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Abstract. We study solutions of a system of ordinary di�erential equations with

discontinuity of its vector �eld on a smooth surface via small additive di�usion pertur-

bations. When a di�usion term tends to zero, one obtains limiting sliding modes on

the surface with explicit representation for its motion law. Stochastic sliding modes

are also established.
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1. Introduction

The goal of the paper is to expose an approach to sliding modes via approximation
by small di�usion. Let us consider an autonomous d-dimensional system (d � 2)

dx

dt
= f(x) (1.1)

with the velocity vector �eld f(x) which is discontinuous on some (d� 1)-dimensional
surface S: Even the de�nition of solutions of such an equation requires a special ex-
amination. Indeed, one should introduce the rule of constructing the trajectory on the
surface using additional conventions, so to say, axiomatically, because they do not fol-

low from the original equation (1.1). Various approaches and models were considered
in [Filippov (1985), see references therein as well]. We propose one more model which
appears to be natural from the "stochastic" point of view. We suggest to think of the
equation (1.1) as a limiting one, obtained from a more complicated equation with an

additional small "white noise". Obviously, white noise is not a unique possibility and
one can try other versions. In some sense, the choice of the approximation model is up
to the situation, or physics of the matter. In various problems an approach based on
a small di�usion noise is more or less standard. Now we try to apply it to the sliding
mode problem.

Assume that the surface S is smooth and any solution of equation (1.1) approaches
it from both its sides for a �nite time, at least, in some neighborhood of the surface.
We propose the approximative equation

dXt = f(Xt)dt+ "c(Xt)dw(t) (1.2)

with nondegenerate di�usion "c. Here w(t) is a d-dimensional standard Wiener process,
" is a small parameter and c is a nondegenerate d�d-matrix. In fact, in the most simple
case c is a constant matrix. We shall start with this case. However, the reader will see
that soon one should use the change of variables. Hence, it is reasonable to introduce

a general c at the very beginning. Now we are going to study the limit behavior of
solutions as " ! 0. Explicit formulas for limiting coe�cients of the system on the
surface S will be established.
Obviously, we have in mind that equation (1.2) with bounded f and "good" c has

a unique strong solution for any �xed initial data [Veretennikov (1980)]. We always
assume c nondegenerate. On the other hand, it can be satisfactory as well to have a
weak solution which is unique in law [Krylov (1969), Stroock-Varadhan (1979)]. One
could also consider even arbitrary (nondegenerate) discontinuous c which still allows

one to have a weak solution which is a homogeneous strong Markov process [Krylov
(1973)]. If the limiting behavior is well-de�ned, in fact, one cannot worry too much
even about strong or weak uniqueness before passing to the limit.
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Main results are contained in Sections 2 and 4. In Section 2 we study deterministic
sliding modes and in Section 4 stochastic sliding modes. A stochastic sliding mode
arises if the original system

dXt = f(Xt)dt+ �(Xt)dW (t) (1.3)

is stochastic and such that its coe�cients are discontinuous on S. In addition, its

solutions approach S for a �nite time in a certain sense and then cannot leave S. Thus,
we have two media separated by S, with two di�erent rules of stochastic motions in
those media. The stochastic sliding mode problem is again to obtain a "natural" law
of a motion on S. Below we present both deterministic and stochastic sliding modes
on a (d� 1)-dimensional surface S of discontinuity in an explicit form. Notice that in

the case of deterministic sliding mode our answer coincides with the well-known rule
[1]. On the contrary, the stochastic sliding modes seem to be considered for the �rst
time in this paper.
The approach uses essentially the stochastic averaging principle. We �rst demon-

strate this principle for appropriate model problems in details and then state results
for more general situations.
In Section 3 we �nd a sliding mode for a system whose all trajectories approach S for

a �nite time as above; however, now they attain S with either zero or in�nite normal

component of velocity (unlike to Section 2).
In Section 5 we consider a model problem of determining a sliding mode on a (d�2)-

dimensional surface which is the intersection of two (d�1)-dimensional sliding surfaces.
We stress out that our exposition is not absolutely rigorous in all parts. In some

proofs we give, in fact, a sketch and main ideas. In each case a strict proof is clear.

However, it requires much more details and additional pages. The model problems are
strict, at any rate.

2. Deterministic sliding mode on (d� 1)-dimensional surfaces of
discontinuity

Let us start with a two-dimensional autonomous system

_x = a(x; y); _y = b(x; y); (2.1)

where the functions a(x; y) and b(x; y) are discontinuous on a su�ciently smooth curve
S given by an equation '(x; y) = 0:
The curve S bisects its neighborhood in the space (x; y) into two domains G� and

G+: Suppose the right-hand sides of the system (2.1) together with their �rst derivatives

are continuous functions in G� and G+ up to S.
Let (x; y) 2 S; N = r'(x; y) be the normal to S at the point (x; y). Without loss

of generality one may suggest N directed to G+: Let a�(x; y); b�(x; y); (x; y) 2 S; be
the limit values of a(x; y); b(x; y) in G� and a+(x; y); b+(x; y) be the limit values in

G+: We assume that the projections of the vectors (a�; b�) and (a+; b+) to the normal
N are positive and negative correspondingly, i.e., all solutions of the system (2.1) close
to the curve S approach it from both sides with the growth of time and no solution
can leave the curve S:
Fix (x0; y0) 2 S. Suppose that the curve S in a neighborhood of (x0; y0) can be

expressed by the equation y =  (x) and the points (x; y) such that y >  (x) (y <  (x))
belong to G+ (G�).
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Consider the change of variables

X = x� x0; Y = y �  (x):

We get

dX

dt
= a(X + x0; Y +  (X + x0)) := ~a(X; Y )

dY

dt
= b(X + x0; Y +  (X + x0))

� 0(X + x0) � a(X + x0; Y +  (X + x0)) := ~b(X; Y ): (2.2)

Then the equation of S in a neighborhood of the origin is Y = 0, the domain G+ is

the upper halfplane Y > 0 and the domain G� is the lower halfplane Y < 0; ~b�(0; 0) =

b�(x0; y0)�  0(x0) � a
�(x0; y0) > 0; ~b+(0; 0) = b+(x0; y0)�  0(x0) � a

+(x0; y0) < 0:

2.1. Model problem (d = 2). In fact, the problem of determining the motion on S

has a local nature. Hence, we replace the functions ~a and ~b in a small neighborhood of

the origin by constant ones, a� := ~a�(0; 0); b� := ~b�(0; 0) and consider the simpli�ed

system

_X = a(Y ); _Y = b(Y ); (2.3)

where

a(Y ) = a(sign Y ) =

8<
:

a�; Y < 0;
0; Y = 0;
a+; Y > 0;

; b(Y ) = b(sign Y ) =

8<
:

b�; Y < 0;
0; Y = 0;
b+; Y > 0; (2.4)

with b� > 0; b+ < 0:
The method of small additive di�usion suggests that one should consider the follow-

ing perturbed system of stochastic di�erential equations:

dX"
t = a(Y "

t )dt+ "c1dw1(t)

dY "
t = b(Y "

t )dt+ "c2dw2(t); (2.5)

where c1and c2 are some numbers and also c2 6= 0, w1 and w2 are one-dimensional
standard Wiener processes (they are not necessarily independent).
Now we are going to study the limit of the solution with the initial data (0; 0) as "

tends to zero.

