32)

We combine the last convergence with (3.16b), (3.23), (3.24), and (3.27) to show that

(2.1b) is satis�ed. Thanks to (3.16c), (3.24), (3.29), and [Bar76, Chap. II, Lemma 1.3],

we deduce that (2.1c) holds. Since combining (3.31) and (3.10) yields by compactness

that q
�
�
�K;r�K

�
@tb�K �!

p
� (�;r�)@t� weakly in L2(0; T ;L2(
)); (3.33)

we conclude that the remaining regularity condition (2.4c) is satis�ed.

Therefore, Theorem 2 is proved.

4 Proof of Theorem 1

In this section, we suppose that assumptions (A1) and (A2) are satis�ed. Letting F be

as in (2.3), we see that (A3) holds. Now, we consider K 2 N su�ciently large, such that

13



the inequality (3.1) is satis�ed, and de�ne, for 1 � m � K, fm 2 L2(
), �ext;m 2 H
1

2 (�)

by

fm(x) :=
1

h

mhZ
(m�1)h

f(x; t) dt for a.e. x 2 
; (4.1)

�ext;m(�) :=
1

h

mhZ
(m�1)h

�ext(�; t) dt for a.e. � 2 �: (4.2)

We see by (2.3), (3.3), (4.1), and (4.2) that

(Fm; v)H1(
)��H1(
) =

Z



fmv dx + �

Z
�

�ext;mv d� ; 8 v 2 H1(
); m = 1; : : :K: (4.3)

The time�discrete scheme (DK) considered in the last section has a unique solution. For

this solution there holds

Lemma 4.1. For m = 1; : : : ; K, we have �m 2 H2(
),

c0
�m � �m�1

h
+ L

�m � �m�1

h
� ���m = fm; a.e. in 
; (4.4)

��@�m
@n

= �(�m � �
ext;m); a.e. on �: (4.5)

Proof. Well�known results for elliptic equations (see, e.g., [Ama93, Theorem 9.2]) yield

the existence of a unique function ��m 2 H2(
) such that (4.4) and (4.5), with �m replaced

by ��m, are satis�ed. Now, testing (4.4) with v 2 H1(
) and using (4.5) and (4.3), we

verify that ��m is also a solution of (3.2a), which has a unique solution by the Lax�Milgram

lemma. Hence, we have ��m = �m and the Lemma is proved.

Lemma 4.2. There are two positive constant C13; C14 such that

KX
m=1

h





�m � �m�1

h





2
2

� C13; (4.6)

max
0�m�K

k�mk2H1(
) +

KX
m=1

h





�m � �m�1

h





2
2

+

KX
m=1

k�m � �m�1k2H1(
) � C14: (4.7)

Proof. We see that (4.6) holds because of (3.10) and �m � B� > 0. Considering (3.2a)

with v = �m � �m�1 (this is possible because of �0 2 H1(
)), summing up the resulting

equation from m = 1 to m = k, and using (4.3), (AP.6), (AP.5), (3.2e), and Young's

inequality, we end up with

c0

kX
m=1

h





�m � �m�1

h





2
2

+
�

2
kr�kk22;3 +

�

2
k�kk2L2(�)

+
�

2

kX
m=1

kr (�m � �m�1)k22;3 +
�

2

kX
m=1

k�m � �m�1k2L2(�)
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=
�

2
kr�0k22;3 +

�

2
k�0k2L2(�) � L

kX
m=1

h

Z



�m � �m�1

h

�m � �m�1

h
dx

+

kX
m=1

h

Z



fm
�m � �m�1

h
dx + �

Z
�

�ext;k�k d� � �

Z
�

�ext;1�0 d�

� �

k�1X
m=1

h

Z
�

�ext;m+1 � �ext;m

h
�m d�

��
2



r�0

2
2;3

+
�

2



�0

2
L2(�)

+
L2

c0

kX
m=1

h





�m � �m�1

h





2
2

+
1

c0

kX
m=1

h kfmk22

+
c0

2

kX
m=1

h





�m � �m�1

h





2
2

+ � k�ext;kk2L2(�)
+
�

4
k�kk2L2(�) + � k�ext;1kL2(�)



�0


L2(�)

+
�

2

k�1X
m=1

h





�ext;m+1 � �ext;m

h





2
L2(�)

+
�

2

k�1X
m=1

h k�mk2L2(�) :

Hence, applying (3.9), (A2), (4.6), (4.1), (4.2), and (3.10), we conclude that (4.7) holds.

