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A UNIFORM DIMENSION RESULT

FOR THE BROWNIAN SNAKE

1 Introduction

A very useful result in the study of the Hausdor� dimension of exceptional subsets of a Brownian

path is the following uniform dimension theorem of Kaufman [RK69].

Theorem 1 Suppose B is a Brownian motion in dimension at least 2. Then, almost surely,

for every Borel set A � [0; 1], we have dimB(A) = 2 dim(A), where dim denotes the Hausdor�

dimension.

The strength of the statement lies in the \uniformity", the fact that the exceptional nullset of

paths does not depend on A. It is due to this fact that the theorem can be used to reduce the

study of random subsets of a Brownian path to the study of random subsets A � [0; 1].

It is the aim of the present note to prove an analogous theorem that enables us to reduce the

study of the Hausdor� dimension of exceptional subsets in the support of a super-Brownian

motion Xt to the study of random subsets of the real line. The necessary time dynamics is

provided by Le Gall's Brownian snake, which we brie
y recall now.

The Brownian snake is a continuous strong Markov process fWs = (ws; �s) : s � 0g with values

in the set

W :=
n
(w; �) : w : [0;1)! R

d continuous with w(s) = w(�) for all s � � � 0
o

of stopped paths equipped with the metric

d
�
(w1; �1); (w2; �2)

�
= kw1 � w2k1 + j�1 � �2j :

Denote by 
 = C([0;1);W) the space of continuous mappings from [0;1) to W equipped

with the Borel-�-algebra A coming from the compact-open topology and by W = fWsgs�0 the
coordinate process on 
. Let Ŵs = ws(�s) be the endpoint of Ws. By Px denote the law on

(
;A) of the path-valued process associated with d-dimensional Brownian motion, or Brownian

snake, starting in the constant path at x of length 0. This law was introduced in [LG91] and

[LG93] and can be described as follows. First, the lifetime process f�sg is a re
ected Brownian

motion. Second, the distribution of fwsg given f�sg is that of an inhomogenuous Markov process

whose transition kernel from s > 0 to r > s is described by

(i) wr(u) = ws(u) for all u � m := infs�u�r �u.

(ii) conditionally given m the process fwr(m+ t) : 0 � t � �r �mg is independent of ws and

distributed as a Brownian path started in ws(m) and stopped at time �r �m.

The intuitive picture is that fwsg grows like a Brownian motion in R
d when f�sg is increasing

and is erased, when f�sg is decreasing (this is merely heuristical, as f�sg, of course, has neither
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points of increase, nor of decrease). We denote by fLts : s � 0g the continuous local time of

f�sg at level t, normalized to be a density of the occupation measure of f�sg, and by � = �(�) =

inffs � 0 : L0
s = 1g the inverse local time at 1. Then

Xt(A) =

Z �

0

1A(Ŵs)L
t
�(ds) , for A � R

d Borel, (1)

de�nes a Markov process with values in the space MF (R
d) of �nite measures on R

d with the

vague topology. This process is a super-Brownian motion started in Æx. Here is the main theorem

of this paper.

Theorem 2 Suppose W is a Brownian snake in dimension at least 2. Then, Px-almost surely,

for every t > 0 and every Borel set A � fs 2 [0; � ] : �s = tg, we have dim Ŵ (A) = 4dim(A).

Remarks:

� Note that the Px-nullset in the theorem is independent of t and A.

� Recall that A � fs 2 [0; � ] : �s = tg implies that Ŵ (A) � suppXt except for an at most

countable set of points.

� An analogous result can be proved for packing instead of Hausdor� dimension.

Theorem 2 is new only in dimensions d = 2; 3. In dimensions d � 4 Serlet [LS95] proved the

following stronger result.

Theorem 3 Suppose W is a Brownian snake in dimension at least 4. Then, Px-almost surely,

for every Borel set A � [0; � ] we have dim Ŵ (A) = 4dim(A).

