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Abstract

We study the geometrical structure of memory induced by the continuous multi-

dimensional Mróz model of plasticity. The results are used for proving the thermo-

dynamic consistency of the model and composition and inversion formulas for input

� memory state � output operators. We also show an example of nonuniqueness of

solutions to a simple initial value problem involving the Mróz operator.

1 Introduction

One-dimensional mathematical models of plasticity are now fairly well understood. The

theory of hysteresis operators seems to be an appropriate tool for solving dynamical

problems in uniaxial plasticity [22, 8, 17], in thermodynamics of temperature-dependent

models [18, 19, 10] and for developing a mathematical formalism for the material fatigue

analysis [4, 16].

The multiaxial situation is much less simple. Models described by variational inequalities

with convex shaped yield surfaces and corresponding to various rheological combinations

of elastic and rigid � perfectly plastic elements are of generalized standard type [14, 20] and

are accessible via the theory of monotone operators. This approach is however sensitive

with respect to small perturbations of the model, and modi�cations of rheological models

aiming at a more accurate description of experimentally observed phenomena (ratchet-

ting, nonlinear hardening) require di�erent techniques. The theory of multidimensional

hysteresis operators initiated in the pioneering book [15] makes it possible to formulate

and solve mathematical problems related to more complex situations, like for instance the

nonlinear kinematic hardening models due to Armstrong and Frederick, Bower, Chaboche

[1, 2, 9, 5, 6, 7], and the multiyield model of Mróz [21].

The original idea of Mróz was to decompose the stress-strain law into a superposition of

the stress-memory state mapping (hardening rule) and the memory state-strain mapping

(�ow rule). The memory state is characterized by the position of in�nitely many moving

spherical yield surfaces in the deviatoric stress space which are included within each other

in contrast with rheological hardening models, where the yield surfaces are independent.

The Mróz hardening rule then consists in de�ning the interior yield surface motion. It

turns out that it is given by the same equation as the Armstrong-Frederick model, but

with a di�erent physical interpretation (see [5]). Analogously to rheological models, the

�ow rule is de�ned in such a way that the plastic strain rate be orthogonal to the largest

active (that is, currently moving) yield surface.

In a series of papers [12, 13], Chu considered the Mróz model with a continuous family

of moving spheres Sr(t) of all radii r > 0 in a time interval t 2 [0; T ] , centered at a

point '(r; t) in the deviatoric stress space. For a given stress deviator evolution �(t) , the
hardening rule is required to satisfy the following hypotheses.

(H1) For each t 2 [0; T ] , the tensor �(t) lies on or in the interior of Sr(t) , i.e.

j�(t)� '(r; t)j � r for all r > 0; t 2 [0; T ]; (1.1)

where j � j denotes the norm in the space of deviatoric tensors.
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(H2) Under arbitrary piecewise linear loading, the surface Sr moves only if � moves,

lies on the boundary of Sr and its derivative points outward. More precisely, the

implication

_�(t) = �̂ is constant in ]t�; t�[; 9tn # t
� : '(r; tn) 6= '(r; t�) )

�̂ 6= 0; j'(r; t�)� �(t�)j = r;


�̂; '(r; t�)� �(t�)

�
� 0

holds for every r > 0 .

(H3) The nonintersection condition holds, that is

j'(r1; t)� '(r2; t)j � jr1 � r2j for all r1; r2 > 0; t 2 [0; T ]: (1.2)

The memory state at time t is described here by the spatial distribution of the spheres

Sr(t) or, which is the same, by the function r! '(r; t) , see Figure 1.

on0
'(r; t)

�(t2)

�(t3)

�(t1)

�

Figure 1: Yield surfaces for a piecewise linear evolution t1 ! t2 ! t3 of � .

We shall see below in Propositions 2.3, 2.4 that hypotheses (H1) � (H3) determine in a

unique way the evolution of ' for each piecewise linear input � . From the continuity

Theorem 2.1 it then follows that (H1) � (H3) admit a unique continuous extension to

arbitrary continuous inputs � .

