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Abstract

The slow passage through a Hopf bifurcation leads to the delayed appearance of

large amplitude oscillations. We construct a smooth scalar feedback control which

suppresses the delay and causes the system to follow a stable equilibrium branch.

This feature can be used to detect in time the loss of stability of an ageing device. As

a by-product, we obtain results on the slow passage through a bifurcation with double

zero eigenvalue, described by a singularly perturbed cubic Liénard equation.
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1 Introduction

The main motivation for this paper is the problem of ageing of dynamical systems. Assume

that the behaviour of a device can be described by an n�dimensional ordinary di�erential

equation _x = f(x). The system is designed in such a way that x? is an asymptotically

stable equilibrium point, which corresponds to the desired behaviour. Slow changes of

the system's characteristics due to the ageing process can be modelled by a slowly time�

dependent equation

dx

dt
= f(x; "t); 0 < "� 1; (1)

where f(x; 0) describes the dynamics of the brand new device.

Equation (1) being a nonautonomous di�erential equation which is di�cult to solve,

one is tempted to consider instead the 1�parameter family of autonomous systems

dx

dt
= f(x; �); � = constant. (2)

One hopes that if the �quasistatic approximation� (2) has a family of attractors depending

smoothly on �, then solutions of (1) should be close, at any given time t, to the attractor

of (2) with � = "t.

This is at least partially justi�ed by the following result [PR, VBK, Fe]: if x?(�) is

a family of asymptotically stable equilibria of (2), then any solution of (1) starting in a

su�ciently small neighbourhood of x?(0) will, after a short transient, track the curve x?("t)

at a distance of order ". For the ageing device, this implies that we need not worry as long

as the �nominal� equilibrium x
?(�) remains asymptotically stable.

This naturally raises the question of what happens if the equilibrium x
?(�) undergoes

a bifurcation at � = �0. Such problems are usually referred to as dynamic bifurcations

[Ben]. Bifurcations with a single zero eigenvalue have been studied in some detail. It turns

out that saddle�node bifurcations will result in a sudden jump of the solution [Hab], which

may have catastrophic consequences for the device. Transcritical and pitchfork bifurcations

generically result in a smoother behaviour, where the trajectory follows one of the stable

equilibria created in the bifurcation [LS]. This feature might be used to detect the loss of

stability of the nominal equilibrium, in order to switch o� the device before any harm is

done.

The case of a Hopf bifurcation has been analysed more recently [Sh, Ne1, Ne2]. The

surprising phenomenon is that instead of directly tracking the limit cycle created in the

bifurcation, the trajectory remains close to the unstable equilibrium for some time, be-

fore jumping to the periodic orbit. Instead of oscillations with a continuously increasing

amplitude, one thus observes the sudden appearance, after some delay, of large amplitude

oscillations (Fig. 1a). The bifurcation delay is stable with respect to smooth deterministic

perturbations. For the ageing device, this phenomenon implies that the loss of stability

cannot be detected soon enough to avoid catastrophic oscillations.

To avoid such problems, one may try to control the system. A simple a�ne control of

the quasistatic system (2) would be

dx

dt
= f(x; �) + b u; (3)

where b is a given vector in R n and u is a scalar function. Two cases have been studied:
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1. Open loop control: u(t) is a function of time taking values in some compact interval U .

The analysis of (3) for all possible functions of this type leads to the notion of control

sets, which tend to form around invariant sets. The ��dependence of control sets near

bifurcation points has been studied in [CK, CHK, HS].

2. Feedback control: u(x(t)) is a function of the state of the system. The bifurcation is

�stabilized� by choosing the function u(x) in such a way that the nominal equilibrium

of (3) is stable when � = �0. For topological reasons, this makes the bifurcation

supercritical, and should avoid exploding trajectories at least for � slightly larger than

�0 [Ab, Ae, MS].

The sometimes surprising behaviour of dynamic bifurcations shows that we should

consider the slowly time-dependent version of (3) as well. Here we will limit ourselves to

feedback controlled systems of the form

dx

dt
= f(x; "t) + b u(x; "t) (4)

in the speci�c case where f undergoes a Hopf bifurcation. Since we wish to analyse (4)

on the time scale "�1, we introduce the slow time � = "t and rewrite (4) as the singular

perturbation problem

"
dx

d�
= f(x; �) + b u(x; �): (5)

Our aim is to design a feedback control u in such a way that the bifurcation delay, and

hence the sudden appearance of large amplitude oscillations, are suppressed.

A feedback a�ecting only nonlinear terms in x � x
? will have no e�ect on the delay.

We thus have to modify the linearization A of f at the bifurcation point. Shifting the real

part of the eigenvalues of A will merely postpone the problem to some later time. The

only solution is thus to shift the imaginary part of the eigenvalues in order to produce a

double zero eigenvalue.

Our strategy will thus be the following. First we design a feedback in such a way that

when the parameter � is varied through the bifurcation value �0, new stable equilibrium

branches are created at a distance of order (�� �0)
1=2 of the nominal branch x?(�). The

resulting vector �eld turns out to be a codimension four unfolding studied in [KKR]. We

then show that the solutions of the corresponding system (5) actually track one of these

branches, a feature which can be used to detect the bifurcation point.

To analyse the time-dependent system, we extend certain methods of [B1] (see [B2]

for a summary and [BK] for applications). However, this paper is written in a largely

self-contained way. It is organized as follows: the main result is stated in Section 2; in

Section 3 we recall Neishtadt's result on bifurcation delay [Ne1], which will guide us in

the construction of the feedback in Section 4. Section 5 is devoted to the proof of the

main result for the singularly perturbed equation (5). Finally, in Section 6, we give a few

remarks on what happens when the control is slightly imperfect, and the requirements of

the theorem are no longer met.

Acknowledgments: It is a pleasure to thank Klaus Schneider for welcoming me at the

Weierstraÿ Institute and for inspiring discussions on this interesting topic. I thank Dima

Turaev for pointing out useful references on high codimension bifurcations. This work is

supported by the Nonlinear Control Network of the European Community, Grant ERB

FMRXCT�970137.
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2 The Problem and Main Result

We consider the feedback controlled dynamical system

dx

dt
= f(x; �) + b u(x; �); x 2 R

n
; � 2 R (6)

where:

� The uncontrolled vector �eld f(x; �) undergoes a Poincaré�Andronov�Hopf bifurcation

at the origin.

� The vector b 2 R
n is imposed and �xed. It describes the direction in which the system

can be steered.

� The scalar feedback control u(x; �) 2 R is a function to be determined in such a way

that the solution behaves �smoothly� when � is slowly varied. Its dependence on x and

� should be as simple as possible (e.g. polynomial).

More precisely, we will assume that the uncontrolled vector �eld satis�es the following

hypotheses:

(H1) Domain and smoothness: The function f(x; �) : D � I ! R
n is analytic in a

neighbourhood D of the origin in R
n and an interval I containing 0.

(H2) Hopf bifurcation: There exists a curve x
?(�) : I ! R

n with x
?(0) = 0 and

f(x?(�); �) = 0. The Jacobian matrix A(�) = @xf(x
?(�); �) 2 R

n�n admits two

eigenvalues a(�) � i!(�), where a(0) = 0, a0(0) > 0 and !(0) = !0 6= 0. All other

eigenvalues of A(�) have a strictly negative real part.