It is not hard to convince oneself, that this stronger result cannot hold in dimension d = 2; 3

even if we restrict attention to sets A of small dimension. For the study of exceptional sets in

the support of Xt, however, the statement of Theorem 2 is generally suÆcient. We hope to give

full evidence of the applicability of the theorem in future research. For the moment we just

mention one immediate consequence: We obtain the dimension of Xt uniformly for all t > 0, a

result �rst established by Perkins in [EP88].

Corollary 4 For super-Brownian motion in dimension at least 2, almost surely, for every t > 0,

the carrying dimension of Xt is 2. In fact, dim(supp Xt) = 2 and for every Borel set A � R
d

with dim(A) < 2 we have Xt(A) = 0.

Proof. It is known, see for example [LG91], that suppXt and fŴs : �s = tg coincide except

for an at most countable set. Hence, by Theorem 2, dim(suppXt) = 2 follows from the fact

that, almost surely, for all t > 0, dimfs : �s = tg = 1=2. On the other hand, if A � suppXt

and dim(A) < 2, then dim Ŵ�1(A) < 1=2 and hence Ŵ�1(A) is not charged by Brownian local

time. Therefore, by (1), Xt(A) = 0.

In order to prove Theorem 2 we follow a modi�cation of the general plan of Serlet and we make

direct use of some of the steps of his proof. The crucial new part is Lemma 9 below, which

may also be used as an alternative to the corresponding statement [LS95, Lemma 8] (proved in

[LS93]) in Serlet's proof of Theorem 3.
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2 Proof of the theorem

We begin by recalling from [LG93] that, for every Æ > 0, the mapping s 7! Ŵs is locally H�older

continuous with exponent (4 + Æ)�1. Hence we get the upper bound dim Ŵ (A) � 4 dim(A)

without any e�ort. It remains to prove the lower bound. For this purpose we have to show that,

on a set of full Px-measure, for every subset H � R
d and every t > 0, we have

dimfs 2 (0; �) : �s = t ; Ŵs 2 Hg � dimH

4
: (2)

The lower bound then follows by choosing H = fŴs : s 2 Ag. Without loss of generality we

may assume that our Brownian snake is started in the origin, that H is contained in a unit cube

C = a + [0; 1)d � R
d at positive distance from the origin and t is contained in a unit interval

I = b+ [0; 1], for some b > 0.

We �rst de�ne a set of full P0-measure such that our dimension property (2) holds for all W in

the set. For this purpose let fxm : m � 1g be the set of dyadic points in the cube C indexed

such that, for every n,

n
xm : 1 � m � 2nd

o
=
n
a+

�k1
2n
; : : : ;

kd

2n

�
: 0 � ki � 2n � 1

o
:

Next, let fam : m � 1g be the set of dyadic points in the interval I indexed such that, for

every n, fam : 0 � m � 2ng = fb + k
2n

: 0 � k � 2ng. De�ne Im(") = [am � "; am + "]. The

occupation measure Z for the Brownian snake is de�ned by

Z(J;A) =

Z
1

0

1J(�s)1A(Ŵs) ds for all A � R
d and J � (0;1) Borel.

Also, we have to de�ne the succesive entrance times in a ball B(x; ") and exit times from the

ball B(x; 2") by

T1(x; ") = inffs � 0 : Ŵs 2 B(x; ")g ;
and, for k � 1,

Sk(x; ") = inffs > Tk(x; ") : Ŵs 62 B(x; 2")g ;
Tk+1(x; ") = inffs > Sk(x; ") : Ŵs 2 B(x; ")g :

By passing to a subsequence, if necessary, we may assume that �([Sk(x; "); Tk(x; ")]) \ I 6= ; for
all k. Finally, denote L(x) = 1 + j log(x)j. This completes the notation needed to formulate our

lemma.