Mathematical properties of the input-state mapping �! ' were studied in [3], in partic-

ular its continuity and regularity. It was also shown that in this case, the orthogonality

rule of the plastic �ow is no longer compatible with the second principle of thermodynam-

ics and a di�erent �ow rule was proposed satisfying a thermodynamically correct energy

inequality.

The aim of this paper is to derive further properties of the continuous Mróz stress-state-

strain law de�ned in [3]. We exploit here the advantage of the simple memory structure of
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the Mróz hardening rule which is close to the scalar case, and derive explicit superposition

and inversion formulas for the input-output mappings. This enables us to give a new

interpretation of the energy inequality of [3]. The geometrical simplicity of the Mróz

model in comparison with multiyield rheological models (let us note that in the uniaxial

case, these two constructions coincide) is compensated by the fact that the time evolution

of the Mróz outputs is less regular. This fact has already been pointed out in [3]. Here

we present an even more striking evidence by showing the example of a simple evolution

equation containing the Mróz input-output operator which admits multiple solutions for

given initial data. Indirectly, this means that Mróz operators are not locally Lipschitz in

spaces of absolutely continuous functions, while rheological models are, cf. [5].

2 The hardening rule

For mathematical considerations, the geometrical nature of the space where the evolution

takes place is not relevant. We therefore �x an arbitrary separable real Hilbert space X

endowed with a scalar product


�; �
�
and the norm j � j :=



�; �
�1

2 , 2 � dimX � 1 , which

will play the role of the space of stress deviators, and consider continuous input functions

� : [0; T ] ! X . We denote by C([0; T ];X) the space of such functions endowed with a

family of seminorms k�k[0;t] := maxfj�(� )j; � 2 [0; t]g for t 2 [0; T ] , where k � k[0;T ] turns
out to be a norm in C([0; T ];X) , indeed.

2.1 Discrete inputs

We �rst de�ne the input-state mapping for �nite input sequences (�1; � � � ; �n) 2 Xn .

The corresponding sequence f'k : [0;1[! X; k = 0; 1; � � � ; ng of state functions is

constructed by induction as follows:

'0(r) := 0; r � 0; (2.1)

ak := maxfr � 0; j'k�1(r)� �kj = rg; k = 1; � � � ; n; (2.2)

'k(r) :=

�
'k�1(r); r � ak;

�k +
r

ak

�
'k�1(ak)� �k

�
; 0 � r < ak:

(2.3)

Figure 2 represents the trajectories of 'k in X .

We immediately see that for all k , the function 'k is piecewise a�ne, 'k(r) = 0 for

r � Rk := maxfj�jj; j = 1; � � � ; kg , 'k(0) = �k and j d
dr
'k(r)j = 1 a.e. in ]0; Rk[ .

Introducing the convex sets

�R�(�
�) := f' : [0;1[!X absolutely continuous; '(0) = ��; (2.4)

'(r) = 0 for r � R�;
���d'
dr

(r)
��� � 1 a:e:g
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for arbitrary R� > 0 and �� 2 X , we can simply write 'k 2 �Rk
(�k) . In particular, the

function r 7! r � j'k�1(r) � �kj is nondecreasing, hence j'k�1(r) � �kj < r for r > ak ,

j'k�1(r)� �kj � r for r � ak .

onon0 �2

�1

'1(a2)

'3(a4)

'2(a3)

�4

�3

�
Figure 2: Update of the memory state.

For the proof of the following two properties of the memory state sequences we refer to

[3], Lemmas 4.2 and 3.7.

