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Abstract. An extension of the stochastic weighted particle method for

the numerical treatment of the Boltzmann equation is presented. A new

procedure for modelling the in�ow boundary condition is introduced and
its performance is tested in a two-dimensional example with strong den-
sity gradients. A gain factor in computing time of several orders of
magnitude is achieved in speci�c situations.
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1. Introduction

In this paper we apply the Stochastic Weighted Particle Method (SWPM) to the nu-

merical solution of the spatially two-dimensional Boltzmann equation. This method was

introduced in [6], where we presented �rst numerical results for the one-dimensional heat

exchange problem. The convergence of the method was investigated in [8], where we were

also able to show an enormous reduction of the stochastic �uctuations using the SWPM

for a model kinetic equation. In [7] we presented a detailed study of di�erent e�ects of
the numerical solution of this equation. The computation of macroscopic quantities in

regions with low particle density was of special interest.

The Boltzmann equation for dilute monoatomic gases [3]

ft + (v; gradxf) =

Z
R3

Z
S2

B(v;w; e)
h
f(v0)f(w0)� f(v)f(w)

i
de dw (1.1)

describes the time evolution of the particle density

f = f(t; x; v) : R+� 
�R3! R+ :

Here R+ denotes the set of non-negative real numbers and 
 � Rd; d = 1; 2; 3 is a domain

in physical space. The following notations have been used:

� v;w 2 R3 are the pre-collision velocities;

� e 2 S2 � R3 is a unit vector;

� v0; w0 are the post-collision velocities,

v0 =
1

2
(v + w) +

1

2
jv � wje ; w0 =

1

2
(v + w)�

1

2
jv �wje ; (1.2)

� B(v;w; e) is the collision kernel:

Note that the right-hand side of equation (1.1), known as the collision integral, depends on

t and x only as parameters, so we have omitted this dependence in order not to overload
the formulae. The collision kernel

B(v;w; e) =
1

2
p
2 � "

jv � wj =
cB

4�
jv � wj (1.3)

we will consider corresponds to the �hard spheres� model. The dimensionless parameter

" is the so-called Knudsen number, i.e. the quotient between the mean free path of the
�ow and the characteristic length of the problem.

The Boltzmann equation (1.1) is subjected to the initial condition

f(0; x; v) = f0(x; v) ; f0 : 
�R3! R+

as well as to some boundary conditions for x 2 � = @
 : The boundary conditions

usually prescribe the incoming �ux of particles

f(t; x; v)(v; nx) ; x 2 � ; v 2 R3
in(x) ;

in terms of the outcoming �ux of particles

f(t; x; w)j(w;nx)j ; x 2 � ; w 2 R3
out(x) ;
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where nx denotes the unit inward normal vector to the boundary � ; and the notations

R
3
in(x) =

�
w 2 R3 : (w;nx) > 0

	
; R

3
out(x) =

�
w 2 R3 : (w;nx) � 0

	
(1.4)

are used. The relation between incoming and outcoming �ux is formulated using a so-

called scattering kernel r(t; x;w! v) as follows (cf. [3, Ch. 8]):

f(t; x; v)(v; nx) =

Z
R
3
out

(x)

r(t; x;w! v)f(t; x; w)j(w;nx)jdw ; (1.5)

x 2 � ; v 2 R3
in(x) :

One example is the specular re�ection with

r(t; x;w! v) = �(w � (v � 2(v; nx)nx))

so that the boundary condition (1.5) takes the form

f(t; x; v) = f(t; x; v � 2(v; nx)nx) ; x 2 � ; v 2 R3
in(x) : (1.6)

This boundary condition conserves the mass and the energy. The normal component of
the bulk velocity is equal to zero on the boundary. The boundary condition (1.6) ful�ls
the reciprocity condition (see [3, Ch. 8] for more details) and therefore preserves the local

equilibrium on the boundary. This boundary condition is usually inadequate for real
surfaces but perfect for arti�cial boundaries due to spatial symmetry of the �ow.

The next important example is the di�use re�ection with the Maxwellian distribu-

tion function

M�(t; x; v) =
1

2� (RT�(t; x))2
exp

�
�

jvj2

2RT�(t; x)

�

on the boundary � ; normalised so thatZ
R3
in
(x)

M�(t; x; w)(w;nx) dw = 1 ;

where R is the gas constant. In this case the boundary condition (1.5) takes the form

f(t; x; v)(v; nx) = Fout(t; x)M�(t; x; v)(v; nx) ; x 2 � ; v 2 R3
in(x) : (1.7)

The connection between the outcoming and incoming �ux of particles is such that the

conservation of mass is guaranteed, i.e.

Fout(t; x) =

Z
R
3
out

(x)

f(t; x; w) j(w;nx)jdw :

In general, the energy is not conserved by the boundary condition (1.7) but the local

equilibrium is.

The third kind of boundary condition we will need is the so-called in�ow boundary

condition

f(t; x; v)(v; nx) = fin(t; x; v)(v; nx) ; x 2 � ; v 2 R3
in(x) : (1.8)
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Here the incoming �ux is prescribed independently of the outcoming �ux which will
therefore be adsorbed permanently.

The main aim of this paper is to model the incoming �ux (1.8) using weighted particles

in order to increase the accuracy of the numerical solution of the Boltzmann equation in

certain regions of the �ow. Usually those regions are �low density� regions where the

resolution of the �ow using standard particles is di�cult or even impossible because of

large stochastic �uctuations. We refer to [1], [4] for more detail on particle schemes
and their applications, to [6] concerning additional references related to the stochastic

weighted particle method, and to [2] concerning a related weighting scheme.

