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Abstract

We consider a system of ordinary di�erential equations consisting of a

singularly perturbed scalar di�erential equation of second order and a scalar

di�erential equation of �rst or second order and study a Neuman-Cauchy or a

Neuman-Dirichlet problem. We assume that the degenerate equation has two

intersecting solutions such that the standard theory for systems of Tichonov's

type cannot be applied. We introduce the notation of a composed stable

solution. By means of the technique of ordered lower and upper solutions we

prove the existence of a solution of our problems near the composed stable

solution for su�ciently small " and determine its asymptotic behavior in ".

1 Introduction.

The dynamics of fast bimolecular reactions can be modelled by means of singular

singularly perturbed di�erential equations. If we try to reduce the order of this

system we obtain a singularly perturbed di�erential system which can exhibit the

property of exchange of stabilities [9]. This phenomenon is characterized by the

existence of intersecting solutions of the corresponding degenerate system which im-

ply an exchange of stabilities of the families of equilibria of the associated system

at these intersection points. Initial value problems for singularly perturbed systems

in case of exchange of stability have been investigated by Lebovitz and Schaar [6]

and others. Recently, Nefedov and Schneider [8] studied this problem by applying

the asymptotic method of di�erential inequalities. This approach is based on well-

known results of Chaplygin on di�erential inequalities [4], additionally the upper

and lower solutions depend on the perturbation parameter which is assumed to tend

to zero.

Singularly perturbed boundary value problems in case of exchange of stabilities

have been considered only in special situations. In [1] a boundary value problem

of this type was studied for a scalar ordinary di�erential equation of second order.

The essential result in that paper is the existence of a non-smooth limit solution;

additionally, error estimates have been derived for the constructed asymptotic repre-

sentation of the solution. The proofs are based on the application of the asymptotic

method of di�erential inequalities justi�ed by the results of Nagumo [7]. To get

lower and upper solutions, the smoothing-procedure for non-smooth terms in the

asymptotic expansion has e�ectively used (see also [2]).

In this paper, we apply a method developed in [1, 8] to a larger class of boundary

value problems for singularly perturbed systems of Tichonov's type with fast and

slow variables. Systems of such type play an important role in modelling processes

with di�erent time scales, especially they can be used to describe fast bimolecular

reactions [9]. Thus, the results obtained in this paper can be used to investigate the

behavior of reaction rates.
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2 Formulation of the problem.

Systems of di�erential equations containing �fast� and �slow� equations are called

systems of Tichonov's type [11]. In what

follows we consider such a system consisting of a �fast� di�erential equation of second

order

"
2
u
00 = g(u; v; x; "); (2.1)

here and in the sequel we denote by � 0 � the di�erentiation with respect to x, and

of a �slow� equation either of �rst order

v
0 = f(u; v; x; ") (2.2)

or of second order

v
00 = f(u; v; x; "): (2.3)

Here, " is a small positive parameter, g and f are twice continuously di�erentiable

functions of their scalar variables. Equations (2.1) - (2.3) are considered on the

interval 0 � x � 1. We look for a solution (u; v) of these equations whose u-

component satis�es the no-�ux condition

u
0(0) = u

0(1) = 0; (2.4)

whereas the v-component is assumed to obey either the initial condition

v(0) = v
0 (2.5)

in case of equation (2.2) or the boundary conditions

v(0) = v
0
; v(1) = v

1 (2.6)

in case of equation (2.3).

The restriction on this type of boundary conditions is not essential. We denote the

boundary-initial value problem (2.1), (2.2), (2.4), (2.5) as (BIVP), and the boundary

value problem (2.1), (2.3), (2.4), (2.6) as (BVP). We consider these problems under

the following assumptions

(C1). The degenerate equation

g(u; v; x; 0) = 0 (2.7)

has two solutions u = '1(v; x) and u = '2(v; x) with the same smoothness as

g. In the (v; x)-plane there is a continuous curve v = v0(x); 0 � x � 1, such

that for 0 � x � 1

'1(v; x) > '2(v; x) for v < v0(x);

'1(v0(x); x) � '2(v0(x); x) for 0 � x � 1; (2.8)

'1(v; x) < '2(v; x) for v > v0(x):
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From assumption (C1) it follows that the solutions u = '1(v; x) and u = '2(v; x)

intersect at a curve whose projection into the (v; x)-plane is the curve v = v0(x).