Theorem 2.1 (Continuity) Let f�1
k
; �2

k
; k = 1; � � � ; ng be two input sequences in X

and let f'1
k
; '2

k
; k = 0; 1; � � � ; ng be the corresponding sequences of state functions de�ned

by (2.1)-(2.3). Put

R := maxfj�1
k
j; j�2

k
j; k = 1; � � � ; ng; (2.5)

� := maxfj�1
k
� �2

k
j; k = 1; � � � ; ng: (2.6)

Then for every k = 1; � � � ; n and every r; s > 0 we have

j'1
k
(r) � '2

k
(s)j2 � 2R� + (r � s)2: (2.7)

Theorem 2.2 (Energy inequality) Let f�k; k = 1; � � � ; ng be an input sequence in X

and let f'k; k = 0; 1; � � � ; ng be the corresponding sequence of state functions. Then for

every k = 1; � � � ; n and every r � 0 we have

'k(r)� 'k�1(r); 'k(r)� �k

�
� 0: (2.8)

The �energy� interpretation of inequality (2.8) will be given in Section 4. We �rst pass to

the continuous time evolution case.

2.2 The continuous hardening rule

Let us consider the situation where the input moves linearly in a �xed direction, that is

�(t) = �(t0) + (t� t0)�̂; t 2 [t0; t1]; (2.9)

where �̂ 2 X is a given vector, and assume that R0 > 0 and '0 2 �R0
(�(t0)) are given.

Analogously to (2.1)-(2.3) we de�ne for t 2 [t0; t1]

a(t) := maxfr � 0; j'0(r)� �(t)j = rg; (2.10)

'(r; t) :=

�
'0(r); r � a(t);
�(t) + r

a(t)

�
'0(a(t))� �(t)

�
; 0 � r < a(t):

(2.11)

By construction, we have '(�; t0) = '0 and '(�; t) 2 �maxfR0;j�(t)jg(�(t)) for all t 2 [t0; t1] .
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Proposition 2.3 Let '0 2 �R0
(�(t0)) for some R0 > 0 , and let � , a and ' be given

by (2.9)-(2.11). Then a is increasing in ]t0; t1] , ' is continuous in both variables and

satis�es (H1) � (H3).

P r o o f. Inequality (1.1) is an immediate consequence of (2.11). To check that (1.2)

holds, it su�ces to consider the case r1 < a(t) < r2 . Then

'(r2; t)� '(r1; t) =
r1

a(t)

�
'0(r2)� '0(a(t))

�
+

�
1 �

r1

a(t)

��
'0(r2)� �(t)

�

and (1.2) follows.

We may assume �̂ 6= 0 , since otherwise '(�; t) = '0 and the remainder of the proof is

trivial. For t 2 ]t0; t1] we have by de�nition

a2(t) =


'0(a(t))� �(t0); '

0(a(t))� �(t)
�
� (t� t0)



�̂; '0(a(t))� �(t)

�
;

hence



�̂; '0(a(t))� �(t)

�
� 0 8 t 2 ]t0; t1]: (2.12)

For arbitrary s > t > t0 it holds

j'0(a(t))� �(s)j2 � a2(t) = j'0(a(t))� �(s)j2 � j'0(a(t))� �(t)j2

= (s� t)2j�̂j2 � 2 (s � t)


�̂; '0(a(t))� �(t)

�
> 0; (2.13)

consequently

a(s) > a(t) 8 t0 < t < s � t1: (2.14)

To prove the continuity with respect to t , we �x some s > t � t0 . For r � a(s) we

have by (2.14) and by de�nition '(r; t) = '(r; s) = '0(r) . Let r 2 [0; a(s)[ and put

J := 1=a(s)
�
'0(a(s))� �(s)

�
, � := j�(s)� �(t)j . Then

(r + �)2 � j'(r; t)� �(s)j2 = j'(r; t)� '(r; s)j2

+ r2 + 2 r


'(r; t)� '(r; s); J

�
; (2.15)

(a(s)� r)2 � j'(r; t)� '0(a(s))j2 = j'(r; t)� '(r; s)j2

+(a(s)� r)2 � 2 (a(s)� r)


'(r; t)� '(r; s); J

�
: (2.16)

Combining (2.15), (2.16) we obtain

j'(r; t)� '(r; s)j2 �

�
1 �

r

a(s)

��
(r + �)2 � r2

�
� 2 a(t1) � + �2; (2.17)

hence '(r; �) is continuous for all r .

