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Abstract

We consider testing hypotheses about the location parameter of a symmetric

distribution when a �nite-dimensional nuisance parameter is present. For local al-

ternatives, we study the power loss of asymptotically e�cient tests in this problem,

which is the di�erence between the power of the most powerful test for a given value

of the nuisance parameter (as if it were known) and the power of the test at hand.

The power loss is typically of order n�1 and is closely related to the de�ciency of the

test. In particular, we obtain the lower bound for the power loss in a locally asymp-

totically minimax sense similar to that used in the estimation theory and indicate a

test on which this bound is attained. This bound corresponds to the envelope power

function obtained by Pfanzagl and Wefelmeyer (1978) for test statistics of a speci�c

structure.

1 Introduction

In this paper we study asymptotically e�cient tests for hypotheses about a univariate

parameter when a �nite-dimensional nuisance parameter is present. This problem was in-

vestigated by Pfanzagl and Wefelmeyer (1978) (see also the review paper Pfanzagl (1980))

who described asymptotically complete classes of tests in this setting. We obtain related

results in a technically simpler way. To simplify the presentation, we treat the case where

the underlying distribution is symmetric about the location parameter of interest. The

main tool is a formula for the di�erence between the powers of the most powerful (MP)

test for a simple hypothesis against a simple (local) alternative and an asymptotically

e�cient test in the same testing problem. Using this formula we do not derive asymptotic

expansions for the powers of tests, dealing directly with the power loss of tests for the

composite hypothesis as compared to the MP test for the case the nuisance parameter

were known. We obtain lower bounds for this power loss and indicate tests on which they

are attained.

Speci�cally, we consider testing the hypothesis

H0 : � = �0; � 2 Z against H1 : � > �0; � 2 Z

based on i.i.d. real-valued observations X1; : : : ; Xn with symmetric Lebesgue density

p�;�(x) = p�(x� �); p�(x) = p�(�x);

where � = (�1; : : : ; �k) 2 Z with an open Z � Rk. Henceforth without loss of generality

we take �0 = 0. We generically denote by �n(t; �) the power of a test for H0 against

the local alternative (n�1=2t; �), t > 0. In particular, �n(0; �) is the test size, and we

restrict ourselves to asymptotically (as.) similar tests satisfying, for a �xed level � > 0,

the condition

sup
�2K

j�n(0; �)� �j = o(n�1)

for any compact subset K � Z.

An immediate way of obtaining an upper bound for the power of an arbitrary as. similar

test is as follows. Consider testing a simple hypothesis (0; �) against a simple alternative
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(n�1=2t; �), �; � 2 Z. Let �n(t; �; �) be the power of the MP size � test in this testing

problem. Then the power �n(t; �) of any as. similar test is no greater than �n(t; �; �) +

o(n�1) for any � 2 Z. Hence

�n(t; �) � ��n(t; �) + o(n�1); (1:1)

where
��n(t; �) = inf

�

�n(t; �; �):

The minimizer of �n(t; �; �) is the least favorable hypothesis for the given alternative. This

bound was derived by Pfanzagl and Wefelmeyer (1978) and Pfanzagl (1980) (E
�(n)
2 in their

notation, see (10.2.4)). They do not restrict themselves to symmetric distributions. In

this general case the least favorable hypothesis is randomized (see Pfanzagl (1980), p. 50).

In our special case this randomization is not needed.

In contrast to Pfanzagl and Wefelmeyer (1978) we do not derive an asymptotic expansion

for ��n(t; �). Put ��
n
(t; �) = �n(t; �; �), so that ��

n
(t; �) is the power of the MP test for

(0; �) against (n�1=2t; �), which could be achieved if the nuisance parameter � were known.

Without deriving separately asymptotic expansions for ��
n
(t; �) and ��n(t; �) we directly

obtain an asymptotic formula of the form

��
n
(t; �)� ��n(t; �) = n�1B(t; �) + o(n�1) (1:2)

for their di�erence (see (3.24) or (3.26)).

Using this formula the asymptotic expansion for ��n can be immediately derived from

the well-known asymptotic expansion for ��
n
(t; �) (see, e.g., Pfanzagl (1980), (9.4.1)).

However the n�1 term of the di�erence ��
n
(t; �)� �n(t; �) determines the de�ciency of the

corresponding test (see, e.g., Pfanzagl (1980), p. 73), so that this di�erence is of interest

in its own right. We refer to such a di�erence as the power loss of the test and deal with

power losses of tests rather than deriving corresponding de�ciencies.

It is seen from (1.1) and (1.2) that the RHS of (1.2) provides a lower bound for the power

loss of an arbitrary as. similar test for H0. In Section 3.2 we construct as. similar tests

on which this bound is attained. However these tests depend on the chosen parameter

point � and the lower bound is attained in a small neighborhood of �. This resembles

the supere�ciency e�ect in estimation, where a lower risk than the regular (Cramér�Rao)

bound can be attained in a vicinity of a given parameter point at the expense of increase

of the risk elsewhere. This suggests the local minimax approach characterizing a test by

the maximal loss over a small neighborhood in the parameter space.

Denote by S the class of as. similar size � tests and by ��

n
(t; �) the power of a test � 2 S

at the alternative (n�1=2t; �). It will be expedient here to normalize the deviation of � byq
nJ� rather than

p
n, where J� is the Fisher information w.r.t. � for �xed � 2 Z. With

this normalization the powers under consideration converge to a limit depending only on

t, but not on the nuisance parameter.

Thus for given t > 0 and � 2 Z the power loss of a test � 2 S at an alternative (t=
q
nJ�; �)

is characterized by

r�
n
(t;K) = sup

�2K

(��
n
(t=
q
J� ; �)� �n(t=

q
J� ; �));
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where K � Z is a neighborhood of �, and ��
n
(t=
q
J�; �), as before, is the power of the

MP test for (0; �) against ((nJ�)
�1=2t; �). We establish an asymptotic lower bound for

nr�
n
(t;K) as n!1 and K shrinks to �, i.e., we show that

lim
K#�

lim inf
n!1

inf
�2S

nr�
n
(t;K) � B�(t; �); (1:3)

where B�(t; �) is given by (4.31). As is to be expected, this bound is no less and, in

general, greater than the bound (1.2) corresponding to the least favorable hypothesis.

In 4.2 we construct tests attaining this bound for any value of the nuisance parameter

(uniformly on compact sets). The corresponding upper bound for the power was obtained

by Pfanzagl and Wefelmeyer (1978) (see p. 57, Theorem 2) in the context of deriving an

as. complete class of tests. They call it the envelope power function. The properties stated

above justify this term.

The treatment in Pfanzagl and Wefelmeyer (1978) is restricted to test statistics of certain

structure (admitting a stochastic expansion). We do not impose any restrictions on the

tests under consideration. The particular form of the family of distributions (symmetric

distributions with a location parameter of interest) was adopted to work out the approach

and techniques in a simpli�ed setting. More general families can be treated along the same

lines.

This study was motivated by the problem of calculating de�ciencies of asymptotically

e�cient adaptive tests in a semiparametric setup. In the simplest case this problem is

as follows. We want to test hypotheses about the real-valued location parameter � given

i.i.d. observations X1; : : : ; Xn with Lebesgue density p(x� �); where p(x) is an unknown

density symmetric about zero, p(x) = p(�x). Suppose we are testing a simple hypothesis

against one-sided alternatives, viz,

H0 : � = 0 against H1 : � > 0:

When p is known (and satis�es certain regularity conditions), the MP test against a local

alternative of the form � = tn�1=2, t > 0, has a nontrivial power ��
n
(t; p) bounded away

from � and one. For unknown (symmetric) p one can construct adaptive tests having

asymptotically the same power, i.e., the power �n(t; p) such that

��
n
(t; p)� �n(t; p)! 0 as n!1:

It is natural to ask about the rate of this convergence. More precisely, like it is done in

estimation problems, to look for a lower bound for ��
n
� �n and, if possible, to construct

tests attaining this bound, which would then be (higher-order) asymptotically e�cient.

In this setting the density p can be viewed as an in�nite-dimensional nuisance parameter.

The present paper is an attempt to �nd an approach in the �nite-dimensional setup, which

could be extended to the in�nite-dimensional case.