The paper is organised as follows. In Section 2 the structure of the stochastic weighted

particle method is described. The simulation procedure for handling boundary conditions,

in particular at the in�ow boundary, is introduced in detail. A two-dimensional test

problem is studied in Section 3. In the steady-state collisionless case analytic expressions

are found for two speci�c functionals of the solution of the Boltzmann equation. Results

of numerical experiments are presented in Section 4. The new facilities of the stochastic
weighted particle method are demonstrated, reaching a gain factor in computing time of

several orders of magnitude in speci�c examples.

2. Stochastic Weighted Particle Method

A system of simulation particles�
xi(t); vi(t); gi(t)

�
; i = 1; : : : ; n(t) ; t � 0 ; (2.1)

is used to approximate the behaviour of real gas. Here xi(t) 2 
 and vi(t) 2R3 denote

respectively the position and the velocity of the i-th particle at time t and gi(t)> 0 is
some variable weight. The number of particles in the system is n(t) : The solution of the

Boltzmann equation (1.1) is approximated in the sense that

Z



Z
R3

'(x; v) f(t; x; v) dv dx �
n(t)X
i=1

gi(t)'(xi(t); vi(t)) ;

for appropriate test functions ' :

The time evolution of the particle system (2.1) is de�ned using a splitting technique.

The simulation of the free �ow of the particles and the simulation of their collisions are

separated on a small time interval�t : This means that on �t ; at a �rst step, the free �ow

is performed disregarding the possible collisions. Then, at a second step, the collisions
are simulated neglecting the free �ow.

During the free-�ow simulation step, the particles move according to their velocities,

i.e.

xi(t+�t) = xi(t) +

Z t+�t

t

vi(s) ds :

The velocities do not change unless a particle hits the boundary. In this case, the corre-
sponding velocity changes according to the boundary conditions.
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During the collision simulation step, a partition


 =

Ncell[
l=1


l (2.2)

of the spatial domain 
 into a �nite number Ncell of disjoint cells is used. There is no

interaction between di�erent cells. Collisions of the particles are simulated in each cell.

2.1. Modelling of the boundary conditions

Here we describe the mechanism for the creation of new particles at the in�ow boundary

�in � � according to the boundary condition (1.8). We model the in�ow by means of a

Markov jump process.

The waiting time parameter is

�(�) =

Z
�in

Z
R3
in
(x)

�(x; v) dv �(dx) ; (2.3)

where � is some intensity function not depending on the state of the system, R3
in(x)

is the half-space of directions showing inside the domain 
 (cf. (1.4)), and � denotes
the surface measure on � : This means that the waiting time � until the next jump is
determined from

Prob(� � t) = exp(�t �(�)) ; t � 0 :

The jump of the system consists in the creation of a new particle at some point x 2 �in

with velocity v 2 R3
in(x) ; where x; v are distributed according to

1

�(�)
�(x; v) : (2.4)

The weight of the new particle is determined by a weight creation function (x; v) :

The in�ow boundary condition (1.8) prescribes the relationship between the func-
tions � and  as follows (assuming time homogeneity):

(x; v)�(x; v) = fin(x; v) (v; nx) : (2.5)

Note that there is considerable freedom in choosing the parameters which determine the

mechanism for the creation of new particles at the in�ow boundary.

The average number of new particles created during �t is

�(�)�t :

The expected value of the weight of a new particle is

1

�(�)

Z
�in

Z
R
3
in
(x)

(x; v)�(x; v) dv �(dx) =
Fin

�(�)
;
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according to (2.5), where

Fin =

Z
�in

Z
R3
in
(x)

fin(x; v) (v; nx) dv �(dx) : (2.6)

The expected overall weight created during �t is

�(�)�t
Fin

�(�)
= Fin�t (2.7)

and does not depend on � : However, the �uctuations of the overall weight depend on the

choice of the parameter. They are determined by the second moment of the weight

of a new particle, which is

1

�(�)

Z
�in

Z
R3
in
(x)

(x; v)2 �(x; v) dv �(dx) : (2.8)

In the following we consider the special case (cf. (2.6))

�(x; v) =
Fin

gin

h
~c ~p(x; v) + cin pin(x; v)

i
and

(x; v) = gin
pin(x; v)

~c ~p(x; v) + cin pin(x; v)
; (2.9)

where

~c+ cin = 1 ; ~c; cin � 0 ;

and gin > 0 is a standard input weight. The function

pin(x; v) =
fin(x; v) (v; nx)

Fin

(2.10)

describes themain stream at the in�ow boundary, and the (probability density) function

~p describes some auxiliary stream. Note that (2.5) is satis�ed.

The waiting time parameter (2.3) takes the form

�(�) =
Fin

gin
(2.11)

which does not depend on ~c; cin : Position x and velocity v of the new particle are generated
according to the distribution (2.4), i.e.

~c ~p(x; v) + cin pin(x; v) :

An upper bound for the weight (2.9) of a new particle is

gin min

�
1

cin
;
1

~c
sup
x;v

pin(x; v)

~p(x; v)

�
: (2.12)

The second moment (2.8) of the weight takes the form

g2in

Z
�in

Z
R
3
in
(x)

pin(x; v)
2

~c ~p(x; v) + cin pin(x; v)
dv �(dx) :

The following algorithm is obtained:
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0. Set time counter to zero.

1. Generate a time step with parameter (2.11) and add it to the time counter.

If time counter exceeds �t then STOP.

