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Abstract. { Coagulation of particles in turbulent ows is studied. The size distribution of

particles is governed by Smoluchowski equation with random collision coe�cient. The random

coagulation coe�cient is derived by a generalization of the approach suggested by Sa�man and

Turner [12]. The coagulation process is analysed in three main cases: (1) Tc, the characteristic

coagulation time is much less than Tw, the characteristic Lagrangian time of the turbulent ow,

(2) conversely, Tw << Tc, and (3), these times are of the same order: Tw � Tc. A special

stochastic time is introduced which drastically simpli�es the analysis of the inuence of the

intermittency. A detailed numerical study is given for two cases with known explicit solutions

of Smoluchowski equation. The numerical analysis in the turbulent collision regime is based on

the stochastic algorithm presented in the book [9] and developed in [11], [10], and [4].

1 Introduction

The coagulation processes of aerosol particles or clusters in spatially homogeneous case

are governed by the Smoluchowski equation (e.g., see, [13]):

@nl

@t
=

1

2

X
i+j=l

kijninj � nl

1X
i=1

klini (1:1)

with the initial conditions nl(0) = n
(0)

l
; l = 1; 2; : : : .

Coagulation is a process by which two particles collide and adhere, or coagulate. We

use the notation: flg-cluster, or l-mer, for a cluster containing l monomers (or structural
units); ni, for the number density of the fig-cluster; kij, for the coagulation coe�cient

characterizing the collision frequencies between an fig- and a fjg-cluster. We will also

use the notation �ij for the Kronecker function.

Under rather general assumptions about the coagulation coe�cients kij there are

known existence and uniqueness results for the solution to the equation (1:1) (e.g., see

[1]).

There are many di�erent mechanisms that bring two particles to each others: Brownian

di�usion, gravitational sedimentation, free molecule collisions, turbulent motion of the

host gas, acoustic waves, the density, concentration and temperature gradients, particle

electric charges, etc. We will deal here mainly with the case of coagulation of particles in

a fully developed turbulence whose small scale statistical structure is speci�ed by ", the

kinetic energy dissipation rate, and �, the kinematic viscosity.

The structure of kij for di�erent collision regimes is presented, e.g., in [13], and is well

developed only in the case when there is no spatial dependence of the functions involved

in the coagulation equation.

The Smoluchowski equation in the inhomogeneous case governing the coagulation of

particles dispersed by a velocity �eld v(t; x) reads

@nl(x; t)

@t
+ v(x; t) � rnl(x; t) =

1

2

X
i+j=l

kijninj � nl

1X
i=1

klini; (1:2)

where nl(x; t) is the concentration of clusters of size l, l = 1; 2; : : : at a point x at time

t; v(x; t) is the velocity of the host gas, kij = kij(x; t) is the coagulation coe�cient. It is

supposed, that the initial size tistribution is given: nl(x; 0) = n0
l
(x).
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The coagulation coe�cient is determined by the ow of the host gas in the neighbour-

hood of the colliding particles. We assume that the ow is incompressible and it is not

disturbed by the particles. Then Nij, the number of collisions between the i- and j-clusters

in a unit volume and unit time is de�ned by (e.g., see [13])

Nij(x; t) = kij(x; t)ninj =
ninj

2

Z
SR(x)

jwr(y)j dSR(y);

i.e.,

kij(x; t) =
1

2

Z
SR(x)

jwr(y)j dSR(y); (1:3)

where R = ri + rj is the sum of the radii of colliding particles, SR(x) is the sphere of

radius R centered at the point x, dSR(y) is the surface measure at a point y, and wr is

the radial component of the relative velocity:

wr(y) =

 
v(x+ y; t)� v(x; t);

y

jyj

!
: (1:4)

Note that Sa�man and Turner [12] described the turbulent coagulation regime in

average (over the velocity uctuations). They have de�ned the coagulation coe�cient �kij
through hNiji, the average of Nij over the turbulent velocity uctuations:

�kij(x; t) =
1

2
h
Z
SR(x)

jwr(y)j dSR(y)i: (1:5)

Under the assumption that @v1

@x1
is normally distributed and that the velocity is isotropic

in small scales, they obtained from (1.5)

�kij(x; t) ' 1:3(ri + rj)
3

s
h"i
�
; (1:6)

where h"i is the average dissipation rate of the turbulent kinetic energy, and � is the

kinematic viscosity.

In our case, we deal with the random coagulation coe�cient (1.3). Thus we need to

evaluate the integral over the sphere. This evaluation is given in Appendix A which reads:

Z
SR(x)

jwr(y)j dSR(y) = R3

r
"

2�
f(�); (1:7)

where f is a dimensionless universal function of a dimensionless argument � (see Ap-

pendix):

� =
det(�̂ )

( "

2�
)3=2

�̂ = k�ijk3i;j=1 is the deformation tensor of the velocity v(x; t) = (v1(x; t); v2(x; t); v3(x; t)):

�ij =
1

2

 
@vi

@xj
+

@vj

@xi

!
;

" is the dissipation rate of the kinetic energy: " = 2�
P

ij �
2
ij
; � is the kinematic viscosity.
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It turns out (see Appendix) that f(�) can be approximated to within 2.3% by a

constant value. Thus we have

kij(x; t) = A

s
"(x; t)

�
R3; (1:8)

where A = 2(� + 3)=9 � 1:3648.

Remark 1.1. Note that from the expression (1.8) we �nd that

�kij = A
h
p
"i

p
�
R3 : (1:9)

Thus we see that this expression di�ers from (1.6). The expression (1.6) can be obtained

(to within a constant factor) from (1.9) by additional assumptions on "(x; t), assuming

for instance that " has a lognormal distribution.

