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Abstract. A new class of e�cient stochastic algorithms for the nu-
merical treatment of coagulation processes is proposed. The algorithms

are based on the introduction of �ctitious jumps combined with an

acceptance-rejection technique for distributions depending on particle
size. The increased e�ciency is demonstrated by numerical experiments.
In particular, gelation phenomena are studied.
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1. Introduction

The continuous coagulation equation

@

@t
c(t; x) =

1

2

Z
x

0

K(x� y; y) c(t; x� y) c(t; y) dy �

Z
1

0

K(x; y) c(t; x) c(t; y) dy (1.1)

with initial condition

c(0; x) = c0(x) � 0 (1.2)

describes the time evolution of the average concentration of particles of size x > 0 : Here
the non-negative and symmetric function K(x; y) denotes the coagulation rate of clusters

of size x and y : According to (1.1), the concentration c(x; t) can increase by coagulation

of clusters of size y < x and x� y (�rst term) and decrease by coagulation of an x-cluster

with a cluster of any size y (second term).

If the clusters only can take sizes k = 1; 2; : : : ; then the coagulation dynamics is

governed by a discrete version of equation (1.1), where all integrals are replaced by sums.
The discrete coagulation equation

@

@t
c(t; k) =

1

2

k�1X
j=1

K(k � j; j) c(t; k � j) c(t; j)�
1X
j=1

K(k; j) c(t; k) c(t; j) (1.3)

was �rst published in [22] and is referred to as Smoluchowski's coagulation equation.

Both the continuous and the discrete equation have a wide range of applications, e.g., in
astrophysics, biology, chemistry and meteorology (see the survey papers [6] and [2]).

Stochastic particle systems related to the coagulation equation were introduced
by several authors (cf. [17], [10], [16]). They are of the form

xi(t) ; i = 1; : : : ; n(t) ; t � 0 ; (1.4)

where xi(t) represents the size of particle i at time t ; and n(t) is the number of particles in

the system. The initial system consisting of a large number n(0) of particles is supposed
to approximate the initial condition (1.2). A random dynamics is de�ned such that the

system at later times approximates the solution to equation (1.1). The stochastic approach

to coagulation was reviewed in [2]. Recently, rigorous results concerning the weak law
of large numbers for the relevant stochastic particle systems with general kernels have

been obtained (see [2, Problem 10(a)], [12], [13], [14], [18], [7]). Beside the derivation of

the coagulation equation, stochastic particle systems play a signi�cant role in numerical

algorithms for that equation (see [11], [5]). We refer to [20] for a survey on Monte Carlo

methods, and to [19] concerning recent applications.

The purpose of this paper is to introduce a new class of e�cient stochastic algo-
rithms for the numerical treatment of the coagulation equation. The idea was mentioned

in [7], where we studied the convergence problem. Here we give a detailed description of
the numerical procedure and apply it to the investigation of some interesting phenomena.

The paper is organized as follows. In Section 2 we describe the new class of al-

gorithms. Markov processes with �ctitious jumps are introduced, which are based on
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appropriate majorant kernels. An e�cient acceptance-rejection procedure for the gener-
ation of the relevant probability distributions is proposed. In Section 3 we apply the

numerical technique to the study of coagulation dynamics. For several coagulation ker-

nels we investigate approximation properties and gelation phenomena. In Section 4 we

discuss the results and mention some directions for further study.

2. Description of the algorithm

2.1. Markov processes with �ctitious jumps

We introduce a sequence of jump processes

UN (t) ; t � 0 ; N = 1; 2 : : : ; (2.1)

taking values in the space of discrete measures

S
N =

(
p =

1

N

nX
i=1

�xi ; xi > 0 ; n = 1; 2; : : :

)
:

For � 2 Cb(SN) the in�nitesimal generator is de�ned as

K
N�(p) =

1

2N

X
1�i 6=j�n

h
�(J(p; i; j))� �(p)

i
K(xi; xj) ; p 2 SN ; (2.2)

where

J(p; i; j) = p+
1

N
(�xi+xj � �xi � �xj) : (2.3)

The initial condition is assumed to be deterministic and such that (cf. (1.2))

lim
N!1

Z
1

0

'(x)UN (0; dx) =

Z
1

0

'(x) c0(x) dx ; (2.4)

for a su�ciently wide class of test functions ' : In particular, for ' = 1 ; one obtains

n(0) � N

Z
1

0

c0(x) dx : (2.5)

Convergence of UN (t) to the solution of a measure-valued version of equation (1.1) was
studied in [18].

