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Abstract.

The paper is devoted to the study of the relationship between integral manifolds of

ordinary di�erential equations and duck�trajectories. We derive su�cient conditions

for the existence of continuous slow integral surfaces that are devided into stable

and unstable parts and propose a method of construction of surfaces consisting of

duck�trajectories.

1 Introduction

Modelling critical phenomena in the case of an autocatalytic burning reaction led to

an unexpected and striking fact: duck-trajectory appeared as a model of a critical

regime. The term "canard " or " French duck " is comparatively recent in scienti�c

literature. It has been introduced by French mathematicians investigating van der

Pol's equation [3, 5]. A trajectory of a singularly perturbed system of di�erential

equations is called a duck-trajectory, if it follows at �rst a stable integral manifold,

and then an unstable one. In both cases the passed distances are not in�nitesimally

small. Bibliographies on this theme can be found in [1, 6, 13, 17]. In most papers

devoted to duck-trajectories the non-standard analysis is the main tool of investi-

gations [2, 3, 17]. Therefore, the opinion is widely used that the duck-trajectories

are exotic objects and are of interest for the theory of di�erential equations only.

Applying duck-trajectories for modelling critical regimes promoted us to solve some

interesting and important problems of combustion theory [7, 8, 9, 14, 15]. Moreover,

the analysis of these problems involves the necessity of proofs of new theorems on

the duck-trajectories [7, 8, 15]. It should be noted that very interesting applications

of ducks in models of economics and chemical kinetics were obtained in [4, 10].

2 Statement of the problem

We consider the following singularly perturbed system

_x = f(x; y; z; "); (2.1)

_y = g(x; y; z; "); (2.2)

� _z = p(x; y; z; �; ") (2.3)

where " is a small positive parameter, � is a scalar parameter, x and z are scalar

variables, y is a vector of dimension n.

Recall that the slow surface S of system (2.1)�(2.3) is the surface described by the

equation

p(x; y; z; �; 0) = 0: (2.4)
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Let z = �(x; y) be an isolated solution of equation (2.4). We call the subset Ss

�
(Su

�
)

of S de�ned by
@p

@z
(x; y; �(x; y); �; 0) < 0 (> 0)

the stable (unstable) subset of S.

The subset of S de�ned by

@p

@z
(x; y; �(x; y); �; 0) = 0

is called the separating surface. Its dimension is equal to dim y:

In a small neighborhood of Ss

�
(Su

�
) there exists a stable (unstable) slow integral

manifold. The slow integral manifold is de�ned as a smooth invariant surface of

slow motions.

The availability of the additional scalar parameter � provides the possibility of gluing

stable and unstable integral manifolds in a point of the separating surface. Such a

point is passed by a duck-trajectory.

It should be noted that just in the �rst papers devoted to canards in the case

dim y = 0 the existence of unique duck-trajectory corresponding to unique value

of parameter � = �
� was stated (more presisely, the "duck" value of parameter ��

exists on an interval of order O(e�1=")). But in the case dim y = 1 another picture is

beginning to emerge. It was shown that a one-parameter family of ducks exists [15].

If we take the parameter � as a function of y we can glue the stable and unstable

integral manifolds at all points of the separating curve at the same time. This

approach obviously is associated with Krasnosel'skii's method of functionalization

of a parameter [11].

Consider two simple examples.

E x a m p l e 1 ( dim y = 0).

As the simplest system with a duck�trajectory we propose the following system

_x = 1; " _z = 2xz + �:

It is clear that for � = 0, the trajectory z = 0 is a duck�trajectory.

E x a m p l e 2 ( dim y = 1).

Consider the system

_x = 1; _y = 0; " _z = 2xz + �� y:

If � is a parameter then the di�erent duck�trajectories are determined by

_x = 1; y = y0; z = 0;

that is they pass through the unique point of glueing x = 0, y = y0, z = 0 on the

separating curve x = 0 of the slow surface 2xz + y0 � y = 0 for � = y0.