Since we study the general case of coagulation in uctuating velocity �eld with kij
given by (1.3), we will be able not only to �nd the true expectation of the solution, but

also to �nd out when the coagulation equation homogonization happens. Such homoge-

nization implies that the stochastic solution approaches the solution of the deterministic

coagulation equation with �kij de�ned in (1.9).

2 Analysis of the uctuations in the size spectrum

Thus we deal with the Smoluchowski equation whose coagulation kernel is random:

@nl(x; t)

@t
+ v(x; t) � rnl(x; t) =

1

2

X
i+j=l

kijninj � nl

1X
i=1

klini; (2:1)

where

kij(x; t) = A

s
"(x; t)

�
r31(i

1=3 + j1=3)3; (2:2)

with A = 1:3648; r1 is the radius of the monomer. Here v(x; t) is a turbulent velocity

�eld which is assumed to be incompressible, statistically homogeneous and stationary.

In Lagrangian coordinates induced by (e.g., see [6])

dX

dt
= v(X(t); t); X(0) = x0 ; (2:3)

the equation (2.1) reads

dNl

dt
=

1

2

X
i+j=l

KijNiNj �Nl

1X
i=1

KliNi; Nl(0) = n
(0)

l
(x0); (2:4)

where Nl(t) = Nl(t;x0) = nl(X(t;x0); t), and

Kij(t) = kij(X(t;x0); t) = A

s
E(t)
�

r31(i
1=3 + j1=3)3: (2:5)
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Here E(t) = E(t;x0) = "(X(t;x0); t) is the Lagrangian dissipation energy rate.

To avoid unessential complications, we consider here the case when n
(0)

l
(x) = n

(0)

l

do not depend on the spatial coordinates. Then the solution is also independent of the

spatial coordinates and it is governing by the homogeneous Smoluchowski equation with

the coagulation coe�cient (2.5).

Let us consider the following deterministic equation in dimensionless form:

dfl

d�
=

1

2

X
i+j=l

hKiji
hK11i

fifj � fl

1X
i=1

hKlii
hK11i

fi; fl(0) =
n
(0)

l

n0
; (2:6)

where n0 =
P

1

l=1 ln
(0)

l
. It is easy to �nd that by introducing a new time variable �t de�ned

by

d�t

dt
= 8An0r

3
1

s
E(t)
�

= B

vuutE(t)
h"i

; �(0) = 0; (2:7)

we can express the solution to (2.4) as follows:

Nl(t) = n0fl(�t); �t = B

tZ
0

vuutE(s)
h"i

ds: (2:8)

Here B = 8An0r
3
1h
p
"i=

p
�.

Thus we came to a very important result: the random solution Nl(t) is represented as

a deterministic function of a random time �t. The function fl can be obtained numerically,

by the Monte Carlo [9]-[11] or a �nite element method, (e.g., see [11]), hence the problem

is reduced to the analysis of this random time.

In the case of incompressible homogeneous stationary velocity �elds, the one-pint

probability density function of the Lagrangian stochastic process E(t) and that of the

Eulerian random �eld "(x; t) coincide [6], therefore the function h
p
Ei is constant, and

h�ti = B

tZ
0

h
p
Eiq
h"i

ds = B
h
p
"iq
h"i

t = B1 t; (2:9)

where B1 = Bh
p
"i=

q
h"i.

Let us formulate the coagulation equation homogenization problem. Generally, it can

be formulated as follows: when and under what conditions the uctuation Nl(t)� �Nl(t) is

negligibly small where �Nl(t) is the solution to the following deterministic Smoluchowski

equation
d �Nl

dt
=

1

2

X
i+j=l

hKiji �Ni
�Nj � �Nl

1X
i=1

hKlii �Ni; �Nl(0) = n0
l
: (2:10)

Let us estimate the relative uctuation through

�l(t) =

n
h(Nl(t)� �Nl(t))

2i
o1=2

�Nl(t)
:

Note that
�Nl(t) = n0fl(h�ti) = n0fl(B1 t): (2:11)
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The �rst term of the Taylor expansion gives

fl(� +��)� fl(�)

fl(�)
=

��

�l(�)
+ : : : ;

where

�l(�) =
fl(�)
dfl(�)

d�

is a scale characterizing the change in � of the function fl(�). From this we �nd by

(2.8),(2.11) (taking � = h�ti;�� = � 0
t
= �t � h�ti) that

�2
l
(t) =

h(� 0
t
)2i

�2(h�ti)
+ : : : : (2:12)

Now,

� 0
t
= B

h
p
"iq
h"i

tZ
0

�(s) ds = B1

tZ
0

�(s) ds; (2:13)

where

�(s) =

q
E(s)� h

p
"i

h
p
"i

: (2:14)

By G.Taylor's formula [6] we can write

h(� 0
t
)2i ' 2B2

1�
2
�
T� t; if t >> T�;

where �� is the variance of �, and

T� =
Z

1

0

h�(s+ s0)�(s0)i
�2
�

ds

is the integral time scale of the stochastic process �(s). Thus we obtain in (2.12)

�l(t) '
p
2��

q
tT�

Tl(t)
; (2:15)

where

Tl(t) =
j�l(h�ti)j

B1

=
j �Nl(t)j

jd
�Nl(t)

dt
j

is the characteristic time scale of the function �Nl(t). From this, it is clearly seen that if Tl(t)

is much larger than T�, the Lagrangian integral time scale of the stochastic process (2.14),

then for the times T� << t � Tl(t) the quantity �l behaves like
q
tT�=Tl(t) which implies

that the uctuations of the random functions Nl(t) are small, and therefore, hNl(t)i '
�Nl(t). Note however that T� << t � Tl(t) is not considered as a necessary condition for

ensuring that �l(t) is small. It was required only to derive the exact asymptotics (2.15).