We will describe a class of simulation algorithms related to the stochastic systems

determined by (2.2)-(2.4). Note that the in�nitesimal generator (2.2) does not change if
one adds terms of the form

1

2N

X
1�i6=j�n

h
�(p) � �(p)

ih
K̂(xi; xj)�K(xi; xj)

i
;
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where K̂ is an appropriate function such that

K(x; y) � K̂(x; y) ; x; y > 0 : (2.6)

However, this introduction of arti�cial ��ctitious� jumps (cf., e.g., [8, p. 163]) provides a

variety of ways to generate trajectories of the process. The e�ciency of the simulation
procedure depends on the choice of the majorant kernel K̂ :

We �rst describe the general simulation procedure before turning to some special

cases.

0. Generate the initial state UN (0) = p 2 SN :

1. Wait an exponentially distributed time step � with parameter

%̂(p) =
1

2N

X
1�i 6=j�n

K̂(xi; xj) : (2.7)

2. Choose a pair i; j according to the index distribution

K̂(xi; xj)

2N %̂(p)
; 1 � i 6= j � n : (2.8)

3. With probability

K(xi; xj)bK(xi; xj)
; (2.9)

replace p by the new state J(p; i; j) ; i.e. remove the clusters xi and xj and add the
cluster xi + xj : Otherwise, the interaction is �ctitious, i.e. nothing changes.

4. Go to step 1.

Note the mass conservation propertyZ
1

0

xUN (t; dx) =

Z
1

0

xUN (0; dx) ; t � 0 ; (2.10)

which is a consequence of (2.3).

The special case

K̂(x; y) = K(x; y) ; x; y > 0 ; (2.11)

corresponds to the straightforward simulation of the process (see [11], [5]). Here the time
steps, having the average value %̂(p)�1 ; are as large as possible, and no �ctitious jumps

occur. However, the calculation of (2.7) and the generation of the distribution (2.8) are

very time consuming if n is large and K has a complicated structure.

In the special case

K̂(x; y) = Kmax(p) = max
i;j=1;:::;n

K(xi; xj) ; x; y > 0 ; (2.12)
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one obtains a simulation procedure (see, e.g., [11], [9] , [20]) which is in some sense
opposite to the simulation corresponding to (2.11). Namely, the calculation of (2.7) and

the generation of the distribution (2.8) are extremely simple. Indeed, the waiting time

parameter takes the form

%̂(p) = Kmax(p)
n (n � 1)

2N
; (2.13)

and the index distribution is uniform. However, the time steps are very small, and many

�ctitious jumps occur, if K is unbounded and clusters of signi�cantly di�erent sizes are
contained in the system.

2.2. Choice of the majorant kernel

We consider the majorant kernel (cf. (2.6))

K̂(x; y) = C x"1 y"2 ; C > 0 ; "1 ; "2 � 0 : (2.14)

The waiting time parameter (2.7) takes the form

%̂(p) =
C

2N

nX
i=1

x"1
i

X
j=1;:::;n; j 6=i

x"2
j
=

C

2N

"
nX
i=1

x"1
i

nX
j=1

x"2
j
�

nX
i=1

x"1+"2
i

#
: (2.15)

The index distribution (2.8) is generated using the acceptance-rejection technique.