2a. With probability ~c create position and velocity (x; v) of the new particle

according to the auxiliary stream ~p :

2b. With probability cin create position and velocity (x; v) of the new particle

according to the main stream pin :

3. Determine the weight (x; v) of the new particle according to (2.9).

4. Return to 1.

Remark 2.1 If gin � n(0)�1 is small, then deterministic waiting times

1

�(�)
=

gin

Fin

can be used. This means that a deterministic number of particles is created. However,

the stochastic mechanism is more stable in extreme situations (low particle numbers, large

time steps, etc.).

Example 2.2 (Standard model) In the cases ~c = 0 or ~p = pin position and velocity of

the new particle are distributed according to the main stream pin ; and the weight (2.9) is

gin :

Remark 2.3 In the special case cin = 0 ; all particles are created according to ~p with

weight

gin
pin(x; v)

~p(x; v)
:

If ~p di�ers signi�cantly from pin ; then only very few particles representing the main

stream pin will be created. However, those particles will have very large weights. The

expected overall weight of particles created during a time interval of length �t is as given

in (2.7). However, its actual value �uctuates very strongly around this correct value, and

is mostly too small. The e�ect of strongly �uctuating weights is not desirable since the

value supx;v (x; v) controls the convergence.

Let

fin(x; v) = Min(x; v) =
%in(x)

(2�RTin(x))3=2
exp

�
�
jv � Vin(x)j2

2RTin(x)

�
(2.13)

be the in�ow Maxwellian describing the main stream �ow at the in�ow boundary

�in : Let ~M be some Maxwellian with arbitrary parameters ~%(x) ; ~V (x) and ~T (x) (cf.
(2.13)) representing an auxiliary stream in a desired direction. Denote

~p(x; v) =
~M (x; v) (v; nx)

~F
; (2.14)
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where

~F =

Z
�in

Z
R3
in
(x)

~M (x; v) (v; nx) dv �(dx) :

The variable weight (2.9) takes the form (cf. (2.10))

gin
Min(x; v)

Fin
~F
~c ~M(x; v) + cinMin(x; v)

:

One obtains (cf. (2.12))

sup
x;v

pin(x; v)

~p(x; v)
=

~F

Fin

sup
x;v

Min(x; v)

~M(x; v)
(2.15)

and

Min(x; v)

~M (x; v)
=

%in(x)

~%(x)

~T (x)3=2

Tin(x)3=2
exp

 
�
jv � Vin(x)j2

2RTin(x)
+
jv � ~V (x)j2

2R ~T (x)

!
:

The expression (2.15) is bounded with respect to v if

~T (x) > Tin(x) � � ~T (x) ; ~%(x) � � %in(x) ; for some � > 0 :

If the parameters of the in�ow Maxwellian (2.13) as well as the normal vector nx = n

do not depend on x 2 �in then (cf. (2.6), (1.4))

Fin = j�inj
Z
(v;n)>0

Min(v) (v; n)dv

and

pin(x; v) =
1

j�inj
Min(v) (v; n)R

(v;n)>0
Min(v) (v; n) dv

; (2.16)

where j�inj denotes the area of �in : According to (2.16), the position of the new particle
is generated uniformly on �in ; and the distribution of its velocity is

Min(v) (v; n)R
(v;n)>0

Min(v) (v; n) dv
; (v; n) > 0 :

The integral in (2.16) can easily be computed analyticallyZ
(v;n)>0

Min(v) (v; n)dv = (2.17)

%in

2
(Vin; n)

�
1 + erf

�
(Vin; n)p
2RTin

��
+ %in

r
RTin

2�
exp

�
�
(Vin; n)

2

2RTin

�
;
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where

erf(a) =
2
p
�

Z a

0

exp(�z2) dz =
1

p
2�

Z a
p
2

�a
p
2

exp(�
y2

2
) dy ; a � 0 ; (2.18)

erf(a) = erf(�a) ; a < 0 :

Note that, in the case Vin = 0 ; (2.17) takes the form

Z
(v;n)>0

Min(v) (v; n)dv = %in

r
RTin

2�

and the corresponding normalisation factor is

1

(2�RTin)3=2

r
2�

RTin
=

1

2� (RTin)2
:

2.2. Modelling of the collisions

The collision-simulation procedure for systems of weighted particles has been described
in detail elsewhere (see [6], [8]). Here we mention the main steps.

The state of the system is

z =

�
(x1; v1; g1); : : : ; (xn; vn; gn)

�
:

During a collision two new particles with equal weights and post-collision velocities (1.2)

are created,
(xi; v

0
i;min(gi; gj)) ; (xj; v

0
j;min(gi; gj)) :

The collision partners lose a corresponding part of their weights,

(xi; vi; gi �min(gi; gj)) ; (xj; vj; gj �min(gi; gj)) :

Particles with zero weights are removed from the system. Thus, the number of particles

in the systems remains constant if two particles of equal weight collide, and increases by
one if the two colliding particles have di�erent weights.

The collision mechanism is described by a Markov jump process. The waiting time
parameter is (cf. (1.3))

�̂(z) =
1

j
lj
cB

1

2
Ul;max (nl � 1) [2 gsum(z)� nl gmin(z)] ;

where gmin(z) is a lower bound of the weights in the cell, i.e.

gmin(z) � gi ; 8i : xi 2 
l ;

gsum(z) =
X

i :xi2
l

gi
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is the local mass, nl denotes the number of particles in the cell, and Ul;max is some upper
bound of the relative velocities in the cell.