This paper is written in an informal style. We do not state regularity conditions and do

not give formal proofs. Rather, we try to demonstrate in the most transparent way how

the results can be derived. The formal proofs will be given in a subsequent paper.

We begin with the case of no nuisance parameter (Section 2). This case is presented to

introduce in the simplest possible setting some notions and results which are then used in

3



the nuisance parameter setup. In Section 3 we derive the bound (1.2) related to the least

favorable hypothesis and indicate a test attaining this bound. As we pointed out, this

test depends on the chosen value of the nuisance parameter. The locally asymptotically

minimax bound (1.3) and a test attaining this bound are constructed in Section 4. Section

5, Appendix, contains informal proofs of some auxiliary results.

2 No nuisance parameter case

2.1 LLR and �rst-order e�ciency

We have i.i.d. observationsX1; : : : ; Xn with density p�(x). In this case we need not assume

� to be a location parameter (which is assumed in the nuisance parameter setup for some

simpli�cation), so that X's can take values in an arbitrary measurable space (X ;A) and
p� is their common density function w.r.t. some �-�nite measure on X . We test the

hypothesis

H0 : � = 0 against H1 : � > 0: (2:1)

Throughout the paper we use the abbreviation

� = n�1=2: (2:2)

For any t > 0 we will also consider the simple alternative

Hn;t : � = �t: (2:3)

We denote by Pn;0 and Pn;t the joint distributions of X = (X1; : : : ; Xn) under H0 and Hn;t

respectively. Obviously, they have densities

pn;0(x) =
nY
1

p0(xi) and pn;t(x) =
nY
1

p�t(xi) (2:4)

w.r.t. the corresponding product measure, x = (x1; : : : ; xn). The respective expectations

will be denoted by En;0 and En;t (with subscript n dropped when applied to a function of

a single X).

Assume that all measures Pn;t are mutually absolutely continuous. Consider the loglike-

lihood ratio (LLR)

�n(t) = log
dPn;t

dPn;0

= log
pn;t

pn;0
: (2:5)

We denote l(x) = log p(x) with corresponding indices. Then by (2.4)

�n(t) =
X

[l�t(Xi)� l0(Xi)]: (2:6)

By the Taylor series expansion,

l�t(Xi)� l0(Xi) = �tl0(Xi) +
1

2
(�t)2l00(Xi) + : : : (2:7)

Here and in what follows we denote by the superscript 0 the di�erentiation w.r.t. �.

(When the nuisance parameter is present, the di�erentiation w.r.t. its ith component will
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be denoted by the superscript i.) We omit the subscript when the derivative is taken at

� = 0. Denote

L0
n
= �

X
l0(Xi); L00

n
= �

X
[l00(Xi)� E0l

00]; : : : (2:8)

The sums are centered by the corresponding E0-expectations; the �rst sum contains no

centering because E0l
0 = 0. Further, denote by J the Fisher information

J = E0(l
0)2: (2:9)

(We reserve the usual notation I for the Fisher information w.r.t. the nuisance parameter.)

It is well known that E0l
00 = �J . With this notation, putting (2.7) into (2.6) yields

�n(t) = tL0
n
� 1

2
t2J +

1

2
�t2L00

n
+ : : : (2:10)

The �rst two terms in the RHS of (2.10) express the local asymptotic normality (LAN)

of the family of distributions. The omitted terms include the nonrandom term 1
6
�t3E0l

000

and the terms of higher order than � .

The most powerful (MP) size � test for H0 against Hn;t rejects H0 when �n(t) > cn;t with

cn;t de�ned by

Pn;0(�n(t) > cn;t) = �: (2:11)

(We tacitly assume continuity of the corresponding distribution.) By the CLT

L(�n(t) jPn;0)! N(�1

2
t2J; t2J): (2:12)

Hence

cn;t ! ct = t
p
Ju1�� �

1

2
t2J; (2:13)

u1�� denoting the upper �-point of the standard normal distribution. The power of this

MP test is

��
n
(t) = Pn;t(�n(t) > cn;t): (2:14)

It is known from the LAN theory that

L(�n(t) j Pn;t)! N(
1

2
t2J; t2J): (2:15)

Thus (2.13)�(2.15) yield

��
n
(t)! �(t) = �(t

p
J � u1��); (2:16)

where � stands for the standard normal d.f. and �(u1��) = 1� �.

Note that ��
n
(t), known as the envelope power function, is not the power function of a

single test. For each t > 0 it is the power of the MP test against Hn;t based on �n(t).

Thus it provides an upper bound for the power of any test for H0 against H1 : t > 0.

It is well known that there are many (�rst order) asymptotically e�cient tests, i.e., tests

whose power function �n(t) converges to the same limit as ��
n
(t). So are, for example,

tests based on L0
n
, on �n(t0) with an arbitrary t0 > 0, on the MLE �̂n, on a certain linear

combination of order statistics; for � location parameter there are asymptotically e�cient

rank tests. They can be compared with each other by higher order terms of their power.
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Before proceeding to the higher-order theory, we will derive some simple formulas to be

used in the sequel.

Denote by f0;t(x) and f1;t(x) the limiting densities of �n(t) under Pn;0 and Pn;t respectively,

which correspond to the normal distributions in (2.12) and (2.15). Note that they are

related to each other by exf0;t(x) = f1;t(x), which follows from the properties of the LLR

or can be veri�ed directly. We will need expressions for f0;t(ct) and f1;t(ct). Putting (2.13)

into the explicit expressions for normal densities (2.12), (2.15) yields

f0;t(ct) =
1

t
p
J
'(u1��); f1;t(ct) =

1

t
p
J
'(u1�� � t

p
J): (2:17)

Next, suppose instead of cn;t we use another critical value c
0

n;t
, say, which also converges to

ct (see (2.12), (2.13)). Then the test �n(t) > c0
n;t

has size �0
n
and power ��

0

n
(t) converging

to � and �(t) respectively. Let us now have two such sequences c0
n;t

and c00
n;t

converging to

ct with �n = c0
n;t
� c00

n;t
! 0, and we are interested in the di�erences of the corresponding

sizes and powers up to o(�n). Assuming certain regularity, so that the d.f.'s of �n(t)

under Pn;0 and Pn;t have Edgeworth expansions, it is easy to see that these di�erences

are entirely determined by the leading terms of these expansions, because the next terms

contribute at most O(��n) = o(�n). The leading terms are the normal distributions we

have just discussed. Thus it is readily seen that

�00
n
� �0

n
= �nf0;t(ct) + o(�n) =

�n

t
p
J
'(u1��) + o(�n); (2:18)

��
00

n
(t)� ��

0

n
(t) = �nf1;t(ct) + o(�n) =

�n

t
p
J
'(u1�� � t

p
J) + o(�n): (2:19)

2.2 Second order e�ciency

Typically, an asymptotically e�cient test statistic (suitably normalized) has the score

function L0
n
as its leading term, so that it has the form

Tn = L0
n
+ �Hn + : : : ; (2:20)

with Hn bounded in probability. For example (see (2.10)) �n(t0) is equivalent to Tn =

L0
n
+ 1

2
�t0L

00
n
. For rank statistics and linear combinations of order statistics Hn can

be written as a quadratic functional of the empirical process (centered and normalized

empirical d.f.).

In 70-ies expansions in � to terms of order � 2 were obtained for the power functions

�n(t) of various asymptotically e�cient tests. The purpose was to study the de�ciencies

of the corresponding tests, which we will brie�y discuss later on. Writing down such

expansions in an explicit form required very involved calculations. For �parametric� test

statistics �rst a �stochastic expansion� of the form (2.20), but containing also the � 2 term

was derived. It was used to obtain the Edgeworth expansions (brie�y, E-expansions) for

the distributions of Tn under Pn;0 and Pn;t. (For rank statistics a di�erent technique

based on a certain conditioning was used by Albers, Bickel, and van Zwet (1976).) The
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E-expansion under Pn;0 was used to obtain an expansion in � for the critical value an
de�ned by Pn;0(Tn > an) = �. Then the E-expansion for

�n(t) = Pn;t(Tn > an)

was derived by the substitution of the expansion for an into the E-expansion under Pn;t.