To this end the events i = j are added to the state space and the zero probability for
i = j in (2.8) is replaced by an appropriate term proportional to x"1

i
x"2
j
: Then the index

distribution takes the form

x"1
iP

n

l=1 x
"1

l

x"2
jP

n

l=1 x
"2

l

; i; j = 1; : : : ; n ;

so that the indices i and j are independent. The simulation procedure is as follows.

1. Generate i according to

x"1
iP

n

l=1 x
"1

l

; i = 1; : : : ; n : (2.16)

2. Generate j according to

x"2
jP

n

l=1 x
"2

l

; j = 1; : : : ; n : (2.17)

3. If i = j then go to step 1.

More general majorant kernels of the form

K̂(x; y) = K̂1(x; y) + : : :+ K̂L(x; y) ; L � 2 ; (2.18)
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can be used. The waiting time parameter (2.7) is

%̂(p) = %̂1(p) + : : :+ %̂L(p) ;

where

%̂k(p) =
1

2N

X
1�i6=j�n

K̂k(xi; xj) ; k = 1; : : : ; L :

The index distribution (2.8) takes the form

LX
k=1

%̂k(p)

%̂(p)

K̂k(xi; xj)

2N %̂k(p)
; 1 � i 6= j � n :

Thus, one �rst chooses a number k according to the probabilities

%̂k(p)

%̂(p)
; k = 1; : : : ; L ; (2.19)

and then generates i; j according to the distribution

K̂k(xi; xj)

2N %̂k(p)
; 1 � i 6= j � n :

Example 2.1 Consider the case

K̂(x; y) = C (x+ y) ; x; y > 0 : (2.20)

This kernel has the form (2.18). One obtains the waiting time parameter

%̂(p) = Cm1 (n� 1) ; (2.21)

where m1 =
1
N

P
n

i=1 xi : Note that

m1 =

Z
1

0

xUN (0; dx) (2.22)

according to the mass conservation property (2.10). The index i is generated according to

the distribution
xi

N m1

; i = 1; : : : ; n : (2.23)

The index j is generated uniformly on the set fk = 1; : : : ; n ; k 6= ig avoiding the

acceptance rejection step. The random choice according to (2.19) is omitted, since the
result of the interaction (2.3) does not depend on the order of the indices.

Example 2.2 Consider the case

K̂(x; y) = C xy ; x; y > 0 : (2.24)

This kernel has the form (2.14) with "1 = "2 = " : From (2.15) one obtains the waiting

time parameter

%̂(p) =
C N m2

1

2
�

C

2N

nX
i=1

x2
i
;

where m1 is de�ned in (2.22). Note that n = 1 implies x1 = N m1 and %̂(p) = 0 : The
indices i; j are generated independently, according to the distribution (2.23). They are
rejected if i = j :
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2.3. Generation of a size dependent distribution

In order to generate the distribution

x"
jP

n

l=1 x
"

l

; j = 1; : : : ; n ; " > 0 ; (2.25)

e�ciently (cf. (2.16), (2.17), (2.23)), we introduce a group structure of the particle

system (xi)ni=1 : The particles are organized in  groups, i.e. their sizes are denoted by

yj;k ; j = 1; : : :  ; k = 1; : : : ; �j ;

so that

bj�1 < yj;k � bj ; 8j = 1; : : :  ; k = 1; : : : ; �j ;

where

0 =: b0 < b1 < : : : < b (2.26)

and (cf. (2.22))

N m1 � b : (2.27)

Note that N m1 is the upper bound for the particle size.

The distribution (2.25) is rewritten as

y"
j;k

c
; j = 1; : : :  ; k = 1; : : : ; �j ; (2.28)

where the normalizing constant is

c =
nX
l=1

x"
l
=

X
j=1

�jX
k=1

y"
j;k
: (2.29)

The representation (2.28), (2.29) suggests the following simulation procedure using the
acceptance-rejection technique.