If � is a function of the variable y then for � = y the integral manifold z = 0 is

stable for x < 0 and unstable for x > 0.
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3 A model of combustion

Duck�trajectories are of greatest interest in models of combustion of a rare�ed gas

mixture in an inert porous or in a dust-laden medium.

Let us consider the case of uniform temperature distribution and phase-to-phase

heat exchange. The chemical conversion kinetics are represented by one-stage and

irreversible reaction. The dimensionless model in this case has the form

� _� = 	(�)exp(�= (1 + ��))� �(�� �c)� ��;

c
_�c = �(�� �c);

_� = 	(�)exp(�= (1 + ��));

�(0) = �0= (1 + �0) ; �(0) = �c(0) = 0:

Here, � and �c are the dimensionless temperatures of the reactant phase and of the

inert one; � is the depth of conversion; �0 is the criterion of autocatalyticity; � and

� are small parameters. The term ��� characterizes the external heat dissipation.

The parameter c re�ects the physical features of the inert phase. The parameter

� characterizes the physical properties of the system and determines the dynamics

of the process. Depending on � the reaction either changes to a slow regime with

decay of reaction, or into a regime of selfacceleration with progressive temperature

growth. The last phenomenon is called as "thermal explosion". The transition region

from the slow regime to explosive one exists due to the continuous dependence of

system (2.1)�(2.3) on the parameter �. The case � = �
� represents the optimal

technological regime: to increase the temperature as high as possible but without

explosion. We have to note that this regime is critical, and it corresponds to a

chemical reaction separating the domain of selfaccelerating reactions (� < �
�) and

the domain of slow reactions (� > �
�).

The following cases are considered:

	(�) =

�
1� �; � �rst-order reaction (�0 = 0)

�(1� �); � autocatalytic reaction.

In the absence of external heat dissipation (� = 0) the system of di�erential equa-

tions possesses a �rst integral and therefore we obtain dimx = 1 in (2.1)�(2.3).

In this case, the asymptotic expansion of the duck�trajectory passing through the

sel�ntersection point of the slow curve has been derived in [14].

In the case � 6= 0, the existence of a duck�trajectory corresponding to � = �
�, has

been established in [7, 15]. This duck�trajectory describes the critical regime, and

�
� is the critical parameter value.
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The asymptotic expansions of duck-trajectories modelling critical regimes of chem-

ical systems depending on parameter has been derived in [7, 15].

4 Black swans

In this paper we use the standard approach to study slow integral surfaces of variable

stability (or black swans). These surfaces are considered as natural generalizations

of the notion of a canard.

We suggest to use the term "black swan" by two reasons. The �rst one is that a

swan is a bird of the family of ducks. The second one is connected with the usual

meaning of "black swan" in the sense of a rare phenomenon. It should be noted

that the French term "canard" is used in the sense of false rumour in English.

In order to glue the stable and unstable parts of a duck�trajectory an additional

parameter is used. To glue integral manifolds whose dimension is greater than one

we need an additional function. The argument of this function is a vector variable

parametrizing the separating surface.

To prove the existence of a slow integral manifold with changing stability we reduce

the system (2.1)�(2.3) to form

dy

dx
= Y (x; y; z; "); y 2 R

n
; x 2 R; (4.5)

"
dz

dx
= 2xz + a + Z(x; y; z; a; "); jzj � r; jaj � a0; (4.6)

where r and a0 are positive constants. It is supposed that the functions Y; Z are

continuous and satisfy the following inequalities for x 2 R, y 2 R
n, jzj � r, jaj � a0,

" 2 [0; "0]:

kY (x; y; z; ")k � k; jZ(x; y; z; a; ")j � M

�
"
2 + "jzj+ jzj2

�
; (4.7)

kY (x; y; z; ")� Y (x; �y; �z; ")k �M(ky � �yk+ jz � �zj); (4.8)

jZ(x; y; z; a; ")� Z(x; �y; �z; �a; ")j �M f("+ j~zj)jz � �zj+

+("2 + "j~zj+ j~zj2)ky � �yk+ "ja� �aj
o
; j~zj = maxfjzj; j�zjg; (4.9)

where k � k denotes the usual norm in R
n and j � j denotes the absolute value of a

scalar, k and M are positive constants.