Theorem 2.1. Let (X"
t ; Y

"
t ) be the solution of the system (2.5) starting from the

origin. Then for any t > 0 there exists a limit a.s., in L1; and in probability in

C([0; T ];R1) for any T > 0

lim
"!0

X"
t = (a�p� + a+p+) � t := �a � t; (2.6)

where

p� =
b+

b+ � b�
; p+ =

b�

b� � b+
: (2.7)

The probabilities p� and p+ are equal to �(Y < 0) and �(Y > 0) correspondingly

where � is the invariant measure of the Markov process governed by the stochastic
di�erential equation

dY = b(Y )ds+ c2dw(s): (2.8)
3



The measure � has the following density

p(y) =

8>>>><
>>>>:

C exp
2b�y

c22
; y < 0;

C exp
2b+y

c22
; y > 0;

C =
2b� � b+

c22(b
+ � b�)

: (2.9)

Proof. Evidently, the family of distributions of processes (X"
t ; 0 � t � T; " � 1) is

relatively compact for any T > 0. We shall show now that there is only one limiting
point of this family as "! 0.
Let us introduce the process

Ys = "�2Y "
"2s : (2.10)

Due to the equality b(y) = b(sign y); the law of the process Ys does not depend
on " and it satis�es the equation (2.8) with a new Wiener process w(s) = "�1w2("

2s):
So we can omit the index " without a risk of confusion. The Markov process de�ned

by the stochastic di�erential equation (2.8) is ergodic (cf., [7]). Let � be its invariant
measure.
From the �rst equation of the system (2.5) we �nd due to the ergodicity (remind

that X"
0 = 0):

X"
t =

Z t

0

a(Y "
t )dt+ "c1w1(t)

=

Z t

0

a("2Yt="2)dt+ "w1(t) =

Z t

0

a(sign Yt="2)dt+ "c1w1(t)

=
"2

t

Z t="2

0

a(sign Ys)ds � t+ "c1w1(t)

! t �

Z
1

�1

a(y)�(dy) = t � (a�p� + a+p+); (2.11)

where the limit is understood almost surely, in probability, and in L1 [7], and the
probabilities are de�ned as p+ = �(Y > 0) and p� = �(Y < 0) in a stationary regime.

We can �nd them explicitly for they do not depend on the initial value Y (0). So, let
Y (0) = � where � is a random variable with a distribution � (of course, � does not
depend on w(s); s � 0). Then

Y (s) = � + b�
Z s

0

I(Y (�) < 0)d� + b+
Z s

0

I(Y (�) > 0)d� + c2w(s):
(2.12)

Due to the relation EY (s) = E�; EI(Y (�) < 0) = p�; EI(Y (�) > 0) = p+; we get

b�p� + b+p+ = 0;

whence the relations (2.7) follow as p� + p+ = 1 and this implies also (2.6).
The invariant measure has on (�1; 0) and on (0;1) a density p(y) which satis�es

the following equations

1

2
c22p

00 � b� � p0 = 0; y < 0;

Z 0

�1

p(y)dy = p�;
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1

2
c22p

00 � b+ � p0 = 0; y > 0;

Z
1

0

p(y)dy = p+:

The relation (2.9) easily follows.
The assertions concerning the limit in C([0; T ];R1) follow easily because the function

a is bounded. Theorem 2.1 is proved.

2.2. General problem (d = 2). Now let us return to the original system (2.1). A
perturbed system with small noise has the form (we observe that the result of Theorem
2.1 does not depend on c1 and c2 6= 0; it turns out that the same is true in general case

as well and we take c1 = c2 = 1 for simplicity in writing)

dX"
t = a(X"

t ; Y
"
t )dt+ "dw1(t)

dY "
t = b(X"

t ; Y
"
t )dt+ "dw2(t): (2.13)

Remind that in contrast to (2.1), the system (2.13) has a pathwise unique strong
solution, see [6].

Theorem 2.2. Let (x0; y0) 2 S and

(f�;r')0 = a�(x0; y0)
@'

@x
(x0; y0) + b�(x0; y0)

@'

@y
(x0; y0) > 0;

(f+;r')0 = a+(x0; y0)
@'

@x
(x0; y0) + b+(x0; y0)

@'

@y
(x0; y0) < 0; (2.14)

where f is the vector with the components a; b and (remind) the vector r' at any point
(x; y) 2 S is directed to G+: Let (X"

t ; Y
"
t ) be a solution of the system (2.13) starting

from the point (x0; y0); 0 � t � �t; where �t is some positive number. Then there exist

the limits on [0; �t ] in probability, a.s., and in L1

lim
"!0

X"
t := x(t); lim

"!0
Y "
t := y(t); (2.15)

where x(0) = x0; y(0) = y0 and (x(t); y(t)) 2 S; 0 � t � �t:
The limit (x(t); y(t)) satis�es the system

dx(t)

dt
= a�(x(t); y(t))p�(x(t); y(t)) + a+(x(t); y(t))p+(x(t); y(t)) := �a(x(t); y(t))

dy(t)

dt
= b�(x(t); y(t))p�(x(t); y(t)) + b+(x(t); y(t))p+(x(t); y(t)) := �b(x(t); y(t));

(2.16)

where

p� = �
(f+;r')

(f�;r')� (f+;r')
; p+ =

(f�;r')

(f�;r')� (f+;r')
; (2.17)

Proof. Our proof consists of two parts. The �rst one deals with deriving the

law (2.16) for sliding mode provided its existence. Though the latter is evident from
physical point of view, we prefer to give a complete proof in the second part as well.
The parts are independent from each other.

Deriving the law (2.16). Consider a piece of the curve S: We assume that in some
neighborhood of the point (x0; y0) it can be expressed by the equation Y =  (X). Let
us change the variables X; Y :

~X = X; ~Y = Y �  (X): (2.18)
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We have

d ~X"
t = a( ~X"

t ;
~Y "
t +  ( ~X"

t ))dt+ "dw1(t) := ~a( ~X"
t ;
~Y "
t )dt+ "dw1(t)

d ~Y "
t = b( ~X"

t ;
~Y "
t +  ( ~X"

t ))dt

� 0( ~X"
t ) � (a(

~X"
t ;
~Y "
t +  ( ~X"

t ))dt+ "dw1(t))�
1

2
"2 00( ~X"

t )dt+ "dw2(t)

:= ~b( ~X"
t ;
~Y "
t )dt�

1

2
"2 00( ~X"

t )dt� " 0( ~X"
t )dw1(t) + "dw2(t): (2.19)

Consider a �-neighborhood ~U� of the point (x0; 0): ~U� = f( ~X; ~Y ) : j ~X � x0j <

�; j ~Y j < �g with small �: Let ( ~X"
t ;
~Y "
t ) be the solution of the system (2.19) starting

from the point (x0; 0). If � and " are su�ciently small then the exit probability of this

solution from ~U� during the time � = �1=�; 0 < � < 1; is very small. Strictly speaking

the following is true for the stopped on @ ~U� process. But in order to avoid unessential

complications we consider the process ( ~X"
t ;
~Y "
t ) to belong to

~U� during the time � (and
even during a little bigger time � +O(�1+�)).