1. Choose the group index according to the probabilities

Pj =
1

c

�jX
k=1

y"
j;k
; j = 1; : : : ;  : (2.30)

2. Choose the particle index k = 1; : : : ; �j uniformly within the group j :

3. The particle index is accepted with probability

y"
j;k

b"
j

: (2.31)

Otherwise, go to step 2.
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With

bj = �j�1 ; j = 1; 2; : : : ;

where � > 1 ; the acceptance probability (2.31) for groups j � 2 is bounded from

below by

1

�"
: (2.32)

The necessary number of groups  = (N;�) is obtained from the estimate (cf. (2.27))

��2 < N m1 � ��1 or  � 2 <
log(N m1)

log �
�  � 1 : (2.33)

Remark 2.3 For � & 1 ; the number of rejections decreases according to (2.32), leading

to higher e�ciency. On the other hand the number of groups  increases according to

(2.33), and generating the distribution (2.30) becomes more and more time consuming.

3. Applications to coagulation dynamics

The jump process (2.1) is represented by a system of particles (1.4). Functionals of the

solution of equation (1.1) are approximated asZ
1

0

'(x) c(t; x) dx �

Z
1

0

'(x)UN (t; dx) =
1

N

n(t)X
i=1

'(xi(t)) ; t � 0 ; (3.1)

where ' is some test function. Many functionals of interest are expressed via moments

of the solution

m�(t) =

Z
1

0

x� c(t; x) dx ; � � 0 : (3.2)

In particular, m0(t) is the total concentration of particles, m1(t) is the total mass of

the system, and

S(t) =
m1(t)

m0(t)
=

R
1

0
x c(t; x) dxR

1

0
c(t; x) dx

is the average particle size. Moments (3.2) are approximated according to (3.1) as

m�(t) �

1

N

n(t)X
i=1

xi(t)
� : (3.3)

In the following we restrict our considerations to the discrete equation (1.3) with

monodisperse initial condition

c(0; 1) = 1 ; c(0; k) = 0 ; k = 2; 3; : : : : (3.4)
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In this case some explicit solutions are available (cf., e.g., [2, Section 2.2]). This is
convenient for validating the algorithm. The solution represents the concentration of

particles of given size and is approximated as

c(t; k) �

1

N
#fi : xi(t) = kg ; k = 1; 2; : : : ; t � 0 : (3.5)

According to (3.4) we start with the particle system (cf. (2.4), (2.5))

xi(0) = 1 ; i = 1; : : : ; N : (3.6)

Con�dence bands with con�dence level 99:9% are constructed using R independent runs,

where RN = 107 :

3.1. Explicit solutions

The special case of constant coagulation rate and initial condition (3.4) was solved in

the original paper [22]. For

K(i; j) = 1

one obtains

c(t; k) =
4

(2 + t)2

�
t

2 + t

�
k�1

; t � 0 ; k = 1; 2; : : : ;

and

m0(t) =
2

2 + t
; m1(t) = 1 ; m2(t) = 1 + t ; t � 0 :

In the special case

K(i; j) = i+ j (3.7)

one obtains

c(t; k) = e�t
kk�1

k!
(1 � e�t)k�1 e�k(1�e

�t) ; t � 0 ; k = 1; 2; : : : ; (3.8)

and

m0(t) = e�t ; m1(t) = 1 ; m2(t) = e2t ; t � 0 :

In the special case

K(i; j) = i j (3.9)

the global solution of equation (1.3) is given by (cf. [15, Th.2.2])

c(t; k) =

8<:
k
k�2

k!
tk�1 exp(�kt) ; if 0 � t � 1 ;

k
k�2

k!
exp(�k) t�1 ; if 1 < t :

(3.10)
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For the total concentration one obtains

m0(t) =

�
1� t

2
; if 0 � t � 1 ;

1
2t

; if 1 < t :

The total mass behaves like

m1(t) =

�
1 ; if 0 � t � 1 ;
1
t
; if 1 < t ;

(3.11)

and the second moment takes the form

m2(t) =
1

1 � t
; 0 � t < 1 :

Remark 3.1 Note that the function

~c(t; x) = � c(�� t; x) ; t � 0 ; x > 0 ; �; � � 0 ;

solves equation (1.1) with the kernel ~K = �K instead of K and initial condition ~c0 = � c0
instead of c0 :

3.2. Examples of coagulation kernels

In our numerical investigations we use the following three coagulation kernels.

