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Abstract

In this paper a mathematical model for the dynamical behavior of multisec-
tion DFB (distributed feedback) semiconductor lasers in the case of arbitrarily
space depending carrier densities is investigated. We introduce a suitable weak
formulation of the initial boundary value problem and prove existence, unique-
ness and some regularity properties of the solution. The assumptions on the
data are quite general, in particular, the physically relevant case of piecewise
smooth, but discontinuous coefficients is included.

1 Introduction

This paper is concerned with the following system of first order differential equations

om(t,z) = I(t,z) —o(2)n(t,z) — G(z,n(t, 2),|w(t, 2)|?), (1.1)
Baw(t,z) = ( — 8w (t, 2), O wslt, z)) 1 S(z,n(t, 2), [w(t, 2)P)w(t, 2), (1.2)

supplemented by the boundary conditions
wi(t,0) = rowsy(t,0) and we(t, 1) = riwi(t, 1) + a(t) (1.3)
and the initial conditions
n(0, z) = no(z) and w(0, 2) = wo(2). (1.4)

The unknown real valued function n and C?-valued function w = (wy, w;) depend
on time ¢ > 0 and space variable z € (0,1). From the mathematical point of
view, the system (1.1), (1.2) consits of an ordinary differential equation for n (which
depends parametrically on the space variable z) coupled with a hyperbolic system
of two first order partial differential equations for the vector field w. System (1.1)—
(1.4) is a (suitably normalized) mathematical model for the dynamical behavior of
multisection DFB (distributed feedback) semiconductor lasers (cf, e.g., [7, 10, 12,
13]). The real valued function n is the carrier density of the device, whereas the
complex valued functions w; and ws denote the complex amplitudes of the forward
and backward traveling light waves (after averaging over the transverse plane and
separating terms varying rapidly in space and time), and z is the space variable in
the longitudinal direction.

The real valued functions I and o describe the injection current and the inverse
of the life time of the carriers, respectively, and G is the gain function, which is

1



assumed to be nonnegative if n is large and nonpositive if n is small. Further,

lw|? < jwy|? + |ws|? is the power of the optical field w = (wr, ws).

The function S takes values in the space of complex 2 x 2-matrices, and it describes
the propagation, coupling and spatial hole burning properties of the laser. Finally,
the complex numbers ry and r; are the amplitude facet reflectivities, and the complex
valued function a describes an external optical signal injected to the right facet of
the laser.

Multsection lasers are distinguished by the property that they consist of several
sections with considerably different electrical and optical properties. Hence, the
coefficient functions for such lasers are discontinuous with respect to the space vari-
able. Up to now only for multisection lasers with homogeneous sections and, hence,
for models with piecewise constant coefficients, results are known concerning well-
posedness of the corresponding initial boundary value problems. Moreover, in that
cases simplified models are used, which describe the dynamics of the averaged (over
the homogeneous sections of the laser) carrier densities (see, e.g., [4, 6, 11]). Note
that in these papers the functions I and a are supposed to be differentiable with
respect to time.

In this paper we consider arbitrarily space depending coeflicient functions. Thus,
the so-called chirping of the DFB grating in the sections is included, for example.
Moreover, we consider models which describe the space dependence of the carrier
densities within the sections, including the so-called hole burning effect. We intro-
duce a suitable weak formulation of the initial boundary value problem (1.1)—(1.4)
and show that it is well posed. The assumptions concerning the functions I, o, G,
S and a are quite general. In particular, the physically relevant case of piecewise
smooth, but discontinuous dependence on ¢ and z is included. Note that, even if the
injected current I and the injected light signal a are smooth with respect to time,
in most of the applications they are close to discontinuous one’s (on and off switch-
ing of the signals), and, hence, a theory of existence, uniqueness and continuous
dependence on the data for such discontinuous data is needed.

This paper is organized as follows. In Section 2 we introduce the assumptions
concerning the data in (1.1)—(1.4), the appropriate notion of weak solution to (1.1)-
-(1.4) and the main result concerning existence and uniqueness of weak solutions.
Moreover, a regularity theorem describes the regularity properties of the semiflow
corresponding to (1.1)—(1.4) in the autonomous case (a = 0 and I independent of
time). This regularity theorem will be proved using results in [2] and [3, 5].