Lemma 5 For every Æ > 0 there is a set 
(Æ) � 
 of full P0-measure, a constant c > 1 and a

random variable Q, which is �nite on 
(Æ), such that, for every path W = (w; �) 2 
(Æ), every

" 2 f2�q : q � Qg and all integers m;n � 1,

(i) Z
�
Im("

2); B(xn; 2")
�
� cL(m)2L(n)2L(")2 "4,

(ii) Sk(xn; ") � Tk(xn; ") � cL(n)3L(k)3L(")3"4, for every k such that Tk(xn; ") < � ,
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(iii) jŴs � Ŵtj � js� tj1=(4+Æ), for all 0 � s; t � � such that js� tj � 2�Q,

(iv) j�s � �tj � js� tj1=(2+Æ), for all 0 � s; t � � such that js� tj � 2�Q.

Proof. It is clear from the fact that s 7! Ŵs is locally 1=(4 + Æ)-H�older continuous and that

s 7! �s is locally 1=(2 + Æ)-H�older continuous that properties (iii) and (iv) can be realized on a

set of full measure. For property (ii) we use the following lemma from Serlet [LS95, Lemma 9].

Lemma 6 There exist positive constants c1 and c2 such that, for every x 2 C, 0 < " < 1=4,

0 < � <1 and integers k � 1,

P0

�
Sk(x; ") � Tk(x; ") > �"4

���Tk(x; ") < �
�
� c1 exp(�c2 3

p
�) :

We can add up the probabilities above and obtain a constant c > 0 such that

1X
q=1

P0

n
Sk(xn; 2

�q)� Tk(xn; 2
�q) > cL(n)3L(k)3L(2q)32�4q

for some k; n with Tk(xn; 2
�q) < �

o
<1 :

Using the Borel-Cantelli-Lemma we infer that property (ii) can be realized on a set of full

measure. The new part is the proof of property (i). We formulate two lemmas to prepare the

proof.

We �rst need the following statement about Brownian motion stopped at its inverse local time.

Recall that the local time of fjBsjg at level 0 is twice the local time of fBsg at level 0.

Lemma 7 Let fBsg be a linear Brownian motion, L0
s its local time at level 0 and � = �(B) =

inffs : L0
s = 1=2g. Then, for all 0 < � < (log 2)=2, we have

E

n
exp

�
�

Z �

0

1fjBsj�1g ds
�o

� 1

2� e2�
:

Proof. Recall that � itself does not even have �nite �rst moment, so that the statement is not

trivial. We �rst check that, for the process fXtg de�ned as

Xt =

Z t^�

0

1fjBsj�1g ds ;

we have, for all stopping times T and associated �-algebras FT , that EfjX1 � XT j jFT g � 1

almost surely. Indeed,

EfX1 �XT jFT g � sup
jaj�1

Pa

nZ �(B)

0

1fjBsj�1g ds
o
= sup

jaj�1

Z
1

0

PafjBsj � 1; L0
s < 1=2g ds;
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where Pa refers to a Brownian motion B starting in B0 = a. Recall the explicit density of the

joint distribution of (Bs; L
0
s), see for example [BS96, (1.3.8)], which yields

sup
jaj�1

Z
1

0

PafjBsj � 1; L0
s < 1=2g ds

= sup
jaj�1

Z
1

0

ds

Z 1

�1

dx

Z 1=2

0

dy
n 1

s
p
2�s

(jxj+ y + a) exp(�(jxj+ y + a)2=2s)
o

=
1p
2�

Z
1

0

e�t=2p
t
dt = 1 :

With this property of fXtg at hand, we can see that, for every a > 0 and T = infft : Xt = ag,

P0fX1 > a+ 2g = E

n
P0fX1 �XT > 2 j FT g

��� T <1
o
� PfT <1g

� 1

2
E

n
EfX1 �XT j FT g

��� T <1
o
� PfT <1g

� P0fX1 � ag=2 :
From this it is easy to see that Efexp(�X1)g < 1 for all 0 < � < (log 2)=2 and, similarly, we

see that

Efexp(�X1)g =

Z
1

1

P0

n
X1 > log a=�

o
da+ 1

= e2� �
Z
1

1

PfX1 > 2 + log a=�g da + 1

� e2�

2
Efexp(�X1)g+ 1=2 ;

from which we infer that Efexp(�X1)g � (2� e2�)�1, as required.