These hypotheses imply in particular that there is a set of coordinates x = (y; z), with

y 2 R
m (m = n� 2) and z = (�; �) 2 R

2 , such that

f(x; 0) =

�
A�y + g�(y; z)

A0z + g0(y; z)

�
; A0 =

�
0 !0

�!0 0

�
; (7)

where all eigenvalues of A� 2 R
m�m have negative real part and g� and g0 are of second

order in y and z. In these coordinates, we write b =
�
b
�

b0

�
.

(H3) Controllability: b0 6= 0.

Since A0 is rotation invariant, we may assume that b0 =
�
0
1

�
.

The next hypothesis is more technical and its meaning will become clear in Section 4.

It is, however, generically satis�ed.

(H4) Nondegeneracy: De�ne the matrix T = �(A�1� b�; A
�2
� b�) 2 R

m�2 . Let g� de-

note the �rst component of g0, and h(z) = g�(Tz; z). Then either @��h(0) 6= 0 or

@���h(0) < 0.

Finally, we require the following property of the equilibrium branch x?(�):

(H5) Velocity of equilibrium: The �-component of d�x
?(�)j

�=0 is di�erent from zero.

The main result of this paper is the following.
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Figure 1. (a) The slow passage through a Hopf bifurcation (occurring at � = 0) leads to

the delayed appearance of oscillations. (b) The control we construct suppresses this delay,

and causes the orbit to track a curve lying at a distance of order �1=2 from the nominal

equilibrium (represented by the axis � = 0). These plots actually show a solution �(�)
of equation (11) with a(�) = � , 
(�) = �(�) = 0, R(�; �; �; ") = 1, " = 0:003 and (a)
�(�) = �0:2, (b) �(�) = 2:5� . The eigenvalues of the linearization around the origin are

� � �1=2.

Theorem 2.1. Assume that the hypotheses (H1)�(H5) hold. There exist

� strictly positive constants T , M and �,

� a neighbourhood N � D of the origin in R
n ,

� a smooth feedback control u(x; �) : N � [�T; T ]! R with u(x?(�); �) = 0,

� and a curve x+(�) : [0; T ]! R
n with lim�!0+kx+(�)� x

?(�)k=
p
� = K 6= 0

with the following property. For every �0 2 [�T; 0), there exist strictly positive constants

c1 and "0 such that, if 0 < " < "0, any solution of the equation

"
dx

d�
= f(x; �) + bu(x; �) (8)

with initial condition x(�0) 2 N exists on the interval [�0; T ] and satis�es the following

bounds:

kx(�) � x
?(�)k 6M

"

j� j ; �0 + c1"jln "j 6 � 6 � "
2=3
; (9a)

kx(�) � x
?(�)k 6M"

1=3
; �"2=3 6 � 6 "

2=3
; (9b)

kx(�)� x+(�)k 6M

�
"

�
+
"
1=2

�1=4
e���

2="

�
; "

2=3
6 � 6 T: (9c)

This theorem shows that solutions of (8) will �rst track the nominal equilibrium curve

x
?(�) for negative � , and then track a new equilibrium curve x+(�), situated at a distance

of order
p
� from x

?(�), for positive � (Fig. 1b). This result looks similar to the stability

exchange for pitchfork bifurcations in [LS]. It is, however, more di�cult to obtain because

the speci�c nature of the bifurcation with double zero eigenvalue makes the problem in-

trinsically two-dimensional. In particular, solutions tend to rotate around the equilibrium

branches which are foci near the bifurcation point.

The proof is divided into two main steps. In the �rst one, described in Section 4, we

consider the autonomous system (6). We construct a feedback u(x; �) in such a way that

after some changes of variables, including a center manifold reduction and a transformation
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to normal form, the dynamics is governed by the two-dimensional e�ective equation

d�

dt
= �

d�

dt
= �(�)� + 2a(�)� + 
(�)�2 + �(�)�� � �

3 � �
2
� +O(4);

(10)

where �(0) = 
(0) = �(0) = 0 and O(4) = O(k(�; �)k4). The function �(�) can be

controlled to some extent by the choice of u. This so-called cubic Liénard equation happens

to be a codimension-4 unfolding of the vector �eld (�;��3��2�) which has been studied in

detail, see [KKR] and references therein (the authors in [KKR] actually use an equivalent

unfolding obtained by the transformation � 7! � + 1
3

).

The second step is to show that with this particular feedback, the slowly time-dependent

system (8) can be reduced to

"
d�

d�
= �

"
d�

d�
= �(�)� + 2a(�)� + 
(�)�2 + �(�)�� � �

3 � �
2
� +O(4) + "R(�; �; �; "):

(11)

The function R(0; 0; �; 0) is related to the drift dx?(�)=d� of the equilibrium branch, and

Hypothesis (H5) implies that R(0; 0; 0; 0) 6= 0. In Section 5 we prove the following result.

Theorem 2.2. Assume that �0(0) > 0. There exist positive constants d, T , M , � and a

neighbourhood M of the origin in R
2 with the following property. For every �0 2 [�T; 0),

there is a constant c1 > 0 such that for su�ciently small ", any solution of (11) with initial

condition (�; �)(�0) 2M satis�es

j�(�)j 6M
"

j� j ; j�(�)j 6M
"

j� j1=2 ; for �1(") 6 � 6 �
�
"

d

�2=3
, (12)

j�(�)j 6M"
1=3
; j�(�)j 6M"

2=3
; for �

�
"

d

�2=3
6 � 6

�
"

d

�2=3
; (13)

where �1(") = �0 + c1"jln "j. If, moreover, the relations

a
0(0)

�0(0)
<

1

2
; R(0; 0; 0; 0) 6= 0 (14)

hold, then for ("=d)2=3 6 � 6 T we have

j�(�)� �+(�)j 6M

h
"

�
+
"
1=2

�1=4
e���

2="

i
;

j�(�)j 6M

h
"

�1=2
+ "

1=2
�
1=4 e���

2="

i
;

(15)

where

�+(�) =

(p
�+O(�); if R(0; 0; 0; 0) > 0,

�p�+O(�); if R(0; 0; 0; 0) < 0
(16)

are equilibria of (10), i.e., the right-hand side of (10) vanishes when � = �+ and � = 0.
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3 The Uncontrolled Problem

We state a version of Neishtadt's result on bifurcation delay for the uncontrolled problem

"
dx

d�
= f(x; �): (17)

The results in [Ne1, Ne2] apply in fact to a more general slow�fast system. We are interested

in the computation of the delay time. To this end, we de�ne the function

	(�) =

Z
�

0

�(s) ds; �(s) = a(s) + i!(s): (18)

In some interval (�T; 0) in which a(�0) < 0 we can de�ne the map

�(�0) = sup
�>�0

�
�
��Re (s) < Re (�0); �0 < s < �

	
; (19)

giving the �rst time at which Re (�) becomes equal to Re (�0) again. Observe that

�(�0) > 0, lim�0!0�(�) = 0 and lim�0!0�
0(�0) = �1.

Theorem 3.1. Assume that f(x; �) satis�es Hypotheses (H1) and (H2) for all (x; �) in

some complex neighbourhood of D � I. Let �0 < 0 be such that a(�) < 0 for �0 6 � < 0.