It is not di�cult to �nd that

�l(t) �
p
2��

q
tT 0

�

Tl(t)
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provided t << T 2
l
(t)=T 0

�
. Here

T 0

�
=

1Z
0

jh�(s0 + s)�(s0)ij
�2
�

ds:

If t << T 2
l
(t)=T 0

�
, then the last inequality shows that �l(t) is small.

Remark 2.1. Above we analysed the closeness between the expectation hNl(t)i and

the relevant deterministic function �Nl(t). This closeness was controlled by the ratioq
tT�=Tl(t). The same can be done for an arbitrary functional, say, �(Nl) (for instance,

the total number of clusters, the mean cluster size, etc.). In this case the closeness between

the expectation of this functional and �( �Nl) is controlled by
q
tT�=T�(t). Here

T� =
j��(t)j

jd
��(t)

dt
j

is the characteristic time scale of the function ��(t) = �( �Nl(t)).

3 Models of the energy dissipation rate

Recall that here we deal with a spatially homogeneous, stationary and incompressible

turbulent velocity �eld. As follows from Sect.2, the Lagrangian energy dissipation rate

E(t) is entered the relevant Smoluchowski equation. However in the literature only the

Eulerian energy dissipation rate is treated in details (e.g., see [3]). As to the Lagrangian

models, to our knowledge, there are two of them: (1), The lognormal model by Pope and

Chen [8], and (2), The multifractal model of Borgas and Sawford [2]. Let us describe

these models.

3.1 The model by Pope and Chen (P&Ch)

The model to which we will refer as P&Ch assumes that

E(t) = h"i exp (�(t)); (3:1)

where �(t) is the solution to the following stochastic di�erential equation [8]

d� = �
1

T�
(�� h�i) + ��

s
2

T�
dB(t); (3:2)

where T� is the integral time scale of the stochastic process �(t), while �2
�
and h�i are

its variance and mean value, respectively. Since �(t) is a stationary Gaussian process we

�nd from (3.1) that

hEpi = h"ip exp
n1
2
p2�2

�
+ ph�i

o
; p > 0: (3:3)
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We used the fact that in the case considered here, the one-point statistical characteris-

tics of the Lagrangian energy dissipation rate coincide with that of the Eulerian energy

dissipation rate [6]. In particular, hEi = h"i.
Now,

h�i = �
1

2
�2
�
; �2

�
= ln

 
h"2i
h"i2

!
; h

p
"i = exp

(
�
�2
�

8

)
: (3:4)

Thus this model can be speci�ed by the parameters: h"i; h"2i; and T�, or alternatively,

by h"i; h�2
�
i; and T�. Note that in [8], the last variant was used, with �� = 1, and

T� = 0:9Tw, where Tw is the Lagrangian time scale of the vertical velocity uctuations.

We will use both these variants. In the �rst variant, we will use the following relation

(e.g., see [3] and [2]):

h"2i
h"i2

=

 
Tw

��

!
�

; (3:5)

where �� =
q
�=h"i is the Kolmogorov internal time scale, and � is the intermittency

parameter (� = 0:2� 0:3).

Remark 3.1.

By the de�nition of � (see (2.14)) we can �nd, using (3.3) that

�2
�
=

h"i
h
p
"i2

 
1� expf�

�2
�

4
g
!
:

The integral time scale T� can be estimated from the following arguments.

Let �(t) = expf�(t)g, where �(t) is the Ornstein-Uhlenbeck process de�ned by (3.2).

Then the following approximate relation holds [8]:

T� = T�
�
1�

2

9
�2
�

�
;

where T� is the integral time scale of the process �(t). This approximation is applicable

if �2
�
� 2. From this we �nd that

T� = T�
�
1�

1

18
�2
�

�
:

3.2 The model by Borgas and Sawford (B&S)

In this model, there are three input parameters: h"i; Tw and N", a positive integer. The

model can be described as follows. Let �; �; � be independent random numbers constructed

as

� =

�
a with probability �

b with probability 1� �;

� =

�
a0 with probability �0

b0 with probability 1� �0;
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� =

�
0 with probability 0:5

1 with probability 0:5;

where a = 0:7528, b = 0:3536, a0 = 0:3951, b0 = 0:1474, � =
p
a, �0 = 1�

p
b:

Let us de�ne a subdivision of the interval � = [0; Tw). First, let �
(0)

1 = �. Then,

for a positive integer i we construct a uniform subdivision of � into 2i subintervals:

�
(i)

1 ;�
(i)

2 ; : : : ;�
(i)

2i
. The interval �

(i)

j
is divided in two equal subintervals: the left, �

(i)
0

j
,

and the right subinterval �
(i)

00

j
.

The stochastic process E(t) on the interval � = [0; Tw) will be constructed recursively

in N" + 1 steps.

Step (0): Put E0(t) � h"i; t 2 �
(0)

1 .

Step (1): Simulate a triple (�
(0)

1 ; �
(0)

1 ; �
(0)

1 ) of independent random numbers as described

above. Then de�ne

E1(t) =
(
2E0(t)[�

(0)

1 �
(0)

1 + (1� �
(0)

1 )�
(0)

1 ]; if t 2 �
(0)

0

1

2E0(t)[(1� �
(0)

1 )�
(0)

1 + �
(0)

1 �
(0)

1 ]; if t 2 �
(0)

00

1 .

Step (i): Let (�
(i�1)

j ; �
(i�1)

j ; �
(i�1)

j ), j = 1; : : : ; 2i�1 be independent samples. In the interval

�
(i�1)

j (j = 1; : : : ; 2i�1) we de�ne

Ei(t) =

8<
: 2Ei�1(t)[�

(i�1)

j �
(i�1)

j + (1� �
(i�1)

j )�
(i�1)

j ]; if t 2 �
(i�1)

0

j

2Ei�1(t)[(1� �
(i�1)

j )�
(i�1)

j + �
(i�1)

j �
(i�1)

j ]; if t 2 �
(i�1)

00

j .

etc., till i = N". Finally, set E(t) = EN"
(t).