Though the E-expansions for the distributions of various asymptotically e�cient test

statistics and of �n(t) di�er by terms of order � , it was observed that their powers �n(t)

di�er from each other and from ��
n
(t) by o(�) (and typically by O(� 2)), so that ��rst-order

e�ciency implies second-order e�ciency�, the latter meaning that the power agrees with

��
n
(t) up to terms of order � . The approach of comparing the expansions for ��

n
and

�n described above gave no insight into the nature of this phenomenon. A simple and

intuitively clear proof of this general property was given by Bickel, Chibisov, and van

Zwet (1981). We outline here that proof adapted to the present setup.

The idea was, �rst, to treat directly the di�erence ��
n
(t)� �n(t) and, secondly, to adjust

the test statistic to the LLR (rather than to adjust test statistics and the LLR to L0
n
), so

that the di�erence

�n;t := �n(t)� Sn;t (2:21)

is small. For example, (2.20) as a test statistic is equivalent to

Sn;t = tTn �
1

2
t2J

and then (see (2.10))

�n;t = �(
1

2
�t2L00

n
� tHn) + : : :

(We state this expression to show that �n;t is of order � and do not need its particular

form.) Throughout the rest of this section we mostly suppress the subscript and argument

t. Let cn and bn be the corresponding critical values de�ned by

Pn;0(�n > cn) = Pn;0(Sn > bn) = �: (2:22)

Then the corresponding powers are

��
n
= Pn;t(�n > cn); �n = Pn;t(Sn > bn):

Their di�erence is

��
n
� �n =

Z
f�n>cng

dPn;t �
Z
fSn>bng

dPn;t =

Z
A+

dPn;t �
Z
A�

dPn;t; (2:23)

where

A+ = f�n > cn; Sn � bng; A� = f�n � cn; Sn > bng: (2:24)

Since dPn;t = e�ndPn;0 and Z
f�n>cng

dPn;0 �
Z
fSn>bng

dPn;0 = 0

by (2.22), we can rewrite (2.23) as

��
n
� �n =

�Z
A+

�
Z
A�

�
(e�n � ecn)dPn;0: (2:25)
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Using (2.21) rewrite (2.24) as

A+ = fcn < �n � bn ��ng; A� = fbn ��n < �n � cng: (2:26)

Since �n is of order � , so is the di�erence of d.f.'s of �n and Sn, hence so is cn� bn. Thus

�n in (2.25) varies in the layer (2.26) having width of order � . Moreover, the integrand

in (2.25) vanishes on one side of this layer, namely, on the surface �n = cn, so that it

remains O(�) in the domain of integration. Its integration over the thin layer results in

��
n
� �n = o(�): (2:27)

An argument of this type was used in Bickel, Chibisov, and van Zwet (1981) to obtain

(2.27) under very general conditions, in particular, on the magintude of �. When � is

of order � , it is seen from the above argument that the di�erence in (2.27) is likely to be

O(� 2).

2.3 Power loss

The di�erence ��
n
(t)� �n(t) is closely related to the de�ciency of the corresponding test,

which is the number of additional observations needed for this test to achieve the same

power as the MP test. This notion was introduced by Hodges and Lehmann (1970).

De�ciencies of various tests were extensively studied in 70-ies by Albers, Bickel, and van

Zwet (1976) (for rank tests), by Chibisov (1983), Pfanzagl (1980) (for "parametric" tests)

and others. When the limit

B(t) := lim
n
n(��

n
(t)� �n(t)) (2:26)

exists, the asymptotic de�ciency is �nite and can be directly expressed through this limit.

We will not state this relationship here. Rather, we will directly deal with the quantity

(2.26), which we will refer to as the power loss. This quantity was actually the object of

the studies on de�ciency. As we pointed out, its derivation was very involved.

An elaboration of the argument given in the previous subsection leads to the following

formula for the power loss. Suppose that �n as in (2.21) is of order � in a somewhat

stronger sense then it was meant before. Namely, assume that (
p
n�n;�n) converges in

distribution under Pn;0 to a certain bivariate r.v. Denoting �n =
p
n�n, we write it as

(�n;�n)
Pn;0�! (�;�): (2:27)

In all regular cases � is a normal r.v. (see (2.12)). Denote its d.f. and density by F0(x)

and f0(x). Let c be the limiting critical value de�ned by F0(c) = 1� �. Then

limn(��
n
� �n) =

1

2
ecf0(c)Var [� j � = c]: (2:28)

(Note that ecf0(c) = f1(c), where f1 is the limiting density of �n under Pn;t.) In the above

argument we assumed that the tests have exactly size � (see (2.22)), but the formula (2.28)

remains valid when the sizes converge to � and equal each other up to o(� 2), i.e.,

Pn;0(�n > cn)� Pn;0(Sn > bn) = o(� 2): (2:29)
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The formula (2.28) demonstrates, in particular, that the power loss (hence the de�ciency)

is determined by the terms of order � of the (asymptotically e�cient) test statistic.

We give an informal proof of (2.28) in 5.3. This �proof� was �rst presented in Chibisov

(1982). Its justi�cation, however, depends on the structure of Tn. The formula (2.28)

was proved by Chibisov (1985) for statistics admitting a stochastic expansion in terms of

i.i.d. sums (which is typical for �parametric� problems and applicable in the setting of this

paper). Bening (1995, 1997) proved formula (2.28) for rank statistics, linear combinations

of order statistics and U -statistics.

3 Least favorable hypothesis

3.1 Local lower bound for the power loss

Now we consider i.i.d. real-valued observations X1; : : : ; Xn with density

p�;�(x) = p�(x� �); (3:1)

where � = (�1; : : : ; �k) 2 Z � Rk and p�(x) = p�(�x) for all �. We test the hypothesis

H0 : � = 0; � 2 Z against H1 : � > 0; � 2 Z: (3:2)

The main distinction from the no nuisance parameter case is that the test size depends

now on unknown �. Thus we will look for as. similar tests with size approximately equal

to � in some asymptotic sense.

For some t > 0 and � 2 Z (not to write � with additional indices like �0) consider the

sequence of simple local alternatives

Hn;t;� : (�; �) = (�t; �): (3:3)

If � were known, we would have a location family p�(x� �), which was considered in the

previous section. Denote by ��
n
(t; �) the power of the MP test for (0; �) against (�t; �).

Since any as. e�cient as. similar test for the problem (3.2) is an as. e�cient test for

this testing problem, we can evaluate the di�erence between its power, �n(t; �), say, and

��
n
(t; �) by the formula (2.28). As we pointed out, such di�erence is treated much easier

than the power itself.

We will consider as. similar tests which have size �+o(� 2) uniformly over compact subsets

of Z. This requirement can be written as

sup
�2K

j�n(0; �)� �j = o(� 2) (3:4)

for any compact set K � Z. A lower bound for the power loss of any as. similar test can

be obtained as follows. Let �n(�; t; �) be the power of the MP size � test for a simple

hypothesis (0; �) against a simple alternative (�t; �). Then the power �n(t; �) of any as.

similar test is no greater than �n(�; t; �) + o(� 2) for any � 2 Z. Hence, up to o(� 2), it is

no greater than
��n(t; �) = inf

�

�n(�; t; �): (3:5)
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We do not specify the domain over which inf is taken. It is intuitively clear that the least

favorable hypothesis where this in�mum is attained lies in a small neighborhood of �.

Let us introduce some notation. We write l = log p with the same arguments and indices,

so that, for example, l�;� = log p�;�. The di�erentiation w.r.t. � and �i is denoted by the

superscripts 0 and i, i = 1; : : : ; k, e.g.,

l0
�;�

=
@

@�
l�;�; li

�;�
=

@

@�i
l�;� ; l001

�;�
=

@

@�2@�1
l�;�; (3:6)

etc. We omit the subscript 0 when � = 0, so that we write l� ; l
0
�
; : : : instead of l0;� ; l

0
0;�; : : :.

We denote by J� and I� the Fisher information (matrix in the latter case) w.r.t. � and �

respectively,

J� = E�(l
0
�
)2; I� = (I�;ij) with I�;ij = E�(l

i

�
l
j

�
): (3:7)

The symmetry of p�;� about � implies that l0
�
and l0i

�
are odd functions, while l00

�
and li

�
,

i = 1; : : : ; k, are even. Hence l0
�
and l

0j
�

are uncorrelated with li
�
and l00

�
, i; j = 1; : : : ; k,

E�(l
0
�
li
�
) = E�(l

0
�
l00
�
) = E�(l

0j
�
li
�
) = E�(l

0j
�
l00
�
) = 0: (3:8)

For simplicity of presentation, we will treat � as a univariate parameter, stating only �nal

formulas for the vector case. Di�erentiation w.r.t. this parameter will be denoted by the

superscript 1.

