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A UNIFORM DIMENSION RESULT
FOR THE BROWNIAN SNAKE

1 Introduction

A very useful result in the study of the Hausdorff dimension of exceptional subsets of a Brownian
path is the following uniform dimension theorem of Kaufman [RK69].

Theorem 1 Suppose B is a Brownian motion in dimension at least 2. Then, almost surely,
for every Borel set A C [0,1], we have dim B(A) = 2dim(A), where dim denotes the Hausdorff
dimension.

The strength of the statement lies in the “uniformity”, the fact that the exceptional nullset of
paths does not depend on A. It is due to this fact that the theorem can be used to reduce the
study of random subsets of a Brownian path to the study of random subsets A C [0, 1].

It is the aim of the present note to prove an analogous theorem that enables us to reduce the
study of the Hausdorff dimension of exceptional subsets in the support of a super-Brownian
motion X; to the study of random subsets of the real line. The necessary time dynamics is
provided by Le Gall’s Brownian snake, which we briefly recall now.

The Brownian snake is a continuous strong Markov process {W; = (ws, (s) : s > 0} with values
in the set

W = {(w,C) :w : [0,00) = R? continuous with w(s) = w(¢) for all s > ¢ > 0}
of stopped paths equipped with the metric

d((wl,Cl), (w2,C2)> = |lwr — walloo + 1 — 2| -

Denote by © = C([0,00), W) the space of continuous mappings from [0, 00) to W equipped
with the Borel-o-algebra A coming from the compact-open topology and by W = {W,}:>¢ the
coordinate process on 2. Let W, = ws(Cs) be the endpoint of W,. By P, denote the law on
(2, A) of the path-valued process associated with d-dimensional Brownian motion, or Brownian
snake, starting in the constant path at x of length 0. This law was introduced in [LG91] and
[LG93] and can be described as follows. First, the lifetime process {(s} is a reflected Brownian
motion. Second, the distribution of {w,} given {(,} is that of an inhomogenuous Markov process
whose transition kernel from s > 0 to r > s is described by

(i) wy(u) =wy(u) for all u < m = infycy<y Cu.

(ii) conditionally given m the process {w,(m +1t) : 0 <t < {, —m} is independent of ws and
distributed as a Brownian path started in ws(m) and stopped at time ¢, — m.

The intuitive picture is that {ws} grows like a Brownian motion in R? when {(;} is increasing
and is erased, when {(;} is decreasing (this is merely heuristical, as {(;}, of course, has neither



points of increase, nor of decrease). We denote by {L! : s > 0} the continuous local time of
{¢s} at level ¢, normalized to be a density of the occupation measure of {(;}, and by 7 = 7(¢) =
inf{s >0 : LY = 1} the inverse local time at 1. Then

X,(4) = /0 LA(W,) Li(ds) , for A C R Borel, (1)

defines a Markov process with values in the space Mz(R?) of finite measures on R? with the
vague topology. This process is a super-Brownian motion started in é,. Here is the main theorem
of this paper.

Theorem 2 Suppose W is a Brownian snake in dimension at least 2. Then, Py-almost surely,
for every t > 0 and every Borel set A C {s € [0,7] : (s =1}, we have dim W (A) = 4dim(A).

Remarks:

e Note that the P, -nullset in the theorem is independent of ¢t and A.

e Recall that A € {s € [0,7] : ¢, = t} implies that W (A) C suppX; except for an at most
countable set of points.

e An analogous result can be proved for packing instead of Hausdorff dimension.

Theorem 2 is new only in dimensions d = 2,3. In dimensions d > 4 Serlet [LS95] proved the
following stronger result.

Theorem 3 Suppose W is a Brownian snake in dimension at least 4. Then, Py-almost surely,

for every Borel set A C [0,7] we have dim W (A) = 4dim(A).

It is not hard to convince oneself, that this stronger result cannot hold in dimension d = 2,3
even if we restrict attention to sets A of small dimension. For the study of exceptional sets in
the support of X;, however, the statement of Theorem 2 is generally sufficient. We hope to give
full evidence of the applicability of the theorem in future research. For the moment we just
mention one immediate consequence: We obtain the dimension of X; uniformly for all £ > 0, a
result first established by Perkins in [EP88].