The index i is chosen according to

gi (nl � 2) + gsum(z)� (nl � 1) gmin(z)

(nl � 1) [2 gsum(z)� nl gmin(z)]
:

Given i ; the parameter j is chosen according to

gi + gj � gmin(z)

gi (nl � 2) + gsum(z)� (nl � 1) gmin(z)
:

The jump is �ctitious with probability

1 �
jvi � vjj
Ul;max

max(gi; gj)

gi + gj � gmin(z)
:

The vector e is uniformly distributed on the unit sphere S2 :

3. A two-dimensional test problem

The two-dimensional domain 
 we will use for our numerical experiments is a trapezoid


 =
�
x = (x1; x2)

T 2 R2; 0 < x1 < a; 0 < x2 < b+ x1 tan(�)
	

as shown in Figure 3.1.

α

a

b

Figure 3.1 Computational domain 


The boundary � of the domain 
 consists of four straight pieces

� = �l [ �b [ �r [ �t (3.1)

corresponding to the left, bottom, right and top parts of the boundary. The unit inward
normal vectors to these parts of the boundary are

nl = (1; 0; 0)T ; nb = (0; 1; 0)T ; nr = (�1; 0; 0)T ; nt = (sin(�);� cos(�); 0)T : (3.2)

An incoming �ux of the particles is prescribed on the left part of the boundary �l corre-

sponding to the boundary condition (1.8) with (cf. (2.13))

fin(t; x; v) =
%in

(2�RTin)3=2
exp

�
�
jv � Vinj2

2RTin

�
; t > 0; x 2 �l; (v; nl) > 0 : (3.3)
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We assume that the parameters of the Maxwell distribution (3.3) %in; Vin and Tin are
constant with respect to time and space variables. Furthermore, we will simulate the

situation where the temperature of the in�ow is low (Tin = 10� � 20�K) and at the same

time the Mach number (the ratio of the stream speed to the speed of sound)

Mach =
jVinjp
RTin

is rather high (Mach = 5� 20).

The boundary piece �b will usually represent the axis of symmetry, so we have to use

the specular re�ection (1.6) there.

At the boundary �r we will assume a permanent adsorption of the particles. This

means that

f(t; x; v)(v; nr) = 0 ; t > 0; x 2 �r; (v; nr) > 0 :

In other words we are modelling the �out�ow� of the particles.

On the top of the computational domain the di�use re�ection of particles (1.7) will

usually be assumed. The corresponding temperature of this boundary Tt will be much
higher than that of the in�ow.

The test problem described above is simple but already su�cient to illustrate the new
possibilities arising from the introduction of weights to the stochastic particle schemes.

A �rst interesting test is an adequate computation of the in�uence of the �hot� top
of the domain on the �ow. The main problem here is a big di�erence in density along a
line from the bottom to the top. If the Mach number is, for instance, Mach = 10 then

the density changes from the value close to %in in the neighbourhood of the bottom to

10�4 times this value at the top. In computational practice this means that only very few
particles will reach the hot top of the domain and then turn back to the �ow. The picture

of the �ow will be stochastically �uctuated by those particles. An enormous amount
of smoothing steps would be necessary to work out the real in�uence of the hot top.
However, this in�uence can be very important because of the heating of the main stream.

In the next two �gures we illustrate this e�ect.

In Figure 3.2 we show the contours of the density, temperature, local Mach number

as well as of the local equilibrium function

Crit(t; x) =
1

%R T

r
2

5

jqj2

RT
+

1

2
kM � %V V T � pIk2F : (3.4)

The function (3.4) was introduced in [9] and describes a weighted deviation of the local

distribution function from the Maxwell distribution having the corresponding macroscopic

parameters. The vector q in (3.4) is the heat �ux vector

q(t; x) =
1

2

Z
R3

(v � V )jv � V j2f(t; x; v)dv;

M denotes the momentum �ow

M(t; x) =

Z
R3

vvTf(t; x; v)dv;

11



V is the bulk velocity

%(t; x)V (t; x) =

Z
R3

vf(t; x; v)dv;

p is the pressure

p(t; x) = %(t; x)RT (t; x)

and k � kF denotes the Frobenius norm of a matrix.

0 100 200 300 400
0

25
50
75
100
125
150

Mach number

0 100 200 300 400
0

25
50
75
100
125
150

Equilibrium

0 100 200 300 400
0

25
50
75
100
125
150

Density

0 100 200 300 400
0

25
50
75
100
125
150

Temperature

Figure 3.2 Contour plot of the macroscopic quantities.

The input parameters of this test are: a = 2:0; b = 0:4; � = 0:2. We have used the in�ow
parameters (cf. (3.3))

%in = 1:0; Vin = (294:39; 0; 0)T ; Tin = 10:0;

and di�use re�ection with Tt = 300:0 on �t. The in�ow velocity in (3.5) corresponds to

the Mach number equal to 5:0. We have used the mean free path value " = 0:1 for this
simulation.

The absolute values of the depicted results can be seen in Figure 3.3 where we show
the same macroscopic quantities plotted along the axis of symmetry (i.e. x2 = 0).

12



0 0.5 1 1.5 2
Mach number

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2
Equilibrium

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2
Density

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2
Temperature

10

20

30

40

50

Figure 3.3 The macroscopic quantities on the line of symmetry.

These relatively smooth �gures (except the function Crit(t; x) which involves third mo-

ments) were obtained using 6400 averaging time steps after reaching the �steady-state�
situation.