Let us consider a as a function a = a(y; "). Let F be the complete metric space of

functions a(y; ") continuous with respect to y and satisfying for " 2 (0; "0]

ja(y; ")j � "
2
K; ja(y; ")� a(�y; ")j � "

2
Lky � �yk; (4.10)

where K and L are positive constants, with the metric de�ned by

�(a; �a) = sup
y2Rn

ja(y; ")� �a(y; ")j:
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Let H be the complete metric space of functions h(x; y; ") mapping R � R
n to R

continuous with respect to x; y and satisfying for " 2 (0; "0]

jh(x; y; ")j � "
3

2 q; (4.11)

jh(x; y; ")� h(x; �y; ")j � "
3

2 �ky � �yk; (4.12)

where q and � are positive constants, with the metric

�(h; �h) = sup
x2R;y2Rn

jh(x; y; ")� �h(x; y; ")j:

On the space H we de�ne an operator T by the formula

Th(x; y; ") =

8>><
>>:
�"�1

1R
x

e
(x2�s2)="[Z(�) + a('(s; x); ")]ds ; x � 0

"
�1

xR
�1

e
(x2�s2)="[Z(�) + a('(s; x); ")]ds ; x < 0:

where Z(�) = Z(s; '(s; x); h(s; '(s; x); "); a('(s; x); "); "); and '(s; x) is de�ned as

follows. For any element h 2 H, we consider the initial value problem

d'

ds
= Y (s; '; h(s; '; "); "); (4.13)

'(x) = y: (4.14)

The solution of this problem is denoted by �(s; x; y; "jh) = '(s; x): In case the

operator T possesses a �xed point h(x; y; ") in H then the surface z = h(x; y; ") is a

slow integral manifold with changing stability (black swan).

It should be noted that we use a modi�cation of the usual technique of the integral

manifold theory [12, 16]. The following statement is true.

T h e o r e m. Let the conditions (4.7)�(4.9)are satis�ed. Then there are numbers

"0 > 0 and K;L; q; � such that for all " 2 (0; "0) there exist functions a(y; ") 2 F

and h(x; y; ") 2 H such that z = h(x; y; ") is a slow integral manifold.

4.1 Auxiliary estimates

To prove the Theorem let us introduce the following functions:

'1(s; x) = �(s; x; �y; "jh);

'2(s; x) = �(s; x; y; "j�h):

From (4.13), (4.14) it follows that

'(s; x) = y +

sZ
x

Y (�; '(�; x); h(�; '(�; x); "); ")d�;
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'1(s; x) = �y +

sZ
x

Y (�; '1(�; x); h(�; '1(�; x); "); ")d�;

'2(s; x) = y +

sZ
x

Y (�; '2(�; x); �h(�; '2(�; x); "); ")d�:

Using these relations, inequalities (4.8), (4.12) and the Gronwall � Bellman inequal-

ity we obtain the estimates

k'(s; x)� '1(s; x)k � ky � �ykeM(1+"3=2�)js�xj
; (4.15)

k'(s; x)� '2(s; x)k � �(h; �h)
1

(1 + "3=2�)
(eM(1+"3=2�)js�xj � 1): (4.16)

4.2 Existence of the function a(y; ")

For any �xed function h 2 H consider the following integral�operator equation

1Z
�1

e
�s2="[Z(s; '(s; 0); h(s; '(s; 0); "); a('(s; 0); "); ")+ a('(s; 0); ")]ds = 0 (4.17)

with respect to a function a(y; "), where '(s; 0) = �(s; 0; y; "jh): This equation is

obtained from the condition of continuity of Th at x = 0.