In general, without the symmetry assumption (when l0
�
and l1

�
are correlated), the least

favorable hypothesis to the alternative (3.3) deviates from � by a quantity of order �

(proportionally to the deviation of �). In the symmetric case this main term vanishes, so

that we will seek the minimizer in (3.5) in the form � = � + � 2b.

The MP test for (0; �) against (�t; �) is based on the LLR

�n(�; t; �) = log
pn;t;�

pn;0;�
= log

Y p�t;�(Xi)

p0;�(Xi)
: (3:9)

(We use the notation for the product density similar to (2.4).) It can be written as

�n(�; t; �) = �n(�; t; �)� �n(�; 0; �) with

�n(�; t; �) = log
pn;t;�

pn;0;�
; �n(�; 0; �) = log

pn;0;�

pn;0;�
: (3:10)

Here �n(�; t; �) is the LLR of distributions di�ering only by the location parameter with

� �xed, hence the formulas in 2.1 are applicable. Using notation (2.8) with obvious

modi�cations, we have by (2.10)

�n(�; t; �) = tL0
n;�
� 1

2
t2J� +

1
2
�t2L00

n;�
+ : : : (3:11)

In a similar way we obtain for � = � + � 2b

�n(�; 0; � + � 2b) = �bL1
n;�
� 1

2
� 2b2I + : : : (3:12)

Hence

�n(� + � 2b; t; �) = tL0
n;�
� 1

2
t2J� + �(1

2
t2L00

n;�
� bL1

n;�
) + : : : (3:13)
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This test rejects the hypothesis when

�n(� + � 2b; t; �) > cn(b) (3:14)

(suppressing the other arguments like t; � on which cn depends) with

Pn;0;�+�2b(�n(� + � 2b; t; �) > cn(b)) = � (3:15)

(or � + o(� 2)).

Its power is

�n(� + � 2b; t; �) = Pn;�t;�+�2b(�n(� + � 2b; t; �) > cn(b)): (3:16)

In particular, for b = 0 this formulas are related to the MP test for (0; �) against (�t; �).

We denoted the power of this test by ��
n
(t; �). We can regard the test (3.14) as an as.

e�cient test for the same testing problem. Then the di�erence between the two powers

could be directly found by the formula (2.28) if these tests had the same size (up to o(� 2)).

However the (0; �)-probability of (3.14) to be denoted by �0
n
di�ers from � (which is the

(0; � + � 2b)-probability of the same event) by a quantity of order � 2. Namely, we have

�� �0
n
= � 2

'(u1��)

2t
q
J�

h + o(� 2); (3:17)

where

h = h(b; t) = bia
i � 2bT I�b; ai = t2E0;�(l

00
�
li
�
) +

tu1��p
J�

E0;�((l
0
�
)2li0): (3:18)

This formula is stated for the case of a vector nuisance parameter, meaning the summation

over the repeated index i. In this case I� is the (k � k) Fisher information matrix.

The formula (3.17�18) will be derived in 5.1. Using this formula we obtain here an

asymptotic formula for ��
n
(t; �)� ��n(t; �) (see (3.5)).

Denote by ��
0

n
(t; �) the power of the MP test for (0; �) against (�t; �) (based on �n(�; t; �))

of size �0
n
. Then this test has the same size as the test (3.14), hence we can apply the

formula (2.28). Comparing (3.11) with (3.13) we see that �n as in (2.21) equals �bL1
n;�
,

so that denoting by (L0
�
; L1

�
) a bivariate normal r.v. to which (L0

n;�
; L1

n;�
) converges in

distribution under P0;� we see that (2.27) holds with

� = bL1
�
; � = tL0

�
� 1

2
t2J�: (3:19)

Due to (3.8) L0
�
and L1

�
are independent, so that the conditional variance in (2.28) equals

the unconditional one, which is bT I�b. Thus by (2.28) and (2.17)

��
0

n
(t; �)� �n(� + � 2b; t; �) =

1

2
� 2

1

t
p
J
'(u1�� � t

p
J�)b

T I�b: (3:20)

Comparing (3.17�18) with (2.18) we see that the tests based on �n(�; t; �) of sizes � and

�0 satisfy (2.18) with �n = 1
2
� 2h. Hence by (2.19)

��
n
(t; �)� ��

0

n
(t; �) =

1

2
� 2

1

t
q
J�
'(u1�� � t

q
J�)h+ o(� 2); (3:21)
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where h is given by (3.18).

Thus we obtain from (3.20) and (3.21)

��
n
(t; �)� �n(� + � 2b; t; �) =

1

2
� 2

1

t
q
J�
'(u1�� � t

q
J�)(h+ bT I�b) + o(� 2): (3:22)

It is seen from (3.18) that h(b)+bT I�b is a quadratic function of b. It attains its maximum

at

b0 =
1

2
I�1
�
a; (3:23)

where a = a(t) is given in (3.18), and its maximal value is 1
4
aT I�1

�
a. Since ��

n
in (3.22) does

not depend on b, maximization of (3.22) corresponds to minimization of �n(� + � 2b; t; �).

Therefore (see (3.5))

��
n
(t; �)� ��n(t; �) =

1

8
� 2

1

t
p
J
'(u1�� � t

q
J�)a

tI�1
�
a+ o(� 2): (3:24)

Recall that the power �n(t; �) of any as. similar test is no greater than ��n(t; �) (see the

argument before (3.5)). Hence the RHS of (3.24) provides a lower bound for the power

loss ��
n
(t; �)� �n(t; �) of any as. similar test.

Remark. It is seen from (3.23), (3.18) that h(b0; t) = 0, i.e., �0 = � + o(� 2) for b = b0,

where �0 is the size of the test based on �n(�+�
2b0; t; �) (see (3.14), (3.17)). One can check

that this test is as. similar (i.e., of size �+o(� 2)) on any neighborhood (��C� 2; �+C� 2)

of � shrinking at a rate of � 2.

For convenience of comparison with the bound given in the next section, restate (3.25)

for the alternative (�t=
q
J�; �) rather than (�t; �) (this normalization will be essential for

derivation of that bound). Denote d = (d1; : : : ; dk) with

di = di(t; �) = tE0;�(l
00
�
li
�
) + u1��E0;�((l

0
�
)
2li0): (3:25)

Then for the power �n(t; �) of an arbitrary as. similar test we have

��
n
(t=
q
J�; �)� �n(t=

q
J�; �) � � 2B1(t; �) + o(� 2); (3:26)

where

B1(t; �) =
t

8J2
�

'(u1�� � t)dT I�1
�
d: (3:27)

3.2 A test attaining the local bound

Here we demonstrate an as. similar test on which the above bound is attained at a given

alternative (�t; �). Note that this test depends on the chosen alternative and is not even

�rst-order e�cient against alternatives with � 6= �. For simplicity of presentation we treat

only a univariate parameter �.

In the previous subsection we derived the lower bound for the power loss as the power

loss of a speci�c test, namely, the one based on the LLR �n(�+ � 2b0; t; �). As pointed out
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in Remark 3.1, this test retains the size � + o(� 2) on small neighborhoods of � shrinking

at a rate of � 2. We will show that this test can be modi�ed to become as. similar (i.e., of

size � + o(� 2) uniformly on compact subsets of Z) retaining the power loss at (�t; �).

Consider the statistic

Sn = Sn(t; �) = L0
n;�

+
1

2
�
�
tL00

n;�
� a

tI�
L1
n;�

�
: (3:28)

It di�ers from �n(� + � 2b0; t; �) (see (3.13), (3.17), and (3.23)) by dropping the terms of

order � 2 and by additive and multiplicative constants. As we pointed out, the power loss

is determined by the terms of order � in the stochastic expansion of the test statistic,

so that the test based on Sn has the same power loss under (�t; �) as the test based on

�n(� + � 2b0; t; �).

Denote q(�) = (E�(l
0
�
)2)

�1=2
. Let �̂n be the maximum likelihood estimate (MLE) for �.