Corollary 4 For super-Brownian motion in dimension at least 2, almost surely, for everyt > 0,
the carrying dimension of Xy is 2. In fact, dim(supp X;) = 2 and for every Borel set A C R¢
with dim(A) < 2 we have X¢(A) = 0.

Proof. It is known, see for example [LG91], that suppX; and {Ws : (s = t} coincide except
for an at most countable set. Hence, by Theorem 2, dim(suppX;) = 2 follows from the fact
that, almost surely, for all ¢ > 0, dim{s : (s =t} = 1/2. On the other hand, if A C suppX;
and dim(A4) < 2, then dim W~"(A) < 1/2 and hence W ~'(A) is not charged by Brownian local
time. Therefore, by (1), X;(A) = 0. ]

In order to prove Theorem 2 we follow a modification of the general plan of Serlet and we make
direct use of some of the steps of his proof. The crucial new part is Lemma 9 below, which
may also be used as an alternative to the corresponding statement [L.S95, Lemma 8] (proved in
[LS93]) in Serlet’s proof of Theorem 3.



2 Proof of the theorem

We begin by recalling from [LG93] that, for every d > 0, the mapping s — W is locally Holder
continuous with exponent (4 + §)~'. Hence we get the upper bound dim W (A) < 4dim(A)
without any effort. It remains to prove the lower bound. For this purpose we have to show that,
on a set of full P,-measure, for every subset H C R? and every t > 0, we have

. dim H
dim{s € (0,7) : (s =t, Ws e H} < HZ . (2)

The lower bound then follows by choosing H = {Ws : s € A}. Without loss of generality we
may assume that our Brownian snake is started in the origin, that H is contained in a unit cube
C =a+ |0, 1)4 ¢ R? at positive distance from the origin and ¢ is contained in a unit interval
I =b+10,1], for some b > 0.

We first define a set of full P)-measure such that our dimension property (2) holds for all W in
the set. For this purpose let {z,, : m > 1} be the set of dyadic points in the cube C indexed
such that, for every n,

{xm : 1§m§2”d}:{a+(§—i,...,§—g> :ngi§2”—1}.

Next, let {a,, : m > 1} be the set of dyadic points in the interval I indexed such that, for
every n, {am : 0<m < 2"} ={b+ £ : 0 <k <2"}. Define I,y(c) = [am — €, am +€]. The
occupation measure Z for the Brownian snake is defined by

Z(J,A) = / 17(¢)14(Wy) ds for all A C R? and J C (0, 00) Borel.
0

Also, we have to define the succesive entrance times in a ball B(z,e) and exit times from the
ball B(z,2¢) by
Ti(z,e) =inf{s >0 : W5 € B(z,¢)},

and, for k£ > 1,
Si(z,e) = inf{s > Ty(x,e) : W, & B(x,2¢)},
Tisi(z,e) = inf{s > Si(x,e) : W, € B(z,¢)}.

By passing to a subsequence, if necessary, we may assume that (([Sk(z,¢), T (z,€)]) NI # O for
all k. Finally, denote L(z) =1+ |log(z)|. This completes the notation needed to formulate our
lemma.

Lemma 5 For every § > 0 there is a set Q(5) C Q of full Py-measure, a constant ¢ > 1 and a
random variable Q, which is finite on Q(9), such that, for every path W = (w, () € Q(9), every
e€{27%: q> Q} and all integers m,n > 1,

(i) Z(Im(eZ),B(acn,%)) < cL(m)2L(n)2L(e)? €,

(ii) Sg(n,€) — Ti(xn,e) < cL(n)>L(k)3L(e)3e*, for every k such that Ty(z,,€) < T,



(iii) Wy — Wyl < |s — |0 for all 0 < s,t < 7 such that |s —t] < 279,

(iv) |Co— Gt < |s —t|Y ) for all 0 < s,t < 7 such that |s —t] < 29,

Proof. It is clear from the fact that s — W, is locally 1/(4 + 6)-Holder continuous and that
s+ (s is locally 1/(2 + §)-Holder continuous that properties (ii¢) and (iv) can be realized on a
set of full measure. For property (i7) we use the following lemma from Serlet [LL.S95, Lemma 9].