Similar results can be obtained for Mach = 10 using many more averaging steps.
However, it is almost impossible to see any e�ects of the �hot� top boundary (even if it

becomes arti�cially very hot) for Mach = 15. The particle density close to the top is
about 10�8 times the in�ow density.

An important step towards handling this problem is the accurate computation of the
following functionals of the solution of the Boltzmann equation. The �rst functional
describes the �ow of the particles through the top of the computational domain �t : The

second functional is the density of the gas along the line �r : In order to ensure precision

in our tests we �nd in the subsequent subsections the analytical expressions for these
functionals in the collisionless steady-state situation.

3.1. Steady-state collisionless case

Consider a special steady-state model problem for the function f(x; v) satisfying the free

�ow equation

(v; gradxf(x; v)) = 0 ; x1 > 0 ; v1 > 0 : (3.5)

The equation (3.5) is subjected to the boundary condition (cf. (1.8))

f(x; v) = fin(x; v) ; x1 = 0 ; v1 > 0 :
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The in�ow function fin(x; v) vanishes outside the strip

�in = fx 2 R3; x1 = 0; 0 � x2 � b; �1 < x3 <1g

having the form

fin(x; v) =

�
Min(v) ; x1 = 0; 0 � x2 � b ;

0 ; otherwise.
(3.6)

The Maxwell distribution function with constant parameters %in ; Vin = (V; 0; 0)T and Tin
is (cf. (2.13))

Min(v) =
%in

(2�RTin)3=2
exp

�
�
jv � Vinj2

2RTin

�
: (3.7)

The solution of the boundary value problem (3.5), (3.6) is given by the formula

f(x; v) = fin(x+ � v; v) ; � 2 R ; (3.8)

where

� = � (x; v) = �
x1

v1
; v1 > 0 ; (3.9)

so that x1 + � v1 = 0 :

3.2. Surface functional

In this subsection we consider the problem of calculating the functional of the solution

Q(s) =

Z
�t(s)

Z
R3
out

(x)

f(x; v)j(v; nx)j dv �(dx) ; s > 0 ; (3.10)

i.e. the number of particles crossing the rectangular �out�ow� boundary

�t(s) = fx 2 R3; x = (u; b+ tan(�)u;w)T ; 0 � u � s; 0 � w � 1g (3.11)

per unit of time. The surface measure can be expressed as

�(dx) = Jx(u;w)du dw =

s����@x@u
����
2 ���� @x@w

����
2

�
�
@x

@u
;
@x

@w

�2

du dw:

Using (3.11) we obtain

�(dx) =

q
1 + tan2(�) du dw =

1

cos(�)
du dw:

The normal vector to �t(s) is constant and has the form (cf. (3.2))

nt = (sin(�);� cos(�); 0)T : (3.12)
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The integration domain in velocity space (inner integral in (3.10)) is reduced according
to the constraints (cf. (1.4), (3.8), (3.6))

(v; nt) � 0 ; 0 � x2 + � v2 � b ;

or equivalently (cf. (3.12), (3.9))

v1 sin(�)� v2 cos(�) � 0 ; 0 � x2 �
v2

v1
x1 � b :

These inequalities are ful�lled if

v 2 R3
+(x) =

�
v1 > 0; tan(�)v1 � v2 �

�
tan(�) +

b

x1

�
v1

�
:

Thus, the functional (3.10) simpli�es to

Q(s) =
1

cos(�)

Z 1

0

dw

Z s

0

du

Z
R
3
+
(x)

fM(v)(v; nt) dv

and can be written as

%in

(2�RTin)3=2

Z s

0

du

Z
R
3
+(x)

exp

�
�
(v1 � V )2 + v22 + v23

2RTin

�
(v; nt)

cos(�)
dv: (3.13)

The integration over v3 can be done immediatelyZ 1

�1
exp

�
�

v23
2RTin

�
dv3 =

p
2�RTin:

Thus, the velocity integral is nowZ 1

0

dv1

Z v1(tan(�)+b=x1)

v1 tan(�)

exp

�
�
(v1 � V )2 + v22

2RTin

�
(� tan(�)v1 + v2) dv2: (3.14)

Then we use the following substitution in (3.14)

v1 = z1
p
2RTin; dv1 =

p
2RTin dz1;

v2 = z2
p
2RTin; dv2 =

p
2RTin dz2;

where new (dimensionless) variables satisfy

z1 2 (0;1) ; z2 2 (c(z1); d(z1; u)) = (z1 tan(�); z1(tan(�) + b=x1)) :

Thus, with

� =
V

p
2RTin

we get the following expression

(2RTin)
3=2

Z 1

0

e�(z1��)
2

 Z d(z1 ;u)

c(z1)

�
�c(z1)e�z

2
2 + z2e

�z2
2

�
dz2

!
dz1:
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Calculating the integral over z2 and using (3.13) we obtain the function (cf. (2.18))

q(u) = �
%in

2�

p
2RTin

Z 1

0

e�(z1��)
2
�p

�c(z1)erf(z2) + e�z
2
2

����d(z1;u)
z2=c(z1)

dz1 (3.15)

and therefore

Q(s) =

Z s

0

q(u)du: (3.16)

Consider the special case � = 0. Then

c(z1) = 0 ; d(z1; u) = z1
b

u

and the function q(u) simpli�es to

q(u) =
%in

2�

p
2RTin

Z 1

0

e�(z1��)
2

�
1� e�z

2
1
b
2

u2

�
dz1 : (3.17)