The following relations are known for this model [2]:

hE2(t)i = h"i2
 
Tw

��

!�

;

where � = 0:294, and �� = 2�N"Tw is the inner time scale of the model. In addition, the

integral time scale of E(t) satis�es

TE � C"Tw

 
Tw

��

!��

;

where C" is a constant which does not depend on the subdivision.

In conclusion let us make some remarks concerning the two described models.

1. The probability density function (pdf) of the model P&Ch is lognormal with a heavy

tail, while for the pdf of the model B&S this is not the case.

2. The correlation function of the model P&Ch is approximately exponentially decaying

[8]. The correlation function of the P&Ch model it is a power function.

3. The model P&Ch is much more convenient in numerical simulations. However it does

not involve the dependence on the Reynolds number in contrast to the model B&S.
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4 Monte Carlo simulation for Smoluchowski equa-

tion in a stochastic coagulation regime.

In Section 2 we have suggested theoretical analysis which provides qualitatively esti-

mations (see (2.15)) of the di�erence between the true expectations of the solutions to

stochastic Smoluchowski equation and the solutions of the relevant deterministic equa-

tions. These estimations show that two main cases may occur: (1) this di�erence is small

which happens when
q
tT� << Tl(t), and (2), this di�erence is not small if

q
tT� ' Tl(t).

However, since the function Tl(t) is generally very complicated, this criterion is not easy

applied in practice. Therefore, we �rst investigate the case of a model Smoluchowski equa-

tion which has an explicit solution. In this case the criterion is also explicitly veri�ed.

Let us consider the following Smoluchowski equation of the type (2.4) with the coag-

ulation coe�cient

Kij =
�

n0

s
E(t)
�

(i + j); (4:1)

with the initial condition Nl(0) = n0�l1. Here � = 4

3
�r31n0 is a dimensionless parameter,

r1 is the radius of the monomer, n0 is the initial number of monomers. Note that � has

a clear physical meaning: it is the total volume occupied by monomers in a unit volume.

As described in Sect.1, our solution can be represented as

Nl(t) = n0fl(�t); �t =
�

��

tZ
0

vuutE(s)
h"i

ds; (4:2)

where �t is the internal Kolmogorov time scale, and fl(�) is a dimensionless function of

the dimensionless time � satisfying the equation

dfl

d�
=

1

2

X
i+j=l

(i+ j)fifj � fl

1X
i=1

(l + i)fi; fl(0) = �l1: (4:3)

Let us also consider the deterministic function �Nl(t) which is the solution to (2.10)

with the coagulation coe�cients hKiji where Kij is given by (4.1) and with the initial

distribution �Nl(0) = n0�l1. Here we have also

�Nl(t) = n0fl(h�ti); h�ti =
�

��

h
p
"iq
h"i

t : (4:4)

In this case, the exact solution to (4.3) is known [13]:

fl(�) = n0
ll�1

l!
[b(�)]l�1 exp f�� � lb(�)g; b(�) = 1� exp (��): (4:5)

Along the solution itself, we will be interested in the following functionals:

(1) Total number of clusters:

�(t) =
1X
l=1

Nl(t); (4:6)
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(2) Mean cluster size:

�(t) =
1

�(t)

1X
l=1

lNl(t): (4:7)

In the case considered here these functions are explicitly known:

�(t) = n0 exp (��t); �(t) = exp (�t): (4:8)

In the deterministic case, these functionals of the solutions to the deterministic Smolu-

chowski equation are

��(t) =
1X
l=1

�Nl(t) = n0 exp (�h�ti) = n0 exp(�
t

Tc
);

��(t) =
1

��(t)

1X
l=1

l �Nl(t) = exp(h�ti) = exp(t=Tc);

(4:9)

where

Tc =
��

�

q
h"i

h
p
"i

(4:10)

is an integral time scale of the coagulation process. Here �� =
q

�

h"i
is the internal

Kolmogorov time scale. In the calculations we take h"i = 100, Tw = 10, � = 0:17. We

use everywhere the CGS units.

We will use the relation:

h"2i = h"i2
 
Tw

��

!�

; (4:11)

where the intermittency parameter is chosen as � = 0:25.

Throughout this section (except for Sect.4.4), the stochastic process E(t) will be sim-
ulated according to the model P&Ch. The parameters were chosen as follows: h"i = 100,

with the relevant value of h"2i given by (4.11), and T� = 0:9Tw.

In the process of coagulation governed by the random Smoluchowski equation (2.4)

with the coagulation coe�cient (4.1) two main time scales are involved: Tw, the La-

grangian time scale of the velocity uctuations, and Tc, the integral time scale of the

coagulation process. It is therefore very convenient to introduce a number  characteris-

ing the rate of the coagulation:  = Tw=Tc. We will consider four cases:

High rate of coagulation, if  � 10,

Moderate high rate, if  � 1,

Moderate low rate, if  � 0:1,

Low rate, if  � 0:01.

Here and in what follows, we use the notation a � b to indicate that a = C b where C

is a constant of order 1. The radius of the monomer is taken as r1 = 10�4.
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We have chosen the values n0 = 1010, n0 = 109, n0 = 108, and n0 = 107 which

correspond to the four coagulation rates mentioned above.

4.1 The total number of clusters and the mean cluster size

In this section we present the numerical analysis for �(t) and �(t).

Let us denote by ��(t) the relative di�erence between the average of the stochastic

function �(t) and the deterministic function ��(t):

��(t) =
h�(t)i � ��(t)

��(t)
:

In Fig.1, this quantity (lower curve) is shown for the case of moderate high rate of

coagulation ( = 0:86) as a function of the dimensionless time � = t=Tc. For convenience,

we plot also the ratio
p
Twt=Tc =

p
� (upper curve).