Section 3 is concerned with weak solutions to abstract linear inhomogeneous evolu-
tion equations with nonsmooth data.

For the proof of existence of weak solutions to (1.1)—(1.4) in Section 4 an initial
boundary value problem with suitably truncated functions will be introduced, which
can be solved by the contraction mapping principle using the results of section
3. A priori estimates for the carrier density will be be proved for the solution of
this truncated problem. With these estimates it can be shown that the solution



of the truncated problem actually solves (1.1)—(1.4) provided that the truncation
parameters are chosen suitablely.

2 Notation, Assumptions and Results

In what follows we denote by (:,-) the Hermitean scalar product in C?, i.e.
(u, v) = u 07 + ug®y for all u = (ug, uz),v = (v1, vy) € C,
and |- | denotes the corresponding norm in C? as well as the Hermitean norm in the

space M(2 x 2, C) of all complex 2 x 2-matrices. Further, T > 0 is arbitrarily fixed.

We will work with the usual notation concerning Lebesgue and Sobolev spaces and
their norms. If U a Banach space, then BV ((0,7),U) denotes the space of all
® € L>*((0,7),U) such that there exists a constant cs with

T
| / @ (O(t)dt]| < callpllz= for all ¢ € C(0,T). (2.1)
0

This is the space of all functions ® : (0,7") — U of bounded variation, which includes
the piecewise smooth functions. We endow it with the norm

def ~
||‘P||BV((0,T),U) = ||(I)||L°°((0,T),U) + Ca,

where ég is the smallest constant in (2.1).
Let us formulate our assumptions concerning the data in (1.1)—(1.4).

We suppose
1€ L=((0,T) % (0,1)),

o € L*(0,1) with essinf o > 0,
a € BV((0,7),C),
ro, 1 € C with |rory| < 1.
ny € L*(0, 1) with essinfng > 0.
wy € L°((0,1),C%).
The functions G : (0,1) x (0,00) x [0,00) — R and S : (0,1) x (0,00) X [0, 00
M(2 x 2,C) are supposed to satisfy the following assumptions:

G(-,n,r) € L*(0,1)

S(n,r) € L®((0,1),M(2 x 2,C)) } for all n € (0,00) and r € [0,00) (2.8)

and

G(z,+,-) € C(0,00) x [0,00))

S(z,-) € CY((0,00) x [0,00),M(2 x 2,C))) } for almost all z € (0,1). (2.9)
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Moreover, we suppose that for arbitrary positive § and M there exists some Ls s > 0
such that for almost all z € (0,1), all n € [0, M| and all » € [0, M] we have

|G(z,n,7)| + |0.G(2,n,7)| + |0,G(2,n,7)|
+|S(z,n,7)| 4+ |0,.5(2,n,7)| + |0-S(2,m, )| < Ls u- (2.10)

Finally, it is assumed that there exist positve numbers n < m such that for almost
all z € (0,1) and all r € [0, 00) we have

G(z,n,r) > 0if n > 7 and G(z,n,r) < 0if n < n. (2.11)
Now the notion of weak solutions to (1.1)—(1.4) is given.

Definition 1 A pair of functions (n,w) € L®((0,T) x (0,1),R x C?) is called a
weak solution to (1.1)—(1.4), if essinfn > 0 and if

n(t, z) = no(z)

+/0t ([(s,z) —o(2)n(s, z) — G(z,n(s, 2), |w(t, z)|2)>ds (2.12)

for almost all z € (0,1) and

/0 (p(2),w(t, 2) — wo(2))dz :/0 (/0 (0,01(2)wi (s, 2) — O,pa(2)wa(s, 2)
+{p(2), S(2,n(s, 2), lw(s, 2) P )w(s, 2)))dz + goﬂl)@) ds (2.13)

for allt € (0,T) and ¢ = (p1,p2) € WH2((0,1); C?) with ¢2(0) = Top1(0) and
e1(1) = Tip2(1).

The following lemma explains in which sense a weak solution to (1.1)—(1.4) satisfies
the system of differential equations (1.1)—(1.2), the boundary conditions (1.3) and
the initial conditions (1.4). In its formulation we identify, as usual, the functions
n: (0,T) % (0,1) » Rand w: (0,7) x (0,1) — C? and the corresponding function
space valued maps ¢t € (0,7) — n(t,-) and ¢t € (0,T) — w(t,-).