Lemma 4.3. There is a positive constant C15 such that

KX
m=1

h k�mk2H2(
) � C15: (4.8)

Proof. Comparing the terms in (4.4) and using (4.7), (4.6), (4.1), and (A2), we see that

KX
m=1

h k��mk22 � C16:

Therefore, with the help of (AP.3), (4.5), (4.2), (A2), and (3.10), we deduce that (4.8)

holds.

De�ning the functions f
K 2 L2(0; T ;L2(
)), and �

K

ext
2 L2(0; T ;L2(�)) analogously to

F
K 2 L2(0; T ;L2(
)), we see by (4.4) and (4.5) that

c0@tb�K + L@t b�K � ���
K
= f

K
; a.e. in 
T ; (4.9)

��@�
K

@n
= �

�
�
K � �

K

ext

�
; a.e. on �� (0; T ): (4.10)

Thanks to (A2), (4.1), and (4.2), we can use a density argument to show the strong

convergences

f
K �! f in L2(0; T ;L2(
)); �

K

ext
�! �ext in L2(0; T ;H

1

2 (�)); (4.11)
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as K ! 1. Coming back now to the passage to the limit of the last section, here from

(4.6)�(4.8), (3.20)�(3.22), and compactness it follows that

b�K �! � weakly in H1(0; T ;L2(
)); (4.12)b�K �! � weakly�star in H1(0; T ;L2(
)) \ L1(0; T ;H1(
)); (4.13)

�
K �! � weakly�star in L1(0; T ;H1(
)) \ L2(0; T ;H2(
)); (4.14)

for the selected subsequence, as K !1. Owing to these convergences, (2.4b), (2.4d), and

the embedding of H1(0; T ;L2(
)) \ L2(0; T ;H2(
)) in C0([0; T ];H1(
)), we infer that

the regularity condition (2.2) is satis�ed. Moreover, thanks to (4.11)�(4.14), we see that

(4.9), (4.10), and (2.5b) imply that (2.1a) and (2.1d) are ful�lled. Since (2.1b), (2.1c),

and (2.1e) have already been shown, Theorem 1 is proved.
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Appendix

For convenience, we list some inequalities and equalities used throughout the paper.

Lemma AP.1 (Young's inequality). For a � 0, b � 0, p > 1, q := p

p�1
, and � > 0,

there holds

ab � 1

p
ap +

1

q
bq; ab � 1

p
��(p�1)ap +

1

q
�bq:

Thanks to Sobolev's embedding theorem, we have

Lemma AP.2. For a bounded domain 
 � R
3 with Lipschitz boundary, there is a positive

constant C such that

kvk
L6(
) � C kvk

H1(
) ; 8 v 2 H1(
): (AP.1)

Moreover, we have

Lp(
) � H1(
)
�
; 8 p � 6

5
: (AP.2)

The following classical elliptic estimate can be found in [Ama93, Remark 9.3 d].

Lemma AP.3. For a smooth bounded domain 
 � R
N with N 2 N and boundary � ,

there is a positive constant C such that

kvk2
H2(
) � C

 
k�vk2

L2(
) +





@v@n




2
H

1

2 (�)

+ kvk2
L2(
)

!
; 8 v 2 H2(
): (AP.3)

In particular, for all v 2 H2(
) with @v

@n
= 0 a.e. on �,

kvk2
H2(
) � C

�
k�vk2

L2(
) + kvk2
L2(
)

�
: (AP.4)

Elementary calculations lead to

Lemma AP.4. For n 2 N, a0; a1; : : : ; an, b0; b1; : : : ; bn 2 R, we have that

nX
m=1

am(bm � bm�1) = anbn � a1b0 �
n�1X
m=1

(am+1 � am) bm: (AP.5)

Lemma AP.5. Let H be a Hilbert space with scalar-product h�; �iH and norm k�k
H
. Then

we have

ha; a� biH =
1

2
kak2

H
� 1

2
kbk2

H
+

1

2
ka� bk2

H
; 8 a; b 2 H: (AP.6)
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