Let us consider the time change which makes the di�usion coe�cient of ~Y "
t constant.

Namely, we introduce the new (random) time �t = �t(t):

�t(t) :=

Z t

0

(1 +  0( ~X"
� )

2) � (1 +  0(x0)
2)�1d�: (2.20)

Clearly, if 0 � t � �; then 0 � �t � �+O(�1+�) and, vice versa, if 0 � �t � �; then
0 � t � �+O(�1+�): In particular

t(�) = � +O(�1+�): (2.21)

Denote ( �X"
�t
; �Y "

�t
) = ( ~X"

t(�t)
; ~Y "

t(�t)
) on [0;�]: We get

d �X"
�t = �a( �X"

�t ;
�Y "
�t )d�t+ "

(1 +  0(x0)
2)1=2

(1 +  0( �X"
�t
)2)1=2

d �w1(�t)

d �Y "
�t = �b( �X"

�t ;
�Y "
�t )d�t�

"2

2
 00( �X"

�t )
1 +  0(x0)

2

1 +  0( �X"
�t
)2
d�t+ "

p
1 +  0(x0)2d �w2(�t);

(2.22)

where �w1; �w2 are new standard Wiener processes (they are dependent, however, it does
not matter), and

�a(x; y) = ~a(x; y) �
1 +  0(x0)

2

1 +  0(x)2
; �b(x; y) = ~b(x; y) �

1 +  0(x0)
2

1 +  0(x)2
:

Clearly

�a�(x0; 0) = a�(x0; y0) := �a�0 ;

�b�(x0; 0) = � 0(x0)a
�(x0; y0) + b�(x0; y0) := �b�0 :

Due to (2.14) and because the vector (� 0(x0); 1) is collinear to the vector r'(x0; y0)
we have

�b�0 > 0; �b+0 < 0: (2.23)

It is not di�cult to show that

�a(x; y) = a0(sign y) + �(x; y); �b(x; y) = b0(sign y) + �(x; y);
6



where

a0(sign y) =

8<
:

�a�0 ; y < 0;
0; y = 0;
�a+0 ; y > 0;

; b0(sign y) =

8<
:

�b�0 ; y < 0;
0; y = 0;
�b+0 ; y > 0;

;

and there exists a constant K > 0 such that

j�(x; y)j � K(jx� x0j+ jyj); j�(x; y)j � K(jx� x0j+ jyj): (2.24)

Introduce the process

Zs = "�2 �Y "
"2s ; 0 � s �

�

"2
: (2.25)

The process Zs depends on ": However the dependence is not too essential and we
do not mark it. We have

dZs = b0(sign Zs)ds+ �( �X"
"2s;

�Y "
"2s)ds�

"2

2
 00( �X"

"2s)
1 +  0(x0)

2

1 +  0( �X"
"2s
)2
ds

+
p
1 +  0(x0)2dw(s); Z0 = 0; 0 � s �

�

"2
; (2.26)

where w(s) = "�1 �w2("
2s):

Since ( �X"
"2s
; �Y "

"2s
) 2 ~U�; we get due to (2.24) (we consider " < ��=2 and we note that

various constants are given by the same letter K)

j�( �X"
"2s;

�Y "
"2s)�

"2

2
 00( �X"

"2s)
1 +  0(x0)

2

1 +  0( �X"
"2s
)2
j � K��:

Introduce another two processes �Zs and Ẑs which solve the equations

d �Zs = b0(sign �Zs)ds�K��ds+
p
1 +  0(x0)2dw(s); �Z0 = 0;

dẐs = b0(sign Ẑs)ds+K��ds+
p
1 +  0(x0)2dw(s); Ẑ0 = 0:

Due to the comparison theorem [2] (we note that the comparison theorem in [2] is
proved under some other conditions but it can be carried over to the considered case)

�Zs � Zs � Ẑs:

The invariant measures �� and �̂ of the processes have the density of the form (2.9)
with

�p� =
�b+0 �K��

�b+0 �
�b�0

; �p+ =
�b�0 �K��

�b�0 �
�b+0

;

p̂� =
�b+0 +K��

�b+0 �
�b�0

; p̂+ =
�b�0 +K��

�b�0 �
�b+0

:

Clearly

�p� = �
(f�;r')

(f�;r')� (f+;r')
+O(��) = p� +O(��):

Analogously

p̂� = p� +O(��):

If �a+0 � �a�0 ; then

a0(sign �Zs) � a0(sign �Y "
"2s) = a0(sign Zs) � a0(sign Ẑs):
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If �a�0 � �a+0 , then the previous inequality is replaced by the contrary one. It is not
di�cult to prove (as in Theorem 2.1) that in both cases there exist the limits

lim inf
"!0

�X"
� = � � (�a�0 p

� + �a+0 p
+) +O(�1+�);

lim sup
"!0

�X"
� = � � (�a�0 p

� + �a+0 p
+) +O(�1+�): (2.27)

As �X"
� = ~X"

t(�)
; we have (due to (2.21)) the same relations for ~X"

� as well. Using

(2.25), we get

lim
"!0

~Y "
� = 0: (2.28)

Returning to the original variables, we obtain from (2.27) (for ~X"
�) and (2.28) that

lim
�!0

1

�
lim inf
"!0

(X"
� � x0) = lim

�!0

1

�
lim sup

"!0

(X"
� � x0) = �a(x0; y0);

lim
�!0

1

�
lim inf
"!0

(Y "
� � y0) = lim

�!0

1

�
lim sup

"!0

(Y "
� � y0)

= lim
�!0

1

�
lim inf
"!0

( (X"
�)� y0) = lim

�!0

1

�
lim sup

"!0

( (X"
�)� y0) =  0(x0)�a(x0; y0):

The equality

 0(x0)�a(x0; y0) = �b(x0; y0)

follows due to the relation (see formulae (2.17))

(f�;r')p� + (f+;r')p+ = 0:

So we prove that the limit process de�nes the �eld of vectors (�a;�b) on the curve S
which acts tangentially to S and, consequently, the limit process satis�es the system
(2.16). In the capacity of �t one can take a time on which the solution of the system
(2.16) with initial data x(0) = x0; y(0) = y0 exists.

The complete proof. It is convenient to divide this part of the proof into steps.

� Let us take a partition of the interval [0; T ] by the points tk = k�; k = 0; 1; : : : ; N .

Assume that � is small. Notice that both ~X"
s and ~Y "

s are close to its values in tk
in probability as s is close to tk, i.e. for any c > 0 one has,

sup
"�1

P (sup
k�N

sup
js�tkj��

k( ~X"
s ;
~Y "
s )� ( ~X"

tk
; ~Y "

tk
)k > c) = o�(1):

� Let us consider the time change which makes the di�usion coe�cient of ~Y " equal

to const times " and the di�usion coe�cient of ~X" close to another const times "
on each partition interval [tk; tk+1], namely, let

ht :=

Z t

0

(1 +  0( ~X"
s )

2)(1 +  0( ~X"
[s=�]�)

2)�1 ds;

and new time t0 = t0(t) = h�1t . Notice that dht=dt is close to 1 in probability if �

is small enough: for any t > 0 and any c > 0

sup
"�1

P (sup
s�t

j _hs � 1j > c) = o�(1):
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� Denote ( ~X 0

t;
~Y 0

t ) = ( ~X"
t0(t)

; ~Y "
t0(t)

) (we omit the index " for the notation simplicity).