It is seen from this curves, that the deterministic and stochastic cases do not much

di�er if � � 1 (to within 10%). After a certain time instant �0 the function
p
� is close

to 1 which indicates that after this time the di�erence becomes large.

In Fig.2 the same curves are plotted in the case of moderate low rate of coagulation

( = 0:086). It is seen that the time instant �0 � 1= happens later, between 6 and 8.

Thus even in the case of moderate low rate of coagulation the di�erence becomes large

after the dimensional time t0 � �0Tc = T 2
c
=Tw.

The expectation of the mean cluster size h�i is shown in Fig.3 in the case of moderate

high rate of coagulation ( = 0:86). Two upper curves were obtained by Monte Carlo

averaging over 104 and 105 samples which shows that the statistical error is small enough.

The lower curve is the deterministic function ��(�). It is seen that after the time instant

�0 � 1 the di�erence starts to increase rapidly, and around � = 8 it reaches two orders of

magnitude. Qualitatively the same picture was obtained for  = 0:085.

For the low rate of coagulation ( = 0:0085) the di�erence between the stochastic and

deterministic functions is practically eliminated, see Figs.4 and 5.

Thus in the case of these two functions the stochastic description can be well approxi-

mated by deterministic equation for low rate of coagulation at times up to several number

of characteristic coagulation times Tc. The lower the coagulation rate, the wider is the

interval where the coagulation equation homogenization takes place.

It should be noted that this conclusion is made for these two speci�c functions, the

total number of clusters and the mean cluster size. The situation can be drastically

changed if the solution itself is considered. Let us consider some examples.

4.2 The functions N3(t) and N10(t)

In Fig.6. we present hN3(t)i=n0, the normalized concentration of 3-mers as a function of

dimensional time for the moderate high rate of coagulation ( = 0:86). The upper curve

is obtained by the Monte Carlo averaging over N = 104 samples, the lower curve is the

function �N3(t)=n0. Note that the di�erence is seen for all times though it is much larger

for times t � 5Tc, Tc = 11:68 sec. The di�erence is even more pronounced for the 10-mers.

The picture is di�erent in the case of low rate of coagulation ( = 0:0086). As shown

in Fig.7, the di�erence is seen only for times up to � Tc = 1168 sec. After this time

instant the curves are very close. To explain such behaviour we plot here in the upper

11



picture also T10, the characteristic time scale of coagulation for 10-mers de�ned in Sect.4.

From (2.15) it follows that the smaller T10(t), the larger the relative di�erence between

the stochastic and deterministic cases.

To see a more detailed picture for clusters of di�erent sizes, we turn to the size spec-

trum, i.e., the size distribution density Nl(t).

4.3 The size spectrum Nl for di�erent time instances

First we consider the case of low coagulation rate ( = 0:0086), Tc = 1168.

In Figs.8-10 we plot the size spectrum at the time t = Tw = 10 sec, t = 10Tw = 100

sec, and t = 100Tw = 1000 sec, respectively. The upper curve is obtained by Monte Carlo

calculations, the lower curve is the deterministic function �Nl=n0. The di�erence becomes

rapidly larger with the growth of the cluster size. Note that the larger the time instances

the wider is the size interval where the di�erence between the stochastic and deterministic

cases is small (e.g., compare Fig.8 and Fig.10). In calculations (which we do not show

here) made for t = 500Tw the curves are close up to the 500-mers.

Let us consider the case of moderate low coagulation rate ( = 0:086, Tc = 116:8). The

pictures 11-13 present the same curves for t = Tw; 10Tw and 100Tw, respectively. Here

we see qualitatively the same picture with one di�erence that in the case t = 100Tw the

di�erence between the curves holds for all the sizes.

It is interesting to note that for t = 500Tw this di�erence is increased about three

times for all the sizes up to l = 500 (these results are not shown here).

The case of the moderate high coagulation rate ( = 0:86, Tc = 11:68): Figs.14 and

15 correspond to the cases t = Tw and t = 10Tw, respectively. In this case the curves

are di�erent for all the considered sizes (except for small sizes in Fig.14). The di�erence

becomes even more pronounced in the case of high coagulation rate ( = 8:6, Tc = 1:17)

(see Figs.16 and 17).

4.4 Comparative analysis for two di�erent models of the en-

ergy dissipation rate

As mentioned in Sect.3, the modelsB&S and P&Ch di�er in certain aspects, in particular,

the tails of the distributions are quite di�erent. Therefore, one may expect that this will

lead to a change of the numerical results of the previous section. We compare in this

section the results for both models with common mean value. In the model B&S we

take Tw = 30, N" = 8, and the mean dissipation rate h"i is determined from the relation

�� = 2�N"Tw = (�=h"i)1=2. For � = 0:17 we have h"i = 12:38.

In the model P&Ch we choose the parameters from the following arguments. The

mean is taken the same, h"i = 12:38; T� = 0:9Tw, and the variance �2
�
was taken equal

to the variance of the random variable � = ln(E=h"i) where E is taken from the model

B&S. This results in �� = 1:7.

First we show the results for the mean cluster size �(t). The two models give similar

results for low coagulation rates ( � 1), see the relevant results in the previous section.

For high coagulation rates the models give essentially di�erent results. In Fig.18 the

expectation of the mean cluster size was obtained for the model P&Ch with N = 4000

and N = 40000 samples. The lower curve is the deterministic function ��(t).

12



The di�erence between the two upper curves should be additionally explained. Sim-

ple analysis of the explicit expression of the expectation h�(�t)i shows that it behaves
essentially di�erent at small and large times. For large (compared with T�) times the

distribution of �t is approximately Gaussian, and the expectation h�(�t)i = hexpf�tgi is
well de�ned. However for small times, the pdf of �t has a heavy tale, since �t is propor-

tional to
q
E(0), E(0) being lognormal distributed. Therefore, the expectation h�(�t)i

tends to in�nity. This explains why the Monte Carlo calculations with N = 40000 and

4000 samples are so di�erent, thus not providing stable results.