The integration in (3.17) can now be done analytically and we get

q(u) =
%in
p
2RTin

4
p
�

�
1 + erf(�) �

u
p
b2 + u2

e
� �

2
b
2

b2+u2

�
1 + erf

�
� u

p
b2 + u2

���
: (3.18)

Further simpli�cation can be achieved if we assume that

� = 0; � = 0:

This case corresponds to the zero average velocity Vin in (3.7). The function q(u) is now

q(u) =
%in

4
p
�

p
2RTin

�
1 �

u
p
b2 + u2

�
(3.19)

and can be integrated analytically

Q(s) =
%in

4
p
�

p
2RTin

�
b+ s�

p
b2 + s2

�
: (3.20)

This gives us some test curves for di�erent settings of parameters. The general case (3.15)

requires a numerical integration procedure while the curves (3.18) and (3.19) can be used
directly.

3.3. Volume functional

We now consider the same model boundary value problem as in the previous subsection,

and compute the density %(x) for x from the �out�ow� boundary �r. This part of the
boundary is described via parametrisation�

a

0

�
+ x2

�
0

1

�
; 0 � x2 � b+ a tan(�) : (3.21)
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Thus the density %(x) is a function of x2 alone.

The solution of the problem is given by (3.8). Our task now is to �nd an analytical

expression for the density

%(x) =

Z
R3

f(x; v) dv =

Z
R3+(x)

Min(v) dv ; x 2 �r :

The integration domain R3
+(x) is de�ned according to the constraints (cf. (3.9))

v1 > 0 ; x1 + �v1 = 0 ; 0 � x2 + �v2 � b

or equivalently

v1 > 0 ;
x2 � b

x1
�

v2

v1
�

x2

x1
: (3.22)

Thus for positive v1 (3.22) results in

x2 � b

x1
v1 � v2 �

x2

x1
v1

and we get

%(x) =

Z 1

0

dv1

Z x2
x1

v1

x2�b

x1
v1

dv2

Z 1

�1
fM(v)dv3:

The integral with respect to v3 can be computed immediately and we obtain

%(x) =
%in

2�RTin

Z 1

0

exp

�
�
(v1 � V )2

2R Tin

�
dv1

Z x2
x1

v1

x2�b

x1
v1

exp

�
�

v22
2RTin

�
dv2 : (3.23)

The substitution v1 =
p
2R Tin z1 and v2 =

p
2R Tin z2 in (3.23) leads to

%(x) =
%in

�

Z 1

0

exp
�
�(z1 � �)2

�
dz1

Z x2
x1

z1

x2�b

x1
z1

exp[�z22]dz2

=
%in

2
p
�

Z 1

0

exp
�
�(z1 � �)2

��
erf

�
x2

x1
z1

�
� erf

�
x2 � b

x1
z1

��
dz1 ;

where

� =
V

p
2RTin

:

Thus, we get

%(x) =
%in

2
p
�

Z 1

0

�
exp

�
�(z1 � �)2

���
erf

�
x2

x1
z1

�
� erf

�
x2 � b

x1
z1

��
dz1: (3.24)

Further simpli�cation is possible if � = 0. In this case we useZ 1

0

exp(�z2)erf(yz)dz =
1
p
�
arctan y

and obtain

%(x) =
%in

2�

�
arctan

x2

x1
� arctan

x2 � b

x1

�
:
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4. Numerical experiments

In this section we report the results of our computer tests for the numerical computation

of the surface and volume functionals formulated above. The main result we present is

the reduction of the stochastical �uctuations using particles with weights. We employ

the modelling procedure from Section 2 for the incoming �ux of the particles in order to

follow certain preferred directions.

We use the uniform discretisation of the computational domain in a number of rect-

angular cells as shown in Figure 4.1.

Figure 4.1 Discretisation of the computational domain 


The geometrical parameters of the computational domain are

a = 2:0; b = 0:4; � = 0:3 :

The discretisation parameters are

Nx1 = 100 ; Nx2 = 51 ;

so that Ncell = Nx1Nx2 (cf. (2.2)).

The boundary conditions are chosen so that the analytic curves for the functionals

in the steady-state free-�ow case are valid. Thus we use the in�ow on �l, the specular

re�ection on �b and the adsorption on �r and �t. The temperature of the in�ow is set at
Tin = 10 :

The following auxiliary streams are used for the modelling of the surface and volume
functionals. The generating Maxwell distribution for the auxiliary streams (cf. (2.14))

di�ers from the Maxwell distribution of the input �ow only by the direction of the bulk

velocity ~V ; i.e.

~M(v) =
%in

(2�RTin)3=2
exp

 
�
jv � ~V j2

2RTin

!
:

The bulk velocity ~V is obtained by rotation of the Vin ; i.e.

~V = jVinj(cos(�); sin(�); 0)T :

The angle �1 = arctan(b=a+ tan(�)) is chosen for the surface functional as shown in the

left plot of Figure 4.2. The angle �2 = � is chosen for the volume functional (right plot

in Figure 4.2).
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Figure 4.2 Directions of the auxiliary streams

The probability density (2.14) of the auxiliary stream is then given by (cf. (2.16), (3.1),

(3.2))

~p(x; v) =
1

j�lj

~M (v)(v; nl)R
(v;nl)>0

~M(v)(v; nl) dv
; x 2 �l ; v1 > 0 :

4.1. Evaluation of the surface functional

In this subsection we present the results of numerical tests obtained for the standard
particle method with constant weights in comparison with the SWPM. The aim is to

compute the functional (3.10) for di�erent settings of parameters. The most interesting

parameter of the simulation is the Mach number. It is clear that the number of particles
crossing the top boundary �t of the computational domain decreases drastically with an
increasing Mach number and with the increasing distance from the in�ow boundary �l.
This situation only occurs, of course, if � > 0. For the straight pipe it was no problem to
compute the functional (3.10) using standard particles even for a Mach number equal to

15.