We also need the following fact, see [LP95, Lemma 3.1] for an easy proof. Denote by p(y; s) =

(1=
p
2�s)d exp(�kxk2=2s) the standard heat kernel.

Lemma 8 Denote G(r; t) =
R t
0
[
R
kyk�r

p(y; s) dy] ds. Then, for all t > 0; r > 0 and x 2 C,

P0

n
exp

�
�Xt(B(x; r)

�o
� exp

�
2�

Z
kyk�r

p(y; t) dy
�
;

for all 0 � � � (4G(r; t))�1.

The following lemma serves as a replacement for [LS95, Lemma 8]. For its formulation de�ne

�(W ) = sup
n
Æ � 0 : jws(t1)�ws(t2)j � 3

p
jt1 � t2jL(jt1 � t2j) for all jt1�t2j � Æ; 0 � s � �

o
:

The modulus of continuity for the historical process, established in [DP91, Theorem 8.7], makes

sure that �(W ) > 0 for P0-almost all W . This will be used in the next lemma. The basic idea

is the following: If a particle is outside B(x; 7"L(")) at time t and �(W ) > "2, the particle and

its o�spring cannot move into B(x; ") in time less than "2. Hence, if
R t+"2
t

XsB(x; ") ds is large

and �(W ) > "2, then either Xt(B(x; 7"L("))) is large or the particles which are in B(x; 7"L("))

at time t are unusually fertile. Both these events are shown to be unlikely.
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Lemma 9 For every bounded interval I � (0;1) there exist positive constants c3 and c4 such

that, for all t 2 I, x 2 C, all � > 0 and all " = 2�q, q � 1.

P0

n
�(W ) > "2 ;

Z t+"2

t

XsB(x; ") ds � �"4L(")4
o
� c3 exp(�c4

p
�) :

Proof. Denote by

M =
n
� 2MF (R

d ) : �(Rd ) �
p
�"2L(")4

o
:

We have, by the Markov property of super-Brownian motion and the de�nition of �,

P0

n
�(W ) > "2;

Z t+"2

t

XsB(x; ") ds � �"4L(")4
o

� P0

n
XtB(x; 7"L(")) �

p
�"2L(")4

o
+ sup

�2M

P�

nZ "2

0

Xt(R
d) dt � �"4L(")4

o
;

where fXtg under P� is a super-Brownian motion started in �. We give seperate estimates of

these two probabilities. To investigate the �rst probability we use Lemma 8. We have

G(r; t) =

Z
kyk�r

h Z t

0

p(y; s) ds
i
dy = r2

Z
kyk�1

h Z t=r2

0

p(y; s) ds
i
dy ;

which, for all t 2 I and 0 < r < 1=2, is bounded from above by a constant multiple of r2 log(1=r)

in dimension d = 2 and by a constant multiple of r2 in dimension d � 3. In all cases we �nd a

positive constant k1 such that

t

Z
kyk�7"L(")

p(y; t) dy � G(7"L("); t) � k1"
2L(")4 :

Choose k2 = 1=(4k1) and k3 such that exp(1=(2t)) < k3 for all t 2 I. Then, using Chebyshev,

P0

n
Xt(B(x; 7"L("))) �

p
�"2L(")4

o

� exp
�
�

p
�"2L(")4

4G(7"L("); t)

�
P0

n
exp

�Xt(B(x; 7"L(")))

4G(7"L("); t)

�o

� exp
�
�
p
�=(4k1)

�
� exp

�
2

R
kyk�7"L(")

p(y; t) dy

4G(7"L("); t)

�

� k3 exp(�k2
p
�) : (3)

This is the required estimate for the �rst term. To investigate the second probability we use our

Lemma 7. We choose a positive constant k4 smaller than L(")4(log 2)=2 for all " = 2�q, q � 1.