It remains to prove the implication (H2). We �rst show that

j'(r; t)� �(t)j < r ) 9�r > 0; '(r; � ) = '0(r)

8 � 2 [t; t+ �r]; r > 0; t 2 [t0; t1]; (2.18)
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j'0(r)� �(t0)j = r;


�̂; '0(r)� �(t0)

�
> 0 )

9�r > 0; '(r; � ) = '0(r) 8� 2 [t0; t0 + �r]: (2.19)

The implication (2.19) is a consequence of the identity

r2 � j'0(r) � �(� )j2 = (� � t0)
�
2


�̂; '0(r)� �(t0)

�
� (� � t0)j�̂j

2
�

which entails j'0(r)��(� )j < r for � close to t0 . Both (2.19) and (2.18) therefore follow

directly from (2.10) and (2.11).

To conclude, assume that for some r > 0 and t� 2 [t0; t1[ there exists a sequence tn # t
� ,

'(r; tn) 6= '(r; t�) . By (2.18) � (2.19), we either have t� = t0 and

j'(r; t�)� �(t�)j = r;


�̂; '(r; t�)� �(t�)

�
� 0; (2.20)

or t� > t0 and r � a(t�) . By (2.11) we then have

'(r; t�)� �(t�) =
r

a(t�)

�
'0(a(t�))� �(t�)

�

and (2.20) follows from (2.12). Proposition 2.3 is proved. 2

Proposition 2.4 Let � , a and '0 be as in (2.9), (2.10), and let a continuous function

' satisfy hypotheses (H1) � (H3), '(�; t0) = '0 . Then ' has the form (2.11).

P r o o f. Assume �rst that for some t 2 [t0; t1] and r � a(t) we have '(r; t) 6= '0(r) . Put
t� := inff� 2 [t0; t] ; '(r; � ) 6= '0(r)g . From (H2) it follows that �̂ 6= 0 , j'0(r)��(t�)j =
r ,


�̂; '0(r)� �(t�)

�
� 0 . By de�nition of a(t) , we therefore have

0 � r2 � j'0(r) � �(t)j2 = j'0(r) � �(t�)j2 � j'0(r) � �(t�)� (t� t�)�̂j2

= 2 (t� t�)


�̂; '0(r) � �(t�)

�
� (t� t�)2 j�̂j2 < 0;

which is a contradiction. Consequently, '(r; t) = '0(r) for all r � a(t) , t 2 [t0; t1] .

By (H1) and (H3), for all t 2 [t0; t1] and r 2 [0; a(t)[ we have

j'(r; t)� �(t)j � r; j'0(a(t))� '(r; t)j = j'(a(t); t)� '(r; t)j � a(t)� r:

Since

a2(t) = j'0(a(t))� �(t)j2 = j'0(a(t))� '(r; t)j2 + j'(r; t)� �(t)j2

+ 2


'0(a(t))� '(r; t); '(r; t)� �(t)

�
;

it follows that

j'0(a(t))� '(r; t)j = a(t)� r; j'(r; t)� �(t)j = r;



'0(a(t))� '(r; t); '(r; t)� �(t)

�
= (a(t)� r)r

for 0 � r < a(t) , hence (2.11) holds. 2
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Let � , ' be given by (2.9)-(2.11) and let � 2 [t0; t1] . Denote by  �(r; t) , where r �

0; � � t � t1 , the state function corresponding to the initial state  0
�
= '(�; � ) and the

input ��(t) := �(t) , t 2 [�; t1] . By de�nition,  t0
= ' . Since the function (2.10) is

increasing, from (2.11) it follows easily the identity

 �(�; t) = '(�; t) for every t0 � � � t � t1;

which means that the Mróz input � memory state operator has the semigroup property

for linear inputs.