Lemma 1 Let (n,w) be a weak solution to (1.1)—(1.4). Then the following holds:
(i) n € Wb ((0,T),L>(0,1)), (1.1) is satisfied for all t € (0,T) and almost all
)

z € (0,1), and n(0, 2) = ng(z) for almost all z € (0,1).
(ii) System (1.2) is satisfied in the sense of distributions, i.e.

/0 /0 ((0rp(t,2), w(t, 2)) + Duipr (6, 2 (1, 2) — Dpalt, 2Jun(t, 2)
ot 2), S(z,n(t, 2), |w(t, 2) Pw(t, z)>>dzdt —0
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for all ¢ € C§°((0,T) x (0,1),C?).
(iii) For allt € (0,T) we have

u(t) & /0 w(s)ds € W2((0,1); C?)
and .
u1(t,0) = rous(t,0) and us(t, 1) = riuy(t, 1) —I—/ a(s)ds. (2.14)

(iv) The function w is weakly continuous as a map from (0,T) into L*((0,1),C?),
and we have w(0, z) = wy(z) for almost all z € (0,1).

Now we formulate our main result:

Theorem 1 There ezxists a unique weak solution (n,w) to (1.1)—(1.4). Moreover,
the estimates

e " essinfng < n(t,z) <

eia(z)t no(z) + max{ﬁ, ||0’71[||Loo((0,T)><(0’1))} (2.15)

hold for all t € (0,T) and almost all z € (0,1).

Of course, if the external signal a in (1.3) vanishes, the injection current [ is inde-
pendent of time and the initial function wy satisfies the corresponding homogeneous
boundary conditions, then the weak solution to (1.1)—(1.4) has more regularity. This
is described in the next theorem:

Theorem 2 Suppose a =0, wy = (wor, we2) € WH2((0,1),C?), we1(0) = rowps(0)
and woe(0) = riwp1(1). Then the weak solution (n,w) to (1.1)—(1.4) satisfies

w € C* ([0,T7], L*((0,1),C%)) nC ([0, T], W"?((0,1),C?)),

and wi(t,0) = rows(t,0), wa(t,1) = riwi(t, 1) for all t € (0,T). If, moreover, I is
independent of time, then

n € C*([0,T],L>(0,1)).

3 Linear inhomogeneous evolution equations with
discontinuous data

In this section a general concept of weak solutions to abstract linear inhomogeneous
evolution equations is given, which is suitable for linear inhomogeneous first order
initial boundary value problems, where the boundary data may be discontinuous in
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time . These solutions are “very weak”, because they do not satisfy the variation of
constants formula, in general.

Througout this section let X be an arbitrary Hilbert space with scalar product
(-,")x, and B: D(B) C X — X is the generator of a strongly continuous semigroup
exp (tB) (t > 0) in X. By B* we denote the dual operator to B, and D(B*) is the
domain of definition of B*, i.e. v € D(B*) iff there exists a constant ¢z > 0 such
that

|(Bu,v) x| < cgl|lu||x for all u € D(B).

The space Y < D(B*) is endowed with the norm

[ull2, % Jjul% + 1B u||% for all u € V.

We denote by [+, -]y the dual pairing between ) and Y*.

In this section we consider the abstract linear inhomogeneous initial value problem
w=Bw+ f+®, w(0)=w. (3.1)
(Note that X can be imbedded into Y* = (D(B*))".)

Definition 2 Let wy € X, f € L'((0,7),X) and ® € BV ((0,T),Y*). Then
w e L*((0,T),X) is called a weak solution to (3.1) iff for allt € (0,T) and ¢ € Y
one has

(o) =il = [ (B wlex+ (o F@r + [B(6), ()5 ) ds.

Lemma 2 Let wy € X, f € L' ((0,T),X) and ® € BV ((0,T),Y*), and let w be a
weak solution to (3.1). Then w is weakly continuous as a map from [0,T] into X,
and w(0) = wp.