It is convenient to rewrite (4.17) in the form

Aa(y; ") = Qa(y; "):

Here

Aa(y; ") �
1

p
"�

1Z
�1

e
�s2="

a('(s; 0); ")ds;

Qa(y; ") � �
1

p
"�

1Z
�1

e
�s2="

Z(s; '(s; 0); h(s; '(s; 0); "); a('(s; 0); "); ")ds:

The last expressions de�ne on F a linear operator A : a(y; ") ! Aa(y; ") and a

nonlinear operator Q : a(y; ")! Qa(y; "). It is convenient to represent the operator

A as a sum of two operators A = I +R, where I is the identity and R is de�ned by

the formula

Ra(y; ") =
1

p
"�

1Z
�1

e
�s2="[a('(s; 0); ")� a(y; ")]ds:

The inequalities (4.8), (4.10) imply
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jRa(y; ")j �
1

p
"�

1Z
�1

e
�s2="

"
2
Lk

sZ
0

Y (�; '(�; 0); h(�; '(�; 0); "); ")d�kds�

� "
5=2 Lkp

�
:

For "5=2 Lkp
�
< 1 there exists the linear operator (I+R)�1 and the following inequality

is true

k(I +R)�1k �
1

1� "5=2Lk=
p
�
: (4.18)

Let us introduce the operator P on F by the formula

Pa = (I +R)�1Qa:

In the sequel we will prove that the operator P maps F into itself and is contracting.

For Q we get

jQa(y; ")j �
1

p
"�

1Z
�1

e
�s2="

M

�
"
2 + "jzj+ jzj2

�
ds �

�M

�
"
2 + "

5=2
q + "

3
q
2
�
:

Using the last inequality and (4.18), we obtain

jPa(y; ")j �
M

�
"
2 + "

5=2
q + "

3
q
2
�

1� "5=2Lk=
p
�

:

Under the condition
"
5=2
kL

p
�

�
1

2
; (4.19)

the inequality

jPa(y; ")j � 2M
�
1 +

p
"q + "q

2
�
"
2
:

is true. Is easy to verify the estimate

jQa(y; ")�Qa(�y; ")j �
1

p
"�

1Z
�1

e
�s2="

MSk'(s; 0)� '1(s; 0)kds �

�
MS
p
"�

1Z
�1

e
�s2="

e
M(1+"3=2�)jsjky � �ykds;

where S =
�
"
2 + "

5=2
q + "

3
q
2 + "

3=2
�("+ "

3=2
q) + "

3
L

�
:
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Using (4.15) and the error integral erf(�) it is possible to obtain for
p
"M(1 +

"
3=2
�) < 1

jQa(y; ")�Qa(�y; ")j < 3MSky � �yk:

Taking into account(4.19) we obtain

jPa(y; ")� Pa(�y; ")j � 6MSky � �yk:

Consiquently, if the inequality (4.19) and the inequalities

2M
�
1 +

p
"q + "q

2
�
� K;

p
"M(1 + "

3=2
�) < 1;

6M
�
1 +

p
"q + "q

2 +
p
"�(1 +

p
"q) + "L

�
� L;

hold then P : F ! F .

Now we derive conditions assuring P to be a contracting operator. At �rst let us

estimate the di�erence Qa�Q�a.

jQa(y; ")�Q�a(y; ")j �
1

p
"�

1Z
�1

e
�s2="

"M�(a; �a)ds = "M�(a; �a):

Taking into account (4.19) we obtain

jPa(y; ")� P �a(y; ")j � 2"M�(a; �a):

If

2"M < 1;

holds then P is a contracting operator in F and therefore the equation a = Pa,

which is equivalent to (4.17), possesses a unique solution in F .

Thus, we have derived conditions for the existence a unique solution of (4.17) in F .