Using this fact, we can de�ne the Mróz hardening rule for every piecewise linear input

function � 2 C([0; T ];X) of the form

�(t) = �k +
t� tk

tk+1 � tk
(�k+1 � �k); t 2 [tk; tk+1]; k = 1; � � � ; n; (2.21)

where

0 = t1 < t2 < � � � < tn+1 = T (2.22)

is a given partition and f�1; � � � ; �n+1g is a given sequence in X . In each interval [tk; tk+1]
we de�ne the value of '(r; t) by (2.10), (2.11), where we replace [t0; t1] by [tk; tk+1] and
'0(r) by 'k(r) obtained by the recursive formulas (2.1)-(2.3). Theorem 2.1 immediately

yields the following continuity result.

Theorem 2.5 Let �1; �2 2 C([0; T ];X) be piecewise linear functions of the form (2.21),

and let '1; '2 be the corresponding state functions. Then '1; '2 are continuous in both

variables and for every r; s � 0 , t 2 [0; T ] we have

j'1(r; t)� '2(s; t)j2 � 2maxfk�1
k[0;t]; k�

2
k[0;t]gk�

1
� �2

k[0;t] + (r � s)2: (2.23)

Theorem 2.5 enables us to extend the de�nition of the Mróz state function to an arbitrary

continuous input, since piecewise linear functions form a dense subset of C([0; T ];X) .
This extension is unique and inequality (2.23) holds for all �1; �2 2 C([0; T ];X) . As a

consequence of Theorem 2.5 we also obtain

'(�; t) 2 �k�k[0;t]
(�(t)) for every � 2 C([0; T ];X) and t 2 [0; T ]: (2.24)

3 Flow rule

We slightly generalize the state-output mapping or the �ow rule introduced in [3] by

considering the set H of admissible density functions given by

H := fh : [0;1[! [0;1[ ; h(0) = 0; h is nondecreasing and

absolutely continuous in [0;1[;
dh

dr
2 BVloc(0;1)g:
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For a given density function h 2 H and a given input � 2 C([0; T ];X) we de�ne the

strain " by the Stieltjes integral

"(t) :=
dh

dr
(0)�(t) +

1Z
0

'(r; t) d

�
dh

dr
(r)

�
; (3.1)

where ' is the state function corresponding to � . Integrating by parts in (3.1) we can

write the input-output operator

" =Mh(�) (3.2)

in the form

Mh(�) = �

1Z
0

@'

@r
(r; t)

dh

dr
(r) dr: (3.3)

Clearly, Mh maps C([0; T ];X) into C([0; T ];X) and from (2.23), (2.24) and (3.3) we

obtain

jMh(�)(t)j � h(k�k[0;t]); (3.4)

jMh(�
1)�Mh(�

2)j(t) �
dh

dr
(0)j�1

� �2
j(t) + Ct k�

1
� �2

k
1=2

[0;t] (3.5)

for all � , �1 , �2 2 C([0; T ];X) and t 2 [0; T ] , where

Ct :=
p

2Rt Var
[0;Rt]

�
dh

dr

�
; Rt := maxfk�1

k[0;t]; k�
2
k[0;t]g:

The function h can be interpreted as a counterpart of the initial loading curve in uniaxial

plasticity.

The following theorem, which is the main result of this section, is in fact a multidimen-

sional version of Corollary II.3.4 of [17].

Theorem 3.1 (Superposition and inversion of Mróz operators)

For every h1; h2 2 H we have

Mh1
�Mh2

=Mh1�h2: (3.6)

If moreover h 2 H is such that h�1 2 H , then

(Mh)
�1 =Mh�1 : (3.7)

The proof of Theorem 3.1 is based on the following �discrete� lemma.
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Lemma 3.2 Let f�1; � � � ; �ng be a sequence in X and let f'0; � � � ; 'ng be the sequence

of state functions de�ned by (2.1)-(2.3). For a given function h 2 H put

"k = �

1Z
0

d'k

dr
(r)

dh

dr
(r) dr; k = 1; � � � ; n: (3.8)

Let f 0; � � � ;  ng be the sequence of the state functions corresponding to f"1; � � � ; "ng

according to (2.1)-(2.3). Then for every s 2 [0; h(1)[ and k = 0; 1; � � � ; n we have

 k(s) = �

1Z
h�1(s)

d'k

dr
(r)

dh

dr
(r) dr; (3.9)

where h�1(s) := inffr ; h(r) = sg .