Proof Take ¢ € X arbitrary. Since B is densely defined and closed on a Hilbert
space, ) = D(B*) is dense in X. Hence there exists a sequence ¢, € Y with

lon — llz =3 0. (3.2)
For all n we have
e ™ (0, w())x € C(0,T],R) and ua(0) = (9, w)x. (3.3)

By (3.2) it follows that
un(t) "5 u(t) = (o, w(t))x

uniformly with respect ot ¢. Hence, we get from (3.3) that (¢, w(-))» € C([0,T],R)
and <Q0,w(0)>X = <Q0aw0>X‘



Theorem 3 Let wy € X, f € L' ((0,T),X) and ® € BV ((0,T),Y*). Then there
ezists a unique weak solution w to (3.1). Moreover,

lw(®)llx < er(lwollx + 12200 + |2l sviemam ).

for allt € [0,T], where the constant cr does not depend on uy, f and ®.

Proof First uniqueness is shown. For this purpose it suffices to consider the
homogeneous case, i.e. wy =0, f =0and ® = 0. Suppose w € L°°((0 T),X) solves

the corresponding homogeneous problem. Then (¢ fo s)ds obeys

9l ult)) 2 = (o, w(®)x = (Bp, u(t))x,

ie. u € C([0,T],X) is a weak solution of d;u(t) = Bu(t) in the sense of [2], and
hence u(t) = exp (tB)(w(0)) = 0, which completes the proof of uniqueness.

Now we prove existence. The idea is approximate ® by functions which are smooth
with respect to time, apply the variation of constants formula and pass to the limit.
Let w, € C3°(—1/n,0), n € N be a mollifier with the property [, w,(t)dt =1 and
define ®,, € C*([0,T1],Y*) by

B, () & / wn(t — $)B(s)ds

0
By Riesz’ lemma applied to ) there exists a unique G, € C>([0,7],Y) with
(@ (1), 0y = (9, Gult))x + (B*0, B* Gy (t))x for all p € Y and t € (0,T). (3.4)
Now, let
wa(t) = exp (tB)(wo + B G (0))
+/Otexp((t—s)3) [£(8) + Gu(s) + B'0,Gn(s)] ds — B*Gn(t)  (3.5)

Because of (3.4) and (3.5) one has for all p € Y

o un(0)x
= (B*p, exp (tB)(wo + B*G,(0)))x + (¢, f(t) + Gn(t))x
+/0 (B*p,exp ((t — 5)B) (f(5) + Gu(s) + B*0,Gn(s))) xds

= (B"p, wn(t) + B*Gn(t))x + (p, f () + Gn(t)) x
= (B @, wn(t))x + (&, f(£)) x + [®n(2), €]y -

Since w,(0) = wy, this yields

(0, wa(t) — wo)x = /0 ((B*¢,wa(s))x + (¢, f(8))x + [®n(s), 0]y) ds. (3.6)
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Next, an L'-bound on 9;® is given. Suppose ¢ € C5° ((0,1),C?). Then

| /OT w(t)atq%(t)dtHy* | /OT Oi(ip + wn) ()0 (1)t .

< @]l Bv 0,y ) | * Wallz=o.1),c2) < @BV ((0,0)2) |2l Lo (0,1, 22)-

Hence
10e®nl| L1 ((0,1) %) < [[@llBV0.137)- (3.7)

Now it is shown that w, is uniformly bounded in L>((0,T), X). From (3.7) follows

|Grllwirom),y) < 10:@nllLro,m),0%) + | ®all L1007 < Crrl|®l Bvo.r,y+)
With (3.5) this implies
|lwn Lo (0,),2) < llwollx + [|Gullwiror),pi) + 1 fllLrom),%)
< Cor (1@l Bv(om)v) + llwollx + || £ 1122 (0,1),2)) -

By this estimate there exists some w € L>((0,7'), X) and a subsequence still labeled
by w,,n € N, such that

wy, =% w in L*®((0,T), X) weak- *. (3.8)

Since ®, =% ® in L=((0,T), V*)-weaks, it follows easily from (3.6) and (3.8) that

(o, w(t) —wo)x = /0 ((B*o,w(s))x + (¢, f(s))x + [®B(s), ¢]y) ds, (3.9)

Hence w is a weak solution to (3.1).

4 Proof of Existence and Regularity

In this section we prove the Lemma 1 and the Theorems 1 and 2.