There exist a neighbourhood N of x?(�0), a constant M > 0, a bu�er time �+ > 0 and a

continuous function �(") going to 0 as " ! 0, such that any solution of (17) with initial

condition x(�0) 2 N satis�es

kx(�)� x
?(�)k 6M" for �0 + �(") 6 � 6 �̂ � �("), (20)

where the bifurcation delay time �̂ is given by

�̂ = min
�
�(�0); �+

	
: (21)

The quantity �̂ gives in fact a lower bound on the bifurcation delay. Under more strict

assumptions, it also gives an upper bound in the limit "! 0, see [Ne2] and the article by

F. and M. Diener in [Ben].

The important fact for us is that �̂ is the minimum of two quantities. The �rst one,

�(�0), depends on the initial condition and thus cannot be used to in�uence the delay. We

thus have to modify the bu�er time �+, which is determined in the following way. The

function 	(�) and the solutions of (17) can be continued to a complex neighbourhood of

� = 0. For su�ciently small j�0j, the real times �0 and �(�0) can be connected by a path

�(�0) (lying in the upper half plane if !0 < 0), along which Re	(�) is constant. One

de�nes a negative bu�er time �� as the smallest real time such that �(��) exists and has

certain properties stated in [Ne2]. The positive bu�er time is given by

�+ = sup
�
�

<�<0
�(�): (22)

The existence of this bu�er time is a rather subtle, nonperturbative e�ect, which cannot

be understood by naive perturbation theory. The proof uses an integration of (17) along

a path �(�).

Example 3.2. If a(�) = � and !(�) = �!0 i, then the level lines of

Re	(�) = 1
2

�
(Re �)2 � (Im � � !0)

2 + !
2
0

�
(23)

are hyperbolas centered at � = i!0. Thus we have �(�0) = ��0 and the bu�er times are

�� = �!0. The delay may be suppressed by choosing a control in such a way that !0 = 0.
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4 Design of the Feedback Control

We start by analysing (6) for � = 0. Coordinates are chosen as in (7), where we can scale

time in such a way that !0 = 1. Our feedback control will be constructed to satisfy two

requirements:

1. The properties of the bifurcation delay time show that we should move the imaginary

part of the eigenvalues �!(0) towards the origin, in order to shift the bu�er time to

the bifurcation time.

2. This will produce a bifurcation with double zero eigenvalue. In analogy with works on

stabilization of bifurcations [Ae, MS], the equilibrium should be stable at the bifurca-

tion point, in order to avoid escaping trajectories.

We claim that an appropriate feedback control has the form

u(x; 0) = (1� �)� + v(z): (24)

[We recall that x = (y; z) 2 R
m � R

2 and z = (�; �).] The parameter � will be ultimately

set to 0, we introduce it in order to keep track of the e�ect of an imperfect control. Its

aim is to shift the eigenvalues � i
p
� of the linearization to the origin. The function v(z)

is a nonlinear term which should assure that the origin of (6) is stable.

4.1 Center Manifold Reduction at � = 0

With the feedback control (24), equation (6) takes the form

_y = A�y + ĝ�(y; z) +B�z

_z = Â0z + ĝ0(y; z);
(25)

where ĝ� = g�(x) + b v(z), ĝ0 = g0(x) + b v(z), B� = (1 � �)(b�; 0) 2 R
m�2 and the

marginally stable part of the linearization is given by the matrix Â0(�) =
�

0 1
�� 0

�
.

Proposition 4.1. Equation (25) admits an invariant manifold on which the dynamics is

governed by the equation

_z = Â0z +G(z); (26)

where G(z) = O(kzk2) is given to third order by equation (31) below.

Proof: The existence of the manifold follows quite directly from the Center Manifold

Theorem [Ca]. We would now like to compute G. First, we introduce the matrix T 2 R
m�2

satisfying A�T � TÂ0 = �B�, which exists because A� and Â0 have no eigenvalues in

common [Kr, Wa]. In fact, it is given by

T = (t1; t2); t1 = A�t2; t2 = (� � 1)(A2
� + �1l)�1b�: (27)

The change of variables y = y1 + Tz yields

_y1 = A�y1 + ~g�(y1; z); ~g�(y1; z) = ĝ�(y1 + Tz; z) � T ĝ0(y1 + Tz; z);

_z = Â0z + ~g0(y1; z); ~g0(y1; z) = ĝ0(y1 + Tz; z): (28)
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This system admits a center manifold locally described by y1 = h(z), where h(z) satis�es

the partial di�erential equation

A�h(z) + ~g�(h(z); z) = @zh(z)
�
Â0z + ~g0(h(z); z)

�
: (29)

For a vector �eld F (x) : R n ! R
m , we denote by F (k)(x) the terms of order k of its Taylor

expansion around 0. We know [Ca] that h(z) = h
(2)(z) +O(kzk3), where

@zh
(2)(z)Â0z �A�h

(2)(z) = ~g
(2)
� (0; z): (30)

The motion on the center manifold is thus given by (26), where

G(z) = ĝ0(h(z) + Tz; z)

= G
(2)(z) +G

(3)(z) +O(kzk4);
G

(2)(z) = ĝ
(2)
0 (Tz; z)

G
(3)(z) = ĝ

(3)
0 (Tz; z) + @y ĝ

(2)
0 (Tz; z)h(2)(z):

(31)

To compute G(3)(z), we need to solve equation (30) for h(2). In fact, we will only need to

know that h(2)(z) = �A�1� ~g1�2 +O(�), where ~g1 is the coe�cient of �2 in ~g
(2)
� (0; z).

4.2 Stability at � = 0

We intend to construct the nonlinear part of the feedback control of the form

v(z) = v1�
2 + v2�� + v3�

2 + v4�
3
; (32)

with appropriate coe�cients vi. They will be determined by the following result of normal

form theory:

Lemma 4.2. Consider the system

_� = � + c1�
2 + c2�� + c3�

2 + c4�
3 +O(�kzk2; kzk4)

_� = d1�
2 + d2�� + d3�

2 + d4�
3 +O(�kzk2; kzk4):

(33)

Let � = c1d3 + c4 and � = 2c21 + d4. Then

� If d1 = d2 + 2c1 = 0 and �; � < 0, the origin is asymptotically stable.

� Conversely, if the origin is stable, then d1 = d2 + 2c1 = 0 and �; � 6 0.

Proof: The normal form of the 3-jet of (33) can be written as

_� = �

_� = 
�� + ��
2 + ��

2
� + ��

3
;

(34)

with 
 = d2 + 2c1 and � = d1. The assertion has been proved in [Ta], see also [GH]. In

fact, the origin is an unstable Bogdanov�Takens point if 
 6= 0 or if � 6= 0. If 
 = � = 0,

it is asymptotically stable if � and � are both negative, and unstable if one of them is

positive.

We would like to choose the coe�cients of v(z) in such a way that the vector �eld (26)

satis�es Lemma 4.2. The next lemma shows that this is generically possible.
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Lemma 4.3. Assume that the �-component of g0(Tz; z) has the form c1�
2+c4�

3+O(�; �4).

Then, if either c1 6= 0 or c4 < 0, one can �nd a function v(z) of the form (32) such that

the origin in (26) is asymptotically stable.