We begin our tests with the modelling of the steady-state free-�ow situation where
the analytical solutions (3.16), (3.15), (3.18) and (3.20) are available. We �rst consider
a relatively small Mach number, Mach = 1. The results of the computations after 100
averaging steps are presented in Figure 4.3.

0 0.5 1 1.5 2

1

2

3

4

5

0 0.5 1 1.5 2

1

2

3

4

5

Figure 4.3 Exact solution, empirical mean and con�dence intervals for the Mach

number 1 using 100 averaging steps.

In these plots the dashed line represents the analytical solution (3.15), (3.16). The thick

solid line on the left plot represents the empirical mean obtained by the standard scheme,
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and on the right plot that obtained by the weighted scheme with parameters ~c = cin = 0:5.
The thin solid lines represent the corresponding con�dence intervals. It is clear to see that

the standard scheme is as good as the weighted scheme for this low Mach number.

The situation changes drastically for Mach = 10 as shown in Figure 4.4.

0 0.5 1 1.5 2

-0.005

0

0.005

0.01

0 0.5 1 1.5 2
0

0.0005

0.001

0.0015

0.002

Figure 4.4 Exact solution, empirical mean and con�dence intervals for the Mach
number 10 using 1600 averaging steps.

Here we have used 1600 averaging steps for both methods. The weighted scheme does
very well and delivers a reasonably accurate numerical solution (right plot in Figure 4.4)
while the standard scheme gives only a very rough estimate (left plot in Figure 4.4).

Note the di�erent scales in these plots.

If we model collisions then the weighted scheme becomes more expensive. A fair test in

this situation is obtained in the following way. We increase the number of averaging steps
of the standard scheme step by step, watching the accuracy until that of the weighted

scheme is reached. Then we compare the computational times required. The following
results were obtained for Mach = 10 and the mean free path " = 0:5 : The weighted
scheme needs 1:8 times more computational time per averaging step than the standard
scheme. On the other hand we need 409600 averaging steps for the standard scheme to

reach the accuracy of the weighted scheme after 1600 averaging steps. This means that for
this example the weighted scheme is about 140 times �faster� than the standard scheme.
The results of this numerical test are presented in Figure 4.5.
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0.002

0.003

Figure 4.5 Empirical mean and con�dence intervals for the Mach number 10 using

1600 averaging steps for the weighted scheme and 1600; 25600; 409600 averaging steps
for the standard scheme.

The upper-left plot presents the empirical mean and con�dence intervals for the weighted
scheme. The dashed lines on the other plots reproduce these results for comparison with

the results of the standard scheme. The upper-right plot corresponds to 1600 averaging
steps, the lower-left plot to 25600 and the lower-right plot to 409600 averaging steps of
the standard scheme. It is clear to see that for 409600 averaging steps the quality of the

numerical solution becomes comparable.

4.2. Evaluation of the volume functional

In this subsection we compute the density %(x) for x from the �out�ow� boundary �r. We
�rst consider the free-�ow case with Mach = 10. The density changes in this example

from the value 0:8 on the axis of symmetry to 10�4 on the top of the computational

domain. In Figure 4.6 we plot the analytical density (3.24), the numerical empirical
mean value obtained after 100 averaging steps of the weighted method with the parameters

~c = cin = 0:5 as well the corresponding con�dence intervals.

21



0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

0.8 0.85 0.9 0.95 1
0

0.002

0.004

0.006

0.008

0.01

Figure 4.6 Exact solution, empirical mean and con�dence intervals of the weighted

scheme for the Mach number 10 using 100 averaging steps.

In these plots the dashed line represents the analytical solution (3.24), the thick solid line

the empirical mean and the thin solid lines the con�dence intervals. What is extremely

remarkable is the high and homogeneous quality of the numerical solution. The right

plot in Figure 4.6 shows the same curves on the interval [0:8; 1:0], i.e. close to the
top boundary of the domain where the density becomes really low. The �rst acceptable
numerical solution using constant weights can be obtained after 1600 averaging steps

(which means that the computational time is 16 times larger).

Now we can compare the quality of the numerical solutions obtained using standard
and weighted methods. In Figure 4.7 we show the analytic curve (dashed line) and the

con�dence intervals for both weighted (thin lines) and standard schemes (thick lines) on

the interval [0:2; 1:0] (left plot) and on the interval [0:8; 1:0] (right plot).

0.4 0.6 0.8 1
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0.8

0.8 0.85 0.9 0.95 1
0

0.002

0.004

0.006

Figure 4.7 Exact solution and con�dence intervals of the two methods for Mach
number 10 using 1600 averaging steps.

There are some comments necessary. In the main stream the standard particle method
is slightly better due to the fact that it sends all generated particles there. By contrast,
the weighted scheme sends half of almost the same number of particles in the desired

direction of the auxiliary stream. The situation changes drastically close to the top of

the computational domain (right plot). The weighted scheme is much more precise here.

We illustrate this fact in Figure 4.8. Here we show the quotient of the thickness of the

con�dence interval and of the analytic density for both methods.