The model B&S gives essentially di�erent results, see Fig.19. Here we have very stable

Monte Carlo results of h�(�t)i, and the deviation from the deterministic case is clearly

seen though not so large.

As we will see, this is a general situation: the lognormal model P&Ch leads to a larger

di�erence between the stochatic and deterministics cases.

Let us turn to more �ne functions, namely we present the results for monomers, 10-

mers and 50-mers.

In Fig.20 (high coagulation rate,  � 8) the di�erence between the deterministic and

stochastic cases (for monomers) becomes large for the model P&Ch after a couple of

seconds, while for the B&S model the di�erence is small for the times up to 30 sec. It

becomes even smaller in the case of lower ( � 2:5) coagulation rate (see Fig.21).

For 10- and 50-mers the general picture is the same: the lognormal model P&Ch

leads to a larger di�erence between the stochatic and deterministics cases (see Figs.22-

23). Note that the di�erence between the deterministic and stochastic cases behaves here

not monotonic: for small times the deterministic solution is larger, then at a small time

interval it is smaller, and then it is again larger.

Let us consider the whole size spectrum. From Fig.24 (high coagulation rate,  �
8) and Fig.25 (moderate high coagulation rate,  � 2:5) we can see that here both

models lead to a di�erence between the deterministic and stochastic cases, but again, this

di�erence is much larger for the model P&Ch.

5 The case of coagulation coe�cient with no depen-

dence on the cluster size

The case of a coagulation coe�cient with no dependence of the cluster size may be usefull

in the study of the case of turbulent coagulation coe�cient generalized by [7]. Therefore,

it is interesting to study this case in more details, since it provides explicit expression of

the solution.

Thus we assume that all the parameters remain the same as in the previous section,

with the only one di�erence, namely, the term i+ j is replaced with 1:

Kij =
�

n0

s
E(t)
�

: (5:1)

The exact solution to the Smoluchowski equation (2.6) in this case has the form:

fl(�) =
bl�1

(1 + b)l+1
; b = b(�) =

�

2
: (5:2)
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In calculations, we consider three cases of coagulation rate:  � 10, 1 and 0:1 which

correspond to the initial number density n0 = 5: 109, 5: 108, and 5: 107, respectively.

The results show that for high and moderate high coagulation rates (see Fig.26, and

Figs.29-32) at the times t � Tc the di�erence between the stochastic and deterministic

cases is large. In contrast to the case when Kij � (i+j), here even for the high coagulation

rate at the times t >> Tc the di�erence between the stochastic and deterministic cases

is very small (see Figs. 27-28). This can be explained by comparing the scales Tl(t) of

these two cases. From the exact solutions (4.5) and (5.2) we �nd that for large times,

fl(�) � exp(��) and fl(�) � 1=� 2, respectively. Hence, if t >> Tc, then Tl(t) ' Tc and

Tl(t) ' t, respectively. Therefore, from the relation (2.15) we conclude that in the case

when the coagulation coe�cient does not depend on i and j, the di�erence between the

stochastic and deterministic cases is small for all cases of  if the time is much larger than

both the characteristic time scales Tw and Tc.

6 Monte Carlo simulation of coagulation processes

in turbulent coagulation regime

Let us study the di�erence between the deterministic and stochastic cases in the case of

turbulent coagulation regimes.

We will use the coe�cient derived in Appendix (see formula (2.5)):

Kij(t) = A

s
E(t)
�

r31(i
1=3 + j1=3)3: (6:1)

It should be noted that both in our and Turner and Sa�man's considerations it was

assumed that the statistical structure of the ow is considered undesturbed by the parti-

cles. This implies that the radii of the particles can not much di�er, say the radii ratio

is not larger than 3. In [7] a generalization is presented which is free of this restriction.

The authors [7] derived a correction factor E to the coagulation coe�cient of Turner and

Sa�man, namely E = 7:5(�2=�1)
2 where �1 and �2 are the larger and smaller radius of

the colliding particles. Thus if i=3 > j, then we put

Kij(t) = Eij A

s
E(t)
�

r31(i
1=3 + j1=3)3; (6:2)

where

Eij = 7:5

�
j

i

�2
; j = minfi; jg; i = maxfi; jg: (6:3)

Otherwise, Eij = 1.

Since the exact solutions to Smoluchowski equation with the kernels (6:1) and (6:2)

are not known, we used the Monte Carlo stochastic particle method developed in [9]-[11]

and recently extended to the inhomogeneous case [5].

It is interesting to note that the behaviour of the turbulent coagulation coe�cient

(6.1) considered as a function of i and j is close to the case Kij � i+ j treated in details

in Sect.4. while the corrected turbulent coagulation coe�cient (6.2) is close to the case

Kij � const treated in Sect.5 in the sense that the relevant solutions behave qualitatively

similar, as we will see later.
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We present calculations both for the coe�cient (6.1) and (6.2). We used here the

model P&Ch with the parameters chosen as in Sect.4.

The calculations were carried out for three coagulation rates: (1) high coagulation

rate,  = 11:15, (n0 = 5: 109; Tc = 0:89), (2) moderate high coagulation rate,  = 1:11,

(n0 = 5: 108; Tc = 8:9), (3) moderate low coagulation rate,  = 0:11, (n0 = 5: 107; Tc = 89),

where

Tc =
1

B1

=
��

8An0r
3
1

q
h"i

h
p
"i
:

The radius of the monomer was taken the same as in previous calculations: r1 = 10�4

cm.