The �rst kernel is

K1(i; j) =
1

4
(i

1

3 + j
1

3 )3 : (3.12)

This kernel is of practical importance in connection with coagulation processes in turbulent
�ows (cf. [19]). Note that

K1(u i; u j) = uK1(i; j) ; 8u > 0 : (3.13)

According to

1

4
(i+ j) � K1(i; j) � i+ j ;

the majorant kernel (2.20) is used (cf. (2.6)).

The second kernel is

K
(a)

2 (i; j) =
2 ia ja

(i+ j)a � ia � ja
; a 2 (1; 2] : (3.14)

For this kernel an explicit formula for some moments is known (see, e.g., [1]), namely

ma(t) =
1

1� t
; t 2 [0; 1) : (3.15)

Note that

K
(a)

2 (u i; u j) = uaK
(a)

2 (i; j) ; 8u > 0 : (3.16)
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According to

K
(a)

2 (i; j) �
2

2a � 2
i j ; (3.17)

the majorant kernel (2.24) is used. In case a = 2 there is equality in (3.17).

The third kernel is

K
(a)

3 (i; j) = ia ja ; a 2 (0:5; 1] : (3.18)

This kernel has the form (2.14) and the (trivial) majorant kernel (2.11) will be used. Note

that

K
(a)
3 (u i; u j) = u2aK

(a)
3 (i; j) ; 8u > 0 : (3.19)

3.3. Approximation properties

To get a �rst impression of how the algorithm works, we consider the linear kernel (3.7).

Here one takes K̂ = K (cf. Example 2.1) and no �ctitious jumps occur. Using a particle
number N = 106 we calculate the solution c(t; k) and some integrated functionals of the
form

C(t; k) =
X
l�k

c(t; l) ; (3.20)

for di�erent values of size k : The results are displayed in Figure 1, where the analytic
curves (cf. (3.8)) are represented by solid lines and the con�dence bands by dotted lines.

The components of the solution c(t; k) are su�ciently well approximated up to k = 200 :
The time instants where these functions take their maximum can be clearly detected.
The �uctuations grow with increasing size, since the values of the functionals become

very small. Functionals of the form (3.20) are well approximated even up to k = 2000 :

Next we compare the solution for the kernel (3.12) with the solution for the linear
kernel (3.7). Since at time zero both kernels are identical in case of initial con�guration
(3.6), it is of interest to study the deviation of both solutions during the time evolution.

The con�dence bands for the solution corresponding to the kernel (3.12) are shown in
Figure 2 and compared with the exact solutions for the kernel (3.7) (solid lines).

Finally we illustrate the convergence with respect to the initial particle number N for

the kernel (3.14) with a = 1:5 : We calculate the behaviour of the moment m1:5(t) on the
time interval [0; 1] via (3.3) and compare the results with the explicit expression (3.15).

The results are displayed in Figure 3. For N = 104 the exact solution (solid line) is

almost indistinguishable from the con�dence band up to the time t = 0:8 : For larger N
the exact solution leaves the con�dence band at later times.
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Figure 1: Concentration functionals c(t; k) and C(t; k) for the linear kernel (3.7)
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Figure 2: Concentration functionals c(t; k) and C(t; k) for the kernel (3.12)
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Figure 3: Moment (3.15) for the kernel for the kernel (3.14) with a = 1:5
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3.4. Gelation phenomena

In the case of the multiplicative kernel (3.9) the total mass is not conserved (cf. (3.11)).

This e�ect is interpreted as formation of in�nite clusters and called gelation (cf. [2], [14]).

Our test kernels (3.12), (3.14) and (3.18) are homogeneous (cf. (3.13), (3.16), (3.19)) with

exponents 1 ; a and 2a ; respectively. Homogeneous kernels with exponents greater than

1 are expected to be gelling (see [2, Section 2.3]).