Then (see [2])

d ~X 0

t = ât( ~X
0

t;
~Y 0

t ) dt+ "(1 +  0( ~X 0

[t=�]�)
2)1=2(1 +  0( ~X 0

t))
�1=2 d �w1(t);

d ~Y 0

t = b̂t( ~X
0

t;
~Y 0

t ) dt+ "(1 +  0( ~X 0

[t=�]�))
1=2 d �w(t);

i.e., on each partition interval [tk; tk+1[,

d ~X 0

t = ât( ~X
0

t;
~Y 0

t ) dt+ "(1 +  0( ~X 0

tk
)2)1=2(1 +  0( ~X 0

t))
�1=2 d �w1(t);

d ~Y 0

t = b̂t( ~X
0

t;
~Y 0

t ) dt+ "(1 +  0( ~X 0

tk
))1=2 d �w(t);

where �w1 and �w are new standard Wiener processes (they are dependent but it

does not matter) and the coe�cients â and b̂ have the form

ât(~x
0; ~y0) = ~a(~x0; ~y0)(1 +  0( ~X 0

[t=�]�)
2)(1 +  0(~x0)2)�1;

b̂t(~x
0; ~y0) =

�
~b(~x0; ~y0)� "2 00(~x0)=2

�
(1 +  0( ~X 0

[t=�]�)
2)(1 +  0(~x0)2)�1:

� It is easy to see that sups�t j
~Ysj ! 0 in probability as "! 0 for any t � T .

� Further, let us consider a new process

~X 00

t = X0 +

Z t

0

âs( ~X
0

[s=�]�;
~Y 0

s ) ds:

Evidently, ~X 0

t =
~X 00

t + o�;"(1).

� Let â+t (x) = lim
y#0

ât(x; y) , â
�

t (x) = lim
y"0

ât(x; y). Since sups�t j
~Ysj ! 0 as " ! 0

then

~X 00

t = X0 +
X
k�N

8<
:â+k�( ~X 0

k�)�
�1

(k+1)�Z
k�

1( ~Y 0

s > 0) ds

+â�k�(X
0

k�)�
�1

(k+1)�Z
k�

1( ~Y 0

s < 0) ds

9=
;+ o"(1);

where (P ) lim"!0 o"(1) = 0.

Denote � 0k = ��1

(k+1)�R
k�

1(Y 0

s > 0) ds. Then one can rewrite the last assertion

as

~X 00

t = X0 +
X
k�N

fâ+k�(
~X 0

k�)�
0

k + â�k�(
~X 0

k�)(1� � 0k)g+ o"(1):

� Let U(x; 0) = f(x0; y0) : jx � x0j � r; jy0j � rg, r is small and � << r. We

introduce new random coe�cients which also depend on time,

b̂sup(t; x; y) = supfb̂(x0; y0) : (x0; y0) 2 U( ~X 0

[t=�]�; 0); sign y
0 = sign yg+ �;

b̂inf (x; y) = inffb̂(x0; y0) : (x0; y0) 2 U( ~X 0

[t=�]�; 0); sign y
0 = sign yg+ �;

where � > 0 is one more small parameter.
9



Notice that P
�
b̂sup(t; x; y) � b̂( ~X 0

[t=�]�
; y) � b̂inf (t; x; y); 0 � t � T

�
� 1 if r

and � are small enough. Consider new processes which solve the equations

Y 00sup
t = Y0 +

tZ
0

b̂sup( ~X
0

[s=�]�; Y
00sup
s ) ds+ "

tZ
0

(1 +  0( ~X 0

[s=�]�))
1=2 d �ws;

Y 00inf
t = Y0 +

tZ
0

b̂inf ( ~X
0

[s=�]�; Y
00inf
s ) ds+

tZ
0

"(1 +  0( ~X 0

[s=�]�))
1=2d �ws;

Denote Uk = U(Xk�; 0), Tk := inf(t � k� : ( ~X; ~Y ) =2 Uk). Due to comparison
theorems,

P (Y 00inf

min(t;Tk)
� Y 0

min(t;Tk)
� Y 00sup

min(t;Tk)
) = 1:

Indeed, it follows from arguments of ODE theory since the di�usion coe�cients
of both processes are equal and piecewise constant.

� We can write

P (� 00infk � � 0k � � 00supk ; k � N) � 1

where

� 00sup = ��1

Z (k+1)�

k�

1(Y 00sup
s ) ds; � 00inf = ��1

Z (k+1)�

k�

1(Y 00inf
s ) ds:

� Now, we make the change of space and time exactly as in the proof of Theorem
2.1. Due to the convergence to the invariant measure, we get on each partition

interval k�; (k + 1)� given ~X 0

k�,

� 00infk �
b̂�inf(

~X 0

k�)

b̂�inf(
~X 0

k�)� b̂+inf (
~X 0

k�)
! 0

and

� 00
sup

k �
b̂�sup(

~X 0

k�)

b̂�sup(
~X 0

k�)� b̂+sup(
~X 0

k�)
! 0:

Since

b̂�inf(
~X 0

k�)

b̂�inf (
~X 0

k�)� b̂+inf(
~X 0

k�)
�

b̂�sup(
~X 0

k�)

b̂�sup(
~X 0

k�)� b̂+sup(
~X 0

k�)

(see Theorem 2.1), we get

� 00
inf

k � � 00
sup

k ; for all k:

� Hence,

~X 0

t � x =
X
k

(k+1)�Z
k�

â( ~X 0

tk
; y)�sup( ~X 0

tk
; dy) + o(1)

=
X
k

(k+1)�Z
k�

â( ~X 0

tk
; y)�inf( ~X 0

tk
; dy) + o(1);
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where �sup and �inf are invariant measures of the processes Y 00sup and Y 00inf

correspondingly and o(1)! 0 in probability as �; �; "! 0.
Finally, since the measures �sup(x; dy) and �inf(x; dy) are close to �(x; dy) and

the last measure is continuous in x (in the weak sense), we get

~X 0

t � x =

Z t

0

â( ~X 0

s; y)�(
~X 0

s; dy) + o(1):

Here o(1)! 0 in probability as "! 0.
� Remind that the time change t0(t) is such that dt0(t)=dt is uniformly close to 1 in
probability if � is small enough. As �! 0, we obtain

~Xt � x =

Z t

0

~a( ~Xs; y)�( ~Xs; dy) + o(1):

This is equivalent to the desired assertion. Theorem 2.2 is proved.

Remark 2.1. The established law (2.16) of motion on S coincides with the well
known sliding mode [1].

Remark 2.2. Clearly, the vector (�a(x; y);�b(x; y)); (x; y) 2 S; is tangent to S at
the point (x; y): After the change of variables it coincides with the vector (�a; 0) from
Theorem 2.1 (of course, the probabilities p�(x; y); p+(x; y) from (2.17) are equal to
p�; p+ from (2.7)). Thus, Theorem 2.2 justi�es the following principle: to obtain

the in�nitesimal characteristics of motion on a sliding surface one should reduce the
problem to the corresponding model one. The system (2.5) gives an example of such a
model problem.