22



0.4 0.6 0.8 1
0

2

4

6

8

0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.4

0.6

0.8

1

Figure 4.8 Quotients of the thickness of the con�dence intervals of the two methods

and of the exact solution for Mach = 10 using 1600 averaging steps.

The thick line represents the relative accuracy of the standard scheme while the thin line
is the corresponding plot for the weighted scheme. The right plot in Figure 4.8 shows

the situation in the main stream. It is remarkable that the quality of the resolution of
the weighted method remains almost constant compared to the standard scheme. The

quality of the standard method decreases monotonically by leaving the main stream. On
the other hand the weighted method begins to be a�ected by more particles arriving here

because of the modelling of the auxiliary stream. Thus the relative quality of resolution
using the weighted method is almost constant over the whole region.

The situation changes if we introduce collisions. The weighted method is more ex-
pensive because of complicated modelling of collisions, the appearance of new particles

due to collisions, etc. A fair comparison of both methods can be done if we compare the
computational time needed to achieve the same accuracy of the numerical solution. For
the above example we do not have any advantage using weights. We obtain almost the
same accuracy (except the points very close to the top boundary) if we use 6400 aver-

aging steps of the weighted scheme and 25600 averaging steps of the standard scheme.

These numbers of averaging steps were chosen so that the computational time for the two
methods is almost the same.

One of the great advantages of our weighted method is that the number of particles
arti�cially directed into the desired region is independent of the Mach number. If the

density there is very low then the same number of particles having lower weights will
arrive there. This is not so with the standard scheme, where the probability that even

one particle having standard (large) weight will reach the desired region decreases rapidly

with the increase in the Mach number.

Our next tests show the situation for Mach number 15. The density close to the
top boundary is about 10�8 times %in : For our speci�c setting of the standard weight
that means that a particle will visit the region close to the top boundary once in every

million averaging steps. It is clear that the corresponding computational time will be

enormous. We performed this large test using 1638400 averaging steps for the standard

scheme and 25600 for the weighted scheme. The mean free path was chosen as " = 0:2.

Thus the number of averaging steps was 64 times higher than for the weighted scheme.

Since the weighted scheme needs a little less than four times more computational time per
averaging step the whole computation was about 16 times faster using weighted particles.
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The quality of the numerical solution is presented in Figure 4.9.
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Figure 4.9 The con�dence intervals of the two methods for Mach number 15 using

1638400 (standard) or 25600 (weighted) averaging steps.

We show the con�dence bands for the two methods on the whole interval (left plot) and

on the crucial interval [0:9; 1:0] (right plot). It is clear to see that even having 16 times
computational time, the standard particle scheme is still not in a position to deliver the
accuracy of the weighted scheme. Note that a reasonable solution could be obtained with
the weighted scheme using only 400 averaging steps, i.e. in less than 0:1% computational
time.

5. Conclusions

In this paper we presented an extension of the stochastic weighted particle method by
introducing a procedure for modelling the in�ow boundary condition using weighted
particles. The performance of the new procedure was tested in an example with two-
dimensional physical space, where, dependent on the Mach number of the incoming �ow,

very strong density gradients appear. The geometry of our test problem is an extremely
simpli�ed model of the thin �lm deposition system considered in [2, Fig. 4].

The numerical results are very promising. In the calculation of a surface functional
(�ux through a plane) a gain factor of 140 in computing time was achieved for SWPM

compared with the standard scheme. In the calculation of a volume functional (density
along a line) this gain factor was even 1000 . Here the functional to be calculated varied

in a range from 1 to 10�7 :

These results are a preliminary step towards a precise calculation of the heating e�ect
of the �hot top� formulated in the �rst part of Section 3. To deal with the full problem,

procedures for the reduction of the number of simulation particles in regions of high
density as described in [5] should be applied. Here no reduction was necessary, since the

outgoing �ow was strong enough.

24



Acknowledgments: The authors would like to thank G. A. Bird and I. D. Boyd for
a number of very helpful discussions which motivated the test example of this paper.

Support by the Volkswagen Foundation (RiP-program at Oberwolfach) is gratefully ac-

knowledged.

References

[1] G. A. Bird.Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Claren-

don Press, Oxford, 1994.

[2] I. D. Boyd. Conservative species weighting scheme for the direct simulation Monte

Carlo method. J. of Thermophysics and Heat Transfer, 10(4):579�585, 1996.

[3] C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute

Gases. Springer, New York, 1994.

[4] H. Neunzert, A. Klar, and J. Struckmeier. Particle methods: theory and applications.
In ICIAM 95 (Hamburg, 1995), pages 281�306. Akademie Verlag, Berlin, 1996.

[5] S. Rjasanow, T. Schreiber, and W. Wagner. Reduction of the number of particles
in the stochastic weighted particle method for the Boltzmann equation. J. Comput.

Phys., 145(1):382�405, 1998.

[6] S. Rjasanow and W. Wagner. A stochastic weighted particle method for the Boltz-
mann equation. J. Comput. Phys., 124(2):243�253, 1996.

[7] S. Rjasanow and W. Wagner. Numerical study of a Stochastic Weighted Particle
Method for a model kinetic equation. J. Comp. Phys., 128(1) : 351�362, 1996.

[8] S. Rjasanow and W. Wagner. A generalised collision mechanism for stochastic par-
ticle schemes approximating Boltzmann type equations. Computers Math. Applic.,
35(1/2) : 165�178, 1998.

[9] S. Tiwari. Coupling of the Boltzmann and Euler equations with automatic domain
decomposition. J. Comput. Phys., 144(2):710�726, 1998.

25