Now we study the dependence of the �xed point a of P on h. Let a(y; ") ( �a(y; ")) be

a solution of (4.17) corresponding to the functions h ( �h). Then we have Aa = Qa

or (I +R)a = Qa and �A�a = �Q�a or (I + �R)�a = �Q�a, where

�R�a(y; ") =
1

p
"�

1Z
�1

e
�s2="[�a('2(s; 0); ")� �a(y; ")]ds; �Q�a(y; ") =

= �
1

p
"�

1Z
�1

e
�s2="

Z(s; '2(s; 0); �h(s; '2(s; 0); "); �a('2(s; 0); "); ")ds:

After some elementary transformation we obtain

(I +R)(a� �a) = Qa� �Q�a+ ( �R �R)�a
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or

a� �a = (I +R)�1[Qa� �Q�a+ ( �R� R)�a]:

The expressions in the square brackets will be estimated at �rst.

jQa(y; ")� �Q�a(y; ")j �
M
p
"�

1Z
�1

e
�s2="[Sk'(s; 0)� '2(s; 0)k+

+("+ "
3=2
q)�(h; �h) + "�(a; �a)]ds]:

Taking into account (4.16) we obtain

jQa(y; ")� �Q�a(y; ")j �M

h
"�(a; �a) + ("+ "

3=2
q + 2S)�(h; �h)

i

and

j( �R� R)�a(y; ")j =
1

p
"�

������
1Z

�1

e
�s2="[�a('2(s; 0); ")� �a('(s; 0); ")]ds

������ �

�
1

p
"�

1Z
�1

e
�s2="

"
2
Lk'(s; 0)� '2(s; 0)kds �

�
2

p
"�

1Z
0

e
�s2=" "

2
L

1 + "3=2�
(eM(1+"3=2�)s � 1)�(h; �h)ds �

� 2"2L�(h; �h):

Thus, under the conditions (4.19) and 4"M < 1 the following estimate is true

�(a; �a) � 4
h
M

�
"+ "

3=2
q + 2S

�
+ 2"2L

i
�(h; �h): (4.20)

4.3 Existence of slow manifold

We derive now conditions guaranteeing that Th(x; y) satis�es the inequalities (4.11),

(4.12) . For x � 0 we have

jTh(x; y; ")j � "
�1

1Z
x

e
(x2�s2)="[jZ(s; '(s; x); h(s; '(s; x); "); a('(s; x); "); ")j+

+ja('(s; x); ")j]ds � "
3=2

p
�

2
(K +M(1 +

p
"q + "q

2)):

jTh(x; y; ")� Th(x; �y); "j � "
�1

1Z
x

e
(x2�s2)="

�
MS + "

2
L

�
k'(s; x)� '1(s; x)kds �
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� "
�1
�
MS + "

2
L

�
ky � �yk

1Z
x

e
(x2�s2)="

e
M(1+"3=2�)(s�x)

ds �

�
3
p
�

2
p
"

�
MS + "

2
L

�
ky � �yk:

Thus, under the conditions

p
�

2
(K +M(1 +

p
"q + "q

2)) � q � r;

3
p
�

2

h
M

�
1 +

p
"q + "q

2 +
p
"�(1 +

p
"q)

�
+ L(1 + "M)

i
� �

the operator T maps H into itself.

Now we prove T is a contracting operator. By (4.16) and (4.20) we have

jTh(x; y; ")� T �h(x; y; ")j � "
�1

1Z
x

e
(x2�s2)="

�
[MS + "

2
L]k'(s; x)� '2(s; x)k+

+(1 + "M)�(a; �a) +M(" + "
3=2
q)�(h; �h)

�
ds �

� "
�1

1Z
x

e
(x2�s2)="

h
A+B

�
"
M(1+"3=2�)js�xj � 1

�i
ds �(h; �h) �

�
p
�

2
p
"
(A+ 2B)�(h; �h);

where

A = M(" + "
3=2
q) + 4(1 + "M)

h
M(" + "

3=2
q + 2S) + 2"2L

i
;

B = MS + "
2
L:

Thus, under the condition p
�

2
p
"
(A+ 2B) < 1

T is a contracting mapping in H.