Remark 2.3. The system (2.16) can be rewritten in the form

dx(t)

dt
= f�(x(t))p�(x(t)) + f+(x(t))p+(x(t)) := �f(x(t)): (2.29)

We remind that f is the vector with the components a; b:

2.3. Model and general d-dimensional problems. The obtained results can be
generalized to the case of a d-dimensional system (1.1) if the surface of discontinuity S
is (d � 1)-dimensional. Slightly abusing initial notation, we can represent the system
(1.1) in the form

dx

dt
= a(x; y);

dy

dt
= b(x; y); (2.30)

where x = (x1; :::; xd�1); y = xd:

Let (x0; y0) = (x10; :::; x
d�1
0 ; y0) 2 S be a �xed point. Assume that the surface S

can be expressed by the equation y =  (x1; :::; xd�1) in a neighborhood of (x0; y0).
Introduce G+ by the rule: the points (x; y) with y >  (x) from a neighborhood of
(x0; y0) belong to G+. Suppose that

b�(x0; y0)� (r (x0); a
�(x0; y0)) > 0; b+(x0; y0)� (r (x0); a

+(x0; y0)) < 0:
(2.31)

Consider new coordinates

X = x� x0; Y = y �  (x):
11



Then

dX

dt
= a(X + x0; Y +  (X + x0)) := ~a(X; Y )

dY

dt
= b(X + x0; Y +  (X + x0))

�(r (X + x0); a(X + x0; Y +  (X + x0))) := ~b(X; Y ): (2.32)

For this system the surface of discontinuity is expressed by the equation Y = 0 in

a neighborhood of the origin, the domain G+ is the upper half-space Y > 0 and the

domain G� is the lower half-space Y < 0; and due to (2.31) ~b�(0; 0) > 0; ~b+(0; 0) < 0:
The same arguments, which were used for deriving the system (2.3), lead to the system

_X = a(Y ); _Y = b(Y ); (2.33)

where (as before a(Y ) = a(sign Y ); b(Y ) = b(sign Y ))

a(Y ) =

8<
:

a�; Y < 0;
0; Y = 0;
a+; Y > 0;

; b(Y ) =

8<
:

b�; Y < 0;
0; Y = 0;
b+; Y > 0;

(2.34)

with the vectors a� = ~a�(0; 0); a+ = ~a+(0; 0); and with the scalars b� = ~b�(0; 0) >

0; b+ = ~b+(0; 0) < 0.
Along with the system (2.33) consider the d-dimensional system with small noise

dX"
t = a(Y "

t )dt+ "dw1(t)

dY "
t = b(Y "

t )dt+ "dw2(t); (2.35)

where w1 and w2 are (d � 1)-dimensional and one-dimensional independent standard
Wiener processes correspondingly.

For the system (2.35) one can prove the same result as Theorem 2.1 asserts. Namely,
let (X"

t ; Y
"
t ) be the solution of the system (2.35) starting from the origin. Then its limit

as "! 0 equals

lim
"!0

X"
t = �a � t; lim

"!0
Y "
t = 0;

where the (d�1)-dimensional vector �a is equal to a�p�+a+p+ with p�; p+ from (2.7).

A theorem analogous to Theorem 2.2 can be proved as well.
Let S be a surface of discontinuity for the system (1.1) expressed by the equation

'(x) = 0: Remember, the domain G+ is chosen so that the vector r'(x) at the point
x 2 S is directed to it.

Along with the system (2.30) let us consider a perturbed system

dX"
t = f(X"

t )dt+ "dw(t); (2.36)

where w(t) is a d-dimensional standard Wiener process.

Theorem 2.3. Let

(f�;r') > 0; (f+;r') < 0: (2.37)

and X"
t be a solution of the system (2.36) starting from a point x 2 S; 0 � t � �t, where

�t is a positive number. Then there exist the limits on [0; �t ] in probability, a.s., and in
L1

lim
"!0

X"
t := x(t);
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where x(0) = x and x(t) 2 S; 0 � t � �t:
The limit x(t) satis�es the system

dx(t)

dt
= f�(x(t))p�(x(t)) + f+(x(t))p+(x(t)) := �f(x(t)) (2.38)

with

p�(x) = �
(f+;r')

(f�;r')� (f+;r')
; p+(x) =

(f�;r')

(f�;r')� (f+;r')
:

(2.39)

3. Sliding mode under weak and strong singularity

Consider the following two-dimensional model system

_X = a(Y ); _Y = jY jb(Y ); jj < 1; (3.1)

with a and b from (2.4).
Under  = 0 we get the system (2.3). All the trajectories of the system (2.3) approach

the line of discontinuity Y = 0 for a �nite time and arrive at this line with a nonzero
(because b� 6= 0; b+ 6= 0) and bounded Y -component of velocity. If  6= 0; as before
they approach the line of discontinuity for a �nite time but with zero (0 <  < 1) or
with in�nite (�1 <  < 0) �nal Y -component of velocity. Therefore the obtained rule
of sliding mode cannot be used.
Consider the system with small noise

dX"
t = a(Y "

t )dt+ "dw1(t)

dY "
t = jY "

t j
b(Y "

t )dt+ "dw2(t): (3.2)

Introduce the process

Ys = "��Y "
"�s ; � =

2

1 + 
; � =

2(1� )

1 + 
: (3.3)

It is not di�cult to show that the law of the process Ys does not depend on " and
Ys satis�es the equation

dY = jY jb(Y )ds+ dw(s) (3.4)

with the standard Wiener process w(s) = "��=2w2("
�s):

The Markov process de�ned by the stochastic di�erential equation (3.4) is ergodic

(see [8]). Its invariant measure � has on (�1; 0) and on (0;1) a density p(y) which
satis�es the following equations

1

2
p00 � b� �

@(jyjp)

@y
= 0; y < 0;

1

2
p00 � b+ �

@(yp)

@y
= 0; y > 0: (3.5)

We calculate

p(y) =

8>>><
>>>:

C1 exp(�
b�

 + 1
jyj+1) ; y < 0;

C2 exp(
b+

 + 1
y+1) ; y > 0:

(3.6)
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One can show the equality C1 = C2 as follows. From (3.4) we have

Y (s) = � +

Z s

0

jY (�)jb(Y (�))d� + w(s);

where � has the distribution (3.6).
Since EY (s) = E�; we get

EjY (s)jb(Y (s)) =

Z 0

�1

b� � (�y)p(y)dy +

Z
1

0

b+ � yp(y)dy = 0;

whence the equality C1 = C2 := C can be obtained easily.
Further, the �rst equation of (3.2) gives (cf. (2.11))

X"
�t =

Z �t

0

a(Y "
t )dt+ "w1(�t)

=

Z �t

0

a("�Yt="�)dt+ "w1(�t) =

Z �t

0

a(sign Yt="�)dt+ "w1(�t)

=
"�

�t

Z �t="�

0

a(sign Ys)ds ��t+ "w1(�t)

! �t �

Z
1

�1

a(y)�(dy) = �t � (a�p� + a+p+):

Let us �nd the values p� and p+. We have

p� =

Z 0

�1

p(y)dy = C

Z
1

0

exp(�
b�

 + 1
y+1)dy =

C

(b�)1=

Z
1

0

exp(�
y+1

 + 1
)dy;

p+ =

Z
1

0

p(y)dy = C

Z
1

0

exp(
b+

 + 1
y+1)dy =

C

(�b+)1=

Z
1

0

exp(�
y+1

 + 1
)dy:

Since p� + p+ = 1; we get

p� =
(�b+)1=

(b�)1= + (�b+)1=
; p+ =

(b�)1=

(b�)1= + (�b+)1=
:

Thus, the sliding mode on the sliding line Y = 0 for the system (3.1) is the uniform

motion with the speed a�p� + a+p+:

4. Stochastic sliding mode on (d� 1)-dimensional surfaces of discontinuity

4.1. Model problem. Consider the following d-dimensional stochastic system

dX = a(Y )dt+ �(Y )dW (t)

dY = b(Y )dt; (4.1)

whereX and a are (d�1)-dimensional vectors, Y and b are scalars,W is a k-dimensional
standard Wiener process, � is a (d � 1) � k matrix. We suppose that the coe�cients
a; �; b depend on sign Y only:

a(Y ) =

8<
:

a�; Y < 0;
0; Y = 0;
a+; Y > 0;

; �(Y ) =

8<
:

��; Y < 0;
0; Y = 0;
�+; Y > 0;

; b(Y ) =

8<
:

b�; Y < 0;
0; Y = 0;
b+; Y > 0;

;
(4.2)
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and that

b� > 0; b+ < 0:

Thus, we have two media (Y < 0 and Y > 0) with two di�erent laws of stochastic
motion. In addition, any solution approaches the plane of discontinuity Y = 0 for a

�nite time and cannot be able to leave this plane. Our goal is to obtain a "natural" law
of stochastic sliding mode on sliding plane induced by the stochastic motion in these
two media.
To this end introduce the following d-dimensional system with additional small noise

dX"
t = a(Y "

t )dt+ �(Y "
t )dW (t) + "dw1(t)

dY "
t = b(Y "

t )dt+ "cdw2(t); (4.3)

where w1 and w2 are (d � 1)-dimensional and one-dimensional independent standard
Wiener processes correspondingly. The processes w1 and w2 are independent of W as
well.
We de�ne the sliding di�usion as a limit process for X"

t under " tending to zero

provided the process (X"
t ; Y

"
t ) starts from the origin.

Theorem 4.1. The processes (X"
t ; 0 � t � T ) tend weakly in distribution to a

Gaussian process

�Xt = �a t+ �� �Wt;

where p� and p+ are from (2.7),

�a = a�p� + a+p+; �� = (��(��)Tp� + �+(�+)Tp+)1=2

(the square root of the non-negative de�nite constant symmetric matrix is always well-
de�ned), and �W is a (d� 1)-dimensional standard Wiener process.

Proof. As earlier introduce the process Ys = "�2Y "
"2s

: We have for any t > 0 (cf.
(2.11))

X"
t =

Z t

0

a(sign Ys="2)ds+

Z t

0

�(sign Ys="2)dW (s) + "w1(t)

= "2
Z t="2

0

a(sign Ys)ds+ "

Z t="2

0

�(sign Ys)d ~W (s) + "w1(t); (4.4)

with the standard Wiener process ~W (s) = "�1W ("2s):
Further,

E"2
Z t="2

0

�(sign Ys)d ~W (s) � (

Z t="2

0

�(sign Ys)d ~W (s))T

= "2E(

Z t="2

0

�(sign Ys) � �
T (sign Ys)ds)! [��(��)Tp� + �+(�+)Tp+]t := ����T t;

(4.5)

where indeed p� and p+ are from (2.7) and �� is a solution of the matrix equation with
respect to ��

����T = ��(��)Tp� + �+(�+)Tp+:
15



Here one has a convergence in probability locally uniformly with respect to t. Hence,
in fact, we get a weak convergence to the Gaussian process described in the theorem.
This proves the assertion.

4.2. General problem. Now let us proceed to a more general case. Consider a

d-dimensional system of stochastic di�erential equations

dX = f(X)dt+ �(X)dW (t); (4.6)

where X and f are d-dimensional vectors, W is a k-dimensional standard Wiener
process, � is a d� k matrix.

Let S : '(x) = 0 be a smooth surface of discontinuity for the drift and di�usion
coe�cients of the system (4.6) and the domain G+ is chosen so that the vector r'(x)
at the point x 2 S directed to G+: We suppose the coe�cients f(x) and �(x) together
with their �rst derivatives with respect to x to be continuous functions in G� and G+

up to S. In addition we suppose that at any point x 2 S the following conditions are
ful�lled:

(��)|r' = 0; (�+)|r' = 0; (4.7)

(L')� > 0; (L')+ < 0; (4.8)

where

L'(x) =

dX
i=1

@'

@xi
(x)fi(x) +

1

2

dX
i;j=1

@2'

@xi@xj
(x)

kX
m=1

�im(x)�jm(x): (4.9)

The condition (4.7) means that the orthogonal to the surface S component of di�u-
sion degenerates with approaching S from both sides. The conditions (4.7) and (4.8)
ensure the impossibility of leaving the surface S. Because of the degeneracy (4.7), the

problem of a "natural" de�nition of solutions on S arises. In connection with this
problem we introduce the auxiliary system with additional nondegenerate small noise

dX"
t = f(X"

t )dt+ �(X"
t )dW (t) + "dw(t); (4.10)

where w is a d-dimensional standard Wiener process independent on W .

To obtain the limit stochastic process on S; we suppose that the surface S can be
expressed by an equation solved with respect to the last component in a neighborhood
of a considered point. Let us represent the system (4.10) in the form

dX"
t = a(X"

t ; Y
"
t )dt+ �(X"

t ; Y
"
t )dW (t) + "dw(t)

dY "
t = b(X"

t ; Y
"
t )dt+ �(X"

t ; Y
"
t )dW (t) + "dv(t): (4.11)

Here a; X are (d� 1)-dimensional vectors, b; Y are scalars, � is (d� 1)� k-matrix
and � is 1 � k-matrix, W is a k-dimensional, w is a (d � 1)-dimensional and v is a

scalar standard independent Wiener processes. Let S be expressed by the equation
Y =  (X) in a neighborhood of the considered point (x; y) = (x1; :::; xd�1; y): Because

(��)| =

2
664
��11 ::: ��d�11 ��1

��1k ::: ��d�1k ��k

3
775 ; r' =

2
664
�@ =@x1

:::
�@ =@xd�1

1

3
775 ; (4.12)
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we get from (4.7)

(��)|r' = �

d�1X
j=1

��jm
@ 

@Xj

+ ��m = 0; m = 1; :::; k: (4.13)

Further,

L' = �

d�1X
j=1

aj
@ 

@Xj

+ b�
1

2

d�1X
i;j=1

@2 

@Xi@Xj

kX
m=1

�im�jm : (4.14)

In the new variables

~X = X; ~Y = Y �  (X)

we obtain (see (4.13), (4.14))

d ~X"
t = a( ~X"

t ;
~Y "
t +  ( ~X"

t ))dt+ �( ~X"
t ;
~Y "
t +  ( ~X"

t ))dW (t) + "dw(t)
(4.15)

d ~Y "
t = L'( ~X"

t ;
~Y "
t +  ( ~X"

t ))dt

+(r')|�( ~X"
t ;
~Y "
t +  ( ~X"

t ))dW (t)� "

d�1X
j=1

@ 

@Xj

( ~X"
t )dwj(t) + "dv(t):