Lemma 6 There exist positive constants ¢; and co such that, for every x € C, 0 < € < 1/4,
0 < A< oo and integers k > 1,

Py (S’k(x, e) — T(x,€) > Aet ‘Tk(az, £) < 7') < crexp(—ey \B/X) .
We can add up the probabilities above and obtain a constant ¢ > 0 such that
o0
3 IP’U{Sk(:pn, 9=0) — Ty, (2, 277) > cL(n)3L(k)3L(29)32~4
g=1

for some k,n with Ty (z,,279) < T} < o00.

Using the Borel-Cantelli-Lemma we infer that property (i4) can be realized on a set of full
measure. The new part is the proof of property (7). We formulate two lemmas to prepare the
proof.

We first need the following statement about Brownian motion stopped at its inverse local time.
Recall that the local time of {|B;|} at level 0 is twice the local time of {B;} at level 0.

Lemma 7 Let {B;} be a linear Brownian motion, LY its local time at level 0 and 7 = 7(B) =
inf{s : LY = 1/2}. Then, for all 0 < X < (log2)/2, we have

E{ exp ()\ /OT 1{|Bs\§1} ds)} < 7 —162’\ .

Proof. Recall that 7 itself does not even have finite first moment, so that the statement is not
trivial. We first check that, for the process {X;} defined as

tAT
XtZ/ LB,<1y ds,
0

we have, for all stopping times 7' and associated o-algebras Fr, that E{|Xo — Xr||Fr} <1
almost surely. Indeed,

7(B) 00
E{Xo — Xr|Fr} < sup Pa{/ 15, 1<1) ds} = sup / P{|B,| < 1,I° < 1/2} ds,
o<t 4 Jo ja<1/0



where P, refers to a Brownian motion B starting in By = a. Recall the explicit density of the
joint distribution of (Bs, LY), see for example [BS96, (1.3.8)], which yields

[o¢]
sup / P{|By| < 1,0 < 1/2} ds
la|<1

1/2
:sup/ ds/dac/ dy
\M<1

67U2
Verlo VE

With this property of {X;} at hand, we can see that, for every a > 0 and T = inf{t : X; = a},

gl +y + @) exp(=(lal +y + 0)?/29)}

Po{Xoo>a+2} = E{PO{XOO—XT>2|.7-"T}‘T<oo}-P{T<oo}

IN

%E{E{Xoo ~ X | Fr ‘ T < oo} - P{T < 0}
< Py{Xoo > a}/2.

From this it is easy to see that E{exp(AXy)} < oo for all 0 < A < (log2)/2 and, similarly, we
see that

E{exp(AXo)l = /IOOPO{XOO>loga/>\}da+1

o0
= 62*-/ P{Xe >2+loga/\}da +1
1

62)\
& Blexp(\Xoo)} +1/2,

from which we infer that E{exp(AX )} < (2 — €)™, as required. ]

We also need the following fact, see [LP95, Lemma 3.1] for an easy proof. Denote by p(y,s) =
(1/v2ms)? exp(—||z||?/2s) the standard heat kernel.

Lemma 8 Denote G(r,t) fo f”y”<r (y,s)dy]ds. Then, for allt > 0,r >0 and z € C,

IP’O{ exp ()\Xt(B(w,r))} < exp (2)\ Ay”Q p(y,t) dy) ,
for all 0 < X\ < (4G (r,t)) !

The following lemma serves as a replacement for [LS95, Lemma 8]. For its formulation define

A(W) = sup {5 >0 ws(tr) —ws(t2)] < 3v/Jt1 — ta| L([t1 — ta]) for all |t —ts] < 8,0 < s < T}.

The modulus of continuity for the historical process, established in [DP91, Theorem 8.7], makes
sure that A(W) > 0 for Pp-almost all W. This will be used in the next lemma. The basic idea
is the following: If a particle is outside B(z,7¢L(¢)) at time t and A(W) > €2, the particle and

its offspring cannot move into B(z,¢) in time less than 2. Hence, if [, et x sB(z,e)ds is large
and A(W) > £2, then either X;(B(z,7¢L(e))) is large or the particles which are in B(z,7eL(e))
at time ¢ are unusually fertile. Both these events are shown to be unlikely.