In the �nite particle system (1.4) the total mass is always conserved (cf. (2.10)).

An appropriate indicator for gelation is the behaviour of the largest component M1(t)
in the system. For the multiplicative kernel (3.9), the particle with the largest size is of

order N after the gelation time

tg = inf ft > 0 : m1(t) > 0g

and of lower order before tg (see [2, Section 4.4]). The quantity
M1(t)

N
is convenient for

studying general gelling kernels (see [2, Section 5.2]) using the stochastic algorithm. Note

that M1(t)

N
2 [0; 1] and M1(t) �M1(t0) ; t � t0 :

As an example we consider the kernel (3.18) with a = 0:7; 0:8; 0:9; 1:0 : The curves for

the quantity
M1(t)

N
with N = 104; 105; 106 are shown by dotted, dashed and solid lines,

respectively, in Figure 4. The behaviour of the second largest component divided by
N for N = 104 (dotted), N = 105 (dashed) and N = 106 (solid) is shown in Figure 5.
For comparison the curves for both components and N = 106 are displayed together
on the same scale in Figure 6, where, in addition, the dashed lines represent the total

concentration m0(t) : Analogous results for the kernel (3.14) with a = 1:5 are shown in
Figures 7, 8.
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Figure 4: Largest component M1(t)

N
for the kernel (3.18) and di�erent N
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Figure 6: Two largest components and total concentration m0(t) for the kernel (3.18)
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Next we consider the multiplicative kernel (3.9) and the equation (cf. [21])

@

@t
ĉ(t; k) =

1

2

k�1X
j=1

j (k � j) ĉ(t; j) ĉ(t; k � j) � k ĉ(t; k) : (3.21)

According to (3.11), equation (1.3) coincides with equation (3.21) up to the gelation point

tg = 1 : The unique solution of equation (3.21) is (compare with (3.10))

ĉ(t; k) =
kk�2

k!
tk�1 exp(�kt) ; t � 0 : (3.22)

The total mass has the form (compare with (3.11))

bm1(t) =

�
1 ; if 0 � t � 1 ;
t
�

t
; if 1 < t ;

(3.23)

where t� = t�(t) is determined by the equation

t� exp(�t�) = t exp(�t) ; t� 2 (0; 1) ; t > 1 :

The solution (3.22) describes the limiting behaviour (cf. [4, Cor. 1]) of the stochastic

particle system beyond the gelation point. The results of the stochastic algorithm for

di�erent concentration functionals are shown in Figure 9. In these calculations the
initial number of particles is N = 106 : The exact curves for equation (3.21) are shown

by solid lines, the con�dence bands by dotted lines, and the curves for the Smoluchowski
equation (1.3) by dashed lines. The loss of total mass (cf. (3.23)) is approximated by the
largest component of the particle system (see Figure 10) illustrating the property

1� bm1(t) = lim
N!1

M1(t)

N
: (3.24)

The con�dence band is almost indistinguishable from the solid line.
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Figure 9: Solutions (3.10) (dashed) and (3.22) (solid) for the multiplicative kernel (3.9)

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Figure 10: Functionals (3.11) (dashed) and (3.23) (solid) for the multiplicative kernel

(3.9)

19



3.5. E�ciency

The decisive criterion for e�ciency is the necessary computation time for reaching a

su�ciently low error. Two basic indicators in�uencing the computational e�ort are the

number of �ctitious jumps and the number of rejections. The number of �ctitious

jumps is determined by the majorant kernel (cf. (2.9)) indicating its �quality�. The

number of rejections is determined by the choice of the group bounds (2.26) (cf. (2.31)).

We consider the kernel (3.12) and compare the e�ciency of the algorithms with two

di�erent majorant kernels. The initial number of particles is N = 106 : The dashed lines

correspond to the linear majorant kernel (2.20), and the solid lines to the maximum

majorant kernel (2.12).