(4.16)

The surface of discontinuity for the system (4.15)-(4.16) is expressed by the equation
~Y = 0 in a neighborhood of the origin. Due to (4.13) the vector-row (r')|�( ~X; ~Y +

 ( ~X)) tends to zero if ~Y tends to zero. Besides, the drift coe�cient L'( ~X; ~Y + ( ~X))

is positive for ~Y < 0 and negative for ~Y > 0 thanks to (4.8). Therefore the system
(4.15)-(4.16) is close to the model system (4.1) and one can use the obtained rule for

the sliding stochastic mode on the plane ~Y = 0: We get for

�X(t) := lim
"!0

~X"
t

the following stochastic di�erential equation

d �X = �a( �X)dt+ ��( �X)d �w(t); (4.17)

where �w is a (d� 1)-dimensional standard Wiener process,

�a( �X) = a�( �X; ( �X))p� + a+( �X; ( �X))p+; (4.18)

��( �X)(��( �X))| = ��(��)|p� + �+(�+)|p+; (4.19)

with

�� = ��( �X; ( �X))

and

p�( �X) = �
(L')+

(L')� � (L')+
; p+( �X) =

(L')�

(L')� � (L')+
; (4.20)

where the arguments by L' are ( ~X; ~Y +  ( ~X)) under ~X = �X; ~Y = 0, i.e., ( �X; ( �X)):
Let

�X(t) := lim
"!0

X"
t ;

�Y (t) := lim
"!0

Y "
t :
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Due to the change of variables, �X = �X + x; �Y =  ( �X); and we have

d �X = �a( �X; �Y )dt+ ��( �X; �Y )d �w(t); (4.21)

where

�a( �X; �Y ) = a�( �X; �Y )p� + a+( �X; �Y )p+ (4.22)

��( �X; �Y )��|( �X; �Y ) = ��(��)|p� + �+(�+)|p+; (4.23)

with ��; p� depending on �X; �Y =  ( �X).
Evaluate now d �Y = d ( �X): Thanks to (4.21)-(4.23) we get

d �Y =

d�1X
i=1

@ 

@Xi

� (�aidt+

d�1X
j=1

��ijd �wj(t)) +
1

2

d�1X
i;j=1

@2 

@Xi@Xj

d�1X
m=1

��im��jmdt

= p�(

d�1X
i=1

@ 

@Xi

� a�i +
1

2

d�1X
i;j=1

@2 

@Xi@Xj

kX
m=1

��im�
�

jm)dt

+p+(

d�1X
i=1

@ 

@Xi

� a+i +
1

2

d�1X
i;j=1

@2 

@Xi@Xj

kX
m=1

�+
im�

+
jm)dt+

d�1X
i=1

@ 

@Xi

d�1X
j=1

��ijd �wj(t);
(4.24)

where all the functions have �X; �Y as their arguments.

Due to (4.14)

d�1X
i=1

@ 

@Xi

� a�i +
1

2

d�1X
i;j=1

@2 

@Xi@Xj

kX
m=1

��im�
�

jm = b� � (L')�; (4.25)

and due to (4.20)

(L')�p� + (L')+p+ = 0: (4.26)

The relations (4.24)-(4.26) give

d �Y = �b( �X; �Y )dt+

d�1X
i=1

@ 

@Xi

( �X)

d�1X
j=1

��ij( �X; �Y )d �wj(t); (4.27)

where

�b( �X; �Y ) = b�( �X; �Y )p�( �X; �Y ) + b+( �X; �Y )p+( �X; �Y ): (4.28)

The d� d-dimensional di�usion matrix of the system (4.21), (4.27) is equal to ��|;
where � is d� (d� 1)-dimensional:

� =

2
6664

��11 ::: ��1d�1

::: ::: :::
��d�11 ::: ��d�1d�1Pd�1

i=1

@ 

@Xi

��i1 :::
Pd�1

i=1

@ 

@Xi

��id�1

3
7775 :

Using (4.23) and (4.13) one can prove that

��| = ��(��)|p� + �+(�+)|p+;

where �� is the d� k-dimensional matrix (see (4.12)).
18



Introduce a d� d-dimensional matrix �� which satis�es the equation

����| = ��(��)|p� + �+(�+)|p+: (4.29)

Then the system

d �Xi = �ai( �X; �Y )dt+

dX
j=1

��ij( �X; �Y )d �wj(t); i = 1; :::; d� 1;

d �Y = �b( �X; �Y )dt+

dX
j=1

��dj( �X; �Y )d �wj(t);

where �w(t) is a d-dimensional standard Wiener process, gives the same di�usion law
as the system (4.21), (4.27).
Now we can return to the original systems (4.6) and (4.10) and state the following

assertion.

Theorem 4.2. Suppose the conditions (4.7), (4.8) to be satis�ed. Let X"
t be a

solution of the system (4.10) starting from a point x 2 S; 0 � t � �t; where �t > 0 is
su�ciently small. Then there exists the limit

lim
"!0

X"
t :=

�X(t);

where �X(0) = x and �X(t) 2 S; 0 � t � �t:
The process �X(t) is governed by the following system of stochastic di�erential equa-

tions

d �X = �f( �X)dt+ ��( �X)d �W (t); (4.30)

where �W is a d-dimensional standard Wiener process and

�f(x) = f�(x)p�(x) + f+(x)p+(x); x 2 S; (4.31)

��(x)��|(x) = ��(x)(��(x))|p�(x) + �+(x)(�+(x))|p+(x); x 2 S;
(4.32)

p�(x) = �
(L'(x))+

(L'(x))� � (L'(x))+
; p+(x) =

(L'(x))�

(L'(x))� � (L'(x))+
; x 2 S:

(4.33)

Remark 4.1. It is evident that the vector �f in the system (2.29) is tangent to S
and therefore the (d � 1)-dimensional manifold is invariant for a system of the form
(2.29) in whatever way (of course, in a su�ciently smooth manner) it is continued (we
observe that �f is determined on S only).

Analogously, in whatever way to continue the coe�cients of the system (4.30) the
manifold S remains invariant.
Let us check this fact directly using the Stroock-Varadhan support theorem [2].

In accord with the theorem one has to write the Ito system (4.30) (of course, with
continued in a smooth manner coe�cients) in the Stratonovich form and verify that

the drift- and di�usion-vectors of the latter system are tangent to S.
Rewrite the system (4.30)

d �X = �f( �X)dt+

dX
r=1

��r( �X)d �wr(t); (4.34)
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where ��r is the r-th column of the matrix ��( �X): We consider the matrix �� which
satis�es (4.29) to be symmetric for simplicity, i.e., �� = ��|.
The Stratonovich system corresponding to (4.34) has the form

d �X = ( �f( �X)�
1

2

dX
r=1

@��r

@x
( �X)��r( �X))dt+

dX
r=1

��r( �X) � d �wr(t); (4.35)

where

@��r

@x
=

2
6664

@��r1
@x1

:::
@��r1
@xd

::: ::: :::
@��rd
@x1

:::
@��rd
@xd

3
7775 :

Let us check that on S

(��r;r') = 0; r = 1; :::; d: (4.36)

The relations (4.36) are equivalent to

��|r' = 0:

We have

(��|r'; ��|r') = (����|r';r')

= ((p���(��)|r'+ p+�+(�+)|r');r') = 0;

as (��)|r' = 0 on S (see the condition (4.7)).
So, ��|r' = 0 and, consequently, (4.36) is proved.