As the �rst step, we studentize Sn, i.e., we consider

Sn1 = Snq(�̂n): (3:29)

It is well known that under Pn;0;�

�̂n = � + �I�1
�
L1
n;�

+ : : : : (3:30)

Putting this into (3.29) yields

Sn1 = Sn(q(�) + �q0(�)I�1
�
L1
n;�

) + : : : (3:31)

Next de�ne

Sn2 = Sn1 � �Snq
0(�)I�1

�
L1
n;�
: (3:32)

It is seen from (3.31) and (3.32) that Sn2 under Pn;0;� di�ers from Snq(�) by terms of order

� 2. We will construct a statistic Sn3 di�ering from Sn2 by terms of order � 2 of its stochastic

expansion, which determines an as. similar test. Hence the test based on Sn3 is as. similar

and the statistic Sn3=q(�) coincides under Pn;0;� with Sn as in (3.28) up to (including)

terms of order � . Therefore this test has the same power loss for the alternative (�t; �) as

the one based on Sn, thus attaining the lower bound for this alternative. Thus the test

based on Sn3 will have the desired properties.

To construct the required correction of Sn2, consider its stochastic expansion. We have

from (3.28), (3.31), and (3.32) that under Pn;0;�

Sn2 = q(�)L0
n;�

+
1

2
�q(�)

�
tL00

n;�
� a

tI�
L1
n;�

�
� �q0(�)I�1

�
L1
n;�
L0
n;�

+

+�q0(�)I�1
�
L1
n;�
L0
n;�

+ : : : (3:33)

The key argument is that the � -term in the corresponding E-expansion vanishes, so that

the E-expansion has the form

Pn;0;�(Sn2 < x) = �(x) + � 2Q(x; �)�(x) + o(� 2): (3:34)

Indeed, since l0
�
is odd and l00

�
and l1

�
are even, the third moment of l0

�
vanishes and L0

n;�

is uncorrelated with L00
n;�

and L1
n;�

under Pn;0;� for any � 2 Z. Hence our claim follows

from the form of the one-term E-expansion given in 5.2. Now (3.34) can be rewritten as

Pn;0;�(Sn2 � � 2Q(x; �) < x) = �(x) + o(� 2): (3:35)

Then Sn3 = Sn2 � � 2Q(x; �̂n) has the required property.
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4 Local asymptotic minimaxity in terms of the power

loss

4.1 The lower bound

The bound given in the previous section can be attained by some tests, which, however,

depend on the chosen �. This resembles the supere�ciency e�ect in estimation, where a

lower risk than the regular (Cramér�Rao) bound can be attained in a vicinity of a given

parameter point by estimators tuned to this point at the expense of increase of the risk at

some other points. Like in estimation, this suggests the minimax approach where a test

is characterized by the maximal loss over a neighborhood in the parameter space. Hence,

for a �xed t > 0, we characterize an as. similar test with power �n(t; �) at the alternative

(t=
q
J�; �) by

rn(t;K) = sup
K

(��
n
(t=
q
J� ; �)� �n(t=

q
J� ; �)); (4:1)

where K � Z is a (small) neighborhood of � and ��
n
(t; �), as before, is the power of the

MP test for (0; �) against (�t; �). For a univariate � we take K to be a �nite interval.

We normalize t by
q
J� in order to exclude the e�ect of variation of J� on the power loss

when taking the supremum. Later on we will point out where this normalization comes

into e�ect techically. For notational convenience, denote t(�) = t=
q
J� .

Let �(d�) be the uniform distribution on K (though many arguments to follow remain

valid for more general �). Then, obviously,

rn(t;K) �
Z
K

(��
n
(t(�); �)� �n(t(�); �))�(d�): (4:2)

Denote by A(�) the class of tests with average size �, i.e., tests such that

Z
K

�n(0; �)�(d�) = �: (4:3)

Let ��n(t; �) be the power of the test in A(�) maximizing

��

n
(t) =

Z
K

�n(t(�); �)�(d�): (4:4)

Denote this maximal average power by ���

n
(t). The size of any as. similar test satis�es

(4.3) with �+ o(� 2) in the RHS. Hence its average power is no greater than ���

n
(t)+ o(� 2).

Thus for rn(t;K) related to an arbitrary as. similar test we obtain by (4.2), (4.4) the lower

bound

rn(t;K) �
Z
K

��
n
(t(�); �)�(d�)� ���

n
(t) + o(� 2): (4:5)

Denote by Pn;0;� and Pn;1;� the probability measures with densities

pn;0;�(x) =
Y

p0;�(xi);

pn;1;�(x) =
Y

p�t(�);�(xi); x = (x1; : : : ; xn):

14



(We keep t �xed and suppress it in the notation of the alternative densities and distribu-

tions.) Let

p�
n;1(x) =

Z
K

pn;1;�(x)�(d�); p�
n;0(x) =

Z
K

pn;0;�(x)�(d�): (4:6)

Denote by P �

n;1; P
�

n;0; E
�

n;1; E
�

n;0 the corresponding distributions and expectations. It is seen

from (4.3), (4.4) that the test maximizing ��

n
(t) over A(�) is the MP size � test for the

simple hypothesis P �

n;0 against the simple alternative P �

n;1. This Bayes test is based on

the LLR

��

n
(t) = log

p�
n;1(X)

p�n;0(X)
; X = (X1; : : : ; Xn): (4:7)

While this test has size � w.r.t. P �

n;0, its size ��n(0; �) w.r.t. Pn;0;� di�ers from � by a

quantity of order � 2. We will show that ��

n
(t) can be amended in terms of order � 2 so

that the average power ���

n
(t) changes only by o(� 2) and the corresponding test is as.

similar. In other words, we will construct an as. similar test with power ~�n(t; �) such that

the corresponding average power ~��

n
(t) equals ���

n
(t) up to o(� 2),

~��

n
(t)� ���

n
(t) = o(� 2): (4:8)

Therefore the lower bound (4.5) can be restated as

rn(t;K) �
Z
K

(��
n
(t(�); �)� ~�n(t(�); �))�(d�) + o(� 2): (4:9)

Then the di�erence in the integrand can be evaluated by formula (2.28).

In this way we will obtain that

��
n
(t(�); �)� ~�n(t(�); �) = � 2B�(t; �) + o(� 2);

with B� given by (4.31).

Like in the estimation theory, to obtain a lower bound for the power loss at a given point

� we pass to a limit as n ! 1 in the bound (4.9) for nrn(t;K) with K taken to be an

interval containing � as an interior point, and then we pass to a limit as K shrinks to �.

Under appropriate regularity conditions B�(t; �) is continuous in �, so that the average

value of B� converges to B�(t; �) when K shrinks to �. Thus, denoting by S the class of

as. similar tests and by ��

n
(t; �) the power of the test � 2 S we obtain

lim
K#�

lim inf
n!1

inf
�2S

sup
�2K

n(��
n
(t=
q
J� ; �)� ��

n
(t=
q
J� ; �)) � B�(t; �): (4:10)

To carry out the program outlined above, we derive a stochastic expansion for ��

n
(t) given

by (4.7). We assume that the �true value� of the nuisance parameter is some �, interior

to K. Write p�
n;1(X) (see (4.6)) as

p�
n;1(X) = pn;1;�(X) q�

n;1(X);

where

q�
n;1(X) =

Z
K

exp

 X
log

p�t(�);�(Xi)

p�t(�);�(Xi)

!
�(d�): (4:11)
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Similarly, we write

p�
n;0(X) = pn;0;�(X)q�

n;0(X);

where q�
n;0(X) is de�ned by (4.11) with t = 0. Thus the LLR (4.7) can be written as

�
�

n
(t) = log

pn;1;�(X)

pn;0;�(X)
+ log

q�
n;1(X)

q�n;0(X)
: (4:12)

Note that the �rst term in the RHS of (4.12) is the LLR of the distributions with densities

pn;1;� and pn;0;�, which determines the MP test for (0; �) against �t(�); �. This is the test

which we would apply if � were known and relative to which we calculate the power loss.

We will return to this test later on, and now we consider the second term in the RHS of

(4.12). Denote the exponent in (4.11) by Mn(t; �; �),

Mn(t; �; �) =
X

(l�t(�);�(Xi)� l�t(�);�(Xi)):

The LLR Mn has a nontrivial limit when the deviation of � from � is of order � . Hence

we make the substitution � � � = �z. Then the domain of integration w.r.t. z extends at

a rate of
p
n, and the tails of the integrand decrease su�ciently fast, so that with high

accuracy the integration can be extended to the whole real line.