Lemma 9 For every bounded interval I C (0,00) there exist positive constants cs and ¢y such
that, for allt € I, x € C, all A\ >0 and oll e =279, ¢ > 1.

t4e2
IP’O{A(W) > e?, / XsB(x,e)ds > )\64L(6)4} < czexp(—csVA).
t

Proof. Denote by
M = {M € Mp(RY) : p(RY) < \/XgQL(g)4}.

We have, by the Markov property of super-Brownian motion and the definition of A,
t+e?
PO{A(W) > 62,/ X,B(z,¢) ds > >\54L(5)4}
t

< IP’U{XtB(m,kL(E)) > \/X62L(5)4} + MS;J/\I; IP’#{ /UE X (R?) dt > >\E4L(6)4},

where {X;} under P, is a super-Brownian motion started in x. We give seperate estimates of
these two probabilities. To investigate the first probability we use Lemma 8. We have

t t/r?
G(r,t) = /|y|<r [/0 p(y,s) dS] dy = r? Ay”q [/0 p(y,s)ds| dy,

which, for all t € I and 0 < 7 < 1/2, is bounded from above by a constant multiple of r2 log(1/)
in dimension d = 2 and by a constant multiple of ? in dimension d > 3. In all cases we find a
positive constant kq such that

) b0y < GTELE).) < L)
llylI<7eL(e)
Choose ky = 1/(4k1) and ks such that exp(1/(2t)) < ks for all ¢ € I. Then, using Chebyshev,
IP’U{Xt(B(m,kL(e))) > \/XEQL(E)‘l}

<

VA2 L(e)* x,7eL(e
o (- i) Plee Clagm )

T 4G(7=L(e), t)
Siyi<rere) P: 1) dy
< exp ( — \/X/(4k1)) - exp (2 y4G(7eL(g),t) )

< kyexp(—kaVA). (3)

This is the required estimate for the first term. To investigate the second probability we use our
Lemma 7. We choose a positive constant k4 smaller than L(e)*(log2)/2 for all e = 279, ¢ > 1.
Then, by Chebyshev,

fy Xt(Rd)dt)}_

82
IP’u{ /0 Xy(RY)dt > A64L(6)4} < e_k”Pu{eXp (k4 1L (e)?



Now let a = ky/L(e)* and observe 0 < a < (log2)/2. We have, by the branching property of
super-Brownian motion,

Pu{exp (;4 /052Xt(Rd)dt)} = exp(/long{exp (;14 /052 Xt(]Rd)dt)}d,u(x)>
= exp(/long{exp (;4 /OT 1418, |<2} ds)}d,u(x))

exp (\/X€2L(6)4 -log PO{ exp (6% /OT L4|B,|<e?} ds) }) .

IN

We now use a scaling argument. Define 75 = 0 and {B?} = {B,}. Proceed inductively by
putting, for j > 0, ;41 = inf{s : L%(B{) = 1/2} and {BI™ = {Br;;1+s}. Finally, let
7 =inf{s : LY = 1/(2¢?)}. Then, using Lemma 7 in the final step,

o Po{ex0 (% [ 1)} = tog oo (5 [ i, e )

1/€2 1/€2

= tog By{ exp (“; /OTj Ly 11nyds) | = j;logp"{e"p (4 /OTj L gm-11<1y5) }

1 1
= 6_2‘10g(2—€2a>'

Therefore, as, for some constant ks > 0, log(1/(2 — €%%)) < ksa,

IP’M{ /052 X (B(z,€))dt > \/X64L(6)4} <e R exp (\/XL(g)4 log (2 _1e2a>>
< exp ( ~ Nea(1 - k5/\/X)) . (4)

The required result follows from (3) and (4). ]

We can now add the probabilities and obtain, for some ¢ > 0,

ZPO{A(W) > 22q,/ X,B(zp,2 ) dt > 2% L(n)2L(m)?L(29)? for some n,m} < 00,
g=1 Im(2729)

and hence Borel-Cantelli gives a random integer @ such that, whenever A(W) > 27291, we
have