P r o o f o f L emma 3.2. For s = 0 there is nothing to prove, since (3.9) coincides

with (3.8). For s > 0 we proceed by induction over k . The assertion is trivial for k = 0 .
Assume now that (3.9) holds for k � 1 and that ak 6= 0 (for ak = 0 we have indeed

�k = �k�1 , 'k = 'k�1 ). By (2.2), (2.3) we have

"k = �

1Z
ak

d'k�1

dr
(r)

dh

dr
(r) dr �

h(ak)

ak
('k�1(ak)� �k);

that is, "k =  k�1(h(ak))� h(ak)Jk , where

Jk :=
'k�1(ak)� �k

ak
; jJkj = 1: (3.10)

This yields

j k�1(h(ak))� "kj = h(ak): (3.11)

We may assume h(ak) > 0 ; otherwise h(r) = 0 for all r 2 [0; ak] , "k = "k�1 ,  k =  k�1

and (3.9) follows. Put bk := maxfs > 0; j k�1(s)� "kj = sg � h(ak) . For s 2 [h(ak); bk]
we have

s2 = j k�1(s)� "kj
2 = j k�1(s)�  k�1(h(ak))j

2 + h2(ak)

+ 2h(ak)


Jk;  k�1(s)�  k�1(h(ak))

�
� (s� h(ak))

2 + h2(ak) + 2h(ak) (s� h(ak)) = s2;

hence

 k�1(s) =  k�1(h(ak)) + (s� h(ak))Jk = "k + s Jk :

We conclude that

 k(s) =

�
 k�1(s); s � h(ak);
"k + sJk; 0 � s < h(ak);

(3.12)
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which is precisely (3.9). The induction step is complete and Lemma 3.2 is proved. 2

P r o o f o f Th e o r em 3.1. Let h1; h2 2 H and � 2 C([0; T ];X) be arbitrarily given.

For the partition (2.22) we construct the linear interpolate �(n) of � by the formulae

(2.21), where �k := �(tk) , k = 1; � � � ; n+ 1 . Put "(n) := Mh2
(�(n)) , �(n) :=Mh1�h2

(�(n))
and let ~"(n) be the piecewise linear interpolation of "(n) , that is,

~"(n)(t) := "(n)(tk) +
t� tk

tk+1 � tk

�
"(n)(tk+1)� "(n)(tk)

�
; t 2 [tk; tk+1]; (3.13)

where k = 1; � � � ; n . Let '(n) ,  (n) denote the state functions corresponding to �(n) ,

~"(n) , respectively, and for k = 1; � � � ; n + 1 put 'k(r) := '(n)(r; tk) ,  k(r) :=  (n)(r; tk) ,
"k := "(n)(tk) = ~"(n)(tk) , �k := �(n)(tk) . Then for all k we have

"k = �

1Z
0

d'k

dr
(r)

dh2

dr
(r) dr; (3.14)

�k = �

1Z
0

d'k

dr
(r)

d

dr
(h1 � h2)(r) dr; (3.15)

and, by Lemma 3.2,

 k(s) = �

1Z

h
�1
2 (s)

d'k

dr
(r)

dh2

dr
(r) dr; s � 0: (3.16)

An elementary substitution then yields

�k = �

1Z
0

d k

ds
(s)

dh1

ds
(s) ds: (3.17)

Putting ~�(n) := Mh1
(~"(n)) we see from (3.17) that ~�(n)(tk) = �(n)(tk) = �k for all k . By

re�ning the partition and passing to the limit as n!1 we obtain (3.6).

For the function h(r) � r , the de�nition (3.1) of the �ow rule immediately yields

"(t) = �

1Z
0

@'

@r
(r; t) dr = '(0; t) = �(t); (3.18)

hence (3.7) follows from (3.6). Theorem 3.1 is proved. 2

4 Thermodynamic consistency

In this section we �nd su�cient conditions on the density function h in (3.1) such that

the constitutive law (3.2) is thermodynamically consistent. In other words, we look for

10



a nonnegative potential energy operator Uh such that for every regular input function

� : [0; T ]! X we have

d

dt
Uh(�) �

D
�;
d

dt
Mh(�)

E
in ]0; T [ (4.1)

in an appropriate sense. In fact, the main problem consists in interpreting the time

derivative properly. Let us �rst recall the regularity results of [3].