This property distinguishes the problem under consideration from the standard case

treated in Tichonov's theorem (see [11]) and its analogs where only isolated solutions

of the degenerate equation (2.7) are considered.

(C2). For 0 � x � 1 we suppose

gu('1(v; x); v; x; 0) > 0 for v < v0(x);

gu('1(v; x); v; x; 0) < 0 for v > v0(x);

gu('2(v; x); v; x; 0) < 0 for v < v0(x);

gu('2(v; x); v; x; 0) > 0 for v > v0(x):

From assumption (C2) we obtain that gu(u; v; x; 0) changes its sign on each solution

u = '1(v; x) and u = '2(v; x) when v passes the point v0(x) on the curve v = v0(x)

for 0 � x � 1. Hence, we have

gu('1(v0(x); x); v0(x); x) � gu('2(v0(x); x); v0(x); x) � 0 for 0 � x � 1: (2.9)

This property implies a change of the qualitative behavior of the equilibria u =

'1(v; x) and u = '2(v; x) of the corresponding associated equation

d
2
u

d�2
= g(u; v; x; 0)

where v and x are considered as parameters.

The simplest example of a function g satisfying the hypotheses (C1) and (C2) is a

function quadratic in u; g(u; v; x; 0) � [u � '1(v; x)][u � '2(v; x)], provided '1 and

'2 ful�l the relation (2.8).

Further hypotheses are introduced in studying each of the problems characterized

above.

3 The composed stable solution for the boundary-

initial value problem.

Consider the boundary-initial value problem

"
2
u
00 = g(u; v; x; ");

v
0 = f(u; v; x; ");

u
0(0) = u

0(1) = 0;

v(0) = v
0
:

(BIVP)
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First we study the case that the initial value v0 in (2.5) for the di�erential equation

(2.2) satis�es v0 < v0(0). In that case, we replace u in the right hand side of (2.2)

by the function '1(v; x) and consider the initial value problem

v
0 = f('1(v; x); v; x; 0); v(0) = v

0
; 0 � x < 1: (3.1)

We assume (3.1) has a solution v = v1(x) intersecting the curve v = v0(x) for

x = x0 < 1; that is v1 satis�es

v1(x) < v0(x) for 0 � x < x0; v1(x0) = v0(x0): (3.2)

Furthermore, for x � x0 we study the initial value problem

v
0 = f('2(v; x); v; x; 0); v(x0) = v0(x0); x0 � x � 1: (3.3)

We assume it has a solution v = v2(x) satisfying

v2(x) > v0(x) for x0 < x � 1: (3.4)

Now, we introduce the functions v̂(x) and û(x) by

v̂(x) =

(
v1(x) for 0 � x � x0;

v2(x) for x0 � x � 1;

(3.5)

û(x) =

(
'1(v1(x); x) � u1(x) for 0 � x � x0;

'2(v2(x); x) � u2(x) for x0 � x � 1:

The function v̂(x) is continuously di�erentiable in [0; 1], i.e. v̂(x) is a classical

solution of the initial value problem

v
0 = f('(v; x); v; x; 0); v(0) = v

0
; 0 � x � 1 (3.6)

where

'(v; x) =

(
'1(v; x) for 0 � x � x0;

'2(v; x) for x0 � x � 1:
(3.7)

In contrast to v̂(x), the function û(x) is less smooth. It is continuous in [0; 1] and

has continuous �rst and second derivatives except at x = x0 where both derivatives

can have a discontinuity. From (2.8) we get

û
0(x0 � 0) = u

0

1(x0) � u
0

2(x0) = û
0(x0 + 0): (3.8)

The pair of functions (û(x); v̂(x)) is referred to as the composed stable solution of

the degenerate problem. It is constructed by means of the two solutions of the

degenerate equation (2.7).

Summarizing the considerations above we introduce the following hypothesis.