Proof: Let us consider

G
(2)(z) = ĝ

(2)
0 (Tz; z) =

�
c1�

2 + c2�� + c3�
2

(d1 + v1)�
2 + (d2 + v2)�� + (d3 + v3)�

2

�
: (35)

The �rst two conditions of Lemma 4.2 are satis�ed if we choose v1 = �d1 and v2 =

�(d2 + 2c1). To satisfy the third one, we have to choose v3 in such a way that � =

c1(d3 + v3) + c4 < 0, which is possible under our assumptions. The last condition looks

more di�cult to satisfy, but in fact, we have � = v4+constant, where the constant depends

only on previously �xed quantities, so that � can always be made negative.

The requirement on g0(Tz; z) is nothing but Hypothesis (H4). Note that the coe�cients

v3 and v4 only have to satisfy inequalities, while v1 and v2 must have a speci�c value. We

will discuss in Section 6 what happens when these coe�cients are not exactly equal to the

prescribed value.

4.3 Choice of u(x; �)

We consider now equation (6) for general, �xed values of �. If x?(�) is the equilibrium

branch of f , an a�ne transformation x = x
?(�) + S(�)

�
y
z

�
yields the system

_y = A�(�)y + g�(y; z; �) + b�(�)~u(y; z; �)

_z = A0(�)z + g0(y; z; �) + b0(�)~u(y; z; �);
(36)

where A�(�) has eigenvalues with negative real part for su�ciently small �, and

A0(�) =

�
a(�) !(�)

�!(�) a(�)

�
: (37)

In fact, since A0 is rotation invariant, we may assume that b0(�) �
�
0
1

�
. The terms g�

and g0 are nonlinear.

We now choose the feedback control u(x; �) in such a way that

~u(y; z; �) = (1 +C �)
�
(1� �)� + v(z)

�
; (38)

where C is some constant to be determined, and v(z) has been constructed in the previous

section. In this way, the linear part of _z becomes

Â0(�) =

�
a(�) !(�)

�!(�) + (1� �)(1 + C �) a(�)

�
: (39)

This matrix can be further simpli�ed by a shearing transformation:

z 7!
�
!
1=2 0

0 !
�1=2

�
z ) Â0(�) 7! B(�) =

�
a(�) 1

�(�) a(�)

�
; (40)

where

�(�) = �!2 + (1� �)(1 + C �)! = (C � !
0(0))�� � +O(�2 + �

2): (41)

9
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Figure 2. Schematic bifurcation diagram of equation (43a) in the plane 
̂ = �̂ = 0. The

line A-B is the original Hopf bifurcation. By moving the eigenvalues' imaginary parts to 0,

we change the function �(�) in such a way that �(0) = 0. This produces new bifurcation

lines. The transition A-F is a supercritical saddle-node bifurcation, the transition C-B a

subcritical one. D-C is a subcritical Hopf bifurcation, D-E a homoclinic bifurcation and

E-F a saddle-node bifurcation of periodic orbits.

In fact, any of the pairs (�; �), (�; �) or (a; �) can be considered as independent parameters

used to produce the bifurcation with double zero eigenvalue. We will henceforth set � = 0

and consider
�
a(�); �(�)) = (C � !

0(0))� +O(�2)
�
as a path going through the origin of

the two-dimensional parameter space.

The system (36) admits a center manifold described locally by its parametric equation

z = h(y; �). On this manifold, the dynamics is governed by the equation

_z = B(�)z +G(z; �): (42)

It will not be necessary to compute G(z; �). We only need to know that G(z; 0) has been

computed in Proposition 4.1 and satis�es the requirements of Lemma 4.2.

4.4 Normal Forms

The nonlinear term G(z; �) can be simpli�ed by eliminating all terms which are not

resonant at � = 0. A convenient basis of resonant terms up to order 3 is given by

f(0; �2); (0; ��); (0; �3); (0; �2�)g.

Proposition 4.4. The 3-jet of (42) can be written in either of the following forms:

_� = a� + �

_� = �� + a� + 
̂�
2 + �̂�� � �3 � �

2
�;

(43a)

10



_� = �

_� = �� + �� + 
�
2 + ��� � �

3 � �
2
�;

(43b)

_� = �

_� = �1 + �2� + �3� + �4�� � �
3 � �

2
�:

(43c)

Each set of parameters (a; �; 
̂; �̂), (�; �; 
; �) or (�1; �2; �3; �4) depends on � and vanishes

at � = 0.

Proof: (43a) is obtained by eliminating nonresonant terms and rescaling space and time.

(43b) comes from the linear transformation � 7! � � a� followed by a scaling. (43c) is

obtained with the transformation � 7! � + 1
3

.

These normal forms describe equivalent codimension-four unfoldings of the singular

vector �eld ( _� = �; _� = ��2� � �
3). Indeed, the bifurcation is produced by setting four

parameters to zero: the initial bifurcation parameter �, the imaginary eigenvalue shift �,

and the coe�cients v1 and v2 of the feedback control.

Equation (43b) has been studied by Takens in the particular case 
 = � = 0 (which

occurs when there is a symmetry z 7! �z), who obtained the bifurcation diagram shown

in Fig. 2 [Ta, GH]. A codimension-three unfolding corresponding to �4 = 0 has been

studied in [VT]. The full codimension-four unfolding (43c) is discussed in [KKR] (see also

references therein).

5 Slowly Drifting Parameter

Let us now consider the slowly time-dependent equation (8). We write f(x; �)+bu(x; �) =

F (x; �), where u(x; �) is the feedback control constructed in the previous section. The

equation thus reads

"
dx

d�
= F (x; �): (44)

By construction, F (x; �) vanishes on the original equilibrium branch x?(�). Let us write

F (x?(�) + x1; �) = Â(�)x1 + ĝ(x1; �), with ĝ = O(kx1k2). Hypothesis (H2) and the

properties of u imply that there exists an interval [�T1; 0) in which the matrix Â(�) has

only eigenvalues with a negative real part. Moreover, these real parts are bounded away

from 0 on any interval [�0; �1] � [�T1; 0). It is well known (see for instance [PR]) that

this implies that any trajectory starting at �0 in a su�ciently small neighbourhood of the

origin reaches an O(")-neighbourhood after a time of order "jln "j, where it remains until

� = �1 (this result is proved using Lyapunov functions). Hence it su�ces to study (44) for

� > �1, with an initial condition x(�1) = O(").

We �rst simplify equation (44) by applying similar transformations as for the time-

independent system, which will produce some additional terms of order ". We will obtain

an e�ective two-dimensional equation, which we will study by various methods in three

di�erent time intervals.
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5.1 Reduction of the Equation

The time-dependent translation x = x
?(�) + x1 yields the equation

"
dx1

d�
= Â(�)x1 + ĝ(x1; �)� "

dx?(�)

d�
: (45)

For small � , there exists a nonsingular matrix S(�) such that S�1ÂS is block-diagonal,

with blocks A� and B as in (25) and (42). The transformation x1 = S(�)x2 yields the

equation

"
dx2

d�
=

�
A�(�) 0

0 B(�)

�
x2 + S

�1
ĝ(Sx2; �)� "S

�1
hdS(�)

d�
x2 +

dx?(�)

d�

i
: (46)

Next we apply a center manifold reduction. We write x2 = (y2; z2) 2 R
m � R

2 .