Proposition 4.1 For every � 2 C([0; T ];X)\BV (0; T ;X) , the state function ' satis�es

the estimate

Var
[0;T ]

'(r; �) � 3Var
[0;T ]

� 8r > 0: (4.2)

Moreover, there exists � 2 W 1;1(0; T ;X) such that '(r; �) does not belong to the space

W 1;p(0; T ;X) for any p > 1 and for all r in a set of positive measure.

In particular, the question whether Mh(�) is di�erentiable even if � is smooth remains

open. Nevertheless, from (4.2) it follows that the output Mh(�) belongs to C([0; T ];X)\
BV (0; T ;X) if � 2 C([0; T ];X) \BV (0; T ;X) and the estimate

Var
[0;T ]

Mh(�) �

�
dh

dr
(0) + 3 Var

[0;k�k[0;T ]]

�dh
dr

��
Var
[0;T ]

� (4.3)

holds. Inequality (4.1) can therefore be interpreted in the Stieltjes integral sense

Uh(�)(t)� Uh(�)(s) �

tZ
s



�(� ); d(Mh(�)(� ))

�
(4.4)

for every � 2 C([0; T ];X) \BV (0; T ;X) and every 0 � s < t � T .

The situation is slightly more favourable if instead of (3.2), we consider the inverse con-

stitutive law

� =M�h("): (4.5)

In fact, by Theorem 3.1, (4.5) is equivalent to (3.2) provided h is invertible and �h =
h�1 2 H . This leads us to the following de�nition.

De�nition 4.2 The constitutive law (4.5) is called thermodynamically consistent, if there

exists a potential energy operator �U�h : C([0; T ];X) ! C([0; T ];R+) such that for every

" 2 W 1;1(0; T ;X) and every 0 � s < t � T we have

�U�h(")(t)� �U�h(")(s) �

tZ
s



_"(� );M�h(")(� )

�
d�; (4.6)

where the dot denotes derivative with respect to t .
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A hint how to construct the operators Uh , �U�h comes from the inequality (2.8). More

precisely, we recall Proposition 3.6 of [3] which we state here in the following form.

Proposition 4.3 Let u 2 W 1;1(0; T ;X) be a given function and let ' be its memory

state function. We then have

1

2

�
j'(r; t)j2 � j'(r; s)j2

�
�



'(r; t); u(t)

�
+


'(r; s); u(s)

�

+

tZ
s



'(r; � ); _u(� )

�
d� � 0 (4.7)

for every 0 � s < t � T and every r � 0 .

It enables us to prove here the next result.

Theorem 4.4 (Thermodynamic consistency)

Let h; �h 2 H be given functions. Then

(i) inequality (4.4) holds provided h is convex and we put

Uh(�)(t) :=
1

2

�
dh

dr
(0)j�(t)j2 +

1Z
0

j'(r; t)j2 d
�dh
dr

(r)
��

; (4.8)

(ii) inequality (4.6) holds provided �h is concave and we put

�U�h(")(t) :=
1

2

�
d�h

dr
(1)j"(t)j2�

1Z
0

j"(t)� '(r; t)j2 d
�d�h
dr

(r)
��

;

where ' in each case is the memory state function corresponding to the given input

function.

P r o o f. To prove (i), we integrate (4.7) with � instead of u with respect to d
�
dh

dr
(r)
�

(note that dh

dr
is nondecreasing) and obtain

Uh(�)(t)� Uh(�)(s) �


Mh(�)(t); �(t)

�
+


Mh(�)(s); �(s)

�

� �

tZ
s



Mh(�)(� ); _�(� )

�
d�:

Integrating by parts we obtain (4.4).