Then, by Chebyshev,

P�

nZ "2

0

Xt(R
d ) dt � �"4L(")4

o
� e�k4� P�

n
exp

�
k4

R "2
0
Xt(R

d) dt

"4L(")4

�o
:
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Now let a = k4=L(")
4 and observe 0 < a < (log 2)=2. We have, by the branching property of

super-Brownian motion,

P�

n
exp

� a
"4

Z "2

0

Xt(R
d ) dt

�o
= exp

�Z
log Px

n
exp

� a
"4

Z "2

0

Xt(R
d) dt

�o
d�(x)

�

= exp
�Z

logP0

n
exp

� a
"4

Z �

0

1fjBsj�"2g ds
�o

d�(x)
�

� exp
�p

�"2L(")4 � logP0
n
exp

� a
"4

Z �

0

1fjBsj�"2g ds
�o�

:

We now use a scaling argument. De�ne �0 = 0 and fB0
sg = fBsg. Proceed inductively by

putting, for j � 0, �j+1 = inffs : L0
s(B

j
s) = 1=2g and fBj+1

s g = fB�j+1+sg. Finally, let

~� = inffs : L0
s = 1=(2"2)g. Then, using Lemma 7 in the �nal step,

logP0

n
exp

� a
"4

Z �

0

1fjBsj�"2gds
�o

= logP0

n
exp

� a
"4

Z "4~�

0

1fjB
s="4

j�1g ds
�o

= logP0

n
exp

�
a

1="2X
j=1

Z �j

0

1
fjB

j�1
s j�1g

ds
�o

=

1="2X
j=1

logP0

n
exp

�
a

Z �j

0

1
fjB

j�1
s j�1g

ds
�o

� 1

"2
� log

� 1

2� e2a

�
:

Therefore, as, for some constant k5 > 0, log(1=(2 � e2a)) � k5a,

P�

nZ "2

0

Xt(B(x; ")) dt �
p
�"4L(")4

o
� e�k4� � exp

�p
�L(")4 log

� 1

2� e2a

��

� exp
�
� �k4(1� k5=

p
�)
�
: (4)

The required result follows from (3) and (4).

We can now add the probabilities and obtain, for some c > 0,

1X
q=1

P0

n
�(W ) > 2�2q;

Z
Im(2�2q)

XtB(xn; 2
�q) dt � c2�4qL(n)2L(m)2L(2q)2 for some n;m

o
<1;

and hence Borel-Cantelli gives a random integer Q1 such that, whenever �(W ) > 2�2Q1 , we

have Z
Im(2�2q)

XtB(xn; 2
�q) dt � c2�4qL(n)2L(m)2L(2q)2 ;

for all integers n;m and q � Q1. By the modulus of continuity result of [DP91, Theorem 8.7]

there is a random integer Q2 such that �(W ) > 2�2Q2 almost surely and this implies that (i)

can be realized on a set of full measure and hence we obtain the statement of the lemma.

We �nish the proof of Theorem 2 by showing that our dimension property holds for allW which

are in the intersection of the sets 
(Æ). We �x the set H � C, which we may assume to have
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dimH < 4, and the time t 2 I and let 4 > 
 > dimH and 0 < Æ < 
 � dimH. We further �x

an integer K with 2K �
p
d+ 1.