Proposition 5.1. For su�ciently small ", equation (46) admits a local invariant manifold

(local in z2 and �), with a parametric equation of the form x2 = (h(z2; �; "); z2), where

kh(z2; �; ")k 6M(kz2k2 + �
2 + "). Any solution starting at a distance of order " from this

manifold is such that y2(�) = h(z2(�); �; ")+O(") in some neighbourhood of (x2; �) = (0; 0),

where z2(�) satis�es the equation

"
dz2

d�
= B(�)z2 +G(z2; �) + "P (z2; �; "); (47)

with B(�) and G(z2; �) the same functions as in (42). Moreover, the second component of

P (0; 0; 0) is di�erent from 0.

Proof: Equation (46) can also be written as

dty2 = A�(�)y2 + "w�(�) +O(ky2k2 + kz2k2 + �
2 + "

2)

dtz2 = B(�)z2 + "w0(�) +O(ky2k2 + kz2k2 + �
2 + "

2)

dt� = "

dt" = 0:

(48)

The transformation y2 = y3 � "A
�1
� (0)w�(0) yields a system whose linearization at the

point (y3; z2; �; ") = (0; 0; 0; 0) is the matrix0
BB@
A�(0) 0 0 0

0 B(0) 0 w0(0)

0 0 0 1

0 0 0 0

1
CCA : (49)

The center manifold theorem implies the existence of a local invariant manifold y3 =
~h(z2; �; ") = O(kz2k2 + �

2 + "
2). Moreover, it is shown in Lemma 1, p. 20 of [Ca], that in

some neighbourhood of the origin, any solution satis�es a bound of the form

ky3(�)� h(z2(�); �; ")k 6M e��(���0)="ky3(�0)� h(z2(�0); �; ")k; (50)

for some positive M;�. Since ky3(�0)� h(z2(�0); �; ")k = O("), we have

"
dz2

d�
= B(�)z2 + g0(h(z2; �; ") +O("); z2; �; "): (51)

When " = 0, this equation coincides with the equation on the instantaneous center mani-

fold. The assertion on P (0; 0; 0) follows from Hypothesis (H5).
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As a �nal reduction step, we may apply a nonlinear transformation putting the 3-jet

of G(z2; �) into one of the canonical forms (43). This will produce terms of order "kz2k2,
that we may also absorb into the remainder P (z2; �; "). A rede�nition of the variable �

yields the canonical form (11). In the sequel, we will use the equivalent form

" _� = a(�)� + �

" _� = �(�)� + a(�)� + 
̂(�)�2 + �̂(�)�� � �
3 � �

2
� +O(kzk4) + "R(�; �; �; ");

(52)

where we now use the dots to indicate the derivative with respect to � . We can rescale

time in such a way that

a(�) = c� +O(�2); �(�) = � +O(�2); 
̂(�) = O(�); �̂(�) = O(�); (53)

where c = da=d�(0) = _a(0)=(C � _!(0)), see (41).

We will study equation (52) by di�erent methods in three di�erent regions. They are

characterized by a constant d which will be chosen su�ciently small, but is independent

of ". These regions are:

1. Before the bifurcation: �1(") 6 � 6 � ("=d)2=3, where �1(") = �0 +O(" ln ") is chosen

in such a way that z(�1) = O("). In this region (52) can be transformed into a one-

dimensional complex equation, that we study by suitable normal form transformations.

The main di�culty is to use the averaging e�ect of fast oscillations around the focus.

2. During the bifurcation: �("=d)2=3 6 � 6 ("=d)2=3. In this inner region, (52) can be

reduced to a time-dependent Hamiltonian system by an appropriate scaling.

3. After the bifurcation: ("=d)2=3 6 � 6 T , where T will be chosen su�ciently small. By

choosing c in an appropriate way, we ensure the existence of an attracting equilibrium

branch.

5.2 Before the Bifurcation

In the �rst region, we use a coordinate transformation which diagonalizes the linear part

approximately. It is given by

� =
1p
2

�
ei �=4j�j1=4� + e� i�=4j�j�1=4�

�
; (54)

and its inverse reads

� = 1p
2

�
e� i�=4

� + ei �=4 �
�
j�j�1=4

� = 1p
2

�
ei �=4 � + e� i �=4

�
�
j�j1=4:

(55)

In these variables, equation (52) becomes

" _� = �(�)� + "'(�)� + "w(�) +G0(�; �; �; "); (56)

where

�(�) = a(�) + i
p
��(�) + " (�);  (�) = O(j� j�1=2);

'(�) = i _�(�)=4�(�) = O(j� j�1);

w(�) =
1p
2
e� i �=4j�j�1=4R(0; 0; �; 0) = O(j� j�1=4);

G0(�; �; �; ") = O(j� j1=4j�j2) +O(j� j�1j�j3) +O(j� j�5=4j�j4):

(57)

The main result of this subsection is the following estimate.
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Proposition 5.2. If d and " are su�ciently small, there exists a constant M1 > 0 such

that equation (56) admits a particular solution �0(�) satisfying�����0(�) + "
w(�)

a(�) + i
p
��(�)

���� 6M1
"
2

j� j9=4 for �1 6 � 6 � ("=d)2=3. (58)

Moreover, any solution of (56) with initial condition �(�1) = O(") satis�es the bound

���(�)� �0(�)
�� 6M2" e

��(�2��2
1
)=2" (59)

on the same time interval, for some positive constants M2; �.

Corollary 5.3. Any solution of (52) with initial condition of order " satis�es

�(�) = O("j� j�1); �(�) = O("j� j�1=2) (60)

on the interval �1 6 � 6 � ("=d)2=3. In particular, at � = �("=d)2=3 we have

� = d
2=3
"
1=3
�
R(0; 0; 0; 0) +O(d) +O(("=d)1=3)

�
;

� = d
1=3
"
2=3
�
O(d) +O(("=d)1=3)

�
:

(61)

Remark 5.4. One can in fact show the existence of a particular solution admitting an

asymptotic series of the form

�0(�) =
"

j� j3=4
h
c0(�) + c1(�)

"

j� j3=2 + c2(�)
"
2

j� j3 + � � �
i

(62)

For � = ("=d)2=3, we get an asymptotic series in d. Proposition 5.2 is only a �rst step, but

su�ces for our purposes.

The proof of Proposition 5.2 is based on the following two lemmas. The �rst one is a

rather trivial, but very useful bound on an integral we will encounter several times, while

the second one gives an �a priori� estimate on �0(�).

Lemma 5.5. Assume that we are given

� constants �1 6 � < 0, a0; w0 > 0 and p; q such that p+ 1� q > 0.

� 	(�) : [�1; 0)! C di�erentiable such that Re _	(�) 6 0 and j _	(�)j > j� jp=a0.
� w(�) : [�1; 0)! C di�erentiable with jw(�)j 6 w0j� jq�1 and j _w(�)j 6 w0j� jq�2.

Then ���e	(�)="

Z
�

�1

e�	(s)="
w(s) ds

��� 6 "

j� jp+1�qK; K = a0w0

h
2 + 1

p+1�q

i
: (63)

Proof: Use integration by parts once.

Lemma 5.6. Let c0 > 0 be given. If " and d are small enough, there exists a constant

M1(c0) such that any solution of (56) with initial condition j�(�1)j 6 c0" satis�es

j�(�)j 6M1
"

j� j3=4 for �1 6 � 6 � ("=d)2=3. (64)

Proof: Notice that for small enough d, we have j�j > K0j� j1=2.
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� Step 1: Simpli�cation of the linear part.