R e m a r k 1. Usually, the conditions (4.7)�(4.9) are ful�lled for jxj � r1, kyk � r2

only. Integral manifolds in this case are local.

R e m a r k 2. Let the functions Y and Z in (4.5)�(4.6) are su�ciently smooth, then

for the functions h and a(y; ") asymptotical expansions can be derived

a(y; ") =
X

"
i
ai(y); z = h(x; y; ") =

X
"
i
hi(x; y):

R e m a r k 3. Systems of the type (2.1)�(2.3) can be reduced to the form (4.5)�(4.6)

in a neighborhood of the �rst approximation of the slow integral manifold.
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5 Integral manifolds and duck�trajectories

Let us discuss a connection between slow integral manifolds and duck�trajectories.

At �rst, we consider system (2.1)�(2.3) in the case dim y = 0. This system can be

reduced to the form (4.6), where Z does not depend on y, and a is a parameter.

In this case the slow integral manifold is one�dimensional. If the variables t and

x increase simultaneously and x passes through zero then this integral manifold

contains a duck�trajectory.

Statements of type "The life of canard is very short" can be found usually in papers.

This means that values of parameter a corresponding to duck�trajectories belong to

an interval of order O(e�1=�") where � is some positive number. It is not di�cult to

give examples of ducks living for centenaries.

E x a m p l e 3. Consider the system

_x = z

" _z = x
2 + z

2 � a
2

The circle (x + "

2
)2 + z

2 = a
2 � "

2

4
is a duck-trajectory. The upper semicircle is

unstable and the lower one is stable. This duck exists for all a2 > "
2
=4.

If there exists a gluing function a(y; ") then every trajectory on the slow integral

manifold is a duck�trajectory if it crosses the surface x = 0 from the stable part

(x < 0) to unstable one (x > 0). Thus, in Example 2 for � = y, every trajectory on

the slow integral manifold z = 0, is a duck�trajectory. The analogous situation takes

place for the model of combustion in an inert porous medium. But it follows from the

physical reasons that the gluing function has to be constant: a(y; ") = a(y0; "). In

this case, the stable and unstable parts of the integral manifold can be glued in one

point y = y0 only. The duck- trajectory passes just through this point. A natural

generalization of this situatiom can be done. Let the gluing function a = a(y; ")

be given. On the n�dimensional separating surface let some n1�dimensional surface

y = �(u); u 2 R
n1 of lower dimension (n1 < n) be given. If the gluing function

a(y; ") is restricted to y = �(u) then the gluing of the stable and unstable parts of

slow integral surfaces can be realized in points of the surface y = �(u) only. That

permits us to construct slow integral manifolds with changing stability of various

forms and dimensions.

E x a m p l e 4. Consider the following system

_x = 1;

_y = 0; y 2 R
n;

" _z = 2xz + a(y; ") + p(y) + xq(y) + x
2
r(y):

Here p; q; r are scalar continuous functions of the vector variable y. By setting

a(y; ") = �p(y) � "r(y); we obtain h = �q(y) � xr(y). Let y = �(u); u 2 R
n1 be

any surface, then the system

_x = 1;
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_y = 0; y 2 R
n;

" _z = 2xz � p(�(u))� "r(�(u)) + p(y) + xq(y) + x
2
r(y):

possesses the higher�dimensional cylindrical slow integral surface z = �q(�(u)) �
xr(�(u)), and every element of this cylindrical surface is a duck.

In conclusion a higher�dimension generalization of the Example 3 will be given.

E x a m p l e 5. Consider the di�erential system

_x = z

_yi = z; i = 1; : : : ; n

" _z = x
2 +

nX
i=1

y
2
i
+ z

2 � a
2

It is a straighforward exercise now to see that the higher�dimensional sphere

(x+ "=2)2 +
nX
i=1

(yi + "=2)2 + z
2 = a

2 �
n+ 1

4
"
2

is a slow integral manifold, one part of it (z < 0) is stable and other one (z > 0) is

unstable. This black swan lives for all a2 > n+1
4
"
2.
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