In order to use the results of Section 3 let us introduce the Hilbert space

def

X =1L1%(00,1),C)

with its usual scalar product (-,-)x. Further, we define the unbounded linear oper-
ator B on X by

Bw % (—w!, w)) (differentiation with respect to z € (0,1)) (4.1)

with domain of definition
D(B) ¥ {(wy, w5) € W2 ((0,1),C?) : w;(0) = rows(0), wy(1) = ryw(0)}.
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By means of assumption (2.5) it is easy to show (cf., e.g., [9, 1, 8] that B is the
generator of a strongly continuous contraction semigroup exp (¢B) (¢ > 0) in X.
Moreover, exp (tB) maps L ((0,1),C?) into L*°((0,1),C?), and there exists an
a > 0 such that

l exp (tBYwll=(on),c2) < exp (~at) [wll = 0.1 (4.2)
The adjoint operator B* is defined on the domain
Y & {(wy, ws) € W2 ((0,1),C?) : wy(0) = Fgwy (0), ws(1) = Frwy(0)}.  (4.3)
The space Y is a Hilbert space with respect to the scalar product
(u,v)x + (B*u, B*v) x for u,v €Y.

In order to take into account the inhomogeneous boundary condition (1.3), we define
the functional ® € BV ((0,7)),Y™) by

@(t), ¢ly = pa(1)a(t) for all p € Y, (4.4)

where [+, -],- denotes the dual pairing between Y™* and Y.

Using this notation we get the following: If (n,w) is a weak solution to (1.1)—(1.4)
(in the sense of Definition 1), then

(powlt) = wn)x = [ (B0, 0(0)x + (g, S(a(s) ho(s) Pyus))x + [0(s) el ) d

for all ¢ € Y and all ¢ € [0,7]. Here we use the same symbol S for the Nemycki
operator as for the function (introduced in (2.8) and (2.9)) generating this Nemycki
operator.

Proof of Lemma 1 Let (n,w) be a weak solution to (1.1)—(1.4). Because of
(2.2), (2.3), (2.8) and (2.10), the integrand in (2.12) belongs to L* ((0,T) x (0, 1)).
Therefore n € W1 ((0,T), L>(0,1)), in particular

n € C ([0, T],L>(0,1)). Using (2.12) again, we get n(0,z) = ng(z) for almost all
z € (0,1). Thus, assertion (i) is proved.

Assertion (ii) follows easily from (2.13): Insert for the test function ¢ a test function
Oy with ¢ € C5° ((0,T) x (0,1),C?) and integrate over ¢t € (0, 7).

Now, let us prove assertion (iv). Denote
1(t) = (hi(t), L)) = S(n(t), [w(®)P)w(?) for t € (0,T).

Then we have f € L>((0,7T), X), and w is a weak solution (in the sense of Definition
2) tow = Bw+f+®, w(0) = wy. Hence, Lemma 2 yields that w is weakly continuous
as a map from [0, 7] into X, and w(0) = wy.
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Finally, in order to prove (iii), denote u(t) o fot w(s)ds for t > 0. Then (2.13) yields

1
| (vt - vt 2) s
0
t
= (i, w(s) ~ wp - / f(s)ds) for all t > 0 and € C((0, ), X).
0 X
Hence, for all ¢ > 0 we get u(t) € W'?((0,1),C?) and

—d,ui(t) = wy(t) — wo — joz f1(s)ds,
8ZU2(t) = U)g(t) — Wo2 — fO fQ(S)dS.

Using this, it follows from (2.13) that

[ () - b))

1
= / ( — 10,u1(t, 2) + P20, us(t, z))dz + @a(1)a(t) for allt > 0 and p € Y.
0
Because of (4.3) this yields (2.14) for all ¢ € (0, 7).

Lemma 3 Let w® € L>([0,T], X) be the weak solution of
Ow=Bw+®, w(0)=w

in the sense of Definition 2. Then w® € L* ((0,T), L*>=((0, 1), C?)).

Proof Let &, G,, and w, be defined as in the proof of Theorem 3. By the definition
(3.4) of G, one has

(0,Gn(t))x + (B*0, B*G,(t))x = 0 for all p € C°((0,1),C?) and t € (0, 7).