Consider the initial value problem

" _s =
�
�(�)� �(�)

�
s+ "'(�)� "'(�)s2; s(�1) = 0: (65)

Since d� jsj2 = ('s � 's)(1 � jsj2), its solution satis�es js(�)j 6 1. (In fact, one can

prove that s = O("j� j�3=2)). The transformation � = �1 + s(�)�1 yields

" _�1 = �1(�)�1 + "w1(�) +G1(�1; �1; �; "); (66)

where �1 = �+ "'s satis�es j�1j > K1j� j1=2, and G1 and w1 satisfy similar bounds as

G0 and w.

� Step 2: Simpli�cation of the cubic part.

Let us consider the e�ect of a change of variables

�1 = �2 + h(�2; �2; �); h(�2; �2; �) =
X

n+m=3

hnm(�)�n2 �
m

2 : (67)

It transforms (66) into

" _�2 = �1�2 + "w1 � "@�hw1 � "@
�
hw1 +G

(2)
1 +

+
�
G

(3)
1 + �1h� @�h�1�2 � @

�
h�1�2 � "@�h

�
+O(kz2k4); (68)

where G
(k)
1 denotes terms of order k. In particular,

G
(3)
1 (�2; �2; �) =

X
n+m=3

gnm(�)�n2 �
m

2 ; (69)

with gnm(�) = O(j� j�1). We see that the term in brackets of (68) can be eliminated if

" _hnm =
�
(1� n)�1 �m�1

�
hnm + gnm: (70)

This is a linear equation which can easily be solved. If (n;m) 6= (2; 1), one can choose

the initial condition in such a way that jhnm(�)j 6 K2j� j�3=2. When (n;m) = (2; 1),

however, we cannot obtain such a good bound because the imaginary part of the term

in brackets vanishes. Thus we do not attempt to eliminate this term. We obtain the

equation

" _�2 =
�
�1(�)� g21(�)j�2j2

�
�2 + "w1(�) +G2(�2; �2; �; "); (71)

where

jG2(�2; �2; �; ")j 6M2

�
j� j1=4j�2j2 + "j� j�7=4j�2j2 + j� j�5=4j�2j4

�
: (72)

Let us write �2(�; �2) = �1(�)� g21(�)j�2j2.
� Step 3: Proof of the bound (64).

The solution of (71) has to satisfy

�2(�) = e[	2(�)�	2(�1)]=" �2(�0) +

e	2(�)="

Z
�

�1

e�	2(�)="
�
w1(�) +

1

"
G2(�2; �2; �; ")

�
ds; (73)
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where 	2(�) =
R
�

0
�2(s; �2(s)) ds. We de�ne the time

�
? = sup

[�1;�("=d)2=3]

�
�
�� j�2(s)j 6 p" for �1 6 s 6 �

	
: (74)

By continuity, �? > �1. Using the bounds on G2 we can show that for �1 6 � 6 �
?,

j�2(�; �2)j > K2j� j1=2;
jG2j 6M3

�
"j� j1=4 + "

2j� j�7=4
�
;

jd�G2j 6M3

�
"j� j�5=4 + "

2j� j�11=4
�
;

(75)

where d�G2 = @�G2 + @�2G2
_�2 + @

�2
G2

_
�2 is estimated using (71). Using Lemma 5.5

and the bounds on w1, we obtain that

j�2(�)j 6M4

�
"j� j�3=4 + "

2j� j�9=4
�

) j�2(�?)j 6M4"
1=2
�
d
1=2 + d

3=2
�
:

(76)

Taking d su�ciently small, we have j�2(�?)j < "
1=2. If we assume that �? < �("=d)2=3,

we contradict the de�nition of �?, which shows that �? = �("=d)2=3.
Going back to the initial variables and using the bounds on s and h, we obtain the con-

clusion of the lemma.

Proof of Proposition 5.2. After subtracting "w(�)=�(�) from (56) and eliminating

the term linear in � in the same way as in Lemma 5.6, we obtain

" _�1 = �1(�)�1 + "
2
w1(�) +G1(�1; �1; �; "); (77)

where

j�1(�)j > K1j� j1=2;
w1(�) = O(j� j�7=4);

G1(�1; �1; �; ") = O(j� j1=4j�1j2) +O("j� j�7=4j�1j2) +O(j� j�1j�1j3):
(78)

Let 	1(�) be a primitive of �1(�). The solution of (77) with initial condition �1(�1) = 0

should satisfy

�1(�) = e	1(�)="

Z
�

�1

e�	1(s)="
�
"w1(s) +

1

"
G1(�1; �1; s; ")

�
ds: (79)

Using the a priori estimate of Lemma 5.6 and the bounds (78), we can apply Lemma 5.5

to estimate the integral and obtain (58). To obtain (59), it is su�cient to subtract the

particular solution �0(�) from the general solution, and to use the modulus as a Lyapunov

function.

5.3 During the Bifurcation

In this subsection, we study (52) on the time interval [�("=d)2=3; ("=d)2=3]. We recall

that d is a constant which will be chosen small, but is independent of ", while " is small

with respect to d. In other words, we consider the system on a time scale d�1, which is

intermediate between 1 and "�1. In fact it turns out to be useful to take " 6 d
4.
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Figure 3. The dynamics near the bifurcation point can be reduced to the motion of a

particle in a time-dependent potential which transforms from a single to a double well.

The potential V (x; t) = 1

4
x4 � 1

2
tx2 � dR0x is shown for dR0 = 0:1 and t = �1, 0 and

1. Since the energy is decreasing, and the barrier between the wells always has a positive

energy, the particle remains in the same well.

From Corollary 5.3, we know that at the time � = �("=d)2=3, � is of order "1=3 and � is
of order "2=3. The basic idea to analyse the motion during the bifurcation is to introduce

the scaling of variables

� = ("=d)1=3x; � = ("=d)2=3y; � = ("=d)2=3t: (80)

This scaling transforms the system (52) into

d _x = y + ("=d)1=3Q1(x; y; t; ");

d _y = tx� x
3 + dR0 + ("=d)1=3Q2(x; y; t; ");

(81)

where R0 = R(0; 0; 0; 0) and the functions Q1 and Q2 are uniformly bounded by constants

independent of " and d. This system should be studied on the time interval t 2 [�1; 1],
and with an initial condition

x(�1) = d [R0 +O(d) +O(("=d)1=3)] = dR0 +O(d2);

y(�1) = d [O(d) +O(("=d)1=3)] = O(d2):
(82)

Equation (81) is a small perturbation of the Hamiltonian system

H(x; y; t) =
1

d

h1
2
y
2 +

1

4
x
4 � 1

2
tx

2 � dR0x

i
: (83)

Lemma 5.7. For �1 6 t 6 1, the solution of equation (81) and of the Hamiltonian system

(83) with the same initial condition di�er by a term of order ("=d)1=3.

Proof: One can use a standard averaging result, see for instance [GH], Theorem 4.1.1.

page 168.

The Hamiltonian (83) describes the motion of a particle in a potential V (x; t) = 1
4
x
4�

1
2
tx

2 � dR0x which changes from a single well to a double well as t grows from �1 to 1

(Fig. 3). Note that (82) implies that the energy is negative at t = �1 if d is su�ciently

small. Since

dH

dt
(x; y; t) =

@H

@t
(x; y; t) = � 1

2d
x(t)2; (84)
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the energy must decrease. Since the barrier between the potential wells always has positive

energy, the particle has to remain in the same well, which is the right one if R0 > 0 and

the left one if R0 < 0.