We choose a covering of H by a sequence fB(yj ; rj) : j � 1g of balls centred in C whose radii

satisfy rj � 2�(Q+K+1), such that

1X
j=1

r


j L(2

Krj)
24 � 2�(K+1)
 : (5)

We can replace this covering by a covering consisting of balls B(xmj
; "j) such that "j 2 f2�q :

q � Qg, 2�(K+1)"j � rj � 2�K"j and

jyj � xmj
j �

p
d
"j

2K
for some mj �

�2K
"j

�d
:

We write T j
k , S

j
k for Tk(xmj

; "j), Sk(xmj
; "j), and denote by

Nj =
n
k � 1 : T

j

k < � and t 2 �[T
j

k ; S
j

k]
o
;

and

Mj =
n
k � 1 : T

j

k
< � and �[T

j

k
; S

j

k
] �

"
�2

j[
m=0

Im("
2
j )
o
:

Let Nj = #Nj and Mj = #Mj. Because B(yj; rj) � B(xmj
; "j) we have that

1[
j=1

[
k2Nj

[T j
k ; S

j
k] �

n
s 2 [0; �] : Ŵs 2 H; �s = t

o
:

This is the covering which will give a good upper bound of the Hausdor� measure. Property

(ii) ensures that we have control over the length of the individual covering intervals [T
j
k ; S

j
k].

We now argue that also the cardinality of the sets Nj is not too large. We begin by observing

that jŴ
S
j

k

� Ŵ
T
j

k

j � "j . As "j � 2�Q we infer from property (iii) that

S
j

k
� T

j

k
� "4+Æj : (6)

From (i) applied to the family of intervals Im("
2
j ), m = 0; : : : ; "�2j , we infer that

Mj"
4+Æ
j �

X
k2Mj

S
j
k � T

j
k � Z

� "
�2

j[
m=0

Im("
2
j ); B(xmj

; 2"j)
�
� cL("2j )

2L(mj)
2L("j)

2"4j ("
�2
j + 1) ;

and hence, for some positive constant c5,

Mj � c5L("j)
6"�2�Æj :

Properties (iv) and (ii) imply that, for some positive constant c6, for every k,

diam �[T
j

k ; S
j

k] � (S
j

k � T
j

k )
1=(2+Æ) � cL(mj)

3L(Mj)
3L("j)

3"
4=(2+Æ)
j � c6L("j)

9"
4=(2+Æ)
j : (7)
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We infer from this and our numbering of the points am that

�[T
j

k
; S

j

k
] � [am � 2�n; am + 2�n) ;

for some m � 2n and n satisfying

2�(n+1) � c6L("j)
9"

4=(2+Æ)
j < 2�n :

We are interested in m = m(t) � 2n with the property that t 2 [am � 2�n; am + 2�n). On the

one hand we then have

Z
�
[am � 2�n; am + 2�n]; B(xmj

; 2"j)
�
�
X
k2Nj

(S
j

k � T
j

k ) � Nj � "4+Æj ;

and on the other hand, [am � 2�n; am + 2�n] can be covered by at most 2c6L("j)
9"�Æj intervals

from the collection fIk("2j ) : 0 � k � 1="2jg. From (i), we hence know that

Z
�
[am � 2n; am + 2n]; B(xmj

; 2"j)
�
� 2cc6L(m)2L(mj)

2L("j)
11"4�Æj ;

which together gives, for some positive constant c7,

Nj � c7L("j)
15"�2Æj : (8)

Using again (ii) and (8), we get, for every � 2 [0; 1], and a suitable positive constant c8,

1X
j=1

X
k2Nj

(Sj
k
� T

j

k
)� � c

1X
j=1

Nj

�
L(mj)

3L(Mj)
3L("j)

3"4j

��
� c8

1X
j=1

"4��2Æj L("j)
24 :

We choose � = (
 + 2Æ)=4, and get, upon recalling (5) and 2�K"j � rj � 2�(K+1)"j ,

1X
j=1

X
k2Nj

(Sj
k
� T

j

k
)(
+2Æ)=4 � c8

1X
j=1

"


jL("j)

24 � c8

1X
j=1

(2K+1rj)

L(2Krj)

24 � c8 <1 :

This implies that dimfs : Ŵs 2 H; �s = ag � (
 + 2Æ)=4 and, as this holds for all Æ > 0, the

required result follows and Theorem 2 is proved.
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