Part (ii) is obtained similarly. We have indeed

M�h(")(t) =
d�h

dr
(1)"(t)�

1Z
0

("(t)� '(r; t)) d
�d�h
dr

(r)
�
;

hence, integrating (4.7) with " instead of u with respect to d
�
d�h
dr
(r)
�
, where, in this case,

d�h
dr

is nonincreasing, we immediately obtain (4.6). 2
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Remark 4.5 The formal di�erence


_"; �

�
� _U in (4.4) or (4.6) represents the dissipation

rate. One particularity of the Mróz model consists in the fact that there exist cyclic mo-

tions in the plastic regime that dissipate no energy (and therefore are perfectly reversible).

These are so-called neutral motions characterized by input functions u = � or u = " of

the form

u(t) = u0 + r0 e(t); t 2 [t0; t1]; (4.9)

where r0 > 0 and u0 2 X are �xed, e(t) is a smooth vector function such that je(t)j = 1
in [t0; t1] and the memory state function ' satis�es '(r0; t0) = u0 . Indeed, we then have

for t 2 [t0; t1]

'(r; t) =

�
'(r; t0); r � r0;

u0 + (r0 � r) e(t); 0 � r < r0;

hence we have equality in (4.7), which means no dissipation. In the next section we show

another peculiar property of the neutral motions.

5 Example of ill-posedness

We give here the example of an ordinary di�erential equation coupled with a Mróz consti-

tutive operator which admits multiple neutral motion solutions for given initial data. The

construction is much simpler than in the scalar case (see [11]), where no neutral motions

exist. We choose here for X the two-dimensional space identi�ed with the complex plane

C endowed with the natural scalar product



�; �

�
:= Re(���); (5.1)

where �� is the complex conjugate of � . Let h 2 H be globally Lipschitz continuous

and let Mh be the Mróz operator de�ned by (3.3). We look for functions u : [0;1[! C

solving the equation

i _u(t) +Mh(u)(t) = u(t) (5.2)

with the initial condition

u(0) = me0; (5.3)

where  � 0 , m > 0 and e0 2 C , je0j = 1 are given. Note that the operator Mh is

continuous and causal in C([0; T ]; C) for every T > 0 . One can therefore prove by a

standard retarded argument method that problem (5.2)-(5.3) has a local solution. Using

the fact that by (3.4), the operator Mh has sublinear growth, we conclude that each local

solution can be extended to a global one. Nevertheless, the following example shows that

it may not be unique.
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Example 5.1 Put ! := h(m)� m and assume that (see Figure 3)

(i) ! 6= 0 ;

(ii) the equation h(�)� � = ! admits at least one solution � 2 ]0;m[ .

ononononon 0

v

r!

v = h(r)

v = ! + r

% m� onononon 0

v

r

!

v = ! + r

v = h(r)

% m�
Figure 3: The convex case The concave case

Let us consider the function

uc(t) :=
�
m� c+ cei

!
c
t

�
e0; t � 0; (5.4)

with a parameter c 2 ]0;m] . Clearly, its memory state function 'c has the form

'c(r; t) =

8<
:

0; r � m;

(m� r) e0; c � r < m;

(m� c) e0 + (c� r) ei
!
c
t e0; 0 � r < c;

(5.5)

hence

Mh(uc)(t) =
�
h(m)� h(c) + h(c)ei

!
c
t

�
e0 (5.6)

for all t � 0 . The function uc satis�es

i _uc(t) +Mh(uc)(t)� uc(t) =
�
! � h(c) + c

��
1� ei

!
c
t

�
e0

and ful�ls (5.2), (5.3) for both c = m and c = � . Indeed, this construction leads to a

continuum of solutions fus; s > 0g obtained by shifting the trajectory of u� along um
(see Figure 4), that is, us(t) = um(t) for 0 � t � s , us(t) = 1

m
u�(t�s) �e0 um(s) for t > s .

onononononon

0 me0

m
%

!s

m

um

u�

um(s)us

�
Figure 4: Trajectories of distinct solutions of (5.2), (5.3) for ! > 0 .
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