Let us study the di�erence between the deterministic and stochastic cases for the

coagulation coe�cient (6.1). In Fig.35 the normalized concentration of 10-mers is shown

as a function of time, for high coagulation rate. As in the case Kij � (i + j), (see

Fig.22), the expectation di�ers from the deterministic solution both for small and large

time instances. This picture remains true in the case of moderate high coagulation rate,

but the di�erence becomes smaller for large times. Again, this situation is similar to that

observed in the case of Kij � (i+ j) (see Fig.7).

A qualitatively analogy remains true also for other functions like the expectation of

the mean cluster size and the total number of clusters.

We turn to the case of the corrected coagulation coe�cient (6.2).

In this case we plot in Figs.37-39 the normalized concentration of 10-mers as a function

of time for the moderate low, moderate high, and high coagulation rates, respectively. At

small times (t � Tc) the curves behave similar to the case with the coagulation coe�cient

(6.1), see Figs.35-36. However for the times t � Tc, this is not the case, and the curves

in Figs.37-39 look rather similar to the relevant curves for the case when the coagulation

coe�cient does not depend on i and j (see Figs.32-33).

Thus we conclude that the case of turbulent coagulation coe�cient (6.1) (without cor-

rection Eij), is qualitatively described by the case Kij � (i + j). Therefore, the detailed

analysis given in Sect.4 may be usefull in this case. The case of corrected coagulation coef-

�cient (6.2) can be qualitatively analysed on the basis of the calculation results presented

in Sect.5.

7 Conclusion

The coagulation processes in a turbulent regime are studied. The main purpose of the

paper is to distinguish between an averaged description and discription in a uctuating

dissipation rate of the kinetic turbulent energy E(t) . The averaged description was

proposed by Sa�man and Turner [12], and the coagulation coe�cient in a uctuating E(t)
is given in the present paper by formula (2.2). It turns out that in many cases these two

descriptions lead to essentially di�erent average solutions. However it is also often the case

when both description give close results. This last case called here coagulation equation

homogenization is studied in details, and conditions under which the homogenization takes

place are derived.
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We have analysed two cases of turbulent coagulation coe�cient: (1), the coe�cient

(6.1) which is derived under assumption that the particles do not disturb the ow; (2),

the coe�cient (6.2) which involves a correction coe�cient (given in [7]; the correction

accounts for the structure of ow around the bigger particle).

In the case (1), for the high and moderate high coagulation rates when  = Tw=Tc � 1

(Tw is the characteristic Lagrangian time scale of the velocity uctuations, and Tc is the

characteristic time scale of the coagulation process) then the stochastic and deterministic

descriptions lead to di�erent behaviour of the size spectrum. In the moderate low and

low coagulation rates both descriptions lead to close results only for times well within the

interval (Tc; Tc=).

In the case (2), the di�erence is pronounced tipically only in the initial time interval

(0; g Tc)), where the dimensionless constant g � 1.

Two di�erent models of the uctuated dissipation rate of turbulent energy, the lognor-

mal model P&Ch and the multifractal model B&S are used in our calculations. These

models give qualitatively close results, however the lognormal model leads as a rule to

larger di�erence between the stochastic and deterministic descriptions.

It should be noted that the turbulence was assumed to be spatially homogeneous and

stationary in time. Besides, we studied only the coagulation mechanism due to relative

motion of colliding particles in a turbulent velocity �eld. Thus we have not included the

inertion of partices, the Brownian di�usion, gravitational sedimentation, etc. It is believed

that the approach presented in this paper can be extended to more general sitations cited

above.

8 Appendix.

Derivation of the coagulation coe�cient

Let us evaluate the coagulation coe�cient

kij(x; t) =
1

2

Z
SR(x)

jwr(y)j dSR(y) (8:1)

under the assumptions: the velocity v(x; t) is incompressible, and the characteristic spatial

scale of the velocity �eld is much larger than the size of the coagulating particles. First,

expand the relative velocity:

vi(x+ y; t)� vi(x; t) =
3X

j=1

@vi(x; t)

@xj
yj + : : :

=
1

2

3X
j=1

n@vi(x; t)
@xj

+
@vj(x; t)

@xi

o
yj +

1

2

3X
j=1

n@vi(x; t)
@xj

�
@vj(x; t)

@xi

o
yj + :::

(8:2)

where we omit the terms higher than the linear ones. Now, the radial component is

expressed through the scalar product:

wr(y) = (v(x+ y; t)� v(x; t);
y

jyj
) =

X
j

X
i

@vi(x; t)

@xj

yjyi

jyj
+ :::

=
X
i

X
j

�ij
yiyj

jyj
+ ::::

(8:3)
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Then we calculate the integral using the relevant coordinate system (by a rotation to

the principal axes of �̂)

1

2

Z
SR(x)

j
X
ij

�ij
yiyj

jyj
j dSR(y) =

1

2R

Z
SR(x)

j�1y21 + �2y
2
2 + �3y

2
3j dSR(y)

=
R3

2

q
�21 + �21 + �21

Z
S1(x)

j�1y21 + �2y
2
2 + �3y

2
3j dS1(y);

where �1; �2; �3 are the eigen-values of the strain tensor �̂ , and �i = �i=
q
�21 + �21 + �21,

i = 1; 2; 3. Thus,

kij =
R3
q
�21 + �21 + �21

2

Z
S1

j�1y21 + �2y
2
2 + �3y

2
3j dS1(y):

The last integral depends on one parameter since �21+�22+�23 = 1, and, by incopressibility,

�1 + �2 + �3 = 0.

Thus we have to evaluate the integral over the sphere S1(x) for the whole region of

this parameter. Let us treat this problem as follows.