Therefor from (4.1) it follows that B*G,(t) € W12 ((0,1),C?) and
(B*Gp(t)) = diag(1, —1)G,(t) and hence,

1B*Gn(t) [1.2(0,1),c2) = 1Gn(®)720.1),c2) + 1B Gn(®)l172¢(0,1),c2)-
By the continuous embedding W2((0,1), C?) < L>((0,1),C? it follows

1Gn()llzoo((0,1),c2) + [[B*Gnlt)|| o ((0,1),c2)
< 1 ([|Gu(@®) | z2(01),c2) + |1B*Grl(t) || 22(0,1),c2)) < c2l|Pn(t)]

Y*
and analogously

10:G ()|l L= ((0,1),c2) + | B*0:Grn(t)]| oo (0,1),2) < C2/|0:Pn(2)]

Y*-
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Now, it follows from (3.5), (3.7), and property (4.2) of B that

|wnll Lo (0.1), L ((0,1).c2)) < €3

By (3.8) this completes the proof.

Now the existence of solutions to a suitablely truncated problem will be proved, and
it will be shown that its solution is actually a weak solution to (1.1)—(1.4) using
suitable a prori estimates. Let § and M be positive constants. Then the truncated
equations read as

Om(t,z) = I(t,2) —a(2)n(t, 2) — Gou (2,n(t, 2), [Hu(w(t, 2))[?)

l ,
Ouw(t,z) = Buw(t,z)+ Ssur(z,n(t, 2), | Hu(w(t, 2))?) Hy(w(t, 2)). (4.5)

Here

Gsa(z,y,1) E{ Glz,6,r)  ify e (—o00,d], (4.6)
G(z,M,r) ifye[M, o).

The definition of Ss s is analogous. The function Hys : C* — C? is globally Lipschitz
continuous and bounded with the property that

|Hpr(u)] < min {|u|, M} for all u € C* and Hy(u) = u if |u| < M. (4.7)

The notion of weak solutions to (4.5), (1.3), (1.4) is analogous to Definition 1.
Lemma 4 There exists a unique weak solution to (4.5), (1.3), (1.4).

Proof: Let w® € C,([0,T], X) be the solution of d,w = Bw + ®, w(0) = w(0)
as in lemma 3 in the sense of Definition 2. First n € L*((0,7),L>(0,1)) and

w e L®((0,T), L=((0,1),C?)) solve (4.5), (1.3), (1.4) if and only if n and u % w—w"
satisfy

n(t) = ng + /0 [I(s) —on(s) — Gsum (z, n(s), |Hu(u(s) + wo(s))|2)] ds

and

(pou)x = [ ((B*0,u(0)x + (o, S(n(s) [HarCuls) + w' () Puls)) x )ds (45)

for all ¢ € Y. By the result in [2] it follows that (4.8) is fulfilled if and only the
variation of constants formula

ut) = [ e (- 9))
[Ss.r (2,m(s), |Har(u(s) + w’(s)))?) Hu(u(s) + w’(s))] ds
holds.
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def

This means that (n,u) € S = L* ((0,T), L>=((0,1),R x C?)) = L*((0,T)x(0,1), Rx
C?) has to be a fixed-point of the operator A : & — S defined by

def

A(n,u) = (n,a)

with

(t) def no —I—/O [[(s) —on(s) — Gsur (z, n(s), |Har(u(s) + wo(s))|2)] ds

and

i) [exp((t-5)B)
(S5 (2,n(s), | Hur(u(s) +w’(s))|?) Hu(u(s) +w’(s))] ds.

Due to the truncation the nonlinear functions occurring in A are globally Lipschitz
continuous with respect to u. Therefore it follows easily from (4.2) that A is a
contraction in S with respect to the norm

def
()5 s (65 () (), 00 i) for L (0,00)
te(0,T

provided that L > 0 is chosen large enough. Hence A has a unique fixed point
(n,u) € 8. Finally, (n,u 4+ wy) solves the truncated problem. This completes the
proof.

The aim of the following considerations is to show that the weak solution (n,w) of
(4.5), (1.3), (1.4) is actually a solution of (1.1)-(1.4) provided that § is sufficently
small and M sufficiently large. This completes the proof of Theorem 1.

Theorem 4 For all § > 0 and M > 0 the weak solution (n,w) of (4.5), (1.3), (1.4)
satisfies the estimates

n(t,z) < maz {@, |0 ||z=(0m)x(0.1)) } + exp (—to(z))ne(2), (4.9)

n(t, z) > essinfng exp(—o(2)t) (4.10)

and
lw(t, z)| < Mo(T, no, wo)

for all t € (0,T) and almost all z € (0,1). Here the constant My(T,ny,wy) is
independent of § and M.