The di�erence t(�)� t(�) for � = � + �z is

�t=
q
J� � �t=

q
J� = �1

2
� 2tzJ�3=2

�
J1
�
+ o(� 2):

(As before, the superscript 1 of J� means the derivative w.r.t. �.) By the Taylor series

expansion around � we obtain

Mn(t; � + �z; �) = �1

2
� 2tz

J1
�

J
3=2
�

X
l0
�t(�);�

+�z
X

l1
�t(�);� +

1

2
(�z)2

X
l11
�t(�);� +

1

6
(�z)3

X
l111
�t(�);� + : : :

Next we use the Taylor expansions

l0
�t(�);� = l00;� + �t(�)l000;� + : : : ;

l1
�t(�);� = l10;� + �t(�)l010;� + � 2t2(�)l0010;� + : : : ;

l11
�t(�);� = l110;� + �t(�)l0110;� + : : : ;

l111
�t(�);� = l1110;� + : : :

Similarly to (2.8) we denote by L0
n;�
; L00

n;�
; : : : the centered and normalized sums of the

corresponding derivatives. Note that

E0;�l
1
0;� = E0;�l

01
0;� = E0;�l

011
0;� = 0; E0;�l

00
0;� = �J�; E0;�l

11
0;� = �I�: (4:13)

Denote m001 = E0;�l
001
0;� . Then

Mn(t; � + �z; �) = � 1

2
�ztJ�3=2

�
J1
�
L0
n;�

+
1

2
�zt2

J1
�

J�

+ zL1
n;�

+ �
ztp
J�

L01
n;�

+
1

2
�z

t2

J�
m001

� 1

2
z2I� +

1

2
�z2L11

n;�
+

1

6
�z3m111 + : : :

16



Thus the integrand in (4.11) is

exp
�
�1

2
z2I� + zL1

n;�

�
[1 + �(zUn;�(t) +

1
2
z2L11

n;�
+ 1

6
z3m111)] + : : : ; (4:14)

where

Un;�(t) = � t

2

J1
�

J
3=2
�

L0
n;�

+
1

2
t2
J1
�

J�
+

tq
J�
L01
n;�

+
1

2

t2

J�
m001: (4:15)

Integrating w.r.t. �(d�) we obtain the ratio q�
n;1(x)=q

�

n;0(x) in the form

q�
n;1(x)

q�n;0(x)
=
A+ �A1

A+ �A0

= 1 + �
A1 � A0

A
: : : ; (4:16)

where A and A1 are the integrals of the main term and the order � term in (4.14) and A0

is obtained from A1 by putting t = 0. The terms in (4.14) not containing t cancel when

taking the di�erence A1�A0 and the calculation of (A1�A0)=A reduces to writing down

the mean value of the corresponding normal distribution, which yields

q�
n;1(x)

q�n;0(x)
= 1 + �

L1
n;�

I�
Un;�(t) + : : : (4:17)

The logarithm of this ratio to be used in (4.12) is just the � -term in (4.17) (up to terms

of higher order).

Denote the �rst term in the RHS of (4.12) by

�n(t(�); �) = log
pn;1;�(X)

pn;0;�(X)
: (4:18)

As we pointed out, this is the LLR of the two distributions for � given, with which we

compare our test statistics. In view of (4.17) we can rewrite (4.12) as

��

n
(t) = �n(t(�); �) + �

L1
n;�

I�
Un;�(t) + : : : (4:19)

This relation could be used for the application of the formula (2.28) (see (2.21), (2.27)),

if the test based on ��

n
(t) were as. similar. We will show that it can be made as. similar

by a correction in terms of order � 2 which do not a�ect its power.

For that we need a stochastic expansion for ��

n
(t), which is obtained by writing down

that for �n(t(�); �) in (4.19). The latter LLR can be treated as in the case of a univariate

parameter. Hence by (2.10) it is

�n(t(�); �) =
tp
J�

L0
n;�
� 1

2
t2 +

1

2
�
t2

J�
L00
n;�

+ : : :

Thus by (4.7), (4.12), and (4.17)

��

n
(t) =

tp
J�

L0
n;�
� 1

2
t2 + �Vn;�(t) + : : : ; (4:20)
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where, with Un;�(t) given by (4.15),

Vn;�(t) =
t2

2J�
L00
n;�

+
L1
n;�

I�
Un;�(t): (4:21)

We denote the power of the Bayes test based on ��

n
(t) by ���

n
(t),

���

n
(t) = P �

n;1(�
�

n
(t) > cn);

where cn is such that this test is of size � w.r.t. P �

n;0,

P �

n;0(�
�

n
(t) > cn) =

Z
K

Pn;0;�(�
�

n
(t) > cn)�(d�) = �: (4:22)

Now we will construct an as. similar test of the form Sn;t > c with power ~�n(t; �) whose

test statistic di�ers from ��

n
(t) by terms of order � 2. Since ��

n
(t) is the LLR statistic in

testing P �

n;0 vs P
�

n;1, by the formula (2.28) the power

~��

n
(t) =

Z
K

~�n(t; �)�(d�) (4:23)

satis�es (4.8).

To this end, consider the E-expansion for the distribution of ��

n
(t) under Pn;0;�. The main

term is the normal distribution N(�1
2
t2; t2). Denote its d.f. and density by F0;t(x) and

f0;t(x). (It is important that the main term F0;t of the E-expansion does not depend on �,

which is due to the normalization of t by
q
J� .) The term of order � in this E-expansion

vanishes because it consists of the term with the 3rd moment of l0;� vanishing since this

is an even function and the conditional expectation

E
�
V�(t)

��� tJ�1=2
�

L0
�
� 1

2
t2 = cn

�
; (4:24)

where V�(t) depends on a zero-mean normal vector

(L0
�
; L1

�
; L00

�
; L01

�
) (4:25)

to which (L0
n;�
; L1

n;�
; L00

n;�
; L01

n;�
) converges in distribution in the same way as Vn;�(t) depends

on (L0
n;�
; : : :) (see (4.15), (4.21)). (The formula for the one-term E-expansion of a statistic

like (4.20) is given in 5.2.) Due to the symmetry properties (see (3.8)), L0
�
is independent

of L00
�

and L1
�
is independent of (L0

�
; L01

�
). Using these relations it is readily veri�ed that

the conditional expectation (4.24) vanishes.

Denote by c the (1� �)-quantile of F0;t, viz., c = tu1�� � 1
2
t2. Then

Pn;0;� (�
�

n
(t) > c) = 1� F0;t(c)� � 2f0;t(c)g�(c) + o(� 2); (4:26)

where 1 � F0;t(c) = � and g�(c) is a certain polynomial in the E-expansion evaluated at

x = c.

The particular form of g�(c) is immaterial, we only need that it is a su�ciently smooth

function of � (under certain regularity conditions). It is seen from (4.26) that

Pn;0;�

�
�
�

n
(t) + � 2g(�) > c

�
= �+ o(� 2): (4:27)
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Obviously, this relation will continue to hold if we replace g(�) by g(�̂n), where �̂n is any

consistent estimator of �. Hence setting

Sn;t = ��

n
(t) + � 2g(�̂n) (4:28)

we have
~�n(0; �) = Pn;0;�(Sn;t > c) = � + o(� 2)

for any � interior to K, so that this test is as. similar. As we pointed out above, the

averaged power (4.23) for
~�n(t; �) = Pn;1;�(Sn;t > c)

di�ers from ��n(t; �) by o(� 2), i.e., it satis�es (4.8).

Now we obtain an asymptotic formula for the integrand in (4.9), ��
n
(t; �)� ~�n(t; �). Recall

that ��
n
(t; �) is the power of the MP size � test for Pn;0;� vs Pn;1;�, which is based on

�n(t(�); �) given by (4.18), and ~�n(t; �) is the power in this testing problem of the test

based on the statistic (4.28) having the same size up to o(� 2). Hence by (4.19)

p
n (�n(t(�); �)� Sn;t) = �L

1
n;�

I�
Un;�(t) + : : : ; (4:29)

where Un;�(t) is given by (4.15). Therefore (2.27) is ful�lled with

� =
L1
�

I�
U�(t); � =

tp
J �

L0
�
� 1

2
t2;

where U�(t) is given by (4.15) with L0
n;�

and L01
n;�

replaced by the corresponding com-

ponents of the limiting vector (4.25). In our case ecf0(c) in (2.28) is ecf0;t(c) with

f0;t(c) the density of N(�1
2
t2; t2) and c the (1 � �)-quantile of this distribution, so that

ecf0;t(c) = t�1'(u1�� � t) (cf. (2.17)). The condition � = c becomes L0
�
= u1��

p
J �.