The absolute numbers of jump attempts and the relative numbers of �ctitious jumps

are shown in Figure 11. The number of jump attempts equals the number of time steps

(cf. (2.13), (2.21)). The relative number of �ctitious jumps is about 13% in one case and
97% in the other case at time t = 4 : Note that the number of real jumps does not depend

on the choice of the majorant kernel and can be determined from the total concentration

via N (1�m0(t)) :

In the algorithm with the maximummajorant kernel no rejections occur. The relative
number of rejections for the linear majorant kernel are shown in Figure 12. The propor-
tion of rejections for this algorithm is about 35% (the basis � = 2 was used). The upper
bound (2.32) for the relative number of the rejections takes the form 1 � 1

�
(cf. (2.23),

(2.25)).

A comparison of the CPU-time (in seconds) for both algorithms is given in Figure 13.
There is a signi�cant gain factor depending on the length of the time interval. Note that

for gelling kernels calculations with the maximum majorant kernel (2.12) become very
time consuming when approaching the gelation point.
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Figure 11: Number of time steps (left) and relative number of �ctitious jumps (right)

4. Concluding remarks

A class of stochastic algorithms for the numerical treatment of coagulation processes

was introduced. By an appropriate choice of the majorant kernel, a remarkable gain in

e�ciency has been achieved. This e�ect is mainly based on a signi�cant reduction of
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the number of �ctitious jumps for systems with unbounded kernels and strongly varying

cluster sizes.

The algorithm works both in the discrete and the continuous case. Generalizations

to equations with fragmentation [7] and source terms are straightforward. Further im-
provements are possible. In particular, the rejections in the case i = j (cf. (2.16), (2.17))
can be avoided, which is of some relevance in situations where large particles occur. In

the discrete case it is more e�cient to use the particle number representation (cf. (3.5))
instead of the particle representation (1.4) for particles with lower sizes.

The algorithm in its present form is not suitable for calculations on very long time
intervals, since the number of simulation particles is strictly decreasing. There are some
interesting ideas in the literature how to handle this problem. The number of particles
in the system may be doubled, when necessary, by dividing each particle into two equal

parts, or, more generally, particles with variable weights may be used (see [20]). An
algorithm based on the mass �ow instead of the particle number �ow was proposed in [3].
Here the number of simulation particles is preserved. These ideas can be implemented in

the framework of the new class of algorithms and will be studied in the near future.

The main practical e�ect of the improved e�ciency of our algorithm is that it can be
used as a tool for calculations up to and even beyond the gelation point. This seems to be

very useful for getting some heuristical insight into the gelation phenomenon for general

gelling kernels.

Rigorous convergence results for general coagulation kernels are known up to the

gelation point [18]. Convergence to the solution of the Smoluchowski equation after
the gelation point is expected [14] for kernels K(i; j) = o(i) o(j) : However, the case of

multiplicative kernel (3.9) shows that the limiting behaviour of the stochastic particle

system after the gelation point is described by an equation (cf. (3.21)) di�erent from

the Smoluchowski equation (1.3). Numerical observations illustrate the known results

and con�rm the hypothesis of convergence after the gelation point to some deterministic
limit.

The numerical studies of the behaviour of the largest component in the particle system

suggest that several properties, known for the multiplicative kernel (3.9), might be true

for larger classes of gelling kernels. There are numerical indications that the quantity
M1(t)

N
converges to a deterministic limit. This limit can be used to determine the time of
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emergence of a cluster of order N as

ts
g
= inf

�
t > 0 : lim

N!1

M1(t)

N
> 0

�
:

It is of interest to �nd out, for which kernels ts
g
= tg holds. For the multiplicative kernel,

this property is illustrated in Figure 4 (a = 1). For the kernel (3.14), Figure 7 provides

numerical evidence for tg = ts
g
= 1 (cf. [1]). The question for which kernels the limit of

the normalized largest component determines (as in (3.24)) the loss of total mass of the

corresponding solution is a related open problem.
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