(I1). The initial value problem (3.6) has a solution v̂(x) satisfying (3.2) and (3.4).
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Remark 1. In order to construct v̂(x) in case v
0
> v0(0), we have to use the

function '2(v; x) on the interval [0; x0] and the function '1(v; x) on the interval

[x0; 1]. In case v
0 = v0(0) we have to compare v

0

1(0) = f('i(v
0
; 0); v0; 0; 0) and

v
0

0(0): If v
0

1(0) < v
0

0(0)(v
0

1(0) > v
0

0(0)) we use the function '1(v; x) ('2(v; x)) on

the interval [0; x0] and the function '2(v; x) ('1(v; x)) on the interval [x0; 1]. If

additionaly v01(0) = v
0

0(0) holds we have to compare v001 (0) and v
00

0(0), and so on.

Remark 2. The curve v = v̂(x) intersects the curve v = v0(x) at a unique point,

namely at (x0; v0(x0)). The more general case of several intersection points can

be also treated. In crossing each intersection point we have to replace one of the

functions '1 and '2 in the right hand side of (3.6) by the other one.

In the next section we shall prove that under some additional assumptions the

composed stable solution is the limit of the solution (u(x; "); v(x; ")) of (BIVP) as "

tends to zero.

4 The asymptotic limit in the boundary-initial value

problem.

For the sequel it is convenient to introduce the notation ĝu(x) = gu(û(x); v̂(x); x; 0).

Analogously we use a similar notation for other derivatives of the functions g and

f .

Note that we get from assumption (C2)

ĝu(x) > 0 for x 6= x0; and ĝu(x0) = 0: (4.1)

Concerning the second derivative we assume

(I2). ĝuu(x0) > 0:

In case that g(u; v; x; 0) has the form g(u; v; x; 0) = (u�'1(v; x))(u� '2(v; x)) this

condition is ful�lled.

The following assumption concerns the dependence of the function g on the param-

eter ". The cases that g is independent of " and that g depends on " require a

separate treatment (see [1]). Here, we consider the case that g depends on ". In

that case the sign of the derivative ĝ"(x) at x = x0 plays a crucial role (see also [1]).

(I3). ĝ"(x0) < 0:

Theorem 1. Assume the hypotheses (C1), (C2), (I1)-(I3) are valid. Then, for su�-

ciently small ", the boundary initial value problem (BIVP) has a solution

(u(x; "); v(x; ")) satisfying for x 2 [0:1]

u(x; ") = û(x) +O(
p
"); v(x; ") = v̂(x) +O(

p
"): (4.2)

Proof. The proof is based on the technique of di�erential inequalities. For conve-

nience we recall the notion of ordered upper and lower solutions.
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Two pairs of functions (U(x; "); V (x; ")) and (U(x; "); V (x; ")) are called ordered

lower and upper solutions of (BIVP) respectively i� they satisfy the following con-

ditions:

10: U(x; ") � U(x; "); V (x; ") � V (x; ") for 0 � x � 1;

20: L"(U; v) � "
2
U
00 � g(U; v; x; ") � 0; and L"(U; v) � 0

for f0 < x < 1; V (x; ") � v � V (x; ")g;
M"(u; V ) � V

0 � f(u; V ; x; ") � 0 and M"(u; V ) � 0

for f0 < x < 1; U(x; ") � u � U(x; ")g;
30: U

0(0; ") � 0 � U
0

(0; "); U 0(1; ") � 0 � U
0

(1; "); V (0; ") � v
0 � V (0; "):

It is known [10] that the existence of ordered lower and upper solutions implies the

existence of a solution (u(x; "); v(x; ")) of (BIVP) obeying

U(x; ") � u(x; ") � U(x; "); V (x; ") � v(x; ") � V (x; ") for 0 � x � 1: (4.3)

To construct ordered lower and upper solutions we use the composed stable solution

(û(x); v̂(x)) of the degenerate problem. By (3.8) the derivative of û(x) has a non-

negative jump at x = x0 : û0(x0 + 0) � û
0(x0 � 0) � 0. We note that the �rst

derivative of the lower solution U(x; ") can have a positive jump at x = x0, but not

the �rst derivative of the the upper solution U(x; ") (see [3, 5]). Hence, to be able

to construct U(x; ") by using û(x) we introduce a smoothing procedure developed

in [2] for problems with non-smooth terms in the asymptotic expansions.

Let

� =
x� x0

"�

where � is any number of the interval (0:5; 1), let

!(�) =
1p
�

Z
�

�1

e
�s2

ds:

Obviously, we have !(�1) = 0; !(+1) = 1:

We extend the function v1(x) for x > x0 as solution of (3.1) with the initial condition

v1(x0) = v0(x0) (see (3.2)), and the function v2(x) for x < x0 as solution of (3.3).

This permits to extend smoothly the function u1(x) � '1(v1(x); x) for x > x0, and

the function u2(x) � '2(v2(x); x) for x < x0. We put for 0 � x � 1

~u(x) = u1(x)!(��) + u2(x)!(�): (4.4)

The function ~u(x) is smooth in [0; 1], and it holds

~u(x) = û(x) + 0("�) for 0 � x � 1: (4.5)

Now we construct lower and upper solutions for (BIVP) in the form
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U(x; ") � û(x)�p" � e
�(x�x0) � "

�
z(x; "); V (x; ") = v̂(x)�p" �2

e
�(x�x0);

U(x; ") � ~u(x) +
p
" � e

�(x�x0) + "
�
z(x; "); V (x; ") = v̂(x) +

p
" �

2
e
�(x�x0);

(4.6)

where z(x; ") � e
��x

"
� + e

��(1�x)

"
� ; and �; �; �; � are positive numbers. We shall deter-

mine these numbers such that the functions U; V ; U; V satisfy the conditions 10�30

for su�ciently small " that is, they are ordered lower and upper solutions.

Condition 10 is obviously ful�lled for any positive �; �; �; � and su�ciently small ".

The last (double) inequality in 30 is also ful�lled for any positive � and � since we

have v̂(0) = v1(0) = v
0. The remaining inequalities in 30 are satis�ed if � is su�-

ciently large. For example, from U
0(0; ") = û

0(0)+ �+O(
p
") it follows U 0(0; ") � 0

for � su�ciently large.

Now we consider the inequalities in 20. Firstly we are concerned with L"(U; v). By

expanding g(U(x; "); v; x; ") into a Taylor series at (û(x); v̂(x); x; 0) and taking into

account the relations (4.5) and ĝ(x) � 0 we get

L"(U; v) = f"2[u001(x)!(��) + u
00

2(x)!(�)] + "
2�� 2p

�
[u02(x)� u

0

1(x)]e
��

2

+

+"2�2� 2p
�
[u1(x)� u2(x)]�e

��
2

+ "
5=2

��
2
e
�(x�x0) +

+"2���2
z(x; ")g � [ĝu(x)(

p
"�e

�(x�x0) +O("�)) + ĝv(x)(v � v̂(x)) +

+ĝ"(x)"+
1

2
fĝuu(x)(

p
"�e

�(x�x0) +O("�))2 + 2ĝuv(x)(
p
"�e

�(x�x0) +

+O("�))(v � v̂(x)) + ĝvv(x)(v � v̂(x))2g+ o(")]:

Since [u1(x)�u2(x)]�e
��2 = O("�) the expression in the �rst braces is of order "2��,

and satis�es also o(") because of 1
2
< � < 1. Let us rewrite the expression in the

square brackets. We set

v � v̂(x) =
p
"�

2
e
�(x�x0)w:

Then we have �1 � w � 1 for V (x; ") � v � V (x; "). We will also exploit the

relationship

ĝv(x) = �ĝu(x)'v(v̂(x); x)

where the function '(v; x) is de�ned in (3.7). We get this equality by di�erentiating

g('(v; x); v; x; 0) � 0 with respect to v. Consequently, we obtain

L"(U; v) = �p"ĝu(x)e�(x�x0)(� � '̂v(x)�
2
w +O("��

1
2 ))�

�"ĝ"(x)�
1

2
"e

2�(x�x0)(ĝuu(x)�
2 + 2ĝuv(x)��

2
w + ĝvv(x)�

4
w

2) + o("):
(4.7)

For su�ciently small � and " we have

� � '̂v(x)�
2
w +O("��

1
2 ) � �

2
:
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From (4.1) we can conclude that the �rst term on the right hand side of (4.7) is

not greater than zero for x 2 [0; 1]. The second term �"ĝ"(x) is positive at x0

according to hypothesis (I3). The third term is also of order " as the second one.

For su�ciently small � it is negative at x = x0 by hypothesis (I2). Moreover, for

su�ciently large � the sum of the second and third terms is negative at x = x0, and

also in some small �-neighborhood of x0. Thus, in this neighborhood the inequality

L"(U; v) � 0 is valid for V (x; ") � v � V (x; ") by hypothesis (I2). Outside this �-

neighborhood of x0 we have ĝu(x) � c > 0. Hence, the dominant term on the right

hand side in (4.7) is the �rst one possessing the order
p
". For su�ciently small

", this term guarantees the validity of the inequality L"(U; v) � 0 for jx � x0j �
�; V (x; ") � v � V (x; "). Consequently, the inequality L"(U; v) � 0 in condition 10

is valid under our assumptions.

Analogously to the derivation of (4.7), we get for L"(U; v)

L"(U; v) =
p
"ĝu(x)�e

�(x�x0)(1� '̂v(x)�w +O("��
1
2 ))�

�"ĝ"(x)�
"

2
�
2
e
2�(x�x0)(ĝuu(x) + 2ĝuv(x)�w + ĝvv(x)�

2
w

2) + o("):
(4.8)

For su�ciently small � and " we have

1� �'̂v(x)w +O("��
1
2 ) � 1

2
:

Therefore, the �rst term on the right hand side in (4.8) is not less than zero. The

second term �"ĝ"(x) is positive at x = x0 due to assumption (I3). For su�ciently

small �, the third term is negative at x = x0 by hypothesis (I2). Obviously, for

su�ciently small �, the sum of the second and of the third term is positive at

x = x0, and also in some �-neighborhood of x0. Thus, for su�ciently small � and

", the inequality L"(U; v) � 0 holds for V (x; ") � v � V (x; ") and jx� x0j � �:

Outside this neighborhood the �rst term is of order
p
" and dominates the other

ones, and the inequality L"(U; v) � 0 is ful�lled for su�ciently small ". Hence, the

inequality L"(U; v) � 0 holds for V (x; ") � v � V (x; ") and 0 � x � 1.

For M"(u; V ) we get

M"(u; V ) = fv̂0(x)�p"�2
�e

�(x�x0)g � [f̂(x) + f̂u(x)(u� û(x))�
�f̂v(x)

p
"�

2
e
�(x�x0) +O(")]:

If we set u� û(x) =
p
"e

�(x�x0)w then we have �� + O("��
1
2 ) � w � � + O("��

1
2 )

for U(x; ") � u � U(x; "). Taking into account v̂0(x) = f̂(x) we obtain

M"(u; V ) = �p"e�(x�x0)[�2
�+ f̂u(x)w � f̂v(x)�

2] +O("):

For su�ciently large �, the expression in the square brackets is positive. Thus, for

su�ciently small " we have M"(u; V ) � 0 for 0 � x � 1; U(x; ") � u � U(x; ").

Analogously, the inequality

M"(u; V ) � 0 for 0 � x � 1; U(x; ") � u � U(x; ")
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can be established. Consequently, we have proved that the functions (U(x; "); V (x; "))

and (U(x; "); V (x; ")) de�ned in (4.6) satisfy the conditions 10 - 30 for appropriately

chosen constants that is, they are ordered lower and upper solutions for (BIVP).

Hence, there exists a solution (u(x; "); v(x; ")) of (BIVP) satisfying the inequalities

(4.3). By (4.6) we have

U(x; ") = û(x) +O(
p
"); U(x; ") = û(x) +O(

p
");

V (x; ") = v̂(x) +O(
p
"); V (x; ") = v̂(x) +O(

p
"):

Hence, from (4.3) we get the inequalities (4.2). This completes the proof of Theorem

4.

Remark 3. From (4.2) we obtain

lim
"!0

u(x; ") = û(x); lim
"!0

v(x; ") = v̂(x)

that is, the composed stable solution is the limit of the solution of (BIVP).

Remark 4. Outside any small but �xed �-neighborhood of x0 we can derive a higher

order asymptotic expansion of the solution (u(x; "); v(x; ")) of (BIVP); for example

(see [1]) we have

u(x; ") = û(x) +O("); v(x; ") = v̂(x) +O("): (4.9)

Remark 5. If instead of hypothesis (I3) the inequality ĝ"(x0) > 0 holds then there

can arise the case that (BIVP) has no solution converging to the composed stable

solution (û(x); v̂(x)) as "! 0 (See the example in [1]).

Remark 6. As we already mentioned above, the case when the functions g and f do

not depend on " requires a separate treatment. We shall consider this case in more

details in a forthcoming paper.

5 The composed stable solution for the boundary

value problem (BVP).

Consider the boundary value problem

"
2
u
00 = g(u; v; x; ");

v
00 = f(u; v; x; ");

u
0(0) = u

0(1) = 0;

v(0) = v
0
; v(1) = v

1
:

(BVP)

We preserve hypotheses (C1) and (C2) from section 2 and study �rst the case v0 <

v0(0); v
1
> v0(1). To construct the corresponding composed stable solution we
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consider the boundary value problems

v
00 = f('1(v; x); v; x; 0); 0 � x � x0; v(0) = v

0
; v(x0) = v0(x0); (5.1)

v
00 = f('2(v; x); v; x; 0); x0 � x � 1; v(x0) = v0(x0); v(1) = v

1
: (5.2)

For the sequel we need the assumption

(B1). There exists a x0 2 (0; 1) such that the boundary value problems (5.1) and

(5.2) have solutions v1(x) and v2(x) respectively satisfying

v1(x) < v0(x) for 0 � x < x0;

v2(x) > v0(x) for x0 < x � 1;

v
0

1(x0) = v
0

2(x0):

We introduce the functions v̂(x) and û(x) by

v̂(x) =

(
v1(x) for 0 � x � x0;

v2(x) for x0 � x � 1;

û(x) =

(
'1(v1(x); x) � u1(x) for 0 � x � x0;

'2(v2(x); x) � u2(x) for x0 � x � 1;

The function û(x) has the same properties as the corresponding one in section 3,

in particular, its �rst derivate satis�es at x = x0 inequality (3.8); according to

hypothesis (B1), the function v(x) is a classic (twice continuously di�erentiable in

(0,1)) solution of the boundary value problem

v
00 = f('(v; x); v; x; 0); v(0) = v

0
; v(1) = v

1
;

where '(v; x) is de�ned by (3.7).

The pair of functions (û(x); v̂(x)) is referred to as the stable composed solution of

the degenerate problem to (BVP).

6 The asymptotic limit in the boundary value prob-

lem.

To derive the following results about existence and asymptotic behavior of a solution

of (BVP) we introduce the assumptions

(B2).

ĝ"(x0) < 0:
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(B3). There are positive numbers � and � obeying the inequalities

'̂v(x) � 'v(v̂(x); x) < � for 0 � x � 1; (6.1)

ĝuu(x0)�
2 + 2ĝuv(x0)� + ĝvv(x0) > 0; (6.2)

f̂u(x)� + f̂v(x) � ��2 + � for 0 � x � 1: (6.3)

(B4). The function g(u; v; x; ") is non-increasing in v for �xed u; x; ", and the function

f(u; v; x; ") is non-increasing in u for �xed v; x; " in some neighborhood (which

will be speci�ed after introducing lower and upper solutions) of the composed

stable solution for su�ciently small ".

Assumption (B4) says that the vector function (g; f) is quasi-monotone in some

neighborhood of the composed stable solution.

Theorem 2. Assume the hypotheses (C1), (C2), (B1) - (B4) are valid. Then, for

su�ciently small ", the boundary value problem (BVP) has a solution (u(x; "); (x; "))

satisfying for x 2 [0; 1]

u(x; ") = û(x) +O(
p
"); v(x; ") = v̂(x) +O(

p
"): (6.4)

Proof. Again we use the method of di�erential inequalities. Since equation (2.3)

is a second order equation, the conditions for ordered lower (U(x; "); V (x; ")) and

upper (U(x; "); V (x; ")) solutions partly change. Condition 10 remains the same.

In 20, the inequalities concerning equation (2.1) also are preserved, whereas the

inequalities concerning equation (2.3) change as follows

M"(u; V ) � V
00 � f(u; V (x; "); x; ") � 0;M"(u; V ) � 0

for f0 � x � 1; U(x; ") � u � U(x; ")g: (6.5)

Finally, the following inequalities have to be added to the conditions in 30:

V (1; ") � v
1 � V (1; "):

The existence of ordered lower and upper solutions implies the existence of a solution

(u(x; "); v(x; ")) of the boundary value problem obeying the inequalities (4.3).

As in the proof of Theorem 1 we use the stable composed solution (û(x; "); v̂(x; ")) to

construct ordered lower and upper solutions. Since the derivative of û(x) at x = x0

has a non-negative jump, we use the smoothed function ~u(x) de�ned in (4.4) to

construct U(x; "), where we choose � = 1. Hence, we have

~u(x; ") = û(x) +O("): (6.6)

Note, that also in the proof of Theorem 1 we could set � = 1 without great changes

in the proof.

We put
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U(x; ") = û(x)� "�h(x)� "z(x; "); V (x; ") = v̂(x)� "h(x);

U(x; ") = ~u(x) +
p
"�h(x) + "z(x; "); V (x; ") = v̂(x) +

p
"h(x)

(6.7)

where � is the same constant as in hypothesis (B3), z and h are de�ned as follows

z(x; ") = e
��x

" + e
��

1�x
" ; h(x) = sin

�(x+ �)

1 + 2�
; (6.8)

�; � and  are positive numbers to be chosen later appropriately such that the

conditions 10 � 30 are ful�lled. Note that h(x) > 0 for 0 � x � 1.

Remark 7. Concerning hypothesis (B4) it should be noted that the property of quasi-

monotonicity of the vector function (g; f) is required only in the region bounded by

lower and upper solutions.

Condition 10 and the inequalities for V (x; ") and V (x; ") in condition 30 are satis�ed

for any positive �; � and . The inequalities for U(x; ") and U(x; ") in condition 30

can be ful�lled for su�ciently large �. For example we have U 0(0; ") = û
0(0) + � +

O(") > 0 for � su�ciently large and " su�ciently small.

Now we consider condition 20. Note that hypothesis (B4) is su�cient for the proof of

the inequalities (6.5) and of the corresponding inequalities for L"(U; v) and L"(U; v)

in 20 if we establish the validity of the inequalities

L"(U; V ) � 0 for 0 < x < 1; x 6= x0; (6.9)

M"(U; V ) � 0 for 0 < x < 1; (6.10)

L"(U; V ) � 0; M"(U; V ) � 0 for 0 < x < 1: (6.11)

For L"(U; V ) we get

L"(U; V ) = "
2
U
00 � g(U; V ; x; ") = "

2(û00(x)� "�h
00(x)� 1

"
�
2
z(x; "))

�
h
ĝ(x)� "h(x)(ĝu(x)� + ĝv(x))� "ĝu(x)z(x; ") + "ĝ"(x) +O("2)

i
=(6.12)

= "fh(x)ĝu(x)[� � '̂v(x)] + [ĝu(x)� �
2]z(x; ")� ĝ"(x) +O(")g:

From ĝu(x) � 0, (6.1) and from h(x) > 0 we get that the �rst term in the braces is

greater than zero for x 6= x0 and vanishes at x = x0. In a small �-neighborhood of

x0 the second term is smaller than any order of " (it is exponentially small), and the

third term �ĝ"(x) is positive for su�ciently small � by hypotheses (B2). Therefore,

for su�ciently small ", the term �ĝ"(x0) determines the sign of the expression in

the braces in a small �-neighborhood of x0, such that we have L"(U; V ) � 0 in

this neighborhood by hypothesis (B2). Outside this �-neighborhood the inequality

ĝu(x) � c > 0 holds, and this implies that the �rst term is dominant for su�ciently

large . Thus, this term guarantees the validity of the inequalityL"(U; V ) � 0

outside the �-neighborhood of x0. Consequently, the inequality (6.9) is valid.

From v̂
00 = f(û; v̂; x; 0) and by de�nition of h(x) in (6.8) we get
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M"(U; V ) = V
00 � f(U; V ; x; ") = v̂

00(x)� "h
00(x)� [f̂(x)�

�"(f̂u(x)� + f̂v(x))h(x)� "f̂u(x)z(x; ") + "f̂"(x) +O("2)] =

= �"f[h00(x)� (f̂u(x)� + f̂v(x))h(x)]� f̂u(x)z(x; ") + f̂"(x) +O(")g

= "

(


"�
�

1 + 2�

�2

+ f̂u(x)� + f̂v(x)

#
sin

�(x + �)

1 + 2�
+O(1)

)
:

(6.13)

Because of f̂u(x)� + f̂v(x) > ��2 + � where � > 0 (see (6.3)), and for su�ciently

small � we have �
�

1 + 2�

�2

+ f̂u(x)� + f̂v(x) � c > 0: (6.14)

Thus, for su�ciently large , the inequality (6.10) holds: M"(U; V ) � 0 for 0 < x <

1.

It remains to verify that the upper solution satis�es the inequalities (6.11).

By using the expressions for ~u(x; ") and z(x; ") it is not di�cult to show

"
2(~u00 + "z

00) = O("):

Taking into account the relation (6.6) we obtain

g(U; V ; x; ") = g(û(x) +
p
"�h(x) +O("); v̂(x) +

p
"h(x); x; ") =

= g(û(x) +
p
"�h(x); v̂(x) +

p
"h(x); x; 0) + r(x; ") =

=
p
"h(x)(ĝu(x)� + ĝv(x)) + "

2
h
2(x)(ĝuu(x)�

2 + 2ĝuv(x)� + ĝvv(x)) +

+q(x; ; ") + r(x; ");

here r(x; ") and q(x; ; ") denote functions satisfying

jr(x; ")j � c"; jq(x; ; ")j � c0()"
3=2

;

where c and c0() are positive constants not depending of ".

From these relations we get

L"(U; V ) = �p"h(x)ĝu(x)(� � '̂v(x))�
�"2

h
2(x)(ĝuu(x)�

2 + 2ĝuv(x)� + ĝvv(x)) + q(x; ; ") + r(x; "):
(6.15)

The �rst term on the right hand side of (6.15) is negative for x 6= x0 and vanishes

at x = x0. Hence, in a small �-neighborhood of x0 the essential term is the second

one. By condition (6.2) this term is negative in a small �-neighborhood of x0. Since

the second and the last terms are of order O(") and q satis�es q(x; ; ") = o(") we

may choose  su�ciently large such that the second term determines the sign of

L"(U; V ), that is we have by (6.2) in a small �-neighborhood of x0

L"(U; V ) � 0: (6.16)
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Outside the �-neighborhood of x0 we have ĝu(x) � c > 0 such that the �rst term of

(6.15) is of order O(
p
") and dominates the other ones. For su�ciently small ", this

term guarantees the validity of (6.16) outside the �-neighborhood of x0 in [0; 1].

Analogously to (6.13), we obtain for M"(U; V )

M"(U; V ) =
p
"

"
�
�

�

1 + 2�

�2

� f̂u(x)� � f̂v(x)

#
sin

�(x+ �)

1 + 2�
+ o(

p
"):

By (6.14) we get from this relation that for su�ciently small " the inequality

M"(U; V ) � 0 is ful�lled for x 2 [0; 1]:

Therefore, the functions (U(x; "); V (x; ")) and (U(x; "); V (x; ")) constructed above

satisfy the conditions 10 � 30 that is, they are ordered lower and upper solu-

tions for the boundary value problem (BVP). Consequently, there exists a solution

(u(x; "); v(x; ")) of (BVP) obeying the inequalities (4.3). These inequalities together

with (6.7) imply that (u(x; "); v(x; ")) ful�l the relations in (6.4). This completes

the proof of Theorem 2.

Remark 8. Theorem 2 is concerned with the case v
0
< v0(0); v

1
> v0(1). In

other cases the stable composed solution is constructed analogously. For example, if

v
0
> v0(0); v

1
< v0(1) then for construction v̂(x) with one intersection point of v̂(x)

and v0(x) we have to use the function '2(v; x) on the interval [0; x0] and the function

'1(v; x) on the interval [x0; 1]; if v
0
< v0(0); v

1
< v0(1) then there may exists a stable

composed solution such that v̂(x) and v0(x) have two intersection points x1 and x2

(say x1 < x2) and for the construction of v̂(x) we have to use the function '1(v; x)

on the intervals [0; x1] and [x2; 1] and the function '2(v; x) on the interval [x1; x2].

Remark 9. As in case of (BIVP) we get from (6.4)

lim
"!0

u(x; ") = û(x); lim
"!0

v(x; ") = v̂(x); 0 � x � 1:

Remark 10. Outside the small �-neighborhood of x0 we can derive the same type

of asymptotic representation for the solution of (BVP) as in the case of (BIVP) in

(4.9).
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