We will however need a more precise estimate, showing that the orbit remains close to

the bottom of the well. This is the main result of this section.

Proposition 5.8. Assume that R0 6= 0. For su�ciently small d, the solution of the Hamil-

tonian system (83) with the initial condition (82) is such that

x(1) = signR0 +O(d); y(1) = O(d): (85)

Together with Lemma 5.7, this implies

Corollary 5.9. During the time interval [�("=d)2=3; ("=d)2=3], the solution of (52) with

initial condition given by Corollary 5.3 satis�es � = O("1=3) and � = O("2=3). At the time

� = ("=d)2=3 we have

� = ("=d)1=3 signR0 +O("1=3d2=3) +O(("=d)2=3);

� = O("2=3d1=3) +O("=d):
(86)

Proof of Proposition 5.8. To simplify the notation, we consider the case R0 = 1.

� Step 1: Transformation of the equation.

Let x?(t) be the positive solution of tx? � x
3
? + d = 0. Then we have

_x?(t) =
x?(t)

a(t)
; �x?(t) =

2tx?(t)

a(t)2
; (87)

a(t) = 3x2? � t > maxf�t; 2d2=3; 2tg: (88)

We decrease the order of the drift term d by the transformation

x = x1 + x?(t)� d
2 �x?

a

y = y1 + d _x?(t)� d
3 d

dt

� �x?
a

�
;

(89)

which implies that x1(�1), y1(�1) = O(d2) and yields the system

d _x1 = y1

d _y1 = �a1(t)x1 � b1(t)x
2
1 � x

3
1 + d

4
c1(t);

(90)

where

a1(t) = a(t) +O(d4=3);

b1(t) = 3x?(t) +O(d);

c1(t) =
d2

dt2

� �x?
a

�
+O(d�5=3):

(91)

There is a time t? = O(d2=3) such that _a1(t) < 0 for t < t? and _a1(t) > 0 for t > t?.

Using (87) and some algebra, we obtain the existence of a constant M > 0 such that

jb1(t)j
M

6

8><
>:
djtj�1
d
2=3

t
1=2
;

jc1(t)j
M

6

8><
>:
djtj�4
d
�5=3

t
�5=2

;

for

8><
>:
t 6 � d

2=3

jtj 6 d
2=3

t > d
2=3
:

(92)
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� Step 2: t 6 t?.

Consider the Lyapunov function

V =
h1
2
y
2
1 +

1

2
a1(t)x

2
1 +

1

4
x
4
1

i1=2
: (93)

We have V (�1) 6M0d
2 and

d _V =
1

2V

h1
2
d _a1x

2
1 � b1x21y1 + d

4
c1y1

i
6 2�1=2d4jc1j+ 21=2

b1

a1
V

2
: (94)

From (92) we get the bound

Z
t?

�1
2�1=2d3jc1(s)jds 6M1d

2
: (95)

Let M2 =M0 + 2M1 and de�ne the time

t̂ = sup
�1 6 t 6 t?

�
t
�� V (s) < M2d

2 for �1 6 s < t
	
: (96)

For t 6 t̂ we get from (94) and a standard result on di�erential inequalities (see for

instance [Hal]) that

V (t) 6 (M0 +M1)d
2 +M3M

2
2d

10=3
< M2d

2 (97)

for su�ciently small d, which proves that t̂ = t? and thus V (t?) = O(d2).

� Step 3: t > t?.

Using the fact that _a1 > 0 we obtain

d _V 6
1

2
d
_a1

a1
V + 2�1=2d4jc1j+ 21=2

b1

a1
V

2
: (98)

We choose M4 such that M2d
1=3

< M4 and de�ne

~t = sup
t? 6 t 6 1

�
t
��V (s) < M4d

5=3 for t? 6 s < t
	
: (99)

For t 6 ~t, we have

_V 6
_a1

2a1

�
1 +MM4d

2=3
�
V + 2�1=2d3jc1j: (100)

Using Gronwall's Lemma, we obtain that if MM4d
2=3 ln[a1(1)=a1(t?)] 6 ln 2,

V (t) 6 2

�
a1(t)

a1(t?)

�1=2
V (t?) +

�
2a1(t)

�1=2 Z t

t?

d
3 jc1(s)j
a1(s)1=2

ds 6M5d
2=3
: (101)

TakingM4 > M5, we obtain ~t = 1 and thus V (1) = O(d5=3). Transforming back to the

original variables, we obtain x(1) = x?(1) +O(d5=3) and y(1) = d _x?(1) +O(d5=3).
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5.4 After the Bifurcation

In this section, we analyse equation (52) for � > ("=d)2=3. It is in fact more convenient to

use the form

" _� = �

" _� = ��(�)� + 2a(�)� + 
(�)�2 + �(�)�� � �
3 � �

2
� +O(kzk4) + "R(�; �; �; ");

(102)

obtained by the transformation � 7! � � a(�)�, where �� = � � a
2. The right-hand side

vanishes approximately on three curves (�; �) � (0; 0) and (�; �) = (�?�(�); 0), where

�
?
�(�) = ���1=2 +O(�) = ��1=2 +O(�): (103)

We assume here that R(0; 0; 0; 0) > 0 so that the initial condition is close to �?+, the other

case is obtained by symmetry. The translation � = �
?
+(�) + �1, � = �1 yields

" _�1 = �1

" _�1 = ���1 + 2��1 + ~
�21 +
~��1�1 � �

3
1 � �

2
1�1 +O(kz1k4) + "R;

(104)

where (see equation (53))

�(�) = a� 1
2
��+ 1

2
(
 � �)�?+ = (c� 1

2
)� +O(�3=2);

�(�) = 2�?+
2 � ��

?
+ = 2� +O(�3=2);

~
(�) = 
 � 2�?+ = �2�1=2 +O(�);

~�(�) = � � 3�?+ = �3�1=2 +O(�);

w1(�) = �d��
?
+(�) = �1

2
�
�1=2 +O(1):

(105)

Notice that the linearization of (104) admits the eigenvalues � � i�1=2. It can be diago-

nalised approximately by the transformation

� =
1p
2

�
ei�=4 �1=4 � e� i �=4

��
�1=4�

�1 +
1p
2
e� i�=4

�
�1=4

�1: (106)

We obtain a system similar to (56):

" _� = �(�)� + "'(�)� + "w(�) + g(�; �; �; "); (107)

where

�(�) = �+ i�1=2 + 1
2
i " _���1=2;

'(�) = 1
4
i _���1 � 1

2
_���1=2 = O(��1);

w(�) = 1p
2
e� i �=4

�
�1=4

R(0; 0; �; 0) +O(�1=4);

g(�; �; �; ") = O(��1=4j�j2) +O(��1j�j3) +O(��5=4j�j4):

(108)

Finally, by Corollary 5.9, we get the following estimate on the initial condition:���(("=d)2=3)�� 6M0d
1=2
"
1=2
: (109)

The main result of this subsection is the following.
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Proposition 5.10. Assume that c = da=d�(0) < 1
2
. Then there exist positive constants

M , � and T such that, if " and d are su�ciently small, any solution of (107) with initial

condition (109) satis�es the bounds���(�)�� 6M
�
"�
�3=4 + "

1=2 e���
2="
�

for ("=d)1=3 6 � 6 T . (110)

Corollary 5.11. On the same time interval, there is a constant M1 > 0 such that the

solution of (102) satis�es���(�)� �
?
+(�)

�� 6M1

�
"�
�1 + "

1=2
�
�1=4 e���

2="
�
;���(�)�� 6M1

�
"�
�1=2 + "

1=2
�
1=4 e���

2="
�
:

(111)

The proof of Proposition 5.10 follows directly from the two lemmas given below.