The intersection of �21 + �22 + �23 = 1 and �1 + �2 + �3 = 0 is a circle which can be

parametrized through

�1 =
1
p
2
cos � +

1
p
6
sin �; �2 = �

1
p
2
cos � +

1
p
6
sin �; �3 = �

2
p
6
sin �;

where � 2 [0; 2�). Consequently,

1

2

Z
S1

j�1y21 + �2y
2
2 + �3y

2
3jdS1 = 2�E!j�1(�)!2

1 + �2(�)!
2
2 + �3(�)!

2
3j � F (�);

where ! = (!1; !2; !3) is a random unit isotropic vector, E! means the expectation taken

over the vector !.

Monte Carlo calculations of the expectation shows that the function F (�) has its

maximum at � = 0 and the minimum at � = �=2. Explicit expression of the integral at

these points gives F (0) = 8=3
p
2; F (�=2) = 8�=9

p
2. Thus

8

3
p
2
�

1

2

Z
S1

j�1y21 + �2y
2
2 + �3y

2
3j dS1(y) �

8

3
p
2

�

3
:

Therefore we can approximate the integral by a constant which is the mean of F (0) and

F (�=2) (to within 2.3%). This yields

Kij =
1

2

Z
SR(x)

jwr(y)j dSR(y) ' A

r
"

�
(ri + rj)

3 (8:4)

with A = 2(� + 3)=9 � 1:3648.
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Fig.1. The relative di�erence ��(�) between the expectation of the total number

of clusters in stochastic and deterministic cases. The coagulation rate  = 0:86.
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Fig.2. The same as in Fig.1, for  = 0:086.
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Fig.6. Concentration of 3-mers as a function of time;  = 0:86.
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Fig.8. The size distribution for  = 0:0086 at the time instant t = Tw = 10 sec.
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Fig.9 The same as in Fig.8, for t = 10Tw = 100 sec.

23



1e-10

1

20 40 60 80 100 120

Cluster size l

hNli

n0

Deterministic case b

b

b

b

b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
bb
bb
bbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

Stochastic case +

+

+
+
+
+
+
+
+
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Fig.10. The same as in Fig.8, but for t = 100Tw = 1000 sec.
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Fig.11. The size distribution for moderate slow coagulation rate ( = 0:086) at the time

instant t = Tw = 10 sec.
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Fig.12. The same as in Fig.11, but for t = 10Tw = 100 sec.
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Fig.13. The same as in Fig.11, but for t = 100Tw = 1000 sec.
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Fig.14. The size distribution for  = 0:86 at t = Tw = 10 sec.
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Fig.15. The same as in Fig.14, but for t = 10Tw = 100 sec.
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Fig.16. The size distribution for the high coagulation rate ( = 8:56) at

t = 0:2Tw = 2 sec.
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Fig.17. The same as in Fig.17, but for t = Tw = 10 sec.
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Fig.18. The expectation of the mean cluster size; the P&Ch model of energy

dissipation rate. The case of high coagulation rate ( � 8 ); Tw = 30 sec, Tc = 4:05 sec.
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Fig.19. The same as in Fig.18, but for B&S model; the high coagulation rate

(  � 8); Tw = 30 sec, Tc = 3:68 sec.
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Fig.20. The monomer concentartion as a function of time, for high coagulation rate

(  � 8). Comparison of P&Ch and B&S models.
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Fig.21. The same as in Fig.20, but for the moderate high coagulation rate (  � 2:5);

Tc(B&S) = 12:41 sec, Tc(P&Ch = 13:2 sec.
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Fig.22. The concentartion of 10-mers as a function of time, for high coagulation

rate (  � 8). Comparison of P&Ch and B&S models.
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Fig.23. The same as in Fig.22, but for 50-mers.
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Fig.24. The size spectrum at the time t = Tw = 30 sec, for high coagulation rate

(  � 8). Comparison of P&Ch and B&S models.
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Fig.25. The same as in Fig.24, but for the moderate high coagulation rate (  � 2:5).
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Fig.26. The size spectrum in the case of the coagulation coe�cient (5.1); high

coagulation rate ( � 10), the time t = 1:5 sec, Tw = 10 sec. Tc = 1:16 sec.
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Fig.27. The same as in Fig.26, but for t = 5 sec.
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Fig.28. The same as in Fig.26, but for high coagulation rate ( � 10, Tw = 10 sec,

Tc = 1:16 sec) at the time t = 50 sec.
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Fig.29. The concentartion of 5-mers as a function of time, for the case of the

coagulation coe�cient (5.1) ; high coagulation rate ( � 10), Tw = 10 sec.
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Fig.30. The same as in Fig.29, but for moderate high coagulation rate ( � 1,

Tw = 10 sec, Tc = 11:68 sec).
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Fig.31. The same as in Fig.26, but for moderate high coagulation rate ( � 1,

Tw = 10 sec, Tc = 11:68 sec), at the time t = 15 sec.
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Fig.32. The same as in Fig.29, but for 10-mers, for moderate high coagulation rate

( � 1, Tw = 10 sec, Tc = 11:68 sec).
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Fig.33. The same as in Fig.29, but for 10-mers, for moderate low coagulation rate

( � 0:1, Tw = 10 sec, Tc = 116 sec).
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Fig.34. The same as in Fig.26, but for moderate low coagulation rate ( � 0:1,

Tw = 10 sec, Tc = 116 sec) at the time t = 150 sec.
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Fig.35. The concentartion of 10-mers as a function of time, for the case of turbulent

coagulation regime (6.1); high coagulation rate (  � 11).
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Fig.36. The same as in Fig.35, but for  � 1.
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Fig.37. The concentartion of 10-mers as a function of time, for the case of corrected

turbulent coagulation coe�cient (6.2); moderate low coagulation rate (  � 0:1).
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Fig.38. The same as in Fig.37, but for the moderate high coagulation rate (  � 1:1).
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Fig.39. The same as in Fig.37, but for the high coagulation rate (  � 11).
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