Let us evaluate

�
1

2
(

dX
r=1

@��r

@x
��r;r') = �

1

2

dX
r=1

(��r;

2
6664

@��r1
@x1

@'

@x1
+ ::: +

@��rd
@x1

@'

@xd
: : : : : : :

@��r1
@xd

@'

@x1
+ ::: +

@��rd
@xd

@'

@xd

3
7775)

= �
1

2

dX
r=1

(��r;

2
6664

@

@x1
(��r1

@'

@x1
+ ::: + ��rd

@'

@xd
)

: : : : : : :
@

@xd
(��r1

@'

@x1
+ :::+ ��rd

@'

@xd
)

3
7775)

+
1

2

dX
r=1

(��r;

2
66664

��r1
@2'

@x21
+ :::+ ��rd

@2'

@x1@xd
: : : : : : :

��r1
@2'

@xd@x1
+ ::: + ��rd

@2'

@x2d

3
77775)

�
1

2

dX
r=1

(��r;
@

@x
(��r;r')) +

1

2
tr����|

�
@2'

@xi@xj

�
: (4.37)

The relation (4.36) asserts that the vector ��r on S; r = 1; :::; d; is tangent to S:

The sum
Pd

r=1(��
r;
@

@x
(��r;r')) on S is none other than the derivative of the function
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(��r;r') in the direction of ��r, i.e., in the direction tangent to S. But on S this
function is equal to zero (see (4.36)). Hence the �rst summand in the right hand side
of (4.37) is equal to zero on S.
Consider the second summand in (4.37). From (4.9) we have

1

2
tr��(��)|

�
@2'

@xi@xj

�
= (L')� � (f�;r'):

Therefore (see (4.32), (4.26), (4.31))

1

2
tr����|

�
@2'

@xi@xj

�
= p� �

1

2
tr��(��)|

�
@2'

@xi@xj

�
+ p+ �

1

2
tr�+(�+)|

�
@2'

@xi@xj

�

= p� � ((L')� � (f�;r')) + p+ � ((L')+ � (f+;r'))

= �p� � (f�;r') + p+ � (f+;r') = �( �f ;r'):

Consequently,

( �f �
1

2

dX
r=1

@��r

@x
��r;r') = 0;

i.e., the drift in the system (4.35) is tangent to S as well. Thus, the invariance of S for

the system (4.30) is veri�ed.

5. Sliding mode on surfaces which dimension is less than d� 1

In this section we treat a problem connected with determining sliding mode on a
(d� 2)-dimensional surface which is the intersection of two (d� 1)-dimensional sliding
surfaces. We restrict ourselves to a model problem in the case d = 3.

Consider the following three-dimensional system

dx

dt
= a(y; z);

dy

dt
= b(y; z);

dz

dt
= c(y; z) (5.1)

with

a(y; z) = a1; b(y; z) = b1; c(y; z) = c1 if y > 0; z > 0;

a(y; z) = a2; b(y; z) = b2; c(y; z) = c2 if y < 0; z > 0;

a(y; z) = a3; b(y; z) = b3; c(y; z) = c3 if y < 0; z < 0;

a(y; z) = a4; b(y; z) = b4; c(y; z) = c4 if y > 0; z < 0;

where ai; bi; ci; i = 1; :::; 4; are constants, i.e., the right-hand sides of the system (5.1)
depend in fact on sign y and sign z only.
In addition we suppose that

b1 < 0; b2 > 0; b3 > 0; b4 < 0;

c1 < 0; c2 < 0; c3 > 0; c4 > 0: (5.2)

Thus, the surfaces of discontinuity of the right-hand sides of the system (5.1) are

the planes y = 0 and z = 0: They divide the space in four parts. The conditions (5.2)
ensure that any trajectory reaches one of these planes for a �nite time. The law of
motion on the planes can be obtained according to the results of Section 2. It is not
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di�cult to see that any motion reaches the line y = 0; z = 0 (axis x) for a �nite time
as well and our problem is to �nd the law of motion on this sliding line.
Introduce the system with small noise

dX"
t = a(Y "

t ; Z
"
t )dt+ "dw1(t); (5.3)

dY "
t = b(Y "

t ; Z
"
t )dt+ "dw2(t); dZ

"
t = c(Y "

t ; Z
"
t )dt+ "dw3(t) (5.4)

and the process (Ys; Zs) :

Ys = "�2Y "
"2s; Zs = "�2Z"

"2s: (5.5)

Because of (5.2), it is not di�cult to justify that the law of the process (Ys; Zs) does
not depend on " and that it satis�es the system

dY = b(Y; Z)ds+ dW2(s); dZ = c(Y; Z)ds+ dW3(s); (5.6)

where W2(s) = "�1w2("
2s); W3(s) = "�1w3("

2s):
Due to the conditions (5.2) the Markov process de�ned by the system (5.6) is ergodic.

Let � be its invariant measure. Let (X"
t ; Y

"
t ; Z

"
t ) be the solution of the system (5.3)-(5.4)

starting from the origin. Analogously to (2.11) we get

lim
"!0

X"
t =

4X
i=1

aipi � t := �at; lim
"!0

Y "
t = 0; lim

"!0
Z"
t = 0;

where pi is �-measure of the corresponding quadrant of the plane X = 0. Obtain some
relation for pi. Let Y (0) = �; Z(0) = �; where (�; �) is a random vector with the

distribution law �. We have from (5.6)

Y (s) = � + b1

Z s

0

�Y (�)>0;Z(�)>0d� + :::+ b4

Z s

0

�Y (�)>0;Z(�)<0d� +W2(s):

Because EY (s) = E�; E�Y (�)>0;Z(�)>0 = �(Y > 0; Z > 0) = p1; :::; E�Y (�)>0;Z(�)<0 =
�(Y > 0; Z < 0) = p4; we get

b1p1 + b2p2 + b3p3 + b4p4 = 0:

Similarly

c1p1 + c2p2 + c3p3 + c4p4 = 0:

Together with p1+p2+p3+p4 = 1 we have three relations with respect to four desired
probabilities. Unfortunately, there is no additional relation in general case. However,

for instance under some kind of symmetry, it is possible to �nd these probabilities or
�a: A short example: let b2 = �b1; c2 = c1; b4 = �b3; c4 = c3: Then it is clear that

p1 = p2 and p3 = p4: As a result we obtain p1 = p2 =
c3

2(c3 � c1)
; p3 = p4 =

�c1

2(c3 � c1)
;

and �a can be found explicitly. Another example. It is not di�cult to prove that the

following three four-dimensional vectors: ~b := (b1; b2; b3; b4)
|; ~c := (c1; c2; c3; c4)

|; ~p :=
(1; 1; 1; 1)| are linearly independent provided (5.2). Let ~a := (a1; a2; a3; a4)

| depend

linearly on ~b; ~c; ~p : ~a = �~b+ ~c + �~p: Then �a = �:
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