Lemma 5.12. Assume that c < 1
2
. There are positive constants M and T such that (107)

admits a particular solution �0(�) satisfying���0(�)�� 6M"�
�3=4 for ("=d)1=3 6 � 6 T . (112)

Proof: The proof is similar to the proof of Lemma 5.6, so we only outline the di�er-

ences.

1. We have to eliminate quadratic terms from the equation as well. In order to get a

normal form similar to (71), we start by eliminating quadratic terms, then we remove

the term linear in �, and then only the nonresonant cubic terms.

2. For ("=d)1=3 6 � 6 "
1=2, we eliminate the real part of the linear term by the transfor-

mation � = exp[c�2="]�1. We then change the direction of time, �x a �1("
1=2) of order

"
5=8 and use Lemma 5.6.

3. For � > "
1=2, we proceed exactly as in Lemma 5.6.

Lemma 5.13. Any solution of (107) with initial condition (109) satis�es���(�)� �0(�)
�� 6M"

1=2 e���
2=" for ("=d)1=3 6 � 6 T . (113)

Proof:

� Step 1: Hamiltonian system.

Consider, as a special case of (104), the Hamiltonian system

" _�1 = �1 � 1
2
"�
�1=2

" _�1 = �2��1 � 3
p
��

2
1 � �

3
1 :

(114)

Lemma 5.13 shows the existence of a particular solution �0(�) = O("��1), �0(�) =

O("��1=2). If (�1; �1) = (�0; �0) + (�2; �2), the dynamics of (�2; �2) is governed by a

Hamiltonian of the form

H(�2; �2; �) =
1

2
�
2
2 + �k1(�)�

2
2 +

p
�k2(�)�

3
2 +

1

4
�
4
2 ; (115)

where k1(�) and k2(�) are bounded functions. Using (109), one can show that for

su�ciently small d, there exists a constant M0 such that

H(�) 6M0d
2
�
2
: (116)
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� Step 2: Normal forms.

We write (107) in the form

" _� = �(�)� + "'(�)� + "w(�) + g
0(�; �; �) + g

1(�; �; �; "); (117)

where g0(�; �; �) is the contribution of the Hamiltonian approximation (114) of (104),

and

g
1(�; �; �; ") = O(�1=4j�j2) +O(��1=2j�j3) +O(��5=4j�j4): (118)

This relation holds because the full system (104) is a perturbation of size 1 +
p
� of

the Hamiltonian system (114).

We now perform a number of changes of variables: a translation � = �0(�) + �1,

where �0(�) is the particular solution of Lemma 5.12; a linear change of variables

z1 = �2 + s(�)�2, where s satis�es (67), which cancels the term linear in �1; and a

transformation to normal form �2 = �3 + h(�3; �3; �) which yields the equation

" _�3 = �3(�)�3 + c
0(� ; ")j�3j2�3 + c

1(� ; ")j�3j2�3 +O(��5=4j�3j4); (119)

where the functions c0 = O(��1) and c
1 = O(��1=2) denote contributions of g0 and

g
1, respectively.

� Step 3: Bounds on the coe�cients.

We claim that

Re �3(�) = �(�) +O("��1=2); Re c0(�) = O(��1=2): (120)

The �rst claim can be checked by a direct calculation. We observe that the linearization

of (104) around the particular solution (�0; �0) has the form
� 0 1
�~� 2~�

�
, where ~� =

�+O("��1=2) and ~� = � +O("��1=2). Then we show that the function s(�) occuring

in the linear transformation is such that Im s(�) = O("��1).

The second claim can be proved without lengthy calculations. By construction, �c0(�)

is polynomial in f�1=2; "��3=2g. If we assume by contradiction that the leading term

of Re c0(�) is of order ��1, we reach the conclusion that �2 would grow faster than

allowed by the estimate (116).

� Step 4: Final estimate.

The Lyapunov function V = jz3j2 satis�es the equation

" _V 6 � 2��V
�
1�M2�

�3=2
V �M2�

�9=4
V

3=2
�
; (121)

where � = 1
2
� c and M2 > 0. We obtain the conclusion in a similar way as in

Proposition 5.8.

6 Qualitative properties and robustness

We conclude by discussing a few cases to which Theorem 2.2 does not apply.

� Other values of da=d�:

The result requires a su�ciently low value of da=d�, which should be such that we

traverse the bifurcation diagram Fig. 2 from region A to one of the regions D, E or

F. Note that in a neighbourhood of the bifurcation point, the qualitative behaviour is
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Figure 4. Same as Fig. 1, but for values of da=d� to which Theorem 2.2 does not apply.

(a) When �(�) = 2� , we move just along the C-D line of Fig. 2; the equilibria are marginally

stable, thus the solution keeps oscillating around them with a constant amplitude. (b)

When �(�) = 0:5� , we go from region A to region C; now the asymmetric equilibria are

unstable; the trajectory oscillates for some time around them because of Proposition 5.8,

but ultimately escapes to the periodic orbit.

independent of the functions 
 and �. The only relevant fact is that the bifurcating

equilibrium branches should be attracting. This fact is not surprising when we steer

into regions E or F. It is a bit more surprising when we go into region D, because the

equilibrium is surrounded by an unstable periodic orbit. The fact that the trajectory

lands inside this orbit is due to the speci�c nature of the Hamiltonian approximation

valid near the bifurcation point.

If we further increase da=d� so as to reach region C, the equilibria are no longer

attracting. On the C-D boundary, trajectories oscillate around these equilibria with

approximately constant amplitude (Fig. 4a), while in the region C, they depart from

them after a time of order "1=2 and �nally reach the outer periodic orbit (Fig. 4b). In

view of our control problem, this behaviour is not desirable in the sense that we have

an appearance of large amplitude oscillations, although the delay is not macroscopic.

� Imperfect control:

While constructing the feedback control in Section 4, we had to adjust precisely three

parameters: the imaginary eigenvalue shift � and the two parameters v1 and v2 of

the nonlinear part. If these parameters are not set exactly to the desired value, the

dynamics will still be governed by equation (11), but the functions a(�), �(�), 
(�)

and �(�) will not vanish exactly at the same time. The same is true to some extent if

the feedback u(x; �) does not vanish exactly on the nominal equilibrium branch x?(�).

In other words, such imperfections result in the fact that we traverse the bifurcation

diagram of Fig. 2 on a curve which misses the origin. Two situations may occur:

If we traverse the diagram on a path A-F-E, we �rst experience a pitchfork bifurcation,

which results in an exchange of stabilities as shown in [LS]. Thus the trajectory will

still track a stable equilibrium, but the bifurcation will occur a little bit earlier.

If we traverse the diagram on a path A-B-C, the situation is less favourable. The Hopf

bifurcation A-B will not be felt immediately, but when the region C is reached, there

is a risk that the trajectory jumps to the periodic orbit. This behaviour can only be

avoided if the slope d�=da is large enough that the region D is reached before the

trajectory has departed from the asymmetric branch.
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