Thus by (2.28)

��
n
(t; �)� ~�n(t; �) = � 2B�(t; �) + o(� 2); (4:30)

where

B�(t; �) =
1

2t
'(u1�� � t) Var

h
L1
�
I�1
�
U�(t) jL0

�
= u1��

p
J�

i
:

By a routine computation of the conditional variance we obtain for � 2 Rk

B�
(t; �) =

t

8J2
�

'(u1�� � t)
h
dT I�1

�
d+ 4I

ij

�
(J�E(l0i

�
l
0j
�
)� E(l0

�
l0i
�
)E(l0

�
l
0j
�
))
i
; (4:31)

where d = d(t; �) is given by (3.25), I�1
�

=
�
I
ij

�

�
, and E stands for E0;� .

By putting (4.30) into (4.9) we arrive at (4.10).

It is seen that B� given by (4.31) di�ers from B1 given by (3.27) by the term of the form

I ij(JE(l0il0j)� E(l0l0i)E(l0l0j)) � 0

by a version of the Cauchy�Bunyakovsky inequality. Hence B� � B1, i.e., (4.10) provides

a more accurate lower bound than the one in Section 3. In the next section we indicate

tests for which it is attained.
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4.2 Locally asymptotically minimax tests

The bound (4.10) was obtained as the power loss of the test based on the statistic Sn;t
given by (4.28). This test, however, depends on the chosen point �, see (4.20), (4.21),

and hence attains the LAM bound (4.10) only at this point �. Here we construct an as.

similar test which attains the LAM bound for any � 2 Z.

Note that both the bound and the test depend on the (local) alternative in terms of the

parameter of interest speci�ed as � = t=
q
J�n, t > 0. The alternatives (t=

q
J�n; �), � 2 Z

form the "level surface" of asymptotically equal power in the parameter space.

To construct the required test, we start with the statistic (cf. (4.20))

Sn(�) =
tp
J�

L0
n;�

+ � �Vn;�(t): (4:32)

Up to the nonrandom term 1
2
t2 this statistic has the same stochastic expansion to within

the terms of order � as �n(t(�); �) in (4.20) with Vn;�(t) substituted by �Vn;�(t) given by

(4.21), where Un;�(t) is to be replaced by

�Un;�(t) =
1

2
t2
J1
�

J�
+

1

2

t2

J�
m001 = Un;�(t)�

�
� t

2

J1
�

J
3=2
�

L0
n;�

+
tq
J�
L01
n;�

�
(4:33)

(cf. (4.15)). Now we substitute the MLE �̂n for � in Sn(�). Using the stochastic expansion

for �̂n as in (3.30) and applying the Taylor formula to Sn(�̂n) we obtain the leading term

as in (4.20) and the two terms of order � which were dropped when replacing Un;�(t) by
�Un;�(t) (see (2)). Together with � �Vn;�̂n(t) = � �Vn;�(t)+�

2(: : :) they constitute the stochastic

expansion to within terms of order � as in (4.20) (up to the dropped constant 1
2
t2), which

we aimed at. By an argument similar to the construction of Sn;t (see (4.24)�(4.28)) we

can correct Sn(�̂n) in terms of order � 2 to obtain an as. similar test.

5 Appendix

5.1 Proof of (3.17�18)

Here we outline the proof of the formulas (3.17�18) for the di�erence �� �0, where

� = Pn;0;�+�2b(�n(� + � 2b; t; �) > cn(b));

�0 = Pn;0;�(�n(� + � 2b; t; �) > cn(b))

(see (3.15) and the de�nition before (3.17)). Since � and b are now �xed, we will often

suppress the corresponding indices. In particular, we will suppress the subscript � of

L0
n
; J , etc. For simplicity we write Pn;0 = Pn;0;� and Pn;b = Pn;0;�+�2b. By (3.13), the event

�n(� + � 2b; t; �) > cn(b) is equivalent to Tn > an, where

Tn = �n(� + � 2b; t; �) + 1
2
t2J = tL0

n
+ �(1

2
t2L00

n
� bL1

n
) + : : : (5:1)

and an di�ers from cn(b) by
1
2
t2J . The e�ect of the omitted terms in (5.1) on the di�erence

���0 is o(� 2), so that they can be neglected (though their e�ect on each of the probabilities
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� and �0 is of order � 2). Denote for brevity �n = �n(�+ � 2b; t; �) (see (3.10), (3.12)). By

(3.10)
dPn;b

dPn;0

= exp (�n) :

Then

�� �0 = (Pn;b � Pn;0)(Tn > an) = En;01fTn > ang
�
e�n � 1

�
:

By (3.12) e�n � 1 ' �bL1
n
+ 1

2
� 2b2 ((L1

n
)2 � I). Let qn(x

0; x1; x00) denote the joint density

of (L0
n
; L1

n
; L00

n
). Then

�� �0 =

Z Z Z
fTn>ang

(�bx1 +
1

2
� 2b2((x1)2 � I))qn(x

0; x1; x00)dx0dx1dx00; (5:2)

where according to (5.1) the domain of integration is understood as

ftx0 + �(1
2
t2x00 � bx1) > ang: (5:3)

Denote by q(x0; x1; x00) the density function of the limiting normal vector (L0; L1; L00),

and by q(x0); q(x1; x00), etc, the corresponding marginal densities. By (3.8) q(x0; x1; x00) =

q(x0)q(x1; x00). The second term in the integrand (of order � 2) contributes o(� 2). For

within this accuracy the domain of integration can be replaced by ftx0 > ang, so that the
integral of this term factorizes into the product of the integrals w.r.t. x0 and (x1; x00). In

the second integral x00 integrates out, so that this integral becomes

Z �
(x1)2 � I

�
q(x1)dx1 = 0:

Hence we can consider only the term �bx1 in the integrand of (5.2).

Let Qn(y; x
1; x00) =

R
1

y
qn(x

0; x1; x00)dx0. Taking into account (5.3) we integrate (5.1)

w.r.t. x0 to obtain

�� �0 =

Z Z
Qn(an=t� �(1

2
tx00 � bx1=t); x1; x00)�bx1dx1dx00:

Obviously, @

@y
Qn(y; x

1; x00) = �qn(y; x1; x00). Thus we have

�� �0 = A1 + A2; (5:4)

where

A1 = �b

Z Z
Qn(an=t; x

1; x00)x1dx1dx00; (5:5)

A2 = � 2b

Z Z
qn(an=t; x

1; x00)x1(1
2
tx00 � bx1=t)dx1dx00: (5:6)

Consider A1. The variable x00 integrates out, and returning to the expression of Qn

through qn we rewrite A1 as

A1 = �b

Z Z
fx0>an=tg

x1qn(x
0; x1)dx0dx1: (5:7)
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Here we need the one-term Edgeworth expansion for qn(x
0; x1). Denote by '0(x) and

'1(x) the densities of L
0 and L1, which are the normal densities of N(0; J) and N(0; I).

Then

qn(y; x) = '0(y)'1(x)

+
�

6

h
: : :+ 3E

�
(l0)2l1

�
(�Dy)

2'0(y)(�Dx)'1(x) + : : :
i
+ o(�);

where Dy and Dx denote the di�erentiation operators w.r.t. y and x respectively. When

substituted into (5.7), the integrals of each term factorize into the products of the respec-

tive integrals w.r.t. x0 and x1. The main term integrates to zero because one of the factors

is the mean value of '1. The terms of higher order than � , obviously, contribute o(� 2) into

(5.7). The suppressed terms of order � either vanish or integrate to 0 in (5.7). A generic

term in brackets contains the derivatives of '0 and '1, totally of order 3, multiplied by

the corresponding product moment. The term with coe�cient E(l0)3 vanishes since l0 is

odd, while the remaining terms contain the 2nd and 3rd derivatives of '1(x) giving rise

to the 2nd and 3rd order Hermite polynomials orthogonal to x1 in (5.7) (the �rst order

Hermite polynomial).