/ X;B(z,,27 %) dt < 27 L(n)2L(m)?L(29)?,
I (2-22)

for all integers n,m and ¢ > (. By the modulus of continuity result of [DP91, Theorem 8.7]
there is a random integer Qg such that A(W) > 27292 almost surely and this implies that (4)
can be realized on a set of full measure and hence we obtain the statement of the lemma. [

We finish the proof of Theorem 2 by showing that our dimension property holds for all W which
are in the intersection of the sets 2(d). We fix the set H C C, which we may assume to have



dim H < 4, and the time ¢t € I and let 4 > v > dim H and 0 < 6 < v — dim H. We further fix
an integer K with 25K > /d + 1.

We choose a covering of H by a sequence {B(y;,rj) : j > 1} of balls centred in C whose radii
satisfy r; < 27(@TK+D) such that

> rl LK) <27 KDy, (5)
7=1

We can replace this covering by a covering consisting of balls B(x,,,€;) such that e; € {277 :
q>Q}, 27 F+e; <pr; <27K¢; and
[yj — Tm,| < \/326—1]( for some m; < (g)d
We write T,z, S,z for Ty (wm;,€5), Sk(Tm;,€;), and denote by
Nj={k>1: 1] <randter, s},
and

Mj:{kz1 TV < 7 and ([T}, S]] UI }

Let N; = #N; and M; = #M;. Because B(y;,r;) C B(:I?m].,{;‘j) we have that

fj U 17,511 {se [0,0] : Wseﬂ,gs:t}_

J=1keEN;

This is the covering which will give a good upper bound of the Hausdorff measure. Property
(44) ensures that we have control over the length of the individual covering intervals [T}, S7].
We now argue that also the cardinality of the sets Nj is not too large. We begin by observing
that |W5i - WTg| > ej. As ej <279 we infer from property (i) that

Si—Ti 2™ (©)

From (i) applied to the family of intervals Im(ez) =0,...,¢ £-2, we infer that

-2
&j

Myt < 3 ) =T < Z( | Inled), Blom;,22))) < eL(3)*Limy) Lej) el (652 + 1),
keM; m=0
and hence, for some positive constant cs,
M]’ < C5L(€j)6€j_2_6 .

Properties (7v) and (i7) imply that, for some positive constant cg, for every k,

diam ([T, ${] < (S = T))"/ @+ < eL(my)* LM;)*L(e;)*e) ) < egL(e)°e/ @ (1)



We infer from this and our numbering of the points a,, that
CITY,S1) C lam — 27", am +277),
for some m < 2" and n satisfying
9~ (1) < cBL(sj)gsﬁ/(ZM) <27m,

We are interested in m = m(t) < 2" with the property that ¢ € [a;,, — 27", a4y, +27"). On the
one hand we then have

Z([am 2 gy + 2*”],B(xmj,2sj)) > (]~ T]) > Ny -4,
keEN;

and on the other hand, [a, — 27", an + 27"] can be covered by at most 205L(5j)95j_5 intervals
from the collection {Ik(eg) 0<k< 1/52}. From (7), we hence know that

Z([am = 2", am + 2", B(wm,, 2¢5) ) < 2ec6L(m)*L(my)*Leg) ed

which together gives, for some positive constant c7,

Nj < C7L(6j)155j726 . (8)

Using again (i7) and (8), we get, for every a € [0, 1], and a suitable positive constant cg,
o0 . ) o0 @ o0 A 5
YD (SI-TH¥<e) N, (L(mj)3L(Mj)3L(5j)35§> <egy e P L(eh)
J=1 keN; j=1 j=1
We choose @ = (y + 26) /4, and get, upon recalling (5) and 2= K¢g; > r; > 27K+,
Z > (8] - T < g ZEVL (e5)* < s Z )T L(25 ) < g < 0.
j=1 kEN; Jj=1 Jj=1

This implies that dim{s : W, € H, {; = a} < (y + 26)/4 and, as this holds for all § > 0, the
required result follows and Theorem 2 is proved.
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