Proof Suppose 6 > 0, M > 0 and that (n,w) € L*((0,7), L>(0,1)) solves (4.5),

(0
(1.3), (1.4). Let m o (@, 07 || e (oryx 01y } and h(y) & [y — m]* for
y € R It follows from the property (2. 11) of G that Gsm(z,n(t,z)) > 0 for all
(t,z) € (0,T) x (0,1) with n(¢,z) > m. Hence (4.5) yields

Q.."

O:h(n) = h'(n) [I — on — Gsur (2, n, |Hu(w)]?)]

12



< —oh'(n)[n — o7t I] < —ch(n).
This implies the upper a priori bound h(n(t, z)) < exp (—to(z))h(ny(z)), and hence
n(t, z) < m+ h(n(t, 2)) < m + exp (—to(2))[no(2) — m]",

whence (4.9).

Next a lower bound is proved. Let n as in assumption (2.10). Define g, : R — R by

ge(u) Y nlifu>n, ge(u) ©utife <u<n,and ge(u) M etifu<efore>0.

Since ¢’ <0, 1 > 0 and G5 (y) < 0 if y < n, it follows from (4.5) that
0ige(n) = g.(n) [I —on —Gsu (z, n, |HM(w)|2)]

< —ogl(nn < ag.(n).
Hence,

g:(n(t, 2)) < (infng) *exp (to(2))
provided that ¢ < infny. Letting e — 0 we obtain estimate (4.10).

It remains to show the upper bound for the field w. By assumption (2.10), (4.9)
and (4.10) one has

|Ss5.00 (2, n(t, 2), |[Hu(w(t, 2))|?) | < Ci forallt € (0,T),z € (0,1) (4.11)

with some C; € (0,00) independent of §, M. Recall that

w(t) = w'(t) —I-/O exp ((t — s)B) [S,g,M (z, n(s), |HM(w(s))|2) HM(w(s))] ds

Now it follows from (4.2), Lemma 3 and (4.11) that

¢
[w(®)l|ze=(1.2) < Co + Cz/ 1S5.01 (2,m(s), [ Har(w(s))[?) Har(w(s)) |z (o,0),0)ds
0

t
<05 (14 [ Il uarcors).
0

This implies by Gronwall’s lemma that
||w(t)||Lm((0’1)’C2) S C4 forall t € (0, T) (412)

with some C} independent of §, M. Note that the constants may depend on ng, wy
and 7. Since (4.9), (4.10) and (4.12) are independent of §, M, this completes the
proof of Theorem 4.

This section is closed by the proof of Theorem 2 concerning the regularity of the
solution in the case of no input-signal.
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Proof of Theorem 2 In the case a = 0 (and hence ® = 0) the function
w € C([0,00), X) is a weak solution of the evolution problem

Ow = Bw + S(z,n, |w*w, w(0)=w;

in the sense of [2].

Since n € L>((0,T) x (0,1)), w € L*((0,T) x (0,1)) and n~' € L*((0,T) x (0,1))
one can introduce by truncation a globally bounded function

F :(0,1) x R x C* — C?, which is globally Lipschitz continuous with respect to
(n,w) uniformly in z, such that

S(z,n(t,2), lw(t, 2)|H)w(t, z) = F(z,n(t, 2),w(t, z)) for all t € (0,T),z € (0,1).
Now let f:(0,7) x X — X be defined by

(F(t,u))(2) € F(z,n(t, 2),u(t, z)) for t € (0,T), z € (0,1).

Then w satisfies the variation of constants formula, see [2]

w(t) = exp (tB)wy + /0 exp ((t — s)B) f(s,w(s))ds. (4.13)

Recall that
n € W-((0,T), L>=(0,1)). (4.14)

Since F is globally Lipschitz continuous with respect to (n, w), it follows easily that
f:(0,T) x X — X is Lipschitz continuous in both variables. Therefore we obtain
from [5, Theorem 1.6, sect. 6] that w is a strong solution, i.e. ,w € L'((0,T), X).
By (4.14) this implies f(-,w(-)) € Wb((0,T), X).

Finally the assertion follows from the regularity theorem [3, Proposition 4.1.6].
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