We have

(�Dx)'1(x) = I�1(x=
p
I)'(x=

p
I)

with '(�) being the standard normal density. Hence we obtain

Z
x1(�D1

x
)'1(x

1)dx1 = 1:

Similarly,

Z
1

an=t

(�Dy)
2'0(y)dy = (�Dy)'0(y)jy=an=t = J�3=2

an

t
'

 
an

t
p
J

!
:

It is seen from (5.1) that an ! a = t
p
Ju1�� and this limiting value can be substituted

for an with error o(� 2). Thus

A1 =
1

2
� 2bJ�1E

�
(l0)2l1

�
u1��'(u1��) + o(� 2): (5:8)

Now we consider A2. Since the expression (5.6) contains factor � 2, we can replace qn by

the limiting normal density q and an by a. As we saw,

qn(a=t; x
1; x00) = '0(a=t)q(x

1; x00):

Since '0(x) = J�1=2'(x=
p
J) we have '0(a=t) = J�1=2'(u1��).

Hence we obtain from (5.6)

A2 = � 2bJ�1=2'(u1��)

"
1

2
tE(l00l1)� b

t
I

#
+ o(� 2): (5:9)

Putting (5.8) and (5.9) into (5.4) we obtain (3.17�18) for a univariate nuisance parameter

�. The case of a vector-valued nuisance parameter is treated in a similar way.
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5.2 One-term Edgeworth expansion

For the sake of completeness we recall here the formula for the one-term Edgeworth expan-

sion for a statistic admitting a stochastic expansion and present its informal derivation.

Suppose we have i.i.d. p+ 1-variate random vectors

(Y0i;Yi):

(Typically we have i.i.d. observations X1; : : : ; Xn and p+1 functions on the range of X's,

so that the vector (Y0i;Yi) is formed by these functions of Xi.) Denote by (Sn;Tn) the

normalized sums of these vectors,

Sn = �
nX
i=1

Y0i; Tn = �
nX
i=1

Yi:

We are interested in the one-term E-expansion for the distribution of a statistic

Zn = Sn + �h(Sn;Tn);

where h(�) is a polynomial of p+ 1 variables.

We assume that Y01 has mean zero, variance �2 and a �nite third moment �3 = EY 3
01,

moreover, its distribution is non-lattice. The moment conditions on the other components

and conditions on the joint distribution of the entire vector depend on h(�). The most

general moment conditions are given in Chibisov(1980-81); for h(�) a quadratic function

(as is the case in (4.20)) a su�cient moment condition on Y1 is that Y11; : : : ; Ypi have zero

means and �nite second moments. Assuming this, denote by � the covariance matrix of

(Y01;Y1). Then by the Central Limit Theorem

(Sn;Tn)
d�! (S;T) (5:10)

where (S;T) is a normally distributed random vector in Rp+1 with mean zero and covari-

ance matrix �.

Denote by Fn(x) the d.f. of Sn, Fn(x) = P (Sn < x). Then for Fn(x) the one-term

E-expansion holds,

Fn(x) = �(x=�)� �
�3

6�3
H2(x=�)'(x=�) + o(�); (5:11)

where H2(x) = x2 � 1, and �(�) and '(�) denote the standard normal d.f. and density.

To derive the E-expansion for Zn, assume that Sn has a density pn(x). Then by the

formula for total probability

P (Zn < x) =

Z
P (�h(y;Tn) < x� yjSn = y)pn(y)dy: (5:12)

The right-hand side of (5.12) can be rewritten as

Fn(x) +

Z
[P (�h(y;Tn) < x� yjSn = y)� 1(0;1)(x� y)]pn(y)dy; (5:13)
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where 1A(�) denotes the indicator function of the set A. By the change of variables

x� y = �z the last integral becomes

�

Z
[P (h(x� �z;Tn) < z jSn = x� �z)� 1(0;1)(z)]pn(x� �z)dz: (5:14)

By (5.10) pn(x) ! (1=�)'(x=�), and the formal passage to the limit yields that the

integral in (5.14) converges to

��1'(1=�)

Z
[P (h(x;T) < z jS = x)� 1(0;1)(z)]dz: (5:15)

Integrating by parts shows that the integral in (5.15) equals

�E(h(x;T) jS = x) (5:16)

(see Feller (1971), Chapter 5, �6, Lemma 1). Combining (5.11)�(5.16) we obtain

P (Zn < x) = �(x=�)� �'(x=�)
h �3
6�3

H2(x=�)+

+��1E(h(x;T) jS = x)
i
+ o(�): (5:17)

5.3 The formula for the power loss

Here we give an informal proof of the formula (2.28). Since parameter t has no special

meaning here, we denote the two sequences of probability measures corresponding to

hypotheses H0 and H1 by Pn;0 and Pn;1. We compare the MP test for H0 against H1

based on the LLR

�n = log
dPn;1

dPn;0

with the test based on a statistic Sn of the form

Sn = �n � ��n (5:18)

(cf. (2.21) and the notation introduced before (2.27)). The tests reject H0 for �n > cn
and Sn > bn respectively with

Pn;0(�n > cn) = Pn;0(Sn > bn) = � (5:19)

(see (2.22)). We assume that (�n;�n) converges in distribution under Pn;0 to a nonde-

generate bivariate r.v. (�;�) (see (2.27)) and that �n under Pn;0 has d.f. and density Fn;0

and fn;0 converging to F0 and f0. The powers of the two tests are

��
n
= Pn;1(�n > cn) and �n = Pn;1(Sn > bn):

Using (5.19) their di�erence can be written as

��
n
� �n = En;0(e

�n � ebn)(1(cn;1)(�n)� 1(bn;1)(Sn)) = An +Bn; (5:20)

where

An = En;0(e
�n � ebn)(1(�1;bn)(�n)� 1(�1;cn)(�n)); (5:21)
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Bn = En;0(e
�n � ebn)(1(�1;bn)(Sn)� 1(�1;bn)(�n)): (5:22)

Denote dn = cn � bn. We will show that

dn = ��E[�j� = c] + o(�); (5:23)

An = �1

2
d2
n
ecf0(c) + o(� 2); (5:24)

Bn =
1

2
� 2ebE[�2j� = c]f0(c) + o(� 2): (5:25)

Combined with (5.20) these relations immediately imply (2.28).

Proof of (5.23). Denote the d.f. of Sn by FSn
(x); recall the we denote the d.f. of �n by

Fn;0(x). Using (5.18) we establish similarly to (5.20)�(5.24)

FSn
(x) = Fn;0(x)� �E[� j� = x]f0(x) + o(�): (5:26)

In view of (5.19) this equality implies, in particualar, that bn ! c and cn ! c as n!1,

where c is de�ned by F0(c) = 1� �. Put x = bn in (5.26) and replace FSn(bn) by Fn;0(cn)

according to (5.19). Then we obtain

Fn;0(cn)� Fn;0(bn) = ��E[� j� = c]f0(c) + o(�): (5:27)

On the other hand,

Fn;0(cn)� Fn;0(bn) = dn(f0(c) + o(1)): (5:28)

Now (5.27) and (5.28) imply (5.23).

Proof of (5.24). Rewrite (5.21) as

An = ebn
Z

bn

cn

(ey�bn � 1)dFn;0(y):

Since dn = O(�) by (5.23), we have

ey�bn = 1 + y � bn +O(�); y 2 [cn; bn]

and therefore

An = ebn
Z

bn

cn

(y � bn)fn;0d(y) + o(� 2) =

= �1

2
ecf0(c)d

2
n
+ o(� 2);

which proves (5.24).

Proof of (5.25). By the formula for total probability rewrite (5.22) as

Bn = ebn
Z
(ey�bn � 1)[P (��n < bn � yj�n = y)� 1(�1;bn)(y)]fn;0(y)dy:

By the change of variables bn � y = �z this becomes

Bn = �ebn
Z
(e��z � 1)[P (�n < zj�n = bn � �z)� 1(0;1)(z)]fn;0(bn � �z)dz:

The conditional distribution of �n is essentially concentrated in a bounded domain. Hence

e��z � 1 � ��z. By a formal passage to a limit we obtain

Bn = �� 2ecf0(c)
Z
z[P (� < z j� = c]� 1(0;1)(z)]dz + o(� 2):

Integrating by